
JDS Optimisation And SDM Test
Automation

Submitted By

Harshit Bhojak

15MCEI07

DEPARTMENT OF COMPUTER ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2017

JDS Optimisation And SDM Test
Automation

Thesis

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology in Computer Science and Engineering(INS)

Submitted By

Harshit Bhojak

(15MCEI07)

Guided By

Prof. Malaram Kumhar Mr. Srinivas Davuluri

Nirma University, Ahmedabad. ARRIS India Pvt. Ltd.

DEPARTMENT OF COMPUTER ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2017

Certificate

This is to certify that the thesis entitled ”JDS Optimisation And SDM Test Au-

tomation” submitted by Harshit Bhojak (Roll No: 15MCEI07), towards the par-

tial fulfillment of the requirements for the award of degree of Master of Technology in

Computer Science and Engineering(INS) of Nirma University, Ahmedabad, is the record

of work carried out by him under my supervision and guidance. In my opinion, the sub-

mitted work has reached a level required for being accepted for examination. The results

embodied in this thesis, to the best of my knowledge, haven’t been submitted to any

other university or institution for award of any degree or diploma.

Prof. Malaram Kumhar Dr. Sharada Valiveti

Guide & Assistant Professor, PG Coordinator-INS,

Information Technology Department, Associate Professor,

Institute of Technology, Institute of Technology,

Nirma University, Ahmedabad. Nirma University, Ahmedabad

Dr. Sanjay Garg Dr. Alka Mahajan

Professor and Head, Director,

Computer Engineering Department, Institute of Technology,

Institute of Technology, Nirma University, Ahmedabad

Nirma University, Ahmedabad.

iii

Statement of Originality
———————————————————————————————————————

I, Harshit Bhojak, Roll. No. 15MCEI07, give undertaking that the Thesis enti-

tled ”JDS Optimisation And SDM Test Automation” submitted by me, towards

the partial fulfillment of the requirements for the degree of Master of Technology in Com-

puter Science and Engineering(INS) of Institute of Technology, Nirma University,

Ahmedabad, contains no material that has been awarded for any degree or diploma in any

university or school in any territory to the best of my knowledge. It is the original work

carried out by me and I give assurance that no attempt of plagiarism has been made.It

contains no material that is previously published or written, except where reference has

been made. I understand that in the event of any similarity found subsequently with any

published work or any dissertation work elsewhere; it will result in severe disciplinary

action.

———————–

Signature of Student

Date:

Place:

Endorsed by

Prof. Malaram Kumhar

(Signature of Guide)

iv

Acknowledgements

First and foremost, sincere thanks to Mr. RaviKiran, Manager, ARRIS India Private

Limited, Bangalore.

I would like to thank my Mentor, Mr. Srinivas Davuluri, ARRIS India Private Lim-

ited, Bangalore for his valuable guidance.He has given me much valuable advice on this

project work.

It gives me immense pleasure in expressing thanks and profound gratitude to Prof.

Malaram Kumhar, Assistant Professor, Information Technology Department, Institute

of Technology, Nirma University, Ahmedabad for his valuable guidance and continual

encouragement throughout this work. The appreciation and continual support he has

imparted has been a great motivation to me in reaching a higher goal. His guidance has

triggered and nourished my intellectual maturity that I will benefit from, for a long time

to come.

It gives me an immense pleasure to thank Dr. Sanjay Garg, Head of Computer

Engineering Department, Institute of Technology, Nirma University, Ahmedabad for his

kind support and providing basic infrastructure and healthy research environment.

A special thank you is expressed wholeheartedly to Dr Alka Mahajan,Director, In-

stitute of Technology, Nirma University, Ahmedabad for the unmentionable motivation

she has extended throughout course of this work.

I would also thank the Institution, all faculty members of Computer Engineering

Department, Nirma University, Ahmedabad for their special attention and suggestions

towards the project work.

- Harshit Bhojak

15MCEI07

v

Abstract

Automation is one of the key area on which todays IT companies are focusing on. In

the field of software product testing companies prefer automated testing instead of man-

ual testing . The reason behind using automated tasks is, it requires less human efforts

and provides more efficiency. The main aim of this project is to design and develop test

cases for SDM and automate the testing process. Before doing test automation for SDM,

there is a need of creating virtual environment which can provide a set of virtual devices

for SDM testing.A simulated network environment can be very useful for testing purpose.

