

An In-Vehicle Embedded System for

Intelligent Transport System :

Modeling and Simulation

By

Ravisaheb Rushikumar R.

(05MCE013)

Department of Computer Science & Engineering

Institute of Technology

Nirma University of Science & Technology

Ahmedabad 382481

May 2007

An In-Vehicle Embedded System for
Intelligent Transport System :

Modeling and Simulation

By

Ravisaheb Rushikumar R.
(05MCE013)

Guide

Dr. (Prof.) S. N. Pradhan

A Dissertation
Submitted to

Nirma University of Science and Technology

in partial fulfillment of the requirement
for the degree of

Master of Technology

Department of Computer Science & Engineering
Institute of Technology

Nirma University of Science & Technology
Ahmedabad 382481

May 2007

This is to certify that Dissertation entitled

An In-Vehicle Embedded System For

Intelligent Transport System :

Modeling and Simulation

Submitted by

Ravisaheb Rushikumar R.

has been accepted toward fulfillment of the requirement

for the degree of

Master of Technology in Computer Science & Engineering

Prof. S. N. Pradhan Prof. D. J. Patel

Professor In Charge Head of The Department

Prof. A. B. Patel

Director, Institute of Technology

CERTIFICATE

This is to certify that the Major Project entitled “An In-Vehicle Embedded

System For Intelligent Transport System : Modeling and Simulation”

submitted by Mr. Rushikumar R. Ravisaheb (05MCE013), towards the

partial fulfillment of the requirements for the degree of Master of

Technology in Compute Science & Engineering of Nirma University of

Science and Technology, Ahmedabad is the record of work carried out by

him under my supervision and guidance. In my opinion, the submitted

work has reached a level required for being accepted for examination. The

results embodied in this major project, to the best of my knowledge,

haven’t been submitted to any other university or institution for award of

any Master degree.

Project Guide

Dr. (Prof.) S. N. Pradhan
P. G. Coordinator,
Department of Computer Engineering,
Institute of Technology,
Nirma University,
Ahmedabad

Date :-

ACKNOWLEDGEMENT

The success that I have got in the accomplishment of the project work is not only

due to my efforts. In fact, I stand on the shoulders of many people. So, with

great pleasure I take this opportunity to express my gratitude towards all the

individuals who have helped and inspired me in my project work. It was a great

experience working on this project, about a totally new concept. The project

taught me many things and added knowledge to my memory bank.

First of all, I would like to express my earnest gratitude to my internal project

guide Dr. S. N. Pradhan, M.Tech In-Charge, Department of Computer Science

and Engineering, Nirma University for their constant guidance, encouragement

and moral support which helped me to accomplish the project.

I would like to thank our Head of the Department Prof. D. J. Patel for helping

me in all possible ways.

I am heartily thankful to Prof. Jaladhi Joshi, for giving new direction to my

system’s model and helping in getting to know the system.

I extend my sincere gratitude to my parents and all family members for their

moral support. I would also like to be grateful to my fiancée for helping me in all

possible ways whenever I looked for her help and always being on my side.

Finally, I would like to thank all my friends and classmates for their coordination

and constant help, without which project wouldn’t be done.

Last but not the least, I am thankful to God for giving me the light and strength

to work and making this project a success.

Ravisaheb Rushikumar R.

(05MCE013)

 III

ABSTRACT

Computers & communications are becoming integral part of intelligent transport

systems. Such system aims to provide better amenity for passengers, vehicle

condition monitoring, driver performance and vehicle fleet management. The

thesis discusses the development of such a system using modern embedded

system design approach.

Embedded system described here automates all functionalities including the

timing information, ticketing process; station information, passenger information

etc., which are packaged with minimal manual entry required by bus-driver.

Development cycle of an embedded system includes modeling as the foremost

step. Modeling is the process which reduces the development time and also helps

in testing the system before manufacturing. That way modeling reduces market

window of an embedded system by great amount. For modeling Ptolemy 6.0.2,

which is open source tool from Berkeley University is used.

All the functions are understood and defined with separate modules, and models

have been developed that simulates the functionality. The Ptolemy tool refers

each individual entity as an actor that operates on tokens. During project some

actors in original tool have been modified and found more efficient later. Also

some actors’ are developed, patched and then used for this project. Simulation

needed cross compilation of the generated code for specific target system and

then checking its performance.

Different modules have been implemented to develop entire design. System

statecharts, model design and working of modules are included. After

implementation of individual units, they have been integrated. Core Java and

Cygwin were used for adding actors and code generation.

 IV

CONTENTS

Certificate ……………………………………………………………………………………………………. II

Acknowledgement ………………………………………………………………………………………. III

Abstract ………………………………………………………………………………………………………. IV

Contents ……………………………………………………………………………………………………… V

List of Figures ……………………………………………………………………………………………… VII

List of Tables ………………………………………………………………………………………………. IX

Acronyms and Abbreviations ……………………………………………………………………… X

Chapter 1 Introduction ……………………………………………………… 1

 1.1 Project Overview ………………………………………………………. 1

 1.2 Need of Project …………………………………………………………. 3

 1.3 Aim of Project …………………………………………………………… 4

 1.4 Scope of Project ……………………………………………………….. 4

Chapter 2 Modeling and Simulation …………………………………….. 5

 2.1 Introduction ………………………………………………………………. 5

 2.2 Need of Modeling ………………………………………………………. 6

 2.3 Modeling Cycle ………………………………………………………….. 7

 2.4 Actor Oriented Modeling …………………………………………… 8

 2.5 Simulation ………………………………………………………………… 10

Chapter 3 Tools & Toolkit ………………………………………………….. 11

 3.1 Ptolemy Tool …………………………………………………………….. 11

 3.1.1 Modeling ………………………………………………………. 11

 3.1.2 Vergil and its Elements ………………………………. 13

 3.1.3 Simulation ……………………………………………………. 14

 3.1.4 Code Generation Environment ………………….. 14

 3.2 Cygwin ……………………………………………………………………… 16

Chapter 4 Bus Transport System ……………………………………….. 17

 4.1 Introduction …………………………………………………………….. 17

 V

 4.2 Functionalities ………………………………………………………….. 17

 4.3 Assumptions …………………………………………………………….. 19

 4.4 Statechart Representation ………………………………………. 20

 4.5 Hardware Device ……………………………………………………… 24

Chapter 5 Implementation Details ……………………………………… 27

 5.1 Modules …………………………………………………………………… 27

 5.2 Audio Alert ………………………………………………………………. 29

 5.3 Display Notification …………………………………………………. 32

 5.4 Fare Charging ……………….…………………………………………. 35

 5.5 Ptolemy Actors ………………………………………………………… 39

 5.6 Generated Actors ……………………………………………………… 40

 5.6.1 Timing Information …………………………………….. 40

 5.6.2 LCD Display …………………………………………………. 41

Chapter 6 Integration and Testing ……………………………………… 45

 6.1 Modules’ Testing ………………………………………………………. 45

 6.2 Integration ……………………………………………………………….. 50

 6.3 System Operation ……………………………………………………. 53

Chapter 7 Summary and Conclusion …………………………………… 54

 7.1 Summary …………………………………………………………………. 54

 7.2 Conclusion ……………………………………………………………….. 55

 7.3 Future Work …………………………………………………………….. 55

References ………………………………………………………….…………………………………… 57

Appendix A Ptolemy Coding Style …………………………………………………………. 58

Appendix B Actor Adding Process in Ptolemy ……………………………………….. 67

 VI

LIST OF FIGURES

Figure 2.1 Modeling Cycle …………………………………………………………………….. 7

Figure 3.1 Ptolemy’s Ptolemy.actor package with supporting classes .. 12

Figure 4.1 Bus Transport System ……….………………………………………………… 20

Figure 4.2 Timing Details ………………….………………………………………………….. 21

Figure 4.3 Passenger Information ….……………………………………………………. 22

Figure 4.4 Route Information ……….……………………………………………………… 22

Figure 4.5 Ticketing Process ……….……………………………………………………….. 23

Figure 4.6 Payment Process ……….………………………………………………………… 24

Figure 4.7 Hardware Components …….…………………………………………………. 25

Figure 4.8 System Devices ………………………………………………………………….. 26

Figure 5.1 Audio Module on Abstract level .…………………………………………. 29

Figure 5.2 Audio Module First level .……………………………………………………… 30

Figure 5.3 Inside each cases of Audio Alert .……………………………………….. 31

Figure 5.4 Display Notification Module .……………………………………………….. 32

Figure 5.5 Display Notification Case Structure .…………………………………… 33

Figure 5.6 Inside each cases of Display Notification .………………………….. 34

Figure 5.7 Fare Charging Module ……………..………………………………………….. 35

Figure 5.8 Detail of Payment block .……………………………………………………… 36

Figure 5.9 Inside case structure .………………………………………………………….. 37

Figure 5.10 Payment Block Hierarchy .……………………………………………………. 37

Figure 5.11 Individual Cases for Destination …………………………………………. 38

Figure 5.12 Final level of Payment …………………………………………………………. 39

Figure 5.13 Timing Information Actor .……………………………………………………. 41

Figure 5.14 LCD Display in Normal Form .………………………………………………. 43

Figure 5.15 LCD Display in 8 Bit Form .…………………………………………………… 44

Figure 6.1 Complete Audio Module Design ………………………………………….. 45

Figure 6.2 Testing of Audio Module Design …………………………………………. 46

Figure 6.3 Complete Display Module Design ……………………………………….. 47

Figure 6.4 Testing of Display Module .…………………………………………………… 47

Figure 6.5 Testing of “C” code of Display Module ……………………………….. 48

Figure 6.6 Complete Fare Charging Module Design …………………………….. 48

 VII

Figure 6.7 Testing of Fare Charging Module ………………………………………... 49

Figure 6.8 Testing “C” code of Fare Charging ………………………………….…… 49

Figure 6.9 Display with LCD display ……………………………………………………… 50

Figure 6.10 Timing and LCD 8 Bit Integrated…………………………………………. 51

Figure 6.11 Full BTS Design ……………………………………………………………………. 51

Figure 6.12 Inside of BTS ………………………………………………………………………… 52

Figure B.1 Code Generation Process …………………………………………………….. 68

 VIII

LIST OF TABLES

Table 5.1 Modules and Functions Mapping………………………………………………… 27

Table 5.2 Ticket Charges…………………………………………………………………………… 28

Table 5.3 Ptolemy Actors…………………………………………………………………………… 40

Table 5.4 LCD Code……………………………………………………………………………………. 42

 IX

ACRONYMS AND ABBREVIATIONS

API ― Application Programming Interface

BTS ― Bus Transport System

CHESS ― the Center for Hybrid and Embedded Software Systems

CT ― Continuous Time

DDE ― Distributed Discrete Event

DE ― Discrete Event

DLL ― Dynamic Link Library

DT ― Discrete Time

ES ― Embedded System

FSM ― Finite State Machine

GCC ― GNU Compiler Collection

GUI ― Graphical User Interface

HDF ― Heterogeneous DataFlow

HDL ― Hardware Description Language

ITS ― Intelligent Transportation System

JDK ― Java Development Toolkit

JVM ― Java Virtual Machine

LCD ― Liquid Crystal Display

MoC ― Model of Computation

SDF ― Synchronous DataFlow

SDL ― Simple DirectMedia Layer

UML ― Unified Modeling Language

 X

1. INTRODUCTION

This chapter includes overview of the project. The most important thing about

project is “why the project is required?” To answer of this question, a separate

section named “Need of Project” is included. This chapter also includes aim of the

project and scope of the project. “Scope of Project” explains which kind of

domains can use this project.

1.1 PROJECT OVERVIEW

Modeling and simulation are very key phases of embedded system manufacturing

process. Modeling is necessary as it reduces market window of an ES by great

amount. Also it is always better to verify the design offline, i.e. without

manufacturing it and then testing the same. For these and also many other

purpose modeling is very much required and helpful too. Simulation is just other

side of a coin in which one side is modeling. They are indifferent from each other.

Simulation tests the model on particular target processor. Here the project is

carried out to learn modeling of an Embedded System.

For the same need concept of an ES is taken, BTS is the system used to model.

