
Automation in Validation of Library Views

Submitted By

Deepali Bapodara

15MCEI02

DEPARTMENT OF COMPUTER ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2017

Automation in Validation of Library Views

Major Project

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology in Computer Science and Engineering(INS)

Submitted By

Deepali Bapodara

(15MCEI02)

Guided By

Prof. Parita Oza Mrs. Jyoti Kumar

Nirma University, Ahmedabad. ST Microelectronics, Greater Noida

DEPARTMENT OF COMPUTER ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2017

Certificate

This is to certify that the major project entitled ”Automation in Validation of Li-

brary Views” submitted by Deepali Bapodara (Roll No: 15MCEI02), towards the

partial fulfillment of the requirements for the award of degree of Master of Technology in

Computer Science and Engineering(INS) of Nirma University, Ahmedabad, is the record

of work carried out by her under my supervision and guidance. In my opinion, the sub-

mitted work has reached a level required for being accepted for examination. The results

embodied in this major project, to the best of my knowledge, haven’t been submitted to

any other university or institution for award of any degree or diploma.

Prof. Parita Oza Dr. Sharada Valiveti

Guide & Assistant Professor, Associate Professor,

IT Department, Coordinator M.Tech - CSE(INS)

Institute of Technology, Institute of Technology,

Nirma University, Ahmedabad. Nirma University, Ahmedabad

Dr. Sanjay Garg Dr. Alka Mahajan

Professor and Head, Director,

Computer Engineering Department, Institute of Technology,

Institute of Technology, Nirma University, Ahmedabad

Nirma University, Ahmedabad.

iii

Statement of Originality
———————————————————————————————————————

I, Deepali Bapodara, Roll. No. 15MCEI02, give undertaking that the Major Project

entitled ”Automation in Validation of Library Views” submitted by me, towards

the partial fulfillment of the requirements for the degree of Master of Technology in Com-

puter Science and Engineering(INS) of Institute of Technology, Nirma University,

Ahmedabad, contains no material that has been awarded for any degree or diploma in any

university or school in any territory to the best of my knowledge. It is the original work

carried out by me and I give assurance that no attempt of plagiarism has been made.It

contains no material that is previously published or written, except where reference has

been made. I understand that in the event of any similarity found subsequently with any

published work or any dissertation work elsewhere; it will result in severe disciplinary

action.

———————–

Signature of Student

Date:

Place:

Endorsed by

Prof. Parita Oza

(Signature of Guide)

iv

Acknowledgements

It gives me immense pleasure in expressing thanks and profound gratitude to Mrs.

Jyoti Kumar, Project Manager, ST Microelectronics, Greater Noida and Mr. Krunal

Patanwadia, Software Engineer, ST Microelectronics, Greater Noida for their valuable

guidance and mentorship that helped me to overcome every challenge I faced as I moved

on in this project.

It gives me immense pleasure in expressing thanks and profound gratitude to Prof.

Parita Oza, Assistant Professor, Information Technology Department, Institute of Tech-

nology, Nirma University, Ahmedabad for her valuable guidance and continual encour-

agement throughout this work. The appreciation and continual support she has imparted

has been a great motivation to me in reaching a higher goal. Her guidance has triggered

and nourished my intellectual maturity that I will benefit from, for a long time to come.

It gives me an immense pleasure to thank Dr. Sanjay Garg, Hon’ble Head of Com-

puter Engineering Department, Institute of Technology, Nirma University, Ahmedabad

for his kind support and providing basic infrastructure and healthy research environment.

A special thank you is expressed wholeheartedly to Dr Alka Mahajan, Hon’ble

Director, Institute of Technology, Nirma University, Ahmedabad for the unmentionable

motivation she has extended throughout course of this work.

I would also thank the Institution, all faculty members of Computer Engineering

Department, Nirma University, Ahmedabad for their special attention and suggestions

towards the project work.

- Deepali Bapodara

15MCEI02

v

Abstract

Innovations in the Technology industry have made our daily life easier than ever be-

fore.Devices like Cellphones,Desktops,Wi-fi,Touch Sensors and many other components

of digital world are getting efficient and smarter each day.All these devices contains a ”In-

tegrated Circuit(chip)” which is designed to perform some specific function.Chips play

an important role in evolution of Technology.Intellectual Property (IP) in Integrated Cir-

cuit(IC) is portable design which can be reused.It is nothing but the block of functionality

which is licensed to different vendors when used in different chip designs.