As it reduces the use of real devices in testing, the cost spend by company on testing of a

device manager is also reduced. In simulated network, device is not a physical entity but

it is only the database of real device. So this virtual device can function as a real device

without being physically present. JDS was developed with the goal of providing a virtual

setup of devices to SDM. It supports all the headend devices with smaller database. But

for larger device it becomes non-responsive. It has some major issues with larger devices

APEX1000 and APEX3000. Even a single APEX 3000 was not running in JDS with full

configuration. JDS optimisation and improvement is much needed in order to test SDM

for all the headend devices. Along with this issue there is one more issue associated with

JDS, It is not organized as a project. JDS is having a single folder with shell scripts,

java classes, proto files and database. This project is focusing on providing support for

apex device , reduce the insertion time of apex device to database,create a single JAR

for JDS, design and automate test cases for SDM.As a result of optimisation, the setup

time of test environment is reduced and JDS can run more than one APEX 3000 device

at a time. And we can create simulated environment using single JAR file.

vi

Conventions
——————————————————————————————————————–

Typesetting
——————————————————————————————————————–

This thesis is typeset using Latex software.

Font used in this thesis are of Times new roman family.

Referencing
——————————————————————————————————————–

Referencing and citation style adopted in this thesis is ieee trans-

action(ieeetr).

For electronic references, Last publication date is shown here.

Spelling
——————————————————————————————————————–

The Unites States English Spelling is adopted here.

Units
——————————————————————————————————————–

The Units used in This thesis are based in the International System

of Units(SI Units), unless specified.

vii

Abbreviations

ASN Abstract Syntax Notation

GUI Graphical User Interface

JAR Java Archive

JDS Java Device Simulator

JVM Java Virtual Machine

MIB Management Information Base

OID Object identifier

RF Radio Frequency

SDM SmartStream Device Manager

SNMP Simple Network Management Protocol
——————————————————————————————————————

–

viii

Contents

Certificate iii

Statement of Originality iv

Acknowledgements v

Abstract vi

Conventions vii

Abbreviations viii

List of Figures xi

1 Introduction 1
1.1 Overview . 1
1.2 SmartStream Device Manager . 2
1.3 Thesis Outline . 2

2 Literature Survey 4
2.1 Motivation :- . 4
2.2 Significance :- . 5
2.3 Protocols Used By SDM :- . 5

2.3.1 SNMP . 6
2.3.2 BOOTP . 7

3 Technical Specifications 8
3.1 Java Device Simulator . 8
3.2 SmartStream Device Manager . 8

4 Headend Devices 9
4.1 List of Devices . 9

5 Objectives 11
5.1 Objectives . 11

6 Implementation 13
6.1 Providing Support for APEX device . 13
6.2 Reducing Database insertion time for APEX 3k 15

6.2.1 Approach 1 . 15

ix

6.2.2 Approach 2 . 17
6.2.3 Approach 3 . 17
6.2.4 Results . 19

6.3 Implementing Hibernate in JDS . 20
6.3.1 Performance Improvements in JDS 20

6.4 SDM test automation . 22
6.4.1 Providing support for input parameter file in runConfigTester . . 22

7 GUI For Simulator 25

8 Conclusion And Future Scope 30
8.1 Conclusion . 30
8.2 Future Scope . 30

Bibliography 32

x

List of Figures

1.1 Cable TV Delivery System . 1

4.1 Headend signal flow . 10

6.1 Exception Thrown By JDS . 13
6.2 Heap Space Used By Jds . 14
6.3 Initially Time taken by JDS to add APEX 3k 15
6.4 Time taken by JDS after Approach 1 . 16
6.5 Time taken by JDS after Approach 2 . 17
6.6 Time taken by JDS after Approach 3 . 18
6.7 Time taken for APEX Device . 19
6.8 Config. Tester for SDM . 22
6.9 Add Device to SDM . 23
6.10 Input file for Add Device . 24
6.11 Report of SDM operations . 24

7.1 JDS Without GUI . 26
7.2 JDS GUI . 27
7.3 JDS GUI : Adding Device . 28
7.4 JDS GUI : Device Details . 29

xi

Chapter 1

Introduction

1.1 Overview

The Cable Delivery System for SET-TOP box includes many components. From the ori-

gin of signal to delivering at the consumer’s TV, many devices are arranged in between to

perform a specific task.The signals are Up-link to the Satellite and through Satellite,they

reach at the setup of devices(Headend Facility) for further processing.These devices are

Known as Signal Processing Equipments.