An instant question that arises is like what is BTS then? BTS stands for Bus

Transport System. It is a kind of ITS – Intelligent Transport System. BTS is

emerging concept in metro cities. The concept of the complete system has set of

functions, assumptions, pros and cons. The complete system is made for better

amenity of passengers and for easier and efficient administration. Details of the

system are very much required to understand prior knowing modeling and other

details. ITS have been developed and deployed at many places. They are a good

example of such transportation systems. There is extreme need of such systems

in many countries. The needs arise because of many reasons. Few of the reasons

for need for such systems are,

1. Traffic congestion due to population.

2. Low awareness of traffic rules and regulations.

3. Low level of Public Transport Services.

Chapter 1 Introduction

There are transport systems found in city and also for interstate traveling. These

transport system has every single function done manually. That is bus conductor

notifies passengers about the stations, routes and etc. Conductor also issues

tickets to the passengers and collects charges for that. Concept of BTS in brief is

to do bus conductor’s operations automatically. In addition to these many other

functions can be achieved with BTS, functions which helps not only passengers

but also the administration to improve the system. Functions which this system

can provide are as below.

Functions for passengers:

1. Alert passengers about next coming stations on route.

2. Alert passengers about current time and time when next station comes.

3. Issue tickets to passengers according to destination selected.

4. Fare collection from the passenger for the ticket.

5. Inform users waiting outside bus, enroute forth coming station about the

bus timing and route.

Function for Administrators:

1. Note practical value of time taken, for complete journey and for each

stations enroute.

2. Check upon driver performance.

3. Check traffic situations and update journey according to that.

4. Communicate with other buses to send data for traffic situations and etc.

details.

5. Communicate with payment system (e.g. Card Company).

The list may go on. These are some of the functionalities BTS can provide to the

system users. Only some functions are modeled for project and that details are

covered in next chapters.

ITS or BTS may still have not been found if there are no advanced technologies

available. Such systems are found and are used with support from

communication technologies, computers and etc. There are several factors that

promote deployment of these systems, use of credit card for payment, increased

use of mobile phones and etc.

 2

Chapter 1 Introduction

To achieve some of the functionality stated above, many approaches have been

used so far at European and Asian countries. Approaches that were used so far

lacks some or the other functionality from the list above. Approaches used were

using,

1. Informing users via SMS.

2. Measuring a system for performance periodically.

3. Electronic Toll collection for tickets.

4. Vehicle tracking using GPS.

5. Public transport management systems.

In this project, aim is to prepare a working model of BTS. Then simulate it for a

target processor family. For the same purpose of modeling Ptolemy II is used,

which is a GUI based modeling tool from Berkeley University, California.

1.2 NEED OF PROJECT

Need of an embedded system in today’s world is still in demand. And so is the

need of modeling the system. Modeling improves system’s market window,

development time and also testing of the system. Modeling is key phase of any

manufacturing process and its crucial one also. So it is very much necessary to

model and test a system offline with modeling tools and methods available. The

reason behind it is the speed of the development cycle of ES. There are lots of

options for one to choose the software to perform application like modeling of an

ES. GUI based modeling is better compared to other ways of modeling. As in GUI

based model every single detail of model is graphical and can be easily

understood by even naïve users also. Here Ptolemy tool which is GUI based tool

to model system is used which serves good example of model based approach of

modeling an ES.

As stated in above section, the system modeled is BTS. Such systems are

developed and deployed. Yet there is scope of adding more features to make it

more useful. To provide these functions a new system is required which may

serves users in best ways. So there is desperate need to come out with a new

embedded system that has additional functionality. For this purpose here an ES

 3

Chapter 1 Introduction

is proposed for BTS. The proposed ES is modeled and verified using modeling

tools known as Ptolemy II.

1.3 AIM OF PROJECT

Ultimate aim of this project is to model the BTS (Bus Transport System) with

Ptolemy II. System here has a limited set of functionality. It is to be modeled to

provide following functional specification,

1. Alert passengers about next coming stations enroute.

2. Alert passengers about current time and time when next station comes.

3. Charge fares from passengers according to destination selected.

4. Collect charge from the passenger for the ticket.

5. Record time taken, for complete journey and also for each station along

the route.

All these functionality are required to be modeled and tested for the desired

outcomes. Model should generate desired outcomes. Once they are tested for

performance, the system needs to be integrated. After complete system is

available, it can be simulated on target platform.

1.4 SCOPE OF PROJECT

Modeling is basic requirement of any embedded system. Here a complete

different approach of modeling is used. This way of GUI based modeling can be

used in many places and in many ways. This helps users and developers to

understand the model more intuitively. And development can be much faster.

Model of BTS if fits some target processor family, then design can also be

implemented on hardware level. Also hardware software co-simulation can be

done once a model is giving desired outcomes. In all case this will surely help

other developers in modeling an ES with Ptolemy II.

 4

2. MODELING AND SIMULATION

Here the needs of modeling are explained in brief. All embedded system needs to

be modeled and then simulated to verify the functional behavior. Once

everything goes well, the system can be manufactured. So simulation is also

focused in this section. Also the complete cycle of modeling and simulation used

in here is explained.

2.1 INTRODUCTION

Embedded systems interact with the physical world through sensors and

actuators. These days, most include both hardware and software designs that are

specialized to the application. Conceptually, the distinction between hardware

and software, from the perspective of computation, has only to do with the

degree of concurrency and the role of time. An application with a large amount of

concurrency and a heavy temporal content might as well be thought of as using

hardware abstractions, regardless of how it is implemented. An application that

is sequential and has no temporal behavior might as well be thought of as using

software abstractions, regardless of how it is implemented. The key problem

becomes one of identifying the appropriate abstractions for representing the

design [5].

Unfortunately, for embedded systems, single unified approaches to building such

abstractions have not, as yet, proven effective. HDLs with discrete-event

semantics are not well-suited to describing software. On the other hand,

imperative languages with sequential semantics are not well-suited to describing

hardware. Neither is particularly good at expressing the concurrency and timing

in embedded software. Another approach is to increase the expressiveness of the

languages in use. VHDL, for example, combines discrete-event semantics with a

reasonably expressive imperative subset, allowing designers to mix hardware

abstractions and software abstractions in the same designs. To attempt to unify

these design styles, the VLSI design community has made heroic efforts to

translate imperative VHDL into hardware with only limited success. A significantly

 5

Chapter 2 Modeling And Simulation

different direction has been to develop domain-specific languages and synthesis

tools for those languages [5].

Primarily, actor-oriented design allows designers to consider the interaction

between components distinctly from the specification of component behavior.

Model-based design is simply the observation that if one uses a modeling

language to state all the important properties of a design, then that model can

and should be refined into an implementation. To accomplish model-based

design, therefore, one needs a design framework [5].

2.2 NEED OF MODELING

A model is a pattern, plan, representation, or description designed to show the

structure or workings of an object, system, or concept. The model is built by

considering all aspects of the systems. According to the need of the system,

every single detail is considered and the model is generated for desired outcome.

These day modeling is much of a necessity. Modeling reduces market window by

great amount. Also it reduces as well as improves testing of the system before

getting manufactured. If and only if the desired outcome is achieved then system

can be manufactured so the time and cost is also reduced. Modeling is done with

special care so as to represent the complete system identically. Modeling

advantages the manufacturer at time of modification also, as the upgrade can be

tested before getting patched to the design.

As models are good tools for humans in understanding and creating complex

structures, they also have definite advantages if the system itself is expected to

be reflective, i.e. to be able to supervise its own operation. Eventually this

facilitates the creation of self-adaptive computing architectures, where automatic

adaptation itself is based and carried out on the well-understood models of the

embedded system. A significant part of embedded systems are also required to

be fault-tolerant, manageable, or even externally serviceable, both in the

hardware and the software sense. The model-based approach is definitely helpful

in providing these features, since the decomposition boundaries usually also

identify standardized access points for those operations.

 6

Chapter 2 Modeling And Simulation

2.3 MODELING CYCLE

The complete modeling process followed here is shown in fig 2.1. The complete

cycle consists of phases starting with requirement study till the simulation of the

system to get desired outcome. Once desired outcome is achieved then the

system can be manufactured. Based on available options with tools used, the

model will behave. Sometimes if some actors are not available then in that case

it has to be developed. Here the modeling cycle shows how to generate and use

actors with the available ones.

Fig 2.1 Modeling Cycle

Starting with requirements the need and scope is firstly decided and studied.

Then the complete concept of the system development is understood and planed.

As per the approach to be used the system has to be devised and designed. The

approach can be model based or any other that includes model and simulation

linked together. Once the approach is decided and outline of the design is

generated then tool has to be chosen for modeling. Here Ptolemy [7] tool from

Berkeley University is used.

 7

Chapter 2 Modeling And Simulation

Once the tool is chosen then model building has to be started. Here in Ptolemy

the models are built in terms of actors. The complete system is divided in several

modules, and so design is done module wise. The modules are built with

available actors. If the actors are not available then for that actors have to be

generated and then used. The actors that are generated have to be checked and

patched to the current environment and then it can be used. Once all the

modules are ready then they can be combined together to generate model of the

system. Once the desired model is readily available then it has to be simulated.

Prior to simulating the system, it has to be configured for the target system.

According to the target environment the model has to be configured, the

configuration includes processor family details and other hardware information.

Once the system is configured then “C” language code is generated for the

system. The “C” code is generated as it is compatible for all processor families.

Finally the “C” code is cross compiled for target system and then it can be

simulated. The cross compilation also requires configuration based on the target

platform.

2.4 ACTOR ORIENTED MODELING

Here actor oriented models [1] are used for modeling purpose. There is other

several modeling methodology available, the choice depends upon the need and

existing situations. In actor-oriented design, components called actors execute

and communicate with other actors in a model. Actors have a well-defined

component interface. This interface abstracts the internal state and behavior of

an actor, and restricts how an actor interacts with its environment. The interface

includes ports that represent points of communication for an actor, and

parameters that are used to configure the operation of an actor. Often,

parameter values are part of the a priori configuration of an actor and do not

change when a model is executed. The configuration of a model also contains

explicit communication channels that pass data from one port to another. The

use of channels to mediate communication implies that actors interact only with

the channels that they are connected to and not directly with other actors.

Like actors, which have a well-defined external interface, models which are

compositions of interconnected actors may also define an external interface.

 8

Chapter 2 Modeling And Simulation

External interfaces allow for hierarchical abstraction. This interface consists of

external ports and external parameters, which are distinct from the ports and

parameters of the individual actors in the model. The external ports of a model

can be connected by channels to other external ports of the model or to the ports

of actors that comprise the model. Taken together, the concepts of models,

actors, ports, parameters and channels describe the abstract syntax of actor-

oriented design [2].

In actor-oriented design, actors are the primary units of functionality. Actors

have a well defined interface, which abstracts internal state and execution of an

actor and restricts how an actor interacts with its environment. Externally, this

interface includes ports that represent points of communication for an actor and

parameters which are used to configure the behavior of an actor. Actors are

composed with other actors to form composite actors or models. Connections

between actor ports represent communication channels that pass data tokens

from one port to another. The semantics of composition, including the

communication style, is determined by a model of computation. When necessary,

the model of computation will be shown explicitly as an independent director

object in model. Models often export an external actor interface, enabling them

to be further composed with other models.

A central concept in actor-oriented design is that internal behavior and state of

an actor are hidden behind the actor interface and not visible externally. This

property of strong encapsulation separates the behavior of a component from the

interaction of that component with other components. System architects can

design at a high level of abstraction and consider the behavioral properties of

different models of computation independently from the behavioral properties of

components. Furthermore, different models of computation can be used at

different levels of hierarchy, enabling hierarchically heterogeneous design. By

emphasizing strong encapsulation, actor-oriented design addresses the

separation of concerns between component behavior and component interaction.

In addition to supporting hierarchically heterogeneous models, strong

encapsulation allows primitive or atomic actors to be specified in a variety of

ways. For instance, actors are often specified by drawing finite-state machines

where each transition corresponds to a particular sequence of operations.