IP contains different views like gds,cdl,lib,db,lef,def etc.In order to make a device’s

functioning correct,one needs to validate IP which in turn leads to validation of Library

Views.IP validation is an indispensable aspect that helps to detect critical issues prior to

use in the actual System on Chip (SoC) Design.This demands the need for an IP valida-

tion solution that accurately verifies the correctness and sufficiency of the IP design.IP

Validation can be done by Two approaches: Manual Validation and Automated Valida-

tion.Manual Validation is executed by person without any help of Tool/Software.Due to

some limitations like less accurate result,less reliability, more Time consuming we require

Automated Validation which is executed with the help of Software/Tool.This thesis por-

trays ta scalable IP Validation Solution that provides an intensive checking of the given IP

views while concealing all the intricacies from the Designer and thus increasing the ease

of use.The proposed solution is replacement of the existing IP validation Tool.(IPScreen)

vi

Abbreviations

IC Integrated Cicuit

IP Intellectual Property

CDL Circuit Design Language

GDS Graphical Design System

LVS Layout v/s Schematic

DRC Design Rule Check

LEF Library Exchange Format

TCL Tool Command Language

VLSI Very Large Scale Integration

GUI Graphical User Interface

SLIB Symbolic Library

EDA Electronic Design Tool

CAD Computer Aided Design

SoC System On Chip

DK Design Kit

FE Front End

BE Back End
——————————————————————————————————————

–

vii

Contents

Certificate iii

Statement of Originality iv

Acknowledgements v

Abstract vi

Abbreviations vii

List of Figures xi

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Objective . 1
1.3 Thesis Outline . 2

2 Literature Survey 4
2.1 Introduction to Library Views . 4
2.2 Library . 5

2.2.1 Classification of Libraries . 5
2.3 Views . 5

2.3.1 Classification of Views . 6
2.3.2 Back End Views . 7

3 Library Development Flow 13
3.1 Introduction . 13
3.2 ST Specific stages . 14
3.3 Check Parameters for Validation Process 16

4 Types of Validation 18
4.1 Literature Review . 18

5 IPSCREEN 20
5.1 Introduction . 20
5.2 Working of IPSCREEN . 20
5.3 Limitations of IPSCREEN . 24

viii

6 IPVS 25
6.1 Introduction . 25
6.2 Significance . 25
6.3 Architecture . 27

7 Implementation 30
7.1 Prerequisite . 30

7.1.1 Technical Requirement . 30
7.1.2 Programming Language . 31

7.2 User Interface . 31
7.3 RUN Area Directory Structure . 34

8 Performance Evaulation of IPVS 35
8.1 Command Line Flow . 35
8.2 Experiments . 38

8.2.1 28nm Technology . 38
8.2.2 65nm Technology . 39
8.2.3 BCD Technology . 39

8.3 Comparative Analysis . 40
8.3.1 Functional Analysis . 40
8.3.2 Timing Analysis . 40

9 Observations / Findings 42

10 Conclusion & Future Scope 43
10.1 Conclusion . 43
10.2 Future Scope . 43

A Configuration Generation Flow for LayerMap 45

B Configuration Generation Flow for Technology 47

ix

List of Figures

2.1 Library View . 4
2.2 An illustration of View . 6
2.3 Front/Back End Views . 6
2.4 A sample Symbolic View . 7
2.5 A sample .slib file . 8
2.6 A sample Schematic View . 8
2.7 A sample .cdl file . 9
2.8 A sample Layout View . 10
2.9 A sample Abstarct View . 11
2.10 A sample .lef file . 12

3.1 ST specific Library Development Flow 14

5.1 IPSCREEN Block Diagram . 21
5.2 Execution Command for GUI . 21
5.3 IPSCREEN GUI . 22
5.4 Load a Library in IPSCREEN . 22
5.5 Status of Checks . 23
5.6 Check Report Generated by IPSCREEN 23

6.1 IPVS at different stages of IP design flow 26
6.2 IPVS Architecture . 28

7.1 ST Specific Tools . 30
7.2 Development Environment . 30
7.3 IPVS Flow Diagram . 33
7.4 IPVS Flow Diagram . 34

8.1 IPVS command to generate Configuration Template 35
8.2 Launching of Tool . 35
8.3 Check Execution . 36
8.4 Various Checks & Parameters . 36
8.5 IPVS command to Analyze report . 37
8.6 IPVS Interview . 37
8.7 GDS View . 37
8.8 Html Report per format . 38
8.9 Report for 28nm Library . 38
8.10 Report for 65nm Library . 39
8.11 Report for BCD Library . 39
8.12 IPScreen vs IPVS Functionality . 40

x

8.13 IPScreen vs IPVS Timing for Bbview Corporate Check 40
8.14 IPScreen vs IPVS Timing for Validation of LRM Check 41
8.15 IPScreen vs IPVS Timing for Validation of Version of formats 41

xi

Chapter 1

Introduction

1.1 Motivation

With lower nanometer technology, the volume of an IP data is increasing exponentially

to represent an electronic circuit on a piece of silicon. With such a huge amount of data

an IP must be fully qualified before its actual integration into a SoC. This demands

the need for a validation solution, where the objective is to ensure IP Quality. The

major factors contributing to an IPs success are the quality of IP CAD views and time-

to-market. According to a survey conducted by Arteris (multinational firm developing

on-chip interconnect fabric technology) regarding top design concerns, quality problems

contributed to approximately 20%. Thus, an improved CAD quality will help to reduce

this percentage to a great extent. The later we detect the issues, the more expensive they

become in terms of both time and money. This motivates in development of well designed

validation methodology that helps the designers to deliver a highly reliable product and

also reducing the overall cycle time. The conventional approach of validating views using

the RTL2GDS flow, had a huge cycle time.[7] Using IPVS, one can achieve simultaneous

generation and validation. Since a library can be validated View wise, one need not wait

for the complete packaging. Any bug found in the generated view can be fixed quite early

before the packaging.