Headend facility is a setup of devices,which is present at service provider’s side.It

includes a number of devices which are used to process the signals received from satellite

and forward them to customer premises.

Figure 1.1: Cable TV Delivery System

1

1.2 SmartStream Device Manager

To manage all these devices of headend, ARRIS provides a device manager named as

SDM. It is installed on a server (computer) dedicated to element management.It commu-

nicates through Simple Network Management Protocol

The SmartStream Device Manager (SDM):

• Is used to manage ARRIS digital video network elements.

• It can automatically discover devices on the network.

• It automatically adds discovered devices to its database

• Provides both management of configuration and monitoring.

• Provides a single configuration point for digital video headend products, simplified

fault detection, smart alarm management, and an interface to integrated network

management systems.[1]

Continuous development is going on in SDM to provide support for new devices and

full support for the older devices.In order to test the performance of SDM after doing

any modification, We need to communicate with real devices again and again.

To avoid the problem of communicating with real devices, a device simulator is devel-

oped which provides a virtual network environment. This simulator is termed as JDS(Java

Device Simulator).It is mainly used for testing of SDM.Instead of communicating with

real devices, SDM deals with virtual devices present in JDS.

1.3 Thesis Outline

The rest of the thesis is organized as follows:

Chapter 2 (Literature Survey) In this chapter, fundamentals of SmartStream Device

Manager are described.Significance of SDM and JDS in headend facility is discussed.Issues

and challenges present in JDS are discussed. Protocols used by SDM for communication

with device are described in detail.

2

Chapter 3 (Technical Specifications) This chapter contains technical requirements of

SDM and JDS.

Chapter 4 (Headend Devices) This chapter describes the headend devices. It contains

a brief introduction about each device and how they are connected with each other.

Chapter 5 (Objectives) This chapter explains the main objective of this thesis work.

It contains a detailed explanation about all the issues present in JDS and SDM testing.

Chapter 6 (Implementation) This chapter describes all the techniques and approaches

which are used to resolve JDS issues. Each technique is described in detail along with its

outcome. SDM test automation process is explained in this chapter.

Chapter 7 (GUI For Simulator) Working of JDS GUI is explained in this chapter. It

shows the process of creating virtual headend device using GUI.

Chapter 8 (Conclusion And Future Scope) This chapter includes the major conclusion

of this project work.Future directions of work in this project is also outlined in this

chapter.

3

Chapter 2

Literature Survey

2.1 Motivation :-

SDM communicates with a devices using SNMP in order to manage that device.It in-

teracts with the database of that device to fetch some values and to set new values in

the device.So the key point is, SDM does not require the hardware part of the device.It

only needs the database of device.We can fetch the database of each device using SNMP

commands and this database can be stored in a text format. After that we can use this

database as a virtual device,so SDM can directly communicate with this database instead

of communicating with real device.We can combine all these database to a single file and

create an application in Java,termed as device simulator, which will present the data of

all devices to SDM on behalf to real devices.

Although JDS provides a virtual copy of each device to SDM, it does not provide full

support for all devices.For some devices,it crashes the JVM and not giving the desired

output.The aim is to optimise JDS to make it fully functional for SDM. Apart from this,

proper packaging of JDS is required to use it as a project.

SDM testing is required to check the functionality of SDM in real headend environ-

ment. Manual testing is performed in order to test all features of SDM.Manual testing

requires lot of time and man power. These tasks can be automated to save the time.