 9

Chapter 2 Modeling And Simulation

Another technique is to use a special purpose textual language that specifies

what tokens to consume and what operations to compute on that data. However,

one of the most flexible ways to specify actor behavior is to embed the

specification within a traditional programming language, such as Java or C, and

use special purpose programming interfaces for specifying ports and sending and

receiving data. This technique has been widely used in actor-oriented systems

since it allows for existing code to be integrated into an actor-oriented design

tool and for programmers to quickly start using actor-oriented methodologies.

2.5 SIMULATION

A simulation is an imitation of some real thing, state of affairs, or process. The

act of simulating something generally entails representing certain key

characteristics or behaviors of a selected physical or abstract system. Simulation

is used in many contexts, including the modeling of natural systems or human

systems in order to gain insight into their functioning. Other contexts include

simulation of technology for performance optimization, safety engineering,

testing, training and education. Simulation can be used to show the eventual real

effects of alternative conditions and courses of action. Key issues in simulation

include acquisition of valid source information about the referent, selection of key

characteristics and behaviors, the use of simplifying approximations and

assumptions within the simulation, and fidelity and validity of the simulation

outcomes.

A computer simulation is an attempt to model a real-life situation on a computer

so that it can be studied to see how the system works. By changing variables,

predictions may be made about the behavior of the system. Here once the

system is modeled it is simulated for the outcomes. The simulations are done

under all the certain conditions under which the system will be working. The

results are noted down and then it can be verified. If all the things are desirable

then system can be manufactured. In here the simulation is yet a task to be

carried out. There are certain conditions that have to be meet prior simulating

the system; those conditions are defined for the design. Hardware dependencies

has to be resolved if any, before simulation can take place.

 10

3. TOOLS & TOOLKIT

This chapter explains details about the Ptolemy tool used throughout for the

development. Out of many available details few important ones are referred in

brief. Also how modeling and simulation can be carried out with the tool is

explained here. Also it covers Cygwin toolkit’s details which are used in system

development process as a backend to Ptolemy for developing actors and

modules.

3.1 PTOLEMY TOOL

Ptolemy Project is an informal group of researchers that is part of CHESS at U.C.

Berkeley. This project conducts foundational and applied research in software

based design techniques for embedded systems. Ptolemy II is the current

software infrastructure of the Ptolemy Project. Ptolemy II is the third generation

of design software to emerge from this group, with each generation bringing a

new set of problems being addressed, new emphasis, and a new group of

contributors.

The Ptolemy project studies heterogeneous modeling, simulation, and design of

concurrent systems. The focus is on embedded systems, particularly those that

mix technologies.

3.1.1 Modeling

Ptolemy project helps in modeling embedded system with many available options

with its Vergil tool [10]. There are many actors available with the tool that can

be used, and other actors have to be generated. As referred in section 2.2

ptolemy project uses actor oriented modeling.

Modeling is the act of representing a system or subsystem formally. A model

might be mathematical, in which case it can be viewed as a set of assertions

about properties of the system such as its functionality or physical dimensions. A

model can also be constructive, in which case it defines a computational

 11

Chapter 3 Tools & Toolkit

procedure that mimics a set of properties of the system. Constructive models are

often used to describe behavior of a system in response to stimulus from outside

the system. Constructive models are also called executable models. Design is the

act of defining a system or subsystem. Usually this involves defining one or more

models of the system and refining the models until the desired functionality is

obtained within a set of constraints. Design and modeling are obviously closely

coupled. In some circumstances, models may be immutable, in the sense that

they describe subsystems, constraints, or behaviors that are externally imposed

on a design. For instance, they may describe a mechanical system that is not

under design, but must be controlled by an electronic system that is under

design. Executable models are sometimes called simulations, an appropriate

term when the executable model is clearly distinct from the system it models.

However, in many electronic systems, a model that starts as a simulation

mutates into a software implementation of the system. The distinction between

the model and the system itself becomes blurred in this case. This is particularly

true for embedded softwares [1].

Fig 3.1 Ptolemy’s Ptolemy.actor package with supporting classes

 12

Chapter 3 Tools & Toolkit

As shown in figure 2.1, the complete modeling cycle can be implemented here.

Modeling starts from step 4, i.e. after choosing Ptolemy’ vergil as the tool to

model the system. Then all the modules in which system is divided can be

developed using available actors. An actor is any entity in the system which

consumes and produces token at each step, and does desired functions. So in

here, for actor oriented modeling every single function has particular actor for

that. There are many inbuilt actors available under vergil. Rest actors can be

generated with help of Cygwin.

For the need of generating system’s “C” code, there is code generation

environment available under vergil. This environment limits number of actors

available. In here very few of the actors are available which are there in normal

vergil environment. For each actor available, there is C code available. So that

finally while integrating full system, the C code will combine and then generate

full system’s code. That code can be cross compiled, simulated and then tested

for the target system. Steps 4 to 6 of the modeling cycle of fig. 2.1 are executed

for modeling of the system.

3.1.2 Vergil and its Elements

There are many ways to use Ptolemy II. It can be used as a framework for

assembling software components, as a modeling and simulation tool, as a block-

diagram editor, as a system-level rapid prototyping application, as a toolkit

supporting research in component-based design, or as a toolkit for building Java

applications [1]. Vergil is GUI to construct models graphically. Vergil comes with

many editors for constructing models. Editors like, FSM editors, graph editor,

icon editor and etc. are used for model building. There are many things to be

considered for vergil, like actors, directors, tokens, expressions and etc.

Actors are very basic components of Vergil. They have well defined functionalities

to achieve, they consume or/and produce token at every step of execution.

There are many actors for functions like, audio, source, sinks, signal processing,

mathematics, logical functions and many more. Actors can communicate with

other actors of the model.

 13

Chapter 3 Tools & Toolkit

Directors are the elements which handles execution of the model. It has

configuration for timing of module, steps, period of execution, details of

hierarchy and etc. that will control execution of models. In all there are many

directors or model of computation like, SDF (Synchronous Dataflow), CT

(Continuous Time), HDF (Heterogeneous Dataflow), FSM (Finite State Machine),

DT (Discrete Time), DE (Discrete Events), DDE (Distributed DE) and etc. [1].

Whereas only some of the directors are available under code generation

environment like SDF, HDF and FSM.

The input and output values of the actors are encapsulated as tokens. Those

tokens are consumed and produced by all or some of the actors. There are

certain limitations on the token generated as per the data types of the actors. To

have compatibility among the tokens either data types or the coding has to be

changed.

There are other options like entities of the system, relations of the actors and

models and hierarchy. These all details have to be considered at the time of

modeling the system.

3.1.3 Simulation

To simulate the code under vergil, the tool will generate the code of the complete

system once it is modeled. Generated models can be executed and verified for

the desired result. Once model is ready then C code can be generated, according

to the steps shown in fig 2.1. For simulation the C code is cross compiled for

target system and then it can be mounted on the target system. Then it can be

checked for the performance.

3.1.4 Code Generation Environment

The need for code generation is to have the model run under any processor

family according to need. It is well known that very few processors are

compatible for Java. As here the Ptolemy environment is built under java and it

generates the java code so it becomes a necessity to have the code generated

 14

Chapter 3 Tools & Toolkit

for the Model. Normally every processor family have cross compiler for ‘C’

language and so here the code generation is done in C.

The Ptolemy has code generation facility available in it. This facility is still under

development phase, so very few actors and directors are supported here. The

environment is to have Static Code Generator only with no timing details

entertained.

This is a highly preliminary code generator facility, with many limitations. It is

best viewed as a concept demonstration [4].

1. Only SDF, FSM and HDF domains are supported

2. Only IntToken, DoubleToken, StringToken and ArrayToken are supported.

Other tokens are not supported at this time.

3. A limited number of actors have supporting helper code.

For code generation, the Cygwin is a must thing to have. The code generation is

done with make and gcc facility with Cygwin. Also the JVM and JDK is needed as

per the models to be built. The actors here have C files already pre-generated so

at time of code generation using the files and design of the model code is

generated.

Very few actors are supported with codegen environment, so there is need to

change the complete modules designs. According to the environment and need

for the ES, each module is changed. Currently due to limitations of codegen

environment the design of modules is restricted.

3.2 CYGWIN

Cygwin is a Linux-like environment for Windows. It consists of two parts, a DLL

which acts as a Linux API emulation layer providing substantial Linux API

functionality and a collection of tools which provide Linux look and feel [8].

Cygwin is a collection of free software tools originally developed by Cygnus

Solutions to allow various versions of Microsoft Windows to act similar to a UNIX

system. It aims mainly at porting software that runs on POSIX to run on

Windows with little more than a recompilation. While Cygwin provides header

 15

Chapter 3 Tools & Toolkit

files and libraries that make it easier to recompile or port UNIX applications for

use on Windows, it does not directly make UNIX binaries compatible with

Windows [8].

Cygwin has many or all software tools used for source coding in C in GCC and for

kernel compilation and editing of system files. It comes with all functionalities

packaged to use with windows. The version of GCC that comes with Cygwin has

various extensions for creating Windows DLLs, specifying whether a program is a

windowing or console mode program, adding resources, etc.

Cygwin is used here for actor generation and then adding that to Ptolemy

environment. The details of actor adding and source recompilation and etc. are

covered in appendix B. Other than Cygwin for actor adding under Ptolemy eclipse

is also used, but here Cygwin is used. Appendix B covers details on Cygwin

installation and use particularly for Ptolemy.

 16

4. BUS TRANSPORT SYSTEM

This chapter discusses the details about main system modeled and simulated

here. Main goal of thesis is to focus modeling and simulation process and the

system described here is like test case. It also covers all the details regarding

phases, modules of the system, hardware that can be designed and etc. All

desired functionalities with assumptions are described and then functions

achieved and their limitations are listed.

4.1 INTRODUCTION

The system as name says is made for easy state level or city level transport. Bus

transports with the functionalities listed below may result in better amenity for

users. The system will facilitate passengers in better way. Also it will make

controlling easier on the driver’s part. Such systems are already developed and

are in use. Here the system improves earlier system by taking into account the

history of each journey. Such details will help in monitoring the performance and

later improving the system in all possible ways. Complete system will be

mounted on the Bus only. Driver will be able to do the controlling of the system

with the device present; also that device will help in generating automatic

system alerts for the passengers. The device for passengers is mainly for the

ticketing purpose.

4.2 FUNCTIONALITIES

Below listed are the functions that the system is designed to perform. All the

listed functions have been developed with Ptolemy. Various functions need

support by one or more states. These functions are for better amenity of

passengers and easy maintenance and control by the driver.

Route Information

1. Alert about all station on route.

2. Alerting passengers for coming stations.

3. Alerts about stoppages.

 17

Chapter 4 Bus Transport System

This will alert the users about the route. The information generated will be in

audio and visual both form. In here for every station there will be fixed display

messages that will be continuously guide passengers. These messages will be

shown on LCD screen display. Other form of information is through audio alerts.

Here also a list of messages will be announced periodically for user’s information.

Both of the informations are controlled by the driver. Here the driver will choose

the current station and according to that the messages will be loaded to the

system’s memory.

Timing Detail

1. Timing alerts for arrival and departure.

2. Timing for each station on route.

As the name and functions says, this is particularly for timing information. Again

this is also visual form of alert. This particular function also helps system

administrator to update the system if needed. This will record the timing for each

station and so that this time can be verified with the ideal timing. Thus recorded

time can also be helpful to know driver performance, traffic situation, delay due

to natural accidents etc. So in all this functionality will help administrator more in

comparison to the passengers.

Fare Charging

1. Based on Source and Destination.

2. Based on the distance to be traveled.

3. Using prepaid card of fixed balance, easily available at bus depots.

The fare charging function can be subdivided into two separate functions, which

it serves - Ticketing and Payments process.

Tickets are generated for the journey selected by passenger. From the device as

in fig 4.8, the passenger may select the destination station. Source station will

be decided by the current location of the bus on the journey. The fare will be

computed by the system using these informations. The fare will be deducted

from the prepaid card held by user. Fare calculation and charging both are

 18

Chapter 4 Bus Transport System

interlinked processes. Once payment is successful then only ticket will be issued

to the passenger for the journey selected.

