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Abstract

The omnipresent, conventional synchronous generators are playing a pivotal role since

many years to meet ever increasing demand of electrical energy. A steep growth in

energy requirements is now met by power generation mix of fossil fuel based and

renewable energy based generators. The stochastic nature of renewable generations,

expanding power networks, complex interactions among the system components and

loads etc. impose need for superior monitoring and control at power system level

for its stable operation. For efficient operation and control of the power system, it

is essential for the energy management system (EMS) operator to have an accurate

information about every generator’s dynamic states and power system behaviour.

Diminishing fossil fuels and environment concerns advocated nations to gradu-

ally adopt renewable energy sources. Wind energy, better on multiple aspects among

other renewable options, is dominating today in the power networks. Among wind

energy generators, doubly fed induction generators (DFIGs) are widely accepted due

to its operational flexibility, small converter size, better power control and low cost.

The parallel operation of DFIGs (or wind farm) with pervasive synchronous genera-

tors brings in enhanced system dynamics. This condition strongly dictates dynamic

state estimation (DSE), not only to infer information about synchronous generators

but concurrently know the states of wind generator(s). The performance of DFIGs

also dependent on the converter control circuitry and its feedback loop. This thesis is

the record of work that appropriately models the generators and the network, suitable

for the adoption by the Kalman filter based algorithms to perform the DSE. With the

help of the availability of centralized measurement data, the states of all the gener-

ators in the multi-machine system can be established simultaneously. Subsequently,

the dynamic states of the DFIG are used for its rotor power control under specific

conditions.
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The synchronous generators, usually considered as a voltage source in the liter-

ature are presented by relevant state-space model for stability analysis. On the other

hand, widely accepted DFIG based wind generator is presented as current source

state-space model. As the models of both the generators are far apart, it is necessi-

tated to bring both on the same platform. The thesis contains the work that shows

the possibility of model unification of both kind of generators. Employing traditional

DFIG current-source state model, a current-source state model of synchronous gen-

erators is proposed and validated using standard software platform. Highlighting

feature of the proposed mathematical model is its applicability to power system with

no limits on number of synchronous generators and DFIGs. Considering modelling

intricacies, the use of these models is recommended to achieve concurrent DSE in a

multi-machine power system. Employing current source models of synchronous gen-

erators and with substantial penetration of DFIG in multi-machine system, approach

for concurrent DSE of synchronous generator and DFIG is presented. The mathe-

matical model is simulated in MATLAB / Simulink platform for the validation. The

power system dynamic conditions realized in the MATLAB / Simulink model are then

treated as the data available from the phasor measurement units (PMUs) (with and

without noise). This is used for the extended Kalman filter (EKF) and unscented

Kalman filter (UKF) based DSE algorithms. Centralized dynamic state estimator

based on EKF and UKF are employed for the faithful state predictions for all the

generators under power system dynamic conditions and results are presented.

Application of dynamic states in real time is equally important to achieve better

control and operation of DFIG. This apparatus, normally operate in hostile condition

whether on-shore or off-shore, can undergo internal sensor erratic operation. Under

such conditions, use of dynamic states obtained using EKF, is proposed to have error-

free, continuous and smooth operation of DFIG. The results are embodied in the

thesis. As an offshoot of main work, comparative performance of EKF and UKF with

different PMU measurement data update rates under discontinuous measurement is

analysed. Additionally, use of weighted least square estimation (WLSE) algorithm

as an alternate to load flow under bad measurement condition is deliberated with

results.
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Chapter 1

Introduction

Consistently increasing demand of energy has pushed power networks to operate

nearly close to their transmission and generation threshold limits. To meet ever in-

creasing demand of energy, power networks have undergone manifold expansion in

past decades. Geographically widespread power system requires elaborated specifi-

cations, complex modelling, and multiple tools to evaluate performance parameters,

system stability, reliability etc. The time and frequency domain analysis, mathe-

matical tools and techniques, are the key to offer insights in the behaviour of the

system. Power system stability during and after network disturbances, at present,

is monitored by SCADA and technologically enhanced tool like PMUs. These tools

provide situational awareness, which is then supported with local and global power

grid controllers.

Erstwhile approach to obtain steady state analysis of power network was to em-

ploy load flow studies. It becomes ineffective with exponential increase in complexity

and operational aspects of network. Apart from higher derivative efforts due to

enlarged power network, delay in measurement availability using RTUs has also con-

tributed substantially for increased time consumed by load flow calculation. Hence,

during process of load flow calculation, which provides useful information regarding

present state of power network, assumption of quasi-static nature of power system is

a precondition. The SSE using Static state estimators, based on least square estima-

tion etc., offered an advantage of providing information about important states, which

can be similar to load flow results. For static state estimation, measurements data

are collected through RTUs, which is an important component of SCADA structure.

1



CHAPTER 1. INTRODUCTION 2

For large systems, due to slow measurement update rates of RTUs, it became very

difficult for static state estimator to offer information regarding fast changing power

system dynamics.

These conditions made it imperative to have knowledge of critical states of power

network in real time i.e. with changing dynamics. Consideration of ‘quasi-static-

ness’ of power network becomes obsolete in such conditions. Maintaining stability

and reliability of power network, under increased fast changing dynamics, warrants

for faster and accurate monitoring and control, not available using SSE. The DSE

emerges as the need of the hour. For the DSE, fast and accurate measurements

are prerequisites and these become feasible due to technological advancements in

measurement and communication technology like PMU and faster communication

protocols.