4

2.2 Significance :-

SDM requires headend devices in order to test its performance and functionality.There

are very few real devices present in the testing lab.So if one person is using a device in

order to test SDM,other person has to wait for the test to complete. After that he can use

the same device.This problem may lead to longer testing time of SDM.JDS overcomes

this problem. It provides a virtual device to SDM to test its performance and other

updates. So no real device is required and we can have as many virtual devices of single

type as we want to test the SDM.This reduces the cost of SDM testing.

After optimization,JDS supports all the devices including APEX 3000(device with

large database).Now SDM can communicate with virtual APEX device without any de-

lay and can access the complete database of APEX 3000.

JDS GUI desgin provides ease of access to the tester. By using GUI , tester can easily

set up virtual headend environment. They need not to remember the shell script names

for each and every operation. This GUI is not dependent on any shell scripts or java

classes, It is a stand alone JAR file which can invoke JDS without using any external

resource.

SDM test automation is intended to save time for doing repetitive tasks for testing

purpose. For SDM feature’s testing we can provide inputs from a text file instead of

manually entering them.

2.3 Protocols Used By SDM :-

There should be some medium or language, by which SDM can talk to network de-

vices.There are few network protocols which are used by SDM to communicate with

devices.Both SDM and headend device should be configured with those protocols for suc-

cessful communication.In order to understand the basic functionality of SDM and JDS,

knowledge of these protocols is required.

5

2.3.1 SNMP

Simple Network Management Protocol (SNMP) is an Internet-standard protocol which

collects and organise information about managed devices on IP networks.

In general, a network being profiled by SNMP will mainly consist of devices containing

SNMP agents. An agent is a program that can gather information about a piece of

hardware, organize it into predefined entries, and respond to queries using the SNMP

protocol.The component of this model that queries agents for information is called an

SNMP manager. These machines generally have data about all of the SNMP-enabled

devices in their network and can issue requests to gather information and set certain

properties.[2]

• Client listens on port 161.

• Server listens on port 162.

• An SNMP-managed network consists of three key components:

* Managed device

* Agent software which runs on managed devices

* Network management station (NMS) software which runs on the manager

• Every information that can be queried through SNMP is looked in terms of an

object. Example- IP address and MAC address of a device.

• Every object has an object ID or OID which is unique for every object.

• Collection of managed objects is known as Management Information Base (MIB).

MIB works as databse for managed device.

• A management station controls the network by setting values in the MIBs of the

various agents

2.3.1.1 MIB

Management Information base is the collection of objects present in a device.These objects

are managed by Snmp manager.In other words MIB is the database of SNMP enabled

devices.

6

2.3.1.2 SNMP Commands[3]

1. snmpget- To retrieve data from remote device using snmp agent using IP address,

authentication information and OID.

snmpget -v2c -c public 10.10.10.1 .1.3.6.1.2.1.1.1.0

2. snmpset- This command is used to set value of a specific parameter present in the

remote host. We can set IP address,MAC address any many other parameters by using

this command.

snmpset -v2c -c public 10.10.10.1 .1.3.6.1.2.1.1.1.0 a ”192.168.70.1”

3. snmpwalk- Using this command we can get value of all the parameters present in the

MIB of remote host.

snmpwalk -v2c -c public 10.10.10.1

2.3.2 BOOTP

When a device is turned up, it needs to know its IP address in order to effectively

communicate in the network. Some small devices are not having a database to store the

IP address,they need to get the IP address dynamically from the server.

BOOTP is a protocol used to assign IP address to network devices.It is also used by

devices to download configuration files from the server.

• Port number 67 is used by the server to receive client requests

• Port number 68 is used by the client to receive server responses.

• Client prepares a request message

• Client broadcasts the request to 255.255.255.255

• Reply Message is created by the server

• Server sends the reply.

• Client processes reply.

7

Chapter 3

Technical Specifications

3.1 Java Device Simulator

Front-end Java
Database Apache Derby 10.11.1.1
ORM Tool Hibernate 5.2.8
Operating System Linux,Ubuntu
Scripting Language Bash(shell)

Table 3.1: Jds Software Specifications

3.2 SmartStream Device Manager

Hardware Specifications: The SDM software shipped on an HP DL360 G8

server

Intel Xeon E5-2620 Processor (2.0Ghz/6-core/15MB/95W)
8GB DDR3-1600 memory
300GB HDD
DVD RW

Table 3.2: SDM Specifications

8

Chapter 4

Headend Devices

4.1 List of Devices

Here are few headend devices which are managed by SDM:

• INTEGRATED RECEIVER TRANSCODER(IRT)- Converts 950-1450

MHz signals to 6MHz signals for transmission.