1.2 Thesis Objective

A library is a consolidated data for use in designing a system on chip. The library

is comprised of various views which are useful for designing a chip.So in.order to.make

1

chip’s.functioning correct.we must.have to.ensure that.our Libraries.are properly.validated.

Manual Validation.of Library.requires lot.of time.as well.it is.not accurate;.it may.contain

human.errors.So Validation.of Library.requires some.Automation which.can display.the

accurate.result in.less time.

Here in.ST Microelectronics. were using a framework named IPSCREEN earlier.[3]It

is .a GUI in.which you have.to load.Library and.based on.the specified.checks it.will vali-

date.the Library.Checks.are nothing.but TCL/CSH.scripts.Checks are.collectively called.as

Plugin. In IPSCREEN ,User.has to.wait for.a long .time till.the library gets.completely

parsed.by the.IPScreen as well.as One.can not.parse single.view or .particular cell.of

the library. In order.to overcome.the limitations.of IPSCREEN,the framework has now

been shifted to IPVS.It is.a framework in.which you.have to.load library.and based.on

the.specified checks.it will.validate the.library.

The main objective of this thesis has been described as follows:

• Improvement of.IP validation.methodology.

• Review of.existing methodology.(ST internal).Review was done on the following

parameters :

1. Technical(software.perspective).

2. Ease of.use.

3. Configuration of.Parameters.

4. Reporting.

5. Quality of.checks.

• Smooth deployment.of enhanced .validation solution.at customer.(IP developer)end.and

support.to customer.

1.3 Thesis Outline

The rest of the thesis is organized as follows:

Chapter 2 describes the fundamentals required for this thesis.Library and different types

of Library Views are discussed.

Chapter 3 describes the Significance of Validation Phase in the Library development Flow

2

as well as the the check Parameters for Validation Process are discussed.

Chapter 4 describes the review of the existing approaches for the Validation process. Pros

and Cons of the Validation Approaches has been mentioned as well.

Chapter 5 describes the ST’s old Framework named IPSCREEN.A detailed architecture

as well as Limitations of the framework has been discussed.

Chapter 6 describes the architecture as well as the significance of IPVS framework.

Chapter 7 describes the whole development of IPVS including the Prerequisites, User

Interface and the Output Structure.

Chapter 8 describes the various experiments done on IPVS and the analysis of result is

outlined.

Chapter 9 describes the Observations made during the development and experiments of

IPVS .

Chapter 10 describes the conclusion of the thesis.Future directions in this area is also

outlined in this chapter.

3

Chapter 2

Literature Survey

2.1 Introduction to Library Views

For designing.a chip we.require a.Library. Library is.collection of.Cells. Cells are.the com-

ponent.inside the.library which.performs the.actual functions.This function.is the.Boolean

and basic.function which.can be.AND, OR, NOT etc. Cells are.represented by.Views.Views

can.be of.different type.like symbolic.view,layout view,.schematic view etc.These views.are

used.by different.tools.

Figure 2.1: Library View

4

2.2 Library

A library.is a consolidated.data which.is use in.designing a System on Chip(SoC).These

data.can be.Cell functionality,.Transistor level.design of an IP(Intellectual Property) or.timing

information.of cells.

2.2.1 Classification of Libraries

Libraries are.classified based.on Customer requirement.,functionality and.design of.the

device.

Some example of Libraries are listed below:

Standard Cell Library

As the.name says.it consists.of standard cells.and it.is also.called Core.Library.They im-

plement.standard functions.like Adder,.Subtractor,.Invert etc.

Memory Library

It contains.memories like.SRAM, DRAM,.and ROM etc.

Analog and Mixed Signal library

It uses.CORE library.for implementation.Examples of.Analog and.Mixed Signal.Library

are.PLL,Digital.to Analog.Converter,.U.S.B. etc.

2.3 Views

As mentioned.above,Library.is collection.of Cells.and these.cells are.represented by.Views.A

cell.is delivered.as a.set of.view and.each view.is used.by a.different tool.

5

Figure 2.2: An illustration of View

2.3.1 Classification of Views

Views are.classified in.two major category which is Front End and Back.End Views.

Front End.Views : These Views.are related to.Physical design.of the cell.