In all transport systems payment is more of interest for administrator. The

system uses concept of prepaid card. This card is assumed to be easily available

at all bus depots. And these cards are assumed to have fix balance on it and it

will carry its unique number which the system knows in advance. Using the card

purchased from deports, journey can be done and ticketing and payment can

also be carried out.

Passenger Information

1. Total capacity of the Bus.

2. Total vacant seats.

This information is generated for the system only. This is advance information for

systems performance. This particular operation can be done in future. By use of

sensor attached to every seat, or by some sensing mechanism the seats can be

counted, i.e. which are occupied and which are vacant. This information can be

communicated to central server then central server would display the details at

the bus stops.

4.3 ASSUMPTIONS

While designing any embedded system, there are certain assumptions to be

made about the environment under which this system will operate. Without

assumptions, in all possible cases system has to be operable but it is not the

case here. The assumptions are made for flexibility of the need of the system

being modeled. Some of the assumptions are listed below.

1. There are always reliable passengers.

2. Prepaid cards are easily accessible at bus depots.

3. No failure in traveling is considered for accidents or traffic.

4. Every single detail that the system is able to represent is based on the

data entered earlier.

 19

Chapter 4 Bus Transport System

5. There is no communication concept used for the payment, the device or

the card is assumed to have details.

6. All operations are modeled for ideal conditions.

4.4 STATECHART REPRESENTATION

Statecharts is a visual design methodology and notation, for managing the

complexities of designing simulators, such as medical, aviation, and consumer

electronics devices. It is an extension of deterministic finite state automata or

state machines from the field of computer science. More recently, statecharts

have been adopted into the Unified Modeling Language (UML) [3]. A statechart is

a complete graphical characterization of a system’s potential behavior to the

level of detail required for the simulation. It consists of discrete “states” and

“transitions.” Each state represents a distinct context for behaviors of the device,

such as an ON state and an OFF state.

The model can be represented graphically with use of the statecharts of the

system. The state chart is an easy way to represent the functionalities and state

of the system. It uses concept of hierarchy, clustering etc. which enables model

to be compact and understandable. All systems can be defined and explained in

better with use of statecharts. These diagrams covers details of each phase of

system, outcomes, initial states, preconditions and etc. [3]. Given below are the

statecharts of the BTS.

Fig 4.1 Bus Transport System

 20

Chapter 4 Bus Transport System

The fig. 4.1 shows the main system. Here these are the functionalities that BTS

will provide. The timing detail can be provided in parallel with any of the other

four. Based on the button pressed the other functions can be activated, and

executed. Below are the individual state charts of each of the functional block of

the system. The representation shows that the default state of the system will be

route information and timing details. So that throughout the system’s execution

these states will be executing all the time. Ticketing and fare charging are linked

to each other so; they can not be separated even for the execution purpose.

Fig 4.2 Timing Details

Above shown fig. 4.2 explains timing detail function of BTS. There is always

concept of history present when we are concerned with time as the time needs to

be updated and registered. Here the theoretical and practical time for both

arrival and departure is used. Practical times will not be updated in current

execution, but this detail can be verified with theoretical values and if on average

it is found that the value has to be changed then, theoretical value can be

updated. This detail can be very useful in system modification later on. When

ever the system refers to this block, it will show current time on default which is

highlighted with the black dot. The waiting for few seconds can be configured

based on the requirement.

Fig. 4.3 below shows passenger information operation of the system. It will

inform about the capacity occupied on the bus. The count of passenger needs to

 21

Chapter 4 Bus Transport System

be monitored so history is needed. When some passengers get off the bus or

board the bus then at that time the count of passenger is required to be

updated. This information as stated above is for administration use.

Fig 4.3 Passenger Information

Same way as in passenger information, here also the passenger for a particular

station or route is informed. Also additional information which may be helpful to

the passenger is given. The fig. 4.4 gives route information, which has

functionalities listed earlier in section 4.2.

Fig 4.4 Route Information

 22

Chapter 4 Bus Transport System

For long route journey, periodically details of upcoming route and halt are given

to the passengers. The route needs to be updated and monitored as the passed

stations and the next station gets changed and should not appear more than

once. The route information is stored in the system. The system will continuously

generate route announcement, which will be shown on LCD display panel.

Fig. 4.5 shows ticketing function of the system which is sub-part of fare charging

function. The same system will decide charges to be done, once charges are

decided then payment module can be called. Payment module which is another

sub-part of fare charging module is used for further transactions. All the stations

are numbered by two digits, so here the system waits for the second digit from

the user and then recognize the destination. Otherwise it is not possible to

proceed. The station’s code is listed on the device itself as shown in fig. 4.8.

Fig 4.5 Ticketing Process

Ticketing and payment are interactive process, that is payment can also be

included as part of ticketing only. Here the assumption is that the ticketing

process is directly followed payment. The complete process is uninterruptible.

The details of the charges are feed into the device.

Fare charging is carried out with use of the prepaid card. System is assumed to

be capable of getting card details. User has entered details on the destination.

And now the system decides upon the fare which is to be deducted from the

 23

Chapter 4 Bus Transport System

prepaid card. Then the available balance on prepaid card is checked for

sufficiency, if there is sufficient balance available then the charges can be

deducted. Otherwise the process can not continue and there will be error

message. Payment process is done as shown in fig. 4.6.

Fig 4.6 Payment Process

As with any prepaid card the remaining balance information is then updated.

Whatever approach used earlier, same way update is done. Once the charges are

deducted then the tickets are issued. No tickets are given to passengers but only

just the charges are deducted from card. Then system jumps back to the default

state of listing current station and waiting for user to request.

4.5 HARDWARE DEVICE

Figure 4.7 shows the various hardware components needed to build the working

system. These devices are assumed for theoretical modeling only, such

combinations of hardware can be used for the device manufacturing. Various

hardware options are available, say for clock, processor, and memory; there can

be any combination used. The proposed devices are just for design illustration

only, no particular is considered for modeling also. Memory is used for

monitoring and containing history of various values. The previous values of time,

station, passengers, route etc. are needed to be stored.

 24

Chapter 4 Bus Transport System

System clock and timer is used for timing details. The timers are used in waiting

that is used in changing the system state. The button panel and control buttons

are used for input from user. There is a light source which can be used at night

and loud speaker is used for announcement i.e. for alerting the users.

Fig 4.7 Hardware Components

The display panel is alpha numeric LCD display. The size can be standard

available at market like 2 Χ 24 or 4 Χ 40 etc. The process block is general block,

where the processor part will fit. As this is modeling and not actual system

building no specific processor is shown. For whatever processor family selected

the generated code can be cross compiled and then ported.

There will be two devices as written in assumption. One device is there for the

user for ticketing and payment purpose. The device will have instructions written

about how to operate it. Also it will have the button panel and the control

buttons for the input operations. The list of stations will be written for users to

refer and chose. On selecting past station, the system normally shows error

information. So there will be small display which will show the error information,

the charge to be paid, the destination selection, etc. The user device is only used

 25

Chapter 4 Bus Transport System

for selecting destination. If concept of RFID is used then in that case, there is no

need to have any device for passengers.

Fig 4.8 System Devices

The other device is for driver to handle for controlling and alerting functions.

That is the driver will use the device to inform the passengers. Other than the

instructions for usage, the device fro driver will be the same as for the users. The

controlling on the part of driver consists of, opening and closing door, alerting

the users about the next stop, alerting the users about the timings, marking a

visited station on the device so as not to have it more than once, etc.

 26

5. IMPLEMENTATION DETAILS

Every single implementation details are covered in this section. It starts with

modules that are devised for the system. Then methodology of implementation

with Ptolemy is discussed. In later part all modules’ designs are explained that

are developed. Finally it covers the design of actors that are generated. The

actors that are not available with Ptolemy are required to be developed.

5.1 MODULES

As discussed below the system is divided into three subsystems / modules. It has

to be devised in some number of modules. These modules are developed and

checked individually and then they are integrated into a single system. The

modules are,

1. Display Notification

2. Audio Announcements

3. Fare Charging

They are devised based on the functionality they serve. These three are main

operation which in whole the system will be doing. So for each of the

functionality, separate modules have been designed and modeled here with

Ptolemy II. The functionality that BTS provides is served with one or more

modules.

Table 5.1 Modules and Functions Mapping

Display

Notification

Audio

Announcements

Fare

Charging

Route Information √ √

Timing Detail √ √

Fare Charging √ √

Passenger Information √

 27

Chapter 5 Implementation Details

Table 5.1 shows which of the modules will be active for each function the system

provides. It can be observed that the display i.e. visual form of information is

required in all modules. Fare charging module requires the display to inform user

about the charge done by the system.

Audio announcement module has memory where the audio messages are loaded.

And these messages then can be announced according to the settings. Once a

station is gone, new set of messages are loaded to memory and then that will be

played. This way all messages have to be available there in the system. If

system generated audio is there, then in that case there can be no dynamic

announcements. That alert has to be done manually if required.

The display notification works in similar way as audio alert. Only change is in

terms of the output generated and input given. In audio, audio files stored in

memory are loaded and messages are announced as output. Here in display

notification the messages are stored as string array, as time of generating the

alert, either string wise or character wise the messages can be displayed.

Ticketing works independently of any other module. Here user has to select the

destination. And source is decided by control action of driver. Then the system

will decide fare based on the mappings given in table 5.2. Here there is 5 station

assumed and there charges are also pre-decided.

Table 5.2 Ticket Charges

Station A B C D E

A * 5 10 15 20

B 5 * 5 10 15

C 10 5 * 5 10

D 15 10 5 * 5

E 20 15 10 5 *

Then payment is done with the prepaid card. The card will give detail on card

number and available balance. If there is sufficient balance for ticket then

charges will be deducted and ticket will be dispatched to passenger.

 28

Chapter 5 Implementation Details

5.2 AUDIO ANNOUNCEMENT

Here this module will generate audio announcements, for giving information to

the bus passengers. The passengers will avail information about, route and time,

as in table 5.1. Design of the module is shown in fig. 5.1.

Fig 5.1 Audio Module on Abstract level

As in the figure shown, the audio player is used in here for playing the

announcement messages. Here the constant value is the input to the system;

constant value indicates one of the stations selected by driver’s control. Each

time driver presses button to open door, a signal is sent to the system. For that

signal value an integer is specified and that is given as input to the subsystem.

According to the integer value given, message will be loaded from the memory

and then it will be played using the audio player.

The audio player will receive tokens, for whatever file that has been selected for

playing. The audio system, i.e. the file reader and file player both follows a

common set of configuration. The configuration parameters used here are:

1. Sample Rate – 8000

2. bitsPerSample – 8

3. Channels – 1

4. Transfer Size – 1

 29

Chapter 5 Implementation Details

The director has configurations for number of iterations, period of execution and

time resolutions of the execution. The director controls all the execution of the

models.

Fig 5.2 Audio Module First level

From fig. 5.1 the case structure is explained in detail in fig. 5.2. Here for

complete modeling only 5 stations are used as reference. The _director refers to

the director of upper level, i.e. from which the case structure has been

referenced. So the case also has parameters values of SDF director. Like all case

structure here also the default state is required. As seen in diagram above

default, input, and _director is highlighted. The input port is for selecting any of

the case available. If none is selected then default case is called. The constant

input from fig. 5.1 is used as the input port for the case structure. Each of the

five cases has fixed functionalities inside it which will be executed when it has

been called. So for each five stations there is a case which will be selected and

 30

Chapter 5 Implementation Details

according to that the audio will be selected and then it will then be announced.

For each case the function is as shown in fig. 5.3.

Fig 5.3 Inside each cases of Audio Alert

For each case there is particular file selected as shown is fig. 5.3. So in here for

every time the file will be loaded from memory. There are set of files loaded into

system memory, so for each case the files will be selected and loaded. So the

loaded file can be played through the audio player.

Starting from base level in fig. 5.3 the file is read through the audio reader. Then

the audio file will be converted to set of tokens and that tokens are sent to the

audio player. Base level’s port will send the tokens to the first level’s output

port. The output of fig. 5.2 will be used by audio player as its input. Audio player

can read the tokens generated and then that can be played. The audio player has

the parameters Sample Rate, bitsPerSample, Channels and Transfer Size. So the

audio is played according to that.