• RF Combiner- Combines multiple input streams from headend devices

onto a single RF output.

• Digital Addressable Controller (DAC) - It controls the headend equip-

ments and DCTs. It authorizes DCT for services and collects purchases

from two-way set-top terminals.

• Network Controller- Acts as an IP gateway between two networks. It is

used for interactive communication such as Video-On-Demand.

• Billing/Business System -A computer system that has a database of sub-

scribers, their services and their set-tops.It generates subscriber bills and

it is connected to DAC.It sends instructions to the DAC for it to execute.

• Digital Consumer Terminal(DCT)- It decompresses and decrypts digital

signals and presents them for viewing. It can be one-way or two-way.

• Out-of-Band Modulator -It converts the control data digital input signal

to an RF output signal that is transmitted to customer DCTs over an

9

Figure 4.1: Headend signal flow

out-of-band cable(OOB). The OOB data stream can also include other

type of information, such as downloadable objects.

• APEX 3000 - This device is used to encrypt the signals received from

IRT and send them to Set Top Box.

10

Chapter 5

Objectives

5.1 Objectives

• Providing support for APEX 3000 in JDS

-JDS becomes non responsive after adding one or more APEX 3000

devices.When SDM sends an SNMP request to the JDS,it is not able to

process that request and after few seconds it stops working.

• Reducing database insertion time in JDS

-When we add a device to JDS, we need to add its firmware to database

and after that we add the proto file in database for each device.To create

a test environment,we need to add these devices many times based on the

test cases.JDS takes 14-15 minutes to add single APEX 3000 device.The

aim is to lower down the insertion time to less than 2 minutes for single

APEX device.

• Designing GUI for JDS

-There is no proper packaging of JDS code.JDS uses shell scripts to

invoke java class file to add devices in DB and to create virtual interface

for each device.There is a need of creating GUI of JDS to provide a user

friendly setup procedure to testers.

• Implementing Hibernate in JDS

-Hibernate is an ORM (Object relational mapping) tool.By using hiber-

nate, we can write database independent queries.In future ,if we want

11

to change underlying database then we can do it very easily. We need

to change few lines of code in configuration file and we can use the new

database without any problem.

• Design and automate SDM test cases -Instead of testing SDM with

dedicated people,we can automate the task of testing using some bash

scripts.This will make the testing easier and faster.

12

Chapter 6

Implementation

6.1 Providing Support for APEX device

Every Java application starts in a separate JVM. This JVM is allocated some

RAM space to store objects and class files generated by java application.

When we start JDS it fetches the device database from derby(Jds DB) and

creates objects for all the parameters present in the database. These objects

are stored in the heap area of JVM.

Initially JDS is allocated 640 Mb of RAM. When we have devices with large

database, heap space can not accommodate all the objects of that device and

it gives exception. The exception thrown by JDS is:

Figure 6.1: Exception Thrown By JDS

13

As soon as we start JDS, It starts creating objects and because of this

configuration(640 Mb RAM for JVM), heap area overflows and it crashes

the JVM. When SDM sends SNMP requests to JDS, no response is given by

JDS.There is no space available to create transport mapping object for device

and without transport mapping,snmp requests can not be processed by the

device.

Figure 6.2: Heap Space Used By Jds

To support large devices, we need to increase the RAM allocated to JDS.

Instead of 640 Mb RAM,if we give 1024Mb RAM to JDS, it can accommodate

all the objects created by jds class files.

After changing RAM configuration, JDS works fine for APEX 3k devices.

Now it can support more than 100 APEX 3k devices at a time.

14

6.2 Reducing Database insertion time for APEX 3k

The process of creating a test environment for SDM is:

• Add proto(MIB) of device to database.This process will add all the pa-

rameter OIDs to database table.This does not store OID values.

• After that, Add device to database,which will use the same proto file

but it will store OID values along with the protoid and ip address of the

device.

• When all the devices are added to database,we start JDS.