Back End.Views : These Views.are related.to Timing/Modeling.of the Cell.

Figure 2.3: Front/Back End Views

6

2.3.2 Back End Views

Symbolic View

As the.name indicates.Symbolic View.is pictorial.representation of.cell.It includes.shape,

PIN,.selection box.and label.[1]

• PIN- It represents.Input/output.of cell.

• Shape-It represents.Cell’s.function.

• Selection box –It represents.cell’s area.

• Label –It is.used for.documentation of.design.

Figure 2.4: A sample Symbolic View

.SLIB

Every View.has its.own textual.representation file. For Symbolic.view we.have SLIB.which

stands.for Symbolic.Library.

7

Figure 2.5: A sample .slib file

Schematic View

It is.simplified representation.of electronic.circuit.It shows.simplified standard.symbols,power.and

signal.connection between.devices.[1]

Figure 2.6: A sample Schematic View

8

.CDL(Circuit Description Language

It is.textual representation.of Schematic View.

It contains:

Power and Ground Pin Information

Connectivity at Transistor Level

Device parameters like Device name,length,area etc.

Figure 2.7: A sample .cdl file

9

Layout View

It is.physical representation.of cell’s electronic.circuit which.goes on.silicon layer.[1]

Figure 2.8: A sample Layout View

.GDS(Graphical Design System)

It contains.same data.as that.of Layout.View but.it is.in binary.format.

10

Abstract View

For some.tool we.require small.amount of.information like.Power and Ground.Pin Infor-

mation ,Obstruction which.is the area where routing.is not allowed.So.for that Abstarct

View can be used.It is subset of Layout.View as it contains small.amount of.information

compared.to Layout View.[1]

Figure 2.9: A sample Abstarct View

11

.LEF (Library Exchange Format)

It is.ASCII representation.of Abstract View.It contains following Infromation:

Name of.Standard Cell

Cell Size

Number Of.Input/Output Pins in given Cell

Definition.of Pins

Direction.of Pins

Location.of pins

OBS.layer definition

Figure 2.10: A sample .lef file

12

Chapter 3

Library Development Flow

3.1 Introduction

The framework configuration requires increasingly predefined libraries/IPs because of

the expanding unpredictability of the framework.Foundries give framework originators

an outline stage containing all fundamental libraries/IPs keeping in mind the end goal

to bolster their framework design.The library incorporates a gathering of cells. Its fun-

damental objective is to offer an extensive variety of data about the cells to framework

creator for coordinating them into his system.In the following segment a detailed Flow

has been examined.[8]

13

3.2 ST Specific stages

Figure 3.1: ST specific Library Development Flow

1. Specification Phase :

• The specification stage is vital for development of library since it goes for

gathering all required data/information.Particularly, the library development

must cover an extensive variety of data. Also, the data must be gathered from

a few data proprietors. Hence, the specification stage is a collaborative work.

For instance, we require a set of library views and CAD tools data for library

development.

14

• The library architect characterizes the substance of the library package for

every library class. The DK engineer decides important CAD devices with a

specific end goal to build up an outline unit for supporting them. Accordingly,

the data related to library views and CAD tools can be gotten from them

individually. At last, the assembled data is characterized in the specification.

2. Design Phase :

• The Design stage is all about designing the cell’s of library This stage produces

every single basic view for FE and BE of the framework. In particular, as per

the cell’s specification, the cell is composed and after that its physical view is

made with the use of some Editor. In any case, much exertion and time should

be given to this stage as it decides the accuracy/performance/execution of the

cells.

3. Derivation Phase :

• The Derivation stage permits creating different CAD views from the basic

Views keeping in mind the end goal to totally bolster client’s CAD flows as

some of them require their own semantics.For example, Cadence tools depend

on OpenAccess database while Synopsys tools depend on MilkyWay. Thus,

we should make these two physical databases for supporting both CAD usage

flow. Thus, all required CAD views should be made by the Derivation stage

to fulfill all client’s flows.

4. Validation Phase :

• The nature of the library and IP is straightforwardly identified with their reuse

and joining as well as the productivity/efficiency of SoC. So they should be

checked before their conveyance to clients.

(a) Significance of Validation Phase:

Errors are effectively made amid library development process.Possible er-

rors are: design rule violation, inaccuracy,incompleteness, inconsistency,

functional errors.

With a specific end goal to make accurate cell library, for example, to

make cell’s functionality correct , its precise planning execution and its

15

layout having no design rule infringement, this stage is extraordinarily

required in Library Development Flow.

(b) On the off chance that we don’t deal with IP Validation, this outcomes

in:

i. Costly Customer Returns

ii. Expensive Product Rework

iii. Unexpected Delays in Product Release

In this way, this demands the requirement for an IP validation Solution

that precisely checks the rightness and adequacy of the IP design.