For implementation with some target platform, for playing audio SDL library is a

requirement. The code is to be transformed to “C” code, and that code is then

cross compiled for target. Here for playing audio with C code, SDL – Simple

DirectMedia Layer is used. These libraries are required, for availing any Media

options with C code. These libraries are freely available. Simple DirectMedia

Layer is a cross-platform multimedia library designed to provide low level access

 31

Chapter 5 Implementation Details

to audio, keyboard, mouse, joystick, 3D hardware via OpenGL, and 2D video

framebuffer. It is used by MPEG playback software, emulators, and many popular

games [9].

5.3 DISPLAY NOTIFICATION

This particular module is used for displaying information on LCD display panel.

The display gets string values as input and that notifies the passengers. For all

system functions, display module will be working. The route information, timing

information, ticketing and payment all needs support from display. Design of this

module is as shown in fig. 5.4.

Fig 5.4 Display Notification Module

As in case of audio alert module, same ideology applies to here also. Same way

there is selection input as it was constant in audio alert. The selection’s value is

integer which is converted value of the signal generated by driver’s control

action. The display mode is a case structure as earlier. And finally the display

pane is used for continuous string output. According to the station selected by

selection, a set of text messages will be loaded to memory. These messages are

already entered for each station. Now the messages are there with system, once

the station is selected, the set will be chosen. Each message from the set will be

displayed on the panel, in random manner with a period of 2 seconds. The set of

 32

Chapter 5 Implementation Details

messages will be changed only when driver’s control selects some new station as

current station. Fig. 5.5 shows the case structure for display module in detail.

Fig 5.5 Display Notification Case Structure

This will work in same manner as fig. 5.2 does. Every thing is similar to above

shown audio alert. Five stations are used for modeling. Also a default case is

there which will alert “Error” to the system, as the messages can be chosen for

any of the five stations. All the cases executes according to the selection input.

For each case set of messages are like. Here for example messages for station

“A” is shown,

"Welcome to BTS.",

"Current Station is 'B'.",

"Next Station is 'C'.",

"Bus departed 'A' at 9 AM.",

"Bus reaches 'E' at 10:30 AM."

 33

Chapter 5 Implementation Details

Fig 5.6 Inside each cases of Display Notification

Fig. 5.6 shows the inside functional implementation of each cases of display

module. Here using uniform distribution a random number is generated at every

unit of time. The random number will lie between 0 and 5, so the uniform

distribution will generate any real number ranging from 0.0 to 4.99. This number

generation is used for having the facility to select the message in random

manner.

The array element actor is used to select the message according to the index

loaded from the uniform distribution function. The index of an array is always an

integer value and the number generated from the uniform distribution will be

always real value. So the real value has to be rounded off to the nearest integer

value. So now the integer value will select any message from the constant

loaded as the set of messages. For having the messages shown at interval of 2

seconds, the sleep actor is used. The value 2000 indicates the number of

milliseconds for which the message will be displayed.

According to the index generated with uniform distribution and rounded to an

integer value, the message will be selected from the memory. This text message

will now be converted to tokens; these tokens are sent to the output port. And

same ways this tokens travels back to the upper level and from there to the main

level, where these tokens are sent as input to the display pane. So now the

display pane will show the selected messages.

 34

Chapter 5 Implementation Details

5.4 FARE CHARGING

As discussed earlier in section 4.2 this functionality can be subdivided into two

functions it serves – Ticketing and Payment. This particular module contains very

complex design structure, as it has to cover the card details, the fare calculation

part and then charging part. The fig. 5.7 shows top view of the model’s design.

Fig 5.7 Fare Charging Module

Here the system can be divided in 3 parts, first for getting the card details,

second for deciding the fare to be deducted and third part to deduct amount

from the card. Here the card details are recorded into array. The const and

amount are two constant arrays, which are having values for card number and

amount respectively. For selecting any card the array index is chosen and then

that particular value is loaded from both of the arrays. So card number and

payment is found that way.

For calculating the fare to be deducted, system follows the table 5.2. To calculate

fare, here the system now requires two stations, once the stations are found

then from pairs of table 5.2, the fare can be decided.

 35

Chapter 5 Implementation Details

To get two station numbers, the system gets one i.e. the source station from the

current location of bus. And to get another station number, passenger will enter

the destination from the hardware available. So now two station numbers will be

available. So in this particular module, total 5 inputs are available. The fare will

be calculated and remaining balance shall be restored to the particular card. Fig.

5.8 shows detail of payment block of fig. 5.7.

Fig 5.8 Detail of Payment block

Card number is returned as it is; the balance gets deducted by the amount that

is decided by the case structure. Inside case structure there is the logic for

calculating the fare to be deducted. Source and destination are the two input for

the case structure. AddSubtract block has two input values, one of which is

positive and other is considered as negative, in case of subtraction. Both the

values will give result which will be deducted balance. Port3 displays the fare that

will be charged to the passenger, port displays remaining balance and port2

shows card number.

For the case block, source will select the case which will be called for execution.

And the destination will be used as input to all the cases, which will process the

value of the destination for getting the result. Fig. 5.9 shows details for the case

structure. For each five station we have a separate case here, which shall be

called according to the value input at the source port of fog. 5.8.

 36

Chapter 5 Implementation Details

Fig 5.9 Inside case structure

This case structure differs from earlier two as in fig. 5.2 and fig. 5.5. Here the

main difference is that along with the input of case selection, there is separate

input also. This input is given to all the cases as input itself. The case will be

chosen from the port shown above and input is used for calculation purpose.

Fig 5.10 Payment Block Hierarchy

 37

Chapter 5 Implementation Details

Fig. 5.10 shows the content of each of the case of fig. 5.9. With case of fig. 5.9

the source station is selected, now to choose the destination again another case

structure is required. That case structure is shown in fig. 5.10. Here the input

value seen in fig. 5.9 is used as the case selector. That is, according to the value

of the input here in fig. 5.10, any case will be called and executed. Fig. 5.11

shows inside of the case structure of fog. 5.10.

Fig 5.11 Individual Cases for Destination

This case structure differs from earlier, in terms of the cases defined. If the

source station is chosen to be station 1, then for destination only four has to be

considered. As seen in fig. 5.11, if source is 1, then the destination can be one of

2, 3, 4 or 5. Here each station is coded to an integer value. So considering that

the cases can then be executed. For case structure, each possibility has

individual refinement in the definition. For each source, there will be four possible

destinations, which will be selected. And from the source – destination pairing

the fare will be calculated.

 38

Chapter 5 Implementation Details

Fig. 5.12 shows the final level, for payment. This defines the function inside the

cases of fig. 5.11.

Fig 5.12 Final level of Payment

Here this particular fig. 5.12 shows the fare that is charged. Here the case is for

station 1 as the source and station 2 as the destination. So from table 5.2, it is

observable that the fare is 5 unit of currency. This is just assignment of a

constant value for each combination. So now the result will pass back to the root

level of payment, where this will be deducted from the card’s current balance.

Each port in each abstraction will pass the result to upper level, and finally this

value is used as input to the AddSubtract actor for charging. The result of which

is remaining balance on the card.

In fig. 5.1, 5.4 and 5.7, a dark gray colored actor can be seen, where the title of

the actor is StaticSchedulingCodeGenerator. This particular actor is used for “C”

code generation. Details of code generation are covered in appendix B.

5.5 PTOLEMY ACTORS

Many inbuilt actors of Ptolemy are used in the designs shown above. Some of

them are also changed according to the need. These actors are available in both

normal and code generation environment, so that the code can be generated for

that. The actors used have individual functions for, input, output, mathematical,

array implementation, case structure and etc. All these actors are compatible

with SDF model of computation. The SDF model of computation has no timing

constraints included for executions. Also this model or director is best for code

generation. List of actors and their particular functions are described in brief in

table 5.3 below.

 39

Chapter 5 Implementation Details

Table 5.3 Ptolemy Actors

Actors Functions

Audio Reader Used for reading .wav file and generating tokens for that.

Audio Player Plays audio for .wav files’ tokens.

Const Used for storing constant values or constant arrays.

Case Case structure.

Refinement Individual cases of the Case structure.

Input Port Used for input of a model or hierarchy.

Output Port Used to produce output of a hierarchy or model.

Monitor Value Used for displaying the some value continuously.

Uniform Distribution Generates real number using the uniform distribution.

Round Rounding of the real number to integer value.

Array Element Used for selecting an element with given index.

Sleep Used for generating delay between the outcomes.

AddSubtract Mathematical add and subtract function.

5.6 GENERATED ACTORS

Though Ptolemy has variety of actors available to design any model, still some

actors are required for modeling BTS. The actors that are required are for,

generating the timing information and for getting the display for LCD device.

Ptolemy has actor that gives normal display but to have the display on LCD, an

actor is required.

5.6.1 Timing Information

The Ptolemy environment supports timing information in terms of the model

timing, but not in wall clock time. That is, Ptolemy actor can give the time that

system took for execution, but not about the wall clock time. The system here

needs to have such information, in order to notify and also for the system

history. The timing helps system to notice and update the system’s functions if

necessary. The timing history helps for traffic study, driver performance, and etc.

So for that an actor as shown in fig. 5.13 is designed. This particular actor gives,

two information every time it is called.

 40

Chapter 5 Implementation Details

Fig 5.13 Timing Information Actor

It gives, current time in HH : MM : SS AM/PM format. And it generates date in

DD / MM / YYYY – DAY format. As in fig. 5.13 it shows the sample output how it

will be generated. Here these details are displayed with a display actor of the

system. But the same detail can be used with any other actors which can receive

string input and operate with that.

5.6.2 LCD Display

In many embedded system display device used is LCD display. The Ptolemy actor

can generate display in normal form and in similar manner it may output to any

hardware device. But LCD device required input in 8 bit form and with

combination of those 8 bits the output is generated. Here four actors are

generated to implement and check the LCD functionality. One set of actors have

two actors in it, one will convert string into bits form and other will convert the

bits back into the display.

So here the first actor that converts string input to bits is the key actor. Output

of this actor will be sent to the LCD device as input and then its upto the device

to show the result in desired form. For getting the result into the desired form,

 41

Chapter 5 Implementation Details

the string is converted to bits according the table 5.4. Table shows the 8 bit code

for each symbol on the right. The 8 bit code is converted to hex number form in

the table.

Table 5.4 LCD Code

30 0 40 50 P 60 ` 70 P
31 1 41 A 51 Q 61 A 71 Q
32 2 42 B 52 R 62 B 72 R
33 3 43 C 53 S 63 C 73 S
34 4 44 D 54 T 64 D 74 T
35 5 45 E 55 U 65 E 75 U
36 6 46 F 56 V 66 F 76 V
37 7 47 G 57 W 67 G 77 W
38 8 48 H 58 X 68 H 78 X
39 9 49 I 59 Y 69 I 79 Y
3a : 4a J 5a Z 6a J 7a Z
3b ; 4b K 5b [6b K 7b {
3c < 4c L 5c . 6c L 7c |
3d = 4d M 5d] 6d M 7d }
3e > 4e N 5e ^ 6e N 7e ,
3f ? 4f O 5f _ 6f O 7f !

For coding the controlling of the LCD device is not considered. But here only the

data portion is done. That is the string is converted to 8 bit form and is sent as

either single sting of bits or it is sent as 8 separate bits on 8 different outputs.

In each set of actors, the main part is string to LCD code. The second actor is

LCD code to string output, which is used to cross verify the result produced. So

first can be considered part of system’s development and second actor can be

considered as the LCD device. The logic part of this actor for converting string

input to LCD string output is,

1. Read in the string inputs and match the ascii value.

2. For ascii value match the value in table 5.4.

3. For each value convert the hex to 8 bit value.

The reverse of above logic applies for converting LCD string to normal display.

That is the actor generated which simulated the LCD device. Actors and model

for that is shown, this can be used with normal display module as in fig. 5.4.

 42

Chapter 5 Implementation Details

Fig. 5.14 shows the set of LD actors, generated which simulates the value for the

normal string output. That is complete string is given as a single input to the LCD

device. In fig. 5.14 LCD Sting is the outcome of StringToLCD actor, and which is

the key part of the actor. This can be given as input to LCD device for display.