All these steps take some time to add MIB to database. Each object ID

along with its type and value is treated as single row in database table.

APEX 3k is having nearly 18 lakh rows and it takes 14 minutes to add proto

file to database.After that adding single APEX 3k takes 14 minutes.

For basic testing we need more than 130 apex devices in simulated envi-

ronment.To add 130 devices to database tester has to wait for nearly 30

hours,then only he can start testing.Aim of this task is to reduce the time

from 14 minutes to less than 1 minute for APEX 3k device.

Figure 6.3: Initially Time taken by JDS to add APEX 3k

6.2.1 Approach 1

First focus was on the java code which deals with database insertion.Each pa-

rameter of device is inserted as a separate row and each row is inserted using

separate prepared statement.Before executing the prepared statement,java

class file needs to acquire connection from database.In initial configuration of

jds,each prepared statement commits individually as soon as it completes its

execution.

The reason behind this is : auto commit mode of derby database. By default,

15

Auto commit mode is enabled in Derby database and because of this it com-

mits every prepared statement individually. This leads to time taking inserts

in database.[4]

To reduce the insertion time in derby database,we need to disable the auto

commit mode. After disabling auto commit mode,we can commit more than

one prepared statement in single commit operation.We need to commit the

operation by issuing commit() method.[5]

The Approach is ”Committing a batch of prepared statements instead of one

prepared statement at a time”. For testing of this approach,initially I have

taken a batch of 100 prepared statements.Commit operation was performed

after execution of these 100 prepared statements. This gives a significant

reduction in insertion time.Then 500 prepared statements were taken in one

batch, the insertion time was less compared to the batch of 100 statements.

While we commit 1000 statements together in a single batch, insertion time

is reduced to half with compared to initial time.A batch of more than 1000

prepared statements gives same result. So we can say that minimum 1000

statements need to be commit together in order to reduce the insertion time

of JDS database.Now the time taken by JDS to add APEX 3k proto file is 7

minutes and to add a single APEX device,it takes 6 minutes.

Figure 6.4: Time taken by JDS after Approach 1

16

6.2.2 Approach 2

Snmpwalk on APEX device gives 18 lakh object IDs.When we store the proto

file in database, these 18 lakh OIDs are stored in the database as 18 lakh rows.

But many of these OIDs are related to performance statistics,which are not

used by SDM. After doing analysis of SDM and APEX communication,I come

to know that SDM does not require all the parameters present in the proto

file.It only deals with 5 lakh parameters,rest of the 12 lakh parameters are

never used by SDM.

Adding these extra 12 lakh parameters does not serve any purpose.We can

ignore all the extra parameters from the proto file and can store only 5 lakh es-

sential parameters to JDS database.This reduces the database insertion time

to one third of the time which was achieved by Approach 1.

Figure 6.5: Time taken by JDS after Approach 2

6.2.3 Approach 3

After applying the modification discussed in approach 2, we are adding only

5 lakh rows to JDS database for a single apex device.So now the process will

be:

• Add proto file with 5 lakh entries.

• Then add device parameters which consists of 5 lakh entries.

Here all the 5 lakh entries which are present in the proto file, are copied

to device parameter table with device IP address and values for those param-

eters. So basically all the entries are stored multiple time with different IP

address. The scenario is :

Each proto file stores 5 lakh parameter OID to database.

After this, when we add a single apex device,same parameter OIDs are getting

17

stored in the database with device IP as unique field for those parameters.But

these parameters with values are stored in a separate table.So those 5 lakh

entries are repeated for every apex device.

This was the motivation behind finding a new approach to store apex device

in database. If we avoid the redundant entries, which are same for every apex

device, we can achieve a significant reduction in insertion time of device.

The first step for this approach was to find out the parameters which are

unique for every apex device.This task was done with the help of basic con-

figuration files available for APEX and SDM. After processing those files I

found out that only 18 parameters are device specific in the proto file, rest

are common for every device.

So instead of adding all APEX devices with 5 lakh entries, we can have a

template device, which will have all these entries,and for rest of the device,

we can store only 18 entries. After doing this modification, JDS working will

be changed:

When SDM quraies any parameter from device, if that parameter is present

in the device specific parameters,it will be returned from there.Otherwise it

will be returned from template device.