(c) This aides in,

i. Guaranteeing Customer’s need are met

ii. Maintains a strategic distance from Expenses

iii. Maintains a strategic distance from the deferrals

3.3 Check Parameters for Validation Process

The Validation flow guarantees the client that the IP under test is accurately approved.

The parameters which are checked amid Validation process are depicted beneath:

1. Completeness of Library:

• The library views ought to be made by the set of library views and PVT

corners given by the specification.

• Keeping in mind the end goal to check Completeness of Library, Presence of

specific view in the package is checked. In addition, the indexation of the view

is being checked in the file named vc.bbview or not. If this file is not populated

effectively like the view is not recorded properly then that specific view can’t

be taken by the EDA tools in RTL to GDS stream.

• So, the completeness of the library can be accomplished by just checking if all

required library view exist on the given view path.

2. Correctness of the library view :

• The correctness of Library View checks the library view concerning its char-

acteristics given by the specification.

16

• It is done by checking whether the view is having vital characteristics or not

which are required in RTL to GDS flow by the EDA device. After checking

the existence, their values are being cross confirmed to guarantee that they

are modeled as per the Design Rules or not.

• It is likewise being guaranteed that the tags/labels in the layout are agreeable

with the convention or not.

3. Compatibility between the library view and CAD tool

• The library package must give framework planners a total list of library views

to bolster their flow. When utilizing library files, they should not have com-

patibility issues with CAD devices. It implies that their syntax/structure must

be correct to be intelligible by the tools.

• In order to check Compatibility, Syntax checking is done where the view is

being perused by the individual EDA tools. If in case there is an occurrence

of any mistake in the view the tool won’t have the capacity to process that

specific view in the RTL to GDS flow.

• Thus, the completeness of the library can be accomplished by perusing every

library files with CAD tool given in the specification.

4. Consistency between Library Views

• It is ensured that information is consistent between various views that is called

as cross view Consistency. Using RTL to GDS tools of all the different vendors

the view contents are verified in terms of data consistency.

17

Chapter 4

Types of Validation

4.1 Literature Review

1. Manual Validation : - It is executed by individual with no assistance of hard-

ware/programming.

• Advantage:

i. No external Tool Required

ii. No Maintanance cost as there are no tools

iii. No Dependency

• Disadvantage:

i. Less Accurate

ii. Less Reliable

iii. Time Consuming

2. Automated Approach : - It is executed with the assistance of Software/Tool.

(a) Standalone Approach - It is validated autonomously without intergrating with

SoC.

• Advantage:

i. Process duration is less as Validation doesn’t require intergration with

SoC.

ii. Usage of H/W is negligible

18

• Disadvantage:

i. Less Reliable

ii. Library may behave different after integrating with SoC; may be it

doesn’t function correctly so validation may gets fizzled.

iii. Restricted Coverage of Checks

(b) Integration Approach - It is performed by taking the IPs under test in a dummy

SoC design.

• Integration Validation is the procedure to guarantee that IPs that are

piece of a Design Platform permits the design of System on Chip.

• Integration Validation is the ordinary approach most generally utilized for

IP CAD approval. After approval, IPs are proclaimed CAD compliant to

empower SOC design.

• In this process an RTL2GDS flow is performed by taking the IPs under

test in a dummy SOC design. After creating this specific RTL, certain

simulations are performed. This ensures the correctness and quality of IP

in terms of the design flow requirement.

• Advantage :

i. Highest Reliability

ii. Highest Accuracy

• Disadvantage :

i. Huge Cycle Time

ii. Huge Utilization of H/W

iii. Huge Manpower

19

Chapter 5

IPSCREEN

5.1 Introduction

IPScreen is.a framework.which is.used to.validate a.Library.[3] Multiple libraries.can be.loaded

into.IPSCREEN at.the same.time.After successfully.loading Libraries.into IPSCREEN.based

on.Plugin selection.it will.load different.checks[3]

5.2 Working of IPSCREEN

Inputs:

• Setup: It contains.a script.which sets.all required.environment variables.to exe-

cute.task.

• Library: You have.to provide.the library.one which.you want.to validate.as well.as

the.auxiliary (reference).libraries.

• Plugin : It is.Software which.is used.to validate.Library. It is.usually stored.in

.plugin.list.file which.contains path.and version.of plugin.

• Tools: In order.to run.plugin on.different library.the required.tools are.stored in..tool.list

file.Format is.“/Ipscreen Tool Name/ /Site ToolName/ /Release number/”

20

Figure 5.1: IPSCREEN Block Diagram

Output:

• Report: After running.IPScreen on.different libraries.it will.generate a report.which

contains.error, warnings.and logs. It is.generated in.form of text,.csv, xls.and html.

There are.basically three.types of.status which.IPSCREEN reports:

– Done with.Green Tick: It shows that.Execution was successful and Library.is

correctly validated.