Fig 5.14 LCD Display in Normal Form

The module shows two separate set of actors. One for normal string output and

other for the 8 bit outputs. The complete set is shown with two individual actors

in each model. First actor converts string to LCD bits and the second LCD to

string. The second actor in each of the set can be assumed as the output LCD

device where the 8 individual bits for each input string is input. Then the device

generates the string output. Here so far no controlling of LCD device is included.

In fig. 5.15 another set of actors is shown, which is operating for 8 bits. That is

here string to LCD generated 8 individual bits for each character and this

individual bits are given as input to separate 8 ports on LCD device. So now the

device may interpret the characters with use of the table 5.4. In fig. 5.15, output

of the first actor i.e. String to 8 bit LCD is shown. Bit 0 to 7 are shown

individually, whose combination is any character. These 8 bits are given as input

to LCD8ToString as shown in figure. The resultant message gets generated as

 43

Chapter 5 Implementation Details

shown. Here each character is shown on individual line, as no controlling is

included. After adding controlling of LCD this device will work as a cursor based

display device.

Fig 5.15 LCD Display in 8 Bit Form

For the 8 bit or the normal string the only difference lies in the way output is

generated. In the normal the string of LCD bits is sent to single port. While in the

8 bit format the separate 8 bits are sent to 8 input ports of device for each

character. The LCD and timing actors are generated and added to the local

Ptolemy environment.

Any of the actors shown in fig. 5.14 or fig. 5.15 can be used for converting the

given sting to LCD bits and then these bits can be used as input to LCD device.

So now the model can work in exact manner to original hardware, as the LCD is

also generated and used in modeling.

 44

6. INTEGRATION AND TESTING

Here the chapter includes details on full system’s integration and testing. Prior to

integrating the system, each modules needs to be tested. So here the testing

details are also included. Modules are tested with C code and also from the

Ptolemy’s execution are done. Then integration of the full system is covered in

later part of the chapter.

6.1 MODULES’ TESTING

In this section, configuration and executions of each of the module, shown in

earlier chapter is shown. Complete modules are shown and then how the

executions will take place is explained and finally the testing. Testing here shows

outcome of each module.

Fig 6.1 Complete Audio Module Design

 45

Chapter 6 Integration and Testing

Fig. 6.1 shows the audio module which is explained in section 5.2. Below in fig.

6.2 the execution is shown. Here an audio file is selected by the constant input

and then it is played with the audio player. To show the working plotter is used

which plots the frequency values against the time. So the highlighted portion is

for output and the plot shown is for the audio file played.

Fig 6.2 Testing of Audio Module Design

Here the “C” code is generated for the timing module but to show modules’

working state this approach is used. Execution of C code requires SDL library [9]

support and currently it is having mismatch with standard C library. So that

execution is not referred here.

Next is the display module, which is shown in fig. 6.3. Complete design is

explained in section 5.3, the same is shown here. As the module functions are

defined, it will display set of messages for the station chosen from the driver’s

control. According to that set of messages are displayed.

 46

Chapter 6 Integration and Testing

Fig 6.3 Complete Display Module Design

Fig 6.4 Testing of Display Module

Here fig. 6.4 shows the execution of the module under Ptolemy II environment.

The set of messages are shown with display actor of Ptolemy. Fig. 6.5 below

shows the execution of generated “C” code of the display module. The same set

 47

Chapter 6 Integration and Testing

of message as in fig. 6.4 is generated when model is executed.

Fig 6.5 Testing of “C” code of Display Module

Fig 6.6 Complete Fare Charging Module Design

 48

Chapter 6 Integration and Testing

Fig. 6.6 shows the complete design of ticketing and payment module. The same

is explained in detail in section 5.4. Below given Fig. 6.7 shows testing of the

compete module. The station selected here are, source station is 5 and

destination station is 1. Also the card selected is 2nd from the array. The card

details are number – 32568974 and balance – 75. From table 5.2 the charge can

be seen as 20, so that all results are shown as Fare – 20, Remaining Balance –

55 and the Card Number – 32568974.

Fig 6.7 Testing of Fare Charging Module

The same result is achieved with “C” code execution under Cygwin [8]. It shows

all the outputs those results when source and destination is 5 and 1 respectively.

Fig 6.8 Testing “C” code of Fare Charging

 49

Chapter 6 Integration and Testing

6.2 INTEGRATION

This section covers details on system’s integration. Two examples are taken

which shows the results with two of modules integrated. And then how the full

system is integrated, is shown.

Fig 6.9 Display with LCD display

Fig. 6.9 shows Display module integrated with the LCD display actor generated.

Here output of Display module is given as input to the LCD actor. LCD actor gives

result in two strings; one shows the input string and the other shows the

converted string. Each character here is converted to 8 bit value and that way a

full string is generated. Example shows how the modules can be integrated to

result into full system. So now from the example it is obvious how the LCD actor

can be used in conjunction with any display. Actually the converted string result

is more of interest, but the original is also used which verifies results.

Next fig. 6.10 shows, timing information actor used with 8 bit LCD display actor.

Here the output of each date and time is give as input to the actor that converts

a string to 8 individual bits per character. The intermediate bit values are not

 50

Chapter 6 Integration and Testing

shown here. 8 bits of output string is given as input to LCD8ToString actor which

generates character out of each combination of bits given as inputs. Again here

also the input string is shown as one of the output of StringToLCD8 actor, so as

to verify the input and the result.

Fig 6.10 Timing and LCD 8 Bit Integrated

Fig 6.11 Full BTS Design

 51

Chapter 6 Integration and Testing

Fig. 6.10 shows complete model of BTS. Here the figure shows continuous

outputs. That is those output observed in fig. 6.10 will be active during complete

execution. The audio player will play audio announcements according to the

station selected by driver’s control. The central part of the fig. 6.10 is the

system. Inside that all the modules developed are integrated. Fig. 6.11 shows

inside of BTS, which has hierarchy.

Fig 6.12 Inside of BTS

As seen in fig. 6.10 the system has 3 inputs. Out of which one will be active for

complete execution. The station selection input is active all the time. Other two

inputs are for destination station selection and card selection. These two actors

will be active only if the payment function is required. So for that the destination

is selected and also card is chosen by passenger, from the device.

 52

Chapter 6 Integration and Testing

As in fig. 6.10 there are four outputs that will be active all the time of execution.

Audio alert will be always on, as one of the stations will be always selected. So

that will play any audio message, according to the value selected. Same way

display notification will work always and inform passengers about various details.

Time and date are static information which will be active all the time. For this

information to be displayed no input is required. From fig. 6.11 it can be

observed that Timing information actor is disconnected from any other actor

present in the hierarchy. That’s why this information is static. It keeps on

changing at each unit of time, during system’s execution.

6.3 SYSTEM OPERATION

So for the system’s execution only station has to be selected. This particular

selection in actual system will be done with a signal that is generated when

driver opens or closes the door of the Bus. That signal will cancel a station on the

list every time it is generated. So now depending on the count of the stations

remaining, the current station can be decided. So once the current station gets

decided, audio module and display module will receive input. So now the

continuous outputs are generated.

In the case of ticketing also the selected station is needed. The selected station

will be taken as the source station in case of the calculation from the table 5.2.

For selecting the destination, passenger has to select it from the device present

on system [Fig. 4.8]. So now the system has two stations, from which the fare

can be calculated. For payment, the card has to be selected. Just for modeling

only limited card detail is feed into the system. So one of the cards has to be

selected for payment purpose. As now the system has two stations and card

detail available, so charging can be done.

In here, when it is the case of ticketing at that time also the continuous outputs

will be generated and can be observed. Along with the displaying route and

timing information, now the system also displays fare that shall be charged. In

this manner the system can be executed and results can be verified.

 53

7. SUMMARY AND CONCLUSION

7.1 SUMMARY

Modeling an embedded system is key requirement prior to manufacturing it.

There are plenty of modeling options and tools are available. First of all Ptolemy

tool’s study is necessary as the goal is to make a model of an embedded system.

Here an example system BTS is used and modeled with Ptolemy. BTS stands for

Bus Transport System and as name suggests it is made for better amenity of

passengers and easier administration. The BTS is designed with functionalities

like route information, passenger details, timing details, ticketing and payment.

There are, as always several assumptions made for system’s conceptualization,

which are about passengers and system’s operation under all situations. BTS is

modeled under Ptolemy’s Codegen Environment. For modeling, complete system

is divided in 3 modules, Display Information Module, Audio Alert Module and Fare

Charging Module. These modules are used in achieving system’s various

functionalities. During development, it was found that Ptolemy doesn’t have any

actor for having system’s current time and date. Also there is no provision to get

the display on the LCD device. So for these two functionalities, actors have been

developed and patched to the environment and then they were used. With all

these, Ptolemy’s available actors and generated actors complete model has been

generated. Finally all three modules were integrated and then tested for desired

outcome.

For simulation, the system’s code is required. To get the system’s code, Ptolemy

has provision for code generation. Using code generation, “C” code can be

generated. To get “C” code, the libraries are also required and also there should

be no mismatch. Once all this done, “C” code can be generated. With generated

“C” code simulation can be done. For that the “C” code is cross compiled for the

target processor family, that code can be ported to the target processor and can

be verified. Because of mismatch in standard C library and SDL library, the C

code has not been generated for full model. SDL library is needed for multimedia

functionalities with C environment.

 54

 Summary and Conclusion

7.2 CONCLUSION

The project carried out here is to learn Embedded System Modeling and

Simulation. There are various available modeling options, but model based

approach is used here. For modeling, here Ptolemy tool is used which supports

GUI based modeling. System modeled here is BTS – Bus Transport System. The

system does have limited functionalities as stated earlier.

Ptolemy has set of actors available which are used for GUI based modeling. For

some functionality of BTS, some new actors were required and they have been

developed and then used. Some of the actors were modified according to need

and have been found better appropriate later. Actor adding and using is indeed a

tricky part of modeling yet it has been carried out to achieve final model of the

system.

System is modeled and tested for desired outcome. All defined functionalities

were perfectly modeled; still they can be updated to function in better way. Still

simulation is to be carried out. Simulation can only be carried out on target

processor. Simulation process requires code of the system and it is yet to be

generated.

After carrying out complete modeling with Ptolemy, it is experienced that with

Ptolemy any embedded system can be modeled and tested for performance.

7.3 FUTURE WORK

The system is developed to have the functionalities listed earlier and everything

is checked. Still it needs to be simulated on target platform. For getting the code

for target, “C” code is required. Separate “C” code for all modules has been

generated but they are still to be integrated. SDL library creates problem by

mismatching with C libraries for unsigned integers. Once that problem gets

resolved, rest things can be done. Once “C” code is there, the integration and

target code generation can be done. Also controlling logic has to be added to the

LCD module that has been generated for the displaying.

55

 Summary and Conclusion

Further system can be extended to have advance passenger’s information.

System can be extended for payment process. One of the option is to get

payment done with all credit cards, for this the system needed to communicate

with central server. So adding of some sort of communication will be required.

The communication can be using wireless network or GPRS. One other option for

making payment process more efficient and errorless, concept of RFID can be

used. With RFID the charges will be deducted when a passenger gets of the bus,

i.e. at the end of journey. Also the system can communicate with administrator

to update about the traffic situation and that way it may help in system

administration.

56

 REFERENCES

[1] Christopher Brooks, Edward A. Lee, Xiaojun Liu, Steve Neuendorffer, Yang

Zhao, Haiyang Zheng, Ptolemy II – Heterogeneous Concurrent Modeling

And Design In Java, Volume I – Introduction to Ptolemy II, 2005

[2] Edward A. Lee, Stephen Neuendorffer, “Actor-Oriented Models For

Codesign – Balancing Re-Use and Performance”. Formal Methods and

Models for System Design, Kluwer, 2004

[3] David Harel, “Statecharts : A visual formalism for complex systems”.

Science of Computer Programming, 8:231–274, 1987.

[4] Christopher Brooks, Edward A. Lee, Xiaojun Liu, Steve Neuendorffer, Yang

Zhao, Haiyang Zheng, Ptolemy II – Heterogeneous Concurrent Modeling

And Design In Java, Volume 2 - Ptolemy II Software Architecture, 2005

[5] Edward Lee, Stephen Neuendorffer, Michael J. Wirthlin, “Actor Oriented

Design of Embedded Hardware and Software Systems”. Journal of Circuits,

Systems, and Computers, Vol. 12, No. 3 (2003) 231-260.