This approach has reduced the database size as well, because adding an APEX

device is adding only 18 rows,instead of 18 lakh rows.

Figure 6.6: Time taken by JDS after Approach 3

18

Figure 6.7: Time taken for APEX Device

6.2.4 Results

Time taken by JDS to add proto and device to database:

Total T ime = Time required to add Proto + Time required to add APEX device

(6.1)

For Proto For One APEX For 130 APEX Total Time
Initially 14 min 14 min 1820 min 1834 (30 hour)
Approach 1 7 min 6 min 780 min 787 (13 hour)
Approach 2 2 min 2 min 260 min 262 (4 hour)
Approach 3 4 min 0.11 sec 7 sec 4 min

Table 6.1: Result after every Approach

Note:- min=minutes , sec=seconds

19

6.3 Implementing Hibernate in JDS

Hibernate is an ORM tool, which provides object relational mapping for java.

It gives a framework which maps java classes to database tables.

Hibernate’s primary feature is mapping from Java classes to database ta-

bles, and mapping from Java data types to SQL data types. Hibernate also

provides data query and retrieval facilities. It generates SQL calls and relieves

the developer from the manual handling and object conversion of the result

set.[6] To use hibernate framework , we need to add jar files of hibernate in

our classpath. Steps to include hibernate in JDS are as follows :

• Create a configuration file named as hibernate.cfg.xml, this xml contains

all the database related properties.Some basic properties included in this

file are :

1. Database connection url

2. Database connection driver class

3. Database username

4. Database password

5. Sql Dialect

• Create DTO(Data Transfer Object) classes

• Create DAO (Data Access Object) classes

• Use hql(Hibernate query language) instead of sql, to avoid database de-

pendency. Hibernate will automatically convert the hql into the required

format for the underlying database.

6.3.1 Performance Improvements in JDS

Following are some performance improvements in JDS after implementing

Hibernate:

• We need not perform separate operations to create database schema ,

hibernate will take care of this.

20

• We can write database independent queries so that in future we can

change underlying database without changing the queries.

• Line of code is reduced in JDS.

• Database insertion time is reduced for apex device.

• Database retrieval becomes faster.

For Proto For One APEX For 130 APEX Total Time
Using Hibernate 1 min 0.1 sec 8 sec 1 min 8 sec

Table 6.2: Result after Hibernate Implementation

Note:- min=minutes , sec=seconds

21

6.4 SDM test automation

6.4.1 Providing support for input parameter file in runCon-

figTester

• For SDM performance testing, an utility is present in SDM.

• Tester can test all the functionalities by giving some input parameters

to that utility.

• This provides some options to the tester, to perform a specific task.

Figure 6.8: Config. Tester for SDM

Problems with this tool:

• User can perform one operation at a time.

• User needs to provide all the parameters again again even if he wants to

test the same functionality more than one time.

• It does not provide any detailed report about the statistics of operations

performed by sdm.

22

Figure 6.9: Add Device to SDM

Modifications :-

• For each operation , created a text file which contains input parameters.

• Each file can conatin multiple set of input parameters.

• If we want to use this file as input to all operations, we just need to pass

the name of file as an argument to the script.

• The code will parse the input file and will perform the required operation

by taking parameters from input file.

• After completion of all the operations from text, it will call a script,

which will generate a report from the SDM database.

23

Figure 6.10: Input file for Add Device

Figure 6.11: Report of SDM operations

24

Chapter 7

GUI For Simulator

JDS code is present in the from of separate class files.All the libraries required

for JDS are present in a separate folder.There are some bash scripts present

which are used to :

• Create JDS database

• Add firmware to database

• Add Device to database

• Remove device from database

• Start the JDS

• Stop the JDS

These scripts internally invokes the java class files in order to perform a

specific operation.Testers need to run all these scripts one by one in order to

create a test environment.

This process is time taking and it requires more efforts from testing team.To

avoid this long process of setting up test environment, I developed JDS

GUI.This provides a very easy way to add devices in database and start the

JDS.

25

Figure 7.1: JDS Without GUI

Figure 7.2: JDS GUI

Details about each section of GUI :-

• Add Device :- This button will open a new frame which contains options

for adding a device.