– Done with.Brown Tick: It shows that.Execution was completed.with some.indication

of.warnings.

– Fail with.Red Cross: It shows.that errors.are present.in library.and execu-

tion.fails and IPScreen.will not be.able to.generate report.

Figure 5.2: Execution Command for GUI

21

Figure 5.3: IPSCREEN GUI

Figure 5.4: Load a Library in IPSCREEN

22

Figure 5.5: Status of Checks

Figure 5.6: Check Report Generated by IPSCREEN

23

5.3 Limitations of IPSCREEN

• User has.to wait.for a long.time till.the library.gets completely.parsed by.the IP-

Screen.

• It cannot.validate single.view or.particular cell.of a library.

• Output Log.was less.user friendly.

• It does not.support all.types of.report format (txt/html/xls/csv).

24

Chapter 6

IPVS

6.1 Introduction

IP CAD Validation is an imperative aspect that recognizes the basic issues before use

in the real System on Chip (SoC) Design. This demands the requirement for an IP

Validation solution that precisely confirms the correctness and accuracy of the IP design.

This is the place the IP Validation Solution comes into the picture.IPVS is a Unified

Framework that bundles all checks for a proficient and improved IP Validation.

6.2 Significance

IPVS system gives an extremely effective validation solution for the advanced eras of IPs.

When contrasted with the past approval approaches that required mat09 or mat10 pack-

age for validation, it furnishes the Designer with the capacity to validate an independent

view at any phase of the design cycle, regardless of the library structure or the level of

maturity. Using IPVS, packages can be identified at the begining stage as delineated in

Figure and therefore diminishing the overall feedback loop cycle.

25

Figure 6.1: IPVS at different stages of IP design flow

• It helps to handle the typical errors like :

– Pin direction, missing labels, pins not on grid

– CCS curves have more than one peak or a correction current in the tail

– Delay decreases with increasing output load, non-paired setup and hold times

in Liberty file

– ECSM curves have large deviations between ECSM and NLDM values etc.

• Checking for these sorts of issue clearly can’t be left to visual examination.Using

IPVS at each phase of the SoC design flow as delineated in Figure, can check for

these errors before they could trigger major revamp.

26

• It is a unified framework since it unites checks from different tools with a soli-

tary place which gives profitability upgrade, streamlined validation flow along with

enlarged check scope.

• Using IPVS, the Designer gets the adaptability to fuse another custom check or to

include any new kind of custom view. Besides, any new EDA tool based checks

may likewise be added by the Designer to keep running inside a same structure so

as to check the compatibility of any IP view with that tool.

• Every existance checks can be configured by the Designer according to the necessity,

i.e. the Designer using the IPVS can control the parameters and refine the checks

according to the need. For e.g. while checking the consistency of pins crosswise

over various formats of an IP, Designer can give a list of power pins, ground pins

in a parameters file.

• It helps to keep up the Quality - Run time trade off that can be changed by the

Designer as desired. In the event that the Designer needs a fast run time, then

either some check parameters can be modified with a specific end goal to validate

just a subset of cells inside each view.

• An another favorable point of using IPVS is that setup made once can be reused

to validate the view , eventually reducing the time required to validate the CAD

views.

6.3 Architecture

The framework includes three layers as portrayed in Figure.

27

Figure 6.2: IPVS Architecture

• ST Setup Layer – IP Data and ST particular Data from DPDS and Techno Kits is

perused and prepared for setup creation.

• Crossfire setup layer - Crossfire specific configuration files are prepared.

• Execution Layer - Checks are executed and the reports are generated.

28

The general concept residing behind using the layered architecture is to lessen the de-

sign intricacy. The layered architecture builds flexibility, modularity, and scalability of

the IPVS. The 3 layers converse with each other with pre-characterized interfaces. Each

layer can be developed autonomously without affecting alternate layers. Additonally, if

we make improvements in any layer without touching the interfaces, the framework still

stays useful.

The principal layer, ST Setup layer, primarily involves the Data Preparation stage, in

which inputs from various sources like IP Data, Technology and DP Delivery Specifi-

cations are handled and associated. The second layer, the Crossfire Setup Layer, is in

charge of interpretation of ST particular data to the Cross fire Tool. The third layer

is the execution layer of IPVS having the Crossfire as its principle segment. This layer

executes the checks and generates the Report using Crossfire Tool.

29

Chapter 7

Implementation

7.1 Prerequisite

7.1.1 Technical Requirement

Figure 7.1: ST Specific Tools

Figure 7.2: Development Environment

30

7.1.2 Programming Language

Python is a universally accepted language. It has extensive variety of utilization from

Web advancement (Django), logical and numerical processing (Orange) to desktop GUIs

(Panda3D). The syntax and structure of the language is perfectly clean and the length

of the code is moderately short. It’s amusing to work in Python since it enables you

to consider the problem without worrying about the syntax.The whole framework is

developed in Python Programming language.