[6] Gang Zhou, Man-Kit Leung and Edward A. Lee, “A Code Generation

Framework for Actor-Oriented Models with Partial Evaluation”, EECS,

Technical Report No. UCB/EECS-2007-29

[7] “Ptolemy Official Website”, http://ptolemy.eecs.berkeley.edu/

[8] “Cygwin Source and Information”, http://www.cygwin.com/

[9] “Information about SDL”, http://www.libsdl.org/

[10] “Vergil – Tool from Ptolemy”,

http://ptolemy.eecs.berkeley.edu/ptII6.0/ptII6.0.2/doc/design/usingVergil

/index.htm

 57

 APPENDIX A

In this section, code of the actors that are generated for the modeling is covered.

These are the actors that are developed and patched with Ptolemy environment

and then used for modeling. All the actors are explained in section 5.6. The

coding is done in Java. Java standard libraries and libraries for Ptolemy are used

here. Coding follows the coding style of the Ptolemy [1].

A.1 TIMING ACTOR

Functioning and operation of timing actor is covered in section 5.6.1. The code is

as given below,

package ptolemy.actor.lib;

import java.*;
import java.util.*;
import ptolemy.actor.TypedIOPort;
import ptolemy.actor.TypedAtomicActor;
import ptolemy.data.DoubleToken;
import ptolemy.data.StringToken;
import ptolemy.data.Token;
import ptolemy.data.type.BaseType;
import ptolemy.kernel.CompositeEntity;
import ptolemy.kernel.util.IllegalActionException;
import ptolemy.kernel.util.NameDuplicationException;

Standard
 Library
 Files

import ptolemy.kernel.util.Workspace;

public class MyTime extends TypedAtomicActor {

 public MyTime(CompositeEntity container, String name) // Constructor
 throws IllegalActionException, NameDuplicationException {
 super(container, name);

 dt = new TypedIOPort(this, "Date", false, true);
 dt.setTypeEquals(BaseType.STRING);

 tm = new TypedIOPort(this, "Time", false, true);

IO Port of
the Actor

 tm.setTypeEquals(BaseType.STRING);
 }

 public TypedIOPort dt, tm;

 public void fire() throws IllegalActionException { // Execution Starts Here

 super.fire();

 String res_tm = new String();

 58

 Appendix A

 String res_dt = new String();

 res_tm = _getCurrentTime();
 tm.send(0, new StringToken(res_tm));

 res_dt = _getCurrentDt();
 dt.send(0, new StringToken(res_dt));

 }

public void initialize() throws IllegalActionException { // Private variable
Initialization

 super.initialize();
 _startTime = System.currentTimeMillis();
 }

 protected String _getCurrentTime() { // Method to get the Current Time
 Date dt = new Date(_startTime);
 String temp = new String();
 int hrs, min, sec;

 hrs = dt.getHours();
 min = dt.getMinutes();
 sec = dt.getSeconds();

 if (hrs > 12) {
 hrs -= 12;
 temp = temp + "" + hrs + " : " + min + " : " + sec + " PM";
 }
 else
 temp = temp + "" + hrs + " : " + min + " : " + sec + " AM";

 return temp;
 }

 protected String _getCurrentDt() { // Method to get the Current Date
 Date dt = new Date(_startTime);
 String temp = new String();
 String d = new String();
 int day, mon, yr, dat;

 dat = dt.getDate();
 day = dt.getDay();
 mon = dt.getMonth() + 1;
 yr = dt.getYear() + 1900;

 switch(day) {
 case 0 : d = "Sunday"; break;
 case 1 : d = "Monday"; break;
 case 2 : d = "Tuesday"; break;
 case 3 : d = "Wednesday"; break;
 case 4 : d = "Thursday"; break;
 case 5 : d = "Friday"; break;
 case 6 : d = "Saturday"; break;
 default : break;
 }
 temp = temp + "" + dat + " / " + mon + " / " + yr + " - " + d ;

 59

 Appendix A

 return temp;
 }

 private long _startTime;
}

A.2 LCD ACTORS

This section covers the core functions of LCD actors. As the coding style for each

actor will remain same [1]. So from next onwards only code functions of LCD is

shown. The codes are shown for LCDToString, StringToLCD, LCD8ToString and

StringToLCD8. Functioning of all these actors is explained in section 5.6.1.

A.2.1 StringToLCD

// Libraries to Include

public class StringToLCD extends TypedAtomicActor { // Constructor

 public StringToLCD(CompositeEntity container, String name)
 throws NameDuplicationException, IllegalActionException {
 super(container, name);

 input = new TypedIOPort(this, "input", true, false);
 input.setTypeEquals(BaseType.STRING); IO Port of

the Actor
 output = new TypedIOPort(this, "output", false, true);
 output.setTypeEquals(BaseType.STRING);

 extra = new TypedIOPort(this, "extra", false, true);
 extra.setTypeEquals(BaseType.STRING);

 _attachText("_iconDescription", "<svg>\n" // Actor’s Icon
 + "<polygon points=\"-15,-15 15,15 15,-15 -15,15\" "
 + "style=\"fill:white\"/>\n" + "</svg>\n");
 }

 public TypedIOPort input;

 public TypedIOPort output;

 public TypedIOPort extra;

 public void fire() throws IllegalActionException {
 super.fire();

 if (input.hasToken(0)) {
 StringToken inputToken = (StringToken) input.get(0);
 String ip = inputToken.stringValue();

 String op = _doConvert(ip); //(Creates a new copy)
 extra.send(0, new StringToken(ip));

 60

 Appendix A

 }
 }
 public boolean prefire() throws IllegalActionException {
 if (!input.hasToken(0)) {
 return false;
 }

 return super.prefire();
 }

 private String _doConvert(String in) { // Function to convert String to LCD Code

 char a[] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', ':', ';', '<', '=', '>', '?', ' ', 'A', 'B', 'C',

 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V',
'W', 'X', 'Y', 'Z', '[', '.', ']', '^', '_', '`', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k',
'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '{', '\n', '}', ',', '!'};

 String str = new String();
 String res = new String();

 for(int i=0;i<in.length();i++)
 {
 int jc;
 int c=in.charAt(i);

 for(jc=0;(int)a[jc]!=c;jc++);
 jc+=48;

 str="";

 for(int j=0;j<8;j++)
 {
 if(jc/(int)Math.pow(2,7-j)==0)
 str +="0";
 else
 str +="1";
 jc=jc%(int)Math.pow(2,7-j);
 }

 res += str;
 }

 return res;
 }
}

A.2.2 LCDToString

// Libraries to Include

public class LCDToString extends TypedAtomicActor {
 public LCDToString(CompositeEntity container, String name)
 throws NameDuplicationException, IllegalActionException {
 super(container, name);

 61

 Appendix A

 input = new TypedIOPort(this, "input", true, false);
 input.setTypeEquals(BaseType.STRING);

IO Port of
the Actor

 output = new TypedIOPort(this, "output", false, true);
 output.setTypeEquals(BaseType.STRING);

 extra = new TypedIOPort(this, "extra", false, true);
 extra.setTypeEquals(BaseType.STRING);

 _attachText("_iconDescription", "<svg>\n" // Actor’s Icon
 + "<polygon points=\"-15,-15 15,15 15,-15 -15,15\" "
 + "style=\"fill:white\"/>\n" + "</svg>\n");
 }

 public TypedIOPort input;

 public TypedIOPort output;

 public TypedIOPort extra;

 public void fire() throws IllegalActionException {
 super.fire();

 if (input.hasToken(0)) {
 StringToken inputToken = (StringToken) input.get(0);
 String ip = inputToken.stringValue();

 String op = _doConvert(ip);

 output.send(0, new StringToken(op));

 extra.send(0, new StringToken(ip));
 }
 }

 public boolean prefire() throws IllegalActionException {
 if (!input.hasToken(0)) {
 return false;
 }

 return super.prefire();
 }

 private String _doConvert(String in) { // Converts LCD Code to String

 char a[] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', ':', ';', '<', '=', '>', '?', ' ', 'A', 'B', 'C',

 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V',
'W', 'X', 'Y', 'Z', '[', '.', ']', '^', '_', '`', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k',
'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '{', '\n', '}', ',', '!'};

 String str = new String();

 for(int i=0; i<(in.length()/8); i++)
 {
 int c=0;
 for(int j=0;j<8;j++)
 {

 62

 Appendix A

 c += (in.charAt((8*i)+j)-48)*Math.pow(2,7-j);
 }
 str += a[c-48];
 }
 return str;
 }
}

A.2.3 StringToLCD8

// Libraries to Include

public class StringToLCD8 extends TypedAtomicActor { // Constructor

 public StringToLCD8(CompositeEntity container, String name)
 throws NameDuplicationException, IllegalActionException {
 super(container, name);

 input = new TypedIOPort(this, "input", true, false);
 input.setTypeEquals(BaseType.STRING);

 output0 = new TypedIOPort(this, "output0", false, true);
 output0.setTypeEquals(BaseType.STRING);

 output1 = new TypedIOPort(this, "out1", false, true);
 output1.setTypeEquals(BaseType.STRING);

 output2 = new TypedIOPort(this, "out2", false, true);
 output2.setTypeEquals(BaseType.STRING);

IO Ports
of the Actor

8 Output
and 1 Input

 output3 = new TypedIOPort(this, "out3", false, true);
 output3.setTypeEquals(BaseType.STRING);

 output4 = new TypedIOPort(this, "out4", false, true);
 output4.setTypeEquals(BaseType.STRING);

 output5 = new TypedIOPort(this, "out5", false, true);
 output5.setTypeEquals(BaseType.STRING);

 output6 = new TypedIOPort(this, "out6", false, true);
 output6.setTypeEquals(BaseType.STRING);

 output7 = new TypedIOPort(this, "out7", false, true);
 output7.setTypeEquals(BaseType.STRING);

 extra = new TypedIOPort(this, "extra", false, true);
 extra.setTypeEquals(BaseType.STRING);

 _attachText("_iconDescription", "<svg>\n" // Actor’s Icon
 + "<polygon points=\"-15,-15 15,15 15,-15 -15,15\" "
 + "style=\"fill:white\"/>\n" + "</svg>\n");
 }

 public TypedIOPort input;

 public TypedIOPort out0, out1, out2, out3, out4, out5, out6, out7;

 63

 Appendix A

 public TypedIOPort extra;

 public void fire() throws IllegalActionException {
 super.fire();

 if (input.hasToken(0)) {
 StringToken inputToken = (StringToken) input.get(0);
 String ip = inputToken.stringValue();

 String op = _doConvert(ip);

 for (int j = 0; j < (op.length()/8); j++) {
 output0.send(0, new StringToken(""+op.charAt(0+(8*j))));
 output1.send(0, new StringToken(""+op.charAt(1+(8*j))));
 output2.send(0, new StringToken(""+op.charAt(2+(8*j))));
 output3.send(0, new StringToken(""+op.charAt(3+(8*j))));
 output4.send(0, new StringToken(""+op.charAt(4+(8*j))));
 output5.send(0, new StringToken(""+op.charAt(5+(8*j))));
 output6.send(0, new StringToken(""+op.charAt(6+(8*j))));
 output7.send(0, new StringToken(""+op.charAt(7+(8*j))));

Sending
Output
On each
Output
port

 }

 extra.send(0, new StringToken(ip));
 }
 }

 public boolean prefire() throws IllegalActionException {
 if (!input.hasToken(0)) {
 return false;
 }

 return super.prefire();
 }

 private String _doConvert(String in) { // Conversion Function

 char a[] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', ':', ';', '<', '=', '>', '?', ' ', 'A', 'B', 'C',

 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V',
'W', 'X', 'Y', 'Z', '[', '.', ']', '^', '_', '`', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k',
'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '{', '\n', '}', ',', '!'};