• Clear DB :- This button will clear the JDS Database and recreates the

schema.

• Start/Stop :- This button starts and stops the simulator.

Figure 7.3: JDS GUI : Adding Device

This screen contains 3 panels:

• Device Details : Here we need to enter type ,model ,firmware ,total

number of device and starting IP of device block. It will automatically

calculate ending IP address.

• Network Interface : Here we need to select the interface on which we

want to run the virtual device.

• Firmware file : We need to select the appropriate firmware for the device.

28

Figure 7.4: JDS GUI : Device Details

When we click on the details button on the main screen of GUI, it will

redirect us to this frame. This frame gives the list of all IP address associated

with a particular device type. We can delete device using delete button.

29

Chapter 8

Conclusion And Future Scope

8.1 Conclusion

After completion of this project, JDS is able to provide full support for all

the headend devices. Insertion time for JDS database is also reduced by a

significant amount. Because of all these improvements, JDS can provide a

fully functional virtual network setup for SDM testing.

By the use of hibernate, JDS DAO classes became database independent.We

can switch to a new database with minimal changes in the existing code.

Now we can run JDS with a single JAR file. Overhead of shell scripts and

external java classes is removed by this JAR.

JDS is tested with 1500 virtual devices after these modifications and it is

working perfectly. It responds to all the snmp requests send by SDM.

Some of the SDM test cases are automated, so we can perform testing in

automated way.

Because of the modifications in runConfigTester, testers can trigger more

than one operation at a time in SDM.A detailed report will be available after

completion of testing, which can be useful in performance measurement of

SDM.

8.2 Future Scope

SDM testing has many areas which can be automated.In future we can design

more number of test cases for SDM testing. JDS can simulate all the headend

30

devices, but simulated device does not provide all the features which can be

achieved by a real device.We can not send traps from a simulated device.JDS

can be improved further to provide trap processing and alarms to SDM.

31

Bibliography

[1] M. G. B. Information, “Smartstream device manager(sdm),” 2014.

[2] J. Ellingwood, “An Introduction to SNMP (Simple Network Man-

agement Protocol).” https://www.digitalocean.com/community/tutorials/

an-introduction-to-snmp-simple-network-management-protocol, 2014.

[3] W. Stallings, “Snmp and snmpv2: the infrastructure for network man-

agement,” IEEE Communications Magazine, vol. 36, no. 3, pp. 37 – 43,

2002.

[4] H. Group, “Performance.” http://www.h2database.com/html/performance.

html, 2014.

[5] A. S. Foundation, “Tuning Derby.” https://db.apache.org/derby/docs/10.

5/tuning/tuningderby.pdf, 2009.

[6] J. Developer, “Hibernate.” http://hibernate.org/, 2003.

32

https://www.digitalocean.com/community/tutorials/an-introduction-to-snmp-simple-network-management-protocol
https://www.digitalocean.com/community/tutorials/an-introduction-to-snmp-simple-network-management-protocol
http://www.h2database.com/html/performance.html
http://www.h2database.com/html/performance.html
https://db.apache.org/derby/docs/10.5/tuning/tuningderby.pdf
https://db.apache.org/derby/docs/10.5/tuning/tuningderby.pdf
http://hibernate.org/

	Certificate
	Statement of Originality
	Acknowledgements
	Abstract
	Conventions
	Abbreviations
	List of Figures
	Introduction
	Overview
	SmartStream Device Manager
	Thesis Outline

	Literature Survey
	Motivation :-
	Significance :-
	Protocols Used By SDM :-
	SNMP
	BOOTP

	Technical Specifications
	Java Device Simulator
	SmartStream Device Manager

	Headend Devices
	List of Devices

	Objectives
	Objectives

	Implementation
	Providing Support for APEX device
	Reducing Database insertion time for APEX 3k
	Approach 1
	Approach 2
	Approach 3
	Results

	Implementing Hibernate in JDS
	Performance Improvements in JDS

	SDM test automation
	Providing support for input parameter file in runConfigTester

	GUI For Simulator
	Conclusion And Future Scope
	Conclusion
	Future Scope

	Bibliography