7.2 User Interface

1. generateConfigTemplate

This command is used to generate the user configuration template file (based on IP

Type). The user configuration file is required for validateIP command (for checks

execution). In this file, user can provide parameters related to tool Setup & Checks.

This command operates only in BATCH Mode.

Where,

-ipStyle: Refers to valid Type of IP.Current release is limited to MACRO only.

This is MANDATORY.

[-filePath]:It is User specific Output filename/directory/filepath.By default it will

generate a template file with default name in the Current Working Directory.This

is OPTIONAL.

2. generateViewFormatMap

This command is used to generate the user defined View Format Mapping file. In

this file, user can provide deliverable and View of their own choice.Later on, this

file is given to validateIP command.

31

Where,

[-filePath]:It is User specific Output filename/directory/filepath.By default it will

generate a template file with default name in the Current Working Directory. Cur-

rently, the default name is “viewFormatMapping.csv”. This is OPTIONAL.

3. validateIP

This is the main command used to execute checks and generate Reports.It operates

in two modes: Batch Mode and Graphical User Interface.

Where,

-libraryName: Under Test library name.Library name should be as per the

vc.bbview file.This is MANDATORY.

-libraryPath: Under test library path till packaging directory. This is MANDA-

TORY.

-ipStyle:Type of IP.Current release is limited to MACRO only.This is MANDA-

TORY.

-config:User specified checks and parameters configuration file. This is MANDA-

TORY.

[-gui]: Used for GUI mode; where after setup, GUI is displayed before checks ex-

ecution. In case, it’s not specified, the setup is generated and checks are executed

in batch mode and then final reports are displayed. This is OPTIONAL.

[-viewFormatMap]:User defined viewFormat mapping file.This is OPTIONAL.

4. diagnoseIP

This command is used to analyze/debug the IP on which checks have already been

executed.

32

Where,

[-db]:The Path of database generated as an outcome of validateIP command. (By

default, it’s picked from current directory).This is OPTIONAL.

[-setup]: The path of IP setup Configuration file (.cfg file). In case, it’s not

provided.This is OPTIONAL.

Figure 7.3: IPVS Flow Diagram

33

7.3 RUN Area Directory Structure

Figure 7.4: IPVS Flow Diagram

1. setup : This directory contains the setup files including all the configuration files

in the config subdirectory.

(a) config :This subdirectory contains all the intermediate configuration files used

for generating the global configuration file.

(b) libraryName.cfg :This is the consolidated setup file used by the Crossfire

Tool to execute checks and generate Reports.

2. CCK.log:It is a log file generated by Crossfire Controller Kit in the current working

directory while executing any of the commands available (i.e. generateConfigTem-

plate, validateIP and diagnoseIP). It does not include any information related to

the checks executed.

3. crossfire.log:This is the log file generated by the Crossfire Tool.

4. fnx-database.db: It is a binary database file containing data related to all the

checks executed by the Crossfire tool. It is the required input file to diagnoseIP

command mainly used to analyze the checks and generate HTML report.

34

Chapter 8

Performance Evaulation of IPVS

8.1 Command Line Flow

Figure 8.1: IPVS command to generate Configuration Template

Figure 8.2: Launching of Tool

35

Figure 8.3: Check Execution

Figure 8.4: Various Checks & Parameters

36

Figure 8.5: IPVS command to Analyze report

Figure 8.6: IPVS Interview

Figure 8.7: GDS View

37

Figure 8.8: Html Report per format

8.2 Experiments

8.2.1 28nm Technology

Figure 8.9: Report for 28nm Library

38

8.2.2 65nm Technology

Figure 8.10: Report for 65nm Library

8.2.3 BCD Technology

Figure 8.11: Report for BCD Library

39

8.3 Comparative Analysis

8.3.1 Functional Analysis

Figure 8.12: IPScreen vs IPVS Functionality

8.3.2 Timing Analysis

Figure 8.13: IPScreen vs IPVS Timing for Bbview Corporate Check

40

Figure 8.14: IPScreen vs IPVS Timing for Validation of LRM Check

Figure 8.15: IPScreen vs IPVS Timing for Validation of Version of formats

41

Chapter 9

Observations / Findings

• Previously a.lot of.intermediate files were.used for.the processing.of checks.

• In the.new framework, the user.gets a lot.of flexibility.User can.select a.single view.for

validation.

• Using the new.Framework, user has.the freedom.to generate.different types.of re-

ports.i.e. check-wise, view-wise or cell-wise.

• User gets.a GUI in.order to highly.configure the.setup given.for the validation.of

a.particular IP.

• The runtime.of the.checks use.for the .validation of.IP inside the.new tool.depends

on.the configuration.of the.setup.