 String str = new String();
 String res = new String();

 for(int i=0;i<in.length();i++)
 {
 int jc;
 int c=in.charAt(i);

 for(jc=0;(int)a[jc]!=c;jc++);
 jc+=48;

 str="";

 for(int j=0;j<8;j++)
 {
 if(jc/(int)Math.pow(2,7-j)==0)

 64

 Appendix A

 str +="0";
 else
 str +="1";
 jc=jc%(int)Math.pow(2,7-j);
 }

 res += str;
 }

 return res;
 }
}

A.2.4 LCD8ToString

// Libraries to Include

public class LCD8ToString extends TypedAtomicActor {

 public LCD8ToString(CompositeEntity container, String name)
 throws NameDuplicationException, IllegalActionException {

IO Ports
of the
Actor

8 Input
and 1
Output

 super(container, name);

 input0 = new TypedIOPort(this, "input0", true, false);
 input0.setTypeEquals(BaseType.STRING);

 input1 = new TypedIOPort(this, "input1", true, false);
 input1.setTypeEquals(BaseType.STRING);

 input2 = new TypedIOPort(this, "input2", true, false);
 input2.setTypeEquals(BaseType.STRING);

 input3 = new TypedIOPort(this, "input3", true, false);
 input3.setTypeEquals(BaseType.STRING);

 input4 = new TypedIOPort(this, "input4", true, false);
 input4.setTypeEquals(BaseType.STRING);

 input5 = new TypedIOPort(this, "input5", true, false);
 input5.setTypeEquals(BaseType.STRING);

 input6 = new TypedIOPort(this, "input6", true, false);
 input6.setTypeEquals(BaseType.STRING);

 input7 = new TypedIOPort(this, "input7", true, false);
 input7.setTypeEquals(BaseType.STRING);

 output = new TypedIOPort(this, "output", false, true);
 output.setTypeEquals(BaseType.STRING);

 _attachText("_iconDescription", "<svg>\n" // Actor’s Icon
 + "<polygon points=\"-15,-15 15,15 15,-15 -15,15\" "
 + "style=\"fill:blue\"/>\n" + "</svg>\n");
 }

 public TypedIOPort input0, input1, input2, input3, input4, input5, input6, input7;

 65

 Appendix A

 public TypedIOPort output;

 public void fire() throws IllegalActionException {
 super.fire();

if ((input0.hasToken(0)) & (input1.hasToken(0)) & (input2.hasToken(0)) &
(input3.hasToken(0)) & (input4.hasToken(0)) & (input5.hasToken(0)) &
(input6.hasToken(0)) & (input7.hasToken(0))) {

 StringToken inputToken0 = (StringToken) input0.get(0);
 StringToken inputToken1 = (StringToken) input1.get(0);

Reading All
8 inputs
From 8
input ports

 StringToken inputToken2 = (StringToken) input2.get(0);
 StringToken inputToken3 = (StringToken) input3.get(0);
 StringToken inputToken4 = (StringToken) input4.get(0);
 StringToken inputToken5 = (StringToken) input5.get(0);
 StringToken inputToken6 = (StringToken) input6.get(0);
 StringToken inputToken7 = (StringToken) input7.get(0);

String ip = inputToken0.stringValue() + inputToken1.stringValue() +
 inputToken2.stringValue() + inputToken3.stringValue() +
 inputToken4.stringValue() + inputToken5.stringValue() +
 inputToken6.stringValue() + inputToken7.stringValue();

 String op = _doConvert(ip);

 output.send(0, new StringToken(op));
 }
 }

 private String _doConvert(String in) { // Conversion Function

 char a[] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', ':', ';', '<', '=', '>', '?', ' ', 'A', 'B', 'C',

 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V',
'W', 'X', 'Y', 'Z', '[', '.', ']', '^', '_', '`', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k',
'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '{', '\n', '}', ',', '!'};

 String str = new String();

 for(int i=0; i<(in.length()/8); i++)
 {
 int c=0;
 for(int j=0;j<8;j++)
 {
 c += (in.charAt((8*i)+j)-48)*Math.pow(2,7-j);
 }
 str += a[c-48];
 }
 return str;
 }
}

 66

 APPENDIX B

This section covers various details of the project, which are very much needed as

a backend or as a needed one. It covers details on Ptolemy Code Generation

Process, about how to add and use actors with Ptolemy and finally Cygwin

details. This information is covered in very concise manner.

B.1 CODE GENERATION PROCESS

In Ptolemy II, there are no separate code generations domains. Once a model

has been designed, simulated and verified to satisfy the given specification in the

simulation domain, code can be directly generated from the model. Each helper

doesn’t have its own interface. Instead, it interrogates the associated actor to

find its interface with ports parameters during the code generation. Thus the

interface consistency is maintained naturally. The generated code, when

executed, should present the same behavior as the original model.

In the Ptolemy’s code of any actor, the preinitialize() method is assumed to be

invoked exactly once during the lifetime of an execution of a model and before

the type resolution. The initialize() method is assumed to be invoked once after

the type resolution. The prefire(), fire(), and postfire() methods will usually be

invoked many times, with each sequence of method invocations defined as one

iteration. The wrapup() method will be invoked exactly once per execution at the

end of the execution.

The classes to support code generation are located in the subpackages under

ptolemy.codegen. The counterpart of the Executable interface is the

ActorCodeGenerator interface. This interface defines the methods for generating

target code in different stages corresponding to what happens in the simulation.

These methods include generatePreinitializeCode(), generateInitializeCode(),

generateFireCode(), generateWrapupCode(), etc.

CodeGeneratorHelper, the counterpart of AtomicActor, is the base class

implementing the ActorCodeGenerator interface and provides common functions

 67

 Appendix B

Fig B.1 Code Generation Process

for all actor helpers. Actors and their helpers have same names so that the Java

 68

 Appendix B

reflection mechanism can be used to load the helper for the corresponding actor

during the code generation process. Finally the StaticSchedulingCodeGenerator

class is used to orchestrate the whole code generation process. An instance of

this class is contained by the top level composite actor. The code generation

starts at the top level composite actor and the code for the whole model is

generated hierarchically, much similar to how a model is simulated in Ptolemy II

environment.

The flow chart in figure B.1 [6] shows the whole code generation process step by

step. The details of some steps are MoC-specific. Notice that the steps outlined in

the figure do not necessarily follow the order the generated codes are assembled

together. For example, only those parameters that change values during the

execution need to be defined as variables. Therefore those definitions are

generated last when all the code blocks have been processed, but placed at the

beginning of the generated code.

B.2 ACTOR ADDING TO PTOLEMY

There is no direct way to add an actor to Ptolemy environment. There is a set of

steps that has to be followed to add an actor. These steps are to be done with

accuracy. So the process to add actor is some what difficult. The steps are as

shown below,

1. Create the new .java file that implements the actor.

 E.g. MyTime.java

2. Edit the $PTII/ptolemy/actor/lib/makefile and add MyTime.java to the

value of JSRCS.

3. Run make in the $PTII/ptolemy/actor/lib directory. make will descend into

the subdirectories and compile any needed files and eventually run

 rm -f `basename MyTime.java .java`.class

 CLASSPATH="../../.." "/cygdrive/c/j2sdk1.4.2_06/bin/javac" -g -O

MyTime.java

After this gets done without any error, then class file for the code will be

ready. To use this file under Ptolemy, it needs to be added to the

 69

 Appendix B

environment. To add it into the environment, it’s added to any present xml

files or a new file is to be generated.

E.g. $PTII/ptolemy/actor/lib/sources.xml

4. Edit $PTII/ptolemy/actor/lib/sources.xml and add MyTime to existing.

To notice the change, PtolemyPreferences.xml is requiring to be reloaded.

To reload this file, vergil has to be called from the Cygwin environment.

5. Start up Vergil.

 bash-2.04$ vergil

6. Now that actor can be found under Sources category of Actors in the left

pane of the Vergil environment.

This way an actor can be added to the Ptolemy environment. It is always

required to recompile any actor if any changes are done that. To do the

recompilation step 3 is necessary to be carried out. For any new actor all steps

are necessary, though step 2 can be omitted which is just required to make sure

that newly generated code is patched and stored to some .jar file for backup.

B.3 CYGWIN DETAILS

Here the details about Ptolemy’s configuration with Cygwin and its use are

covered. Firstly Cygwin source and installation details can be found at

http://sources.redhat.com/cygwin. So referring that Cygwin can be downloaded

and installed to the system. It comes with bash shell to do the operations. To use

Ptolemy with Cygwin’s support, it is required to build the Ptolemy II under

Cygwin first. The steps to do that are,

1. Install Java. (Check Compatibility with Cygwin’s current version)

2. Install Cygwin toolkit. (Developer’s Source)

3. Set the PTII environment variable to the top level Ptolemy directory, that

is the directory above this directory,

 export PTII=c:/Ptolemy/ptII6.0.2

4. Run configure

 70

 Appendix B

 cd "$PTII"

 rm -f config.*

 ./configure

5. The safest thing to do is to run make fast install on the entire tree:

 make fast install

6. Start vergil

 $PTII/bin/vergil

All 1-6 steps are required for patching / building Ptolemy with Cygwin. Once

patching is done vergil can be executed from Cygwin with $PTII/bin/vergil. This

will execute vergil.bat file. Under this batch file all the latest PtolemyPreferences

are loaded everytime it gets executed.

Cygwin is required when an actor is to be added to Ptolemy. Other options to add

actor to Ptolemy is with Eclipse. For actor adding, first building Ptolemy under

Cygwin is required and then actor adding steps can be carried out.

 71

	18 - Appendix A.pdf
	 APPENDIX A

	17 - References.pdf
	 REFERENCES

	16 - Chapter 7 Summary And Conclusion.pdf
	7. SUMMARY AND CONCLUSION

	15 - Chapter 6 Integration and Testing.pdf
	6. INTEGRATION AND TESTING

	14 - Chapter 5 Implementation Details.pdf
	5. IMPLEMENTATION DETAILS

	13 - Chapter 4 Bus Transport System.pdf
	4. BUS TRANSPORT SYSTEM

	12 - Chapter 3 Tools & Toolkit.pdf
	3. TOOLS & TOOLKIT

	11 - Chapter 2 Modeling and Simulation.pdf
	2. MODELING AND SIMULATION

	10 - Chapter 1 Introduction.pdf
	1 INTRODUCTION

	19 - Appendix B.pdf
	 APPENDIX B

	19 - Appendix B.pdf
	 APPENDIX B

	18 - Appendix A.pdf
	 APPENDIX A

	17 - References.pdf
	 REFERENCES

	16 - Chapter 7 Summary And Conclusion.pdf
	7. SUMMARY AND CONCLUSION

	15 - Chapter 6 Integration and Testing.pdf
	6. INTEGRATION AND TESTING

	14 - Chapter 5 Implementation Details.pdf
	5. IMPLEMENTATION DETAILS

	13 - Chapter 4 Bus Transport System.pdf
	4. BUS TRANSPORT SYSTEM

	12 - Chapter 3 Tools & Toolkit.pdf
	3. TOOLS & TOOLKIT

	11 - Chapter 2 Modeling and Simulation.pdf
	2. MODELING AND SIMULATION

	10 - Chapter 1 Introduction.pdf
	1 INTRODUCTION

	10 - Chapter 1 Introduction.pdf
	1 INTRODUCTION

	11 - Chapter 2 Modeling and Simulation.pdf
	2. MODELING AND SIMULATION

	12 - Chapter 3 Tools & Toolkit.pdf
	3. TOOLS & TOOLKIT

	13 - Chapter 4 Bus Transport System.pdf
	4. BUS TRANSPORT SYSTEM

	14 - Chapter 5 Implementation Details.pdf
	5. IMPLEMENTATION DETAILS

	15 - Chapter 6 Integration and Testing.pdf
	6. INTEGRATION AND TESTING

	16 - Chapter 7 Summary And Conclusion.pdf
	7. SUMMARY AND CONCLUSION

	18 - Appendix A.pdf
	 APPENDIX A

	17 - References.pdf
	 REFERENCES

	19 - Appendix B.pdf
	 APPENDIX B

	17 - References.pdf
	 REFERENCES

	18 - Appendix A.pdf
	 APPENDIX A

	19 - Appendix B.pdf
	 APPENDIX B