42

Chapter 10

Conclusion & Future Scope

10.1 Conclusion

IPVS is a framework catering to all IP types and technologies. It provides improved CAD

quality which can help to detect the issues and failures at initial stages of IP development,

thus reducing the cost and effort of failure at SoC design level. This framework provides a

unified platform where Designer can validate the IP and check its compliance against the

requirement specification using a complete coverage of checks. Library and IP Quality

Assurance (QA) checks can be run both in an Interactive and Batch modes to ensure the

highest design quality, and shortest time to market with IPVS.

10.2 Future Scope

This framework is extensible to handle multiple IPs simultaneously and classification

checks as per taxonomy. This framework can be further scaled to provide Incremental

handling of failed checks. So that Designer can re-run only the failed checks with a single

command.

43

Bibliography

[1] STMicroElectronics Internal Document , Library Views

[2] https://en.wikipedia.org/wiki/Python , Python Learning

[3] STMicroElectronics Internal Document , IPScreen

[4] https://en.wikipedia.org/wiki/Application-specificintegratedcircuit,ASIC Flow

[5] W. Agatstein, K. McFaul, and P. Themins, Validating an asic standard cell library

[6] K. Shuler, ”What does it cost you when your SoC is late to market?” 2014.

[Online]. Available: http://www.arteris.com/blog/bid/112221/What-Does-It-Cost-You-

When-Your-SoC-is-Late-to-Market.

[7] Mohit Bhasin, Lipika Parwani, ”To develop a method for validating an IP without running

a full RTL to GDS flow ”, ST Internal Conference.

[8] Jung Kyu Chae, Specification Platform for Library IP Development. Databases [cs.DB].

Universite Pierre et Marie Curie - Paris VI, 2014. English.

**

44

Appendix A

Configuration Generation Flow for

LayerMap

1. Inputs

• Cadence Mapout

• DK Layer Map

• DK Object Map

• Mapout file

• Techno file

2. Output

• Layer Map configuration file- “LayerMap”(CFT format)

3. Flow

• Using Opensetup, load CadenceTechnoKit, DesignKit and SynopsysTechnoKit

• Get Below Paths from OpenSetup APIs

(a) Cadence MapOut File

(b) DK Layer MapFile

(c) DK Object Map File

(d) MapOutFile

(e) Synopsys TechnoFile

45

• Invoke crossfire command to generate Crossfire specific “maplayout”by passing

Milkyway db path.a. This “maplayout”contains information of Milky Way

layer number and its corresponding Layer name.

• Invoke LayerMap generation script from Crossfire to dump the LayerMap con-

figuration (layerMap.cft) file.

46

Appendix B

Configuration Generation Flow for

Technology

1. Inputs

• Technology.lef (from Cadence Technology Kit)

• Technology.tf (From Synopsys Technology Kit)

2. Output

• Technology configuration file –“technoConfig” (CFT format)

3. Flow

• Import lefKit and tfKit from COREKIT (Under CADINFRAKIT) in order to

use lefParser and tfParser.

• Open and Read technology.lef. Extract the names of Routing Layers.

• Open and Read technology.tf .Fetch METAL STACK Information.Extract

Layer name and respective mask name from Layer Section from technology.tf.

Create a MAP – MaskValue: LayerName [e.g. metal4 : M4].

• Check the compatibility of technology files in the two different technology

Kits. Check symmetric difference of lefLayerNames and tfLayerNames.If any

difference found,Print the Extra layer and Exit.If not found,Print .lef and .tf

are compatible and continue.

47

• Extract Parameters from Cadence technology.lef.Check the existence of “MAN-

UFACTURINGGRID”. If exist Store the Value Else ”Manufacturing Grid Not

Found”.Store the value of “DATABASE MICRON” and print the value in log.

Print the Metal Stack Mapping.

• Extract TechnoConfig Parameters.

• Write the above stored information (technoData dictionary) into YAML file.

48

	Certificate
	Statement of Originality
	Acknowledgements
	Abstract
	Abbreviations
	List of Figures
	Introduction
	Motivation
	Thesis Objective
	Thesis Outline

	Literature Survey
	Introduction to Library Views
	Library
	Classification of Libraries

	Views
	Classification of Views
	Back End Views

	Library Development Flow
	Introduction
	ST Specific stages
	Check Parameters for Validation Process

	Types of Validation
	Literature Review

	IPSCREEN
	Introduction
	Working of IPSCREEN
	Limitations of IPSCREEN

	IPVS
	Introduction
	Significance
	Architecture

	Implementation
	Prerequisite
	Technical Requirement
	Programming Language

	User Interface
	 RUN Area Directory Structure

	Performance Evaulation of IPVS
	Command Line Flow
	Experiments
	28nm Technology
	65nm Technology
	BCD Technology

	Comparative Analysis
	Functional Analysis
	Timing Analysis

	Observations / Findings
	Conclusion & Future Scope
	Conclusion
	Future Scope

	Configuration Generation Flow for LayerMap
	Configuration Generation Flow for Technology