Moreover, slackening of fossil fuels and environmental constraints encourages for

more and more inclusion of renewable energy sources. Over the past few years, there

is a rise in generation mix (i.e. of conventional and renewable) to fulfill the demand.

Benefit of clean energy from renewable energy has come with disadvantages of its

stochastic nature, which further increases system complexity and dynamics of power

network. Such expanding power networks incorporate more generation - load dynam-

ics. Already needed DSE to capture the dynamics of power network equipped with

conventional power sources, it is now much sought after due to integration of renew-

able energy sources. Hence, it becomes essential to have DSE that can simultaneously

provide information regarding crucial states of ubiquitous conventional generators and

rapidly penetrating renewable energy sources. Prior information regarding dynamic

states of conventional and renewable generators may be helpful to EMS operator to

achieve rapid monitoring and control in power network.

1.1 Dynamic state estimation in power system

Focussing on the comprehensive discussion on state estimation, an immediate classi-

fication indicates ‘Static’ and ‘Dynamic’ state estimation. The SSE plays a pivotal

role in power system as a back-up to load flow and offer initial information for power

system security assessment. LSE and its variant WLSE are the popular tools for SSE.

Consequently, need of DSE arose which can provide real time information of
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crucial dynamic states and their future trends to power system operator.

Pre-requisite for DSE of power system is systematic mathematical modelling of

highly complex and non-linear power system including that of various power system

components. Power system mathematical representation is inherently non-linear in

nature, requires DSE tools which can incorporate these non-linearities. Apart from

that, DSE tool must be capable enough to provide accurate dynamic state estimates

of power system at rapid rate to EMS operator. For DSE to be performed at high

rate, it becomes imperative to provide measurements to DSE tool at much faster rate.

Conventional SCADA system provides measurements to EMS operator at electrically

long time interval. Obtaining measurement at slow rate fails to capture fast changing

dynamics of power system which lasts only for few cycles. Measurement availability

to dynamic state estimator at slower rate does not allow for DSE and hence, difficulty

in implementing DSE based analysis and protection.

With practical implementation of PMU in early 90s, the concept of fast and

accurate measurement availability is materialized. PMUs supported with a Global

Positioning System (GPS) reference clock can provide the needed high-speed syn-

chronized sampling with 1 µs accuracy. PMUs using multiple time sources, including

non-GPS references used coherently calibrated and working group, can give data rates

up to 120 samples/s and above. The availability of measurement data from PMUs

opens new era of possibilities of DSE for widely spread power system.

Since the conceptualization of power system state estimation in 1970 to till date

voluminous approaches have been adopted by researchers to obtain information re-

garding crucial states under the dynamic condition. Kalman filter based tool viz.

EKF, which works on the principle of linearization (using Jacobian matrices), has

emerged as a prominent tool for DSE implementation. EKF has been used com-

prehensively on large scale to achieve accurate DSE of different states, incorporat-

ing expedient mathematical modelling, for multi-synchronous-machine power systems

(Ghahremani and Kamwa, “Dynamic State Estimation in Power System by Applying

the Extended Kalman Filter With Unknown Inputs to Phasor Measurements” “Lo-

cal and Wide-Area PMU-Based Decentralized Dynamic State Estimation in Multi-

Machine Power Systems” Huang, Schneider, and Nieplocha Bila Tebianian and Jeya-

surya). The usage of EKF has been proposed to achieve accurate estimation of syn-
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chronous generators’ states and parameters. The usage of EKF is further extended

for parameter calibration. Furthermore, application of EKF is suggested to alleviate

the problem of bad data in measurements. With widespread acceptance of EKF for

DSE in power system, some of constraints also emerges viz. linearization error for

highly non-linear system and more calculation time in achieving estimates for large

power systems. Hence, the new approach based on Kalman filter is proposed which

is UKF. UKF used UT for state prediction and so eliminating the need of jacobian

calculation as well as linearization error. Many researcher have successfully imple-

mented UKF to obtain DSE for dynamic states of large multi-synchronous-machine

power system (Valverde and Terzija Wang, Gao, and Meliopoulos). Performance of

UKF has been investigated with high noise content in measurement data as well as

for other anomalous measurement conditions and its responses are fine. At the same

time, UKF suffers constraint of higher calculation time for reasonably small system

as compared to EKF. However, area of comparative performance of EKF and UKF

under intermittent measurement condition along with different measurement data

update rate suggests space to explore.

Among all renewable energy sources, wind energy is one of the widely accepted

energy source. Wind energy technology has observed considerable technological ad-

vancements viz. fixed speed induction generator to variable speed induction generator

to full rated converter (FRC) supported induction / synchronous generators. DFIG

has received wider acceptance in recent times due to its capability to operate in wide

speed range, lower rating of power electronic converters and flexibility of power control

in all four quadrants.

Large penetration of wind energy sources, especially DFIGs, warrants for infor-

mation regarding variations in its dynamic states to an EMS operator for ingenious

system monitoring, protection as well as corrective controls. Hence, DSE of DFIG

assumes a great significance. Using EKF as a DSE tool and employing comprehensive

state-space model, accurate dynamic states are achieved for DFIG based SMIB under

steady state and dynamic conditions (Bourdoulis and Alexandridis Shahriari et al.).

For large multi-machine system, comprising of conventional SGs and DFIGs, produc-

tive state estimation for dynamic states of only DFIG is described in literature (S.

Yu, “Realization of State-Estimation-Based DFIG Wind Turbine Control Design in
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Hybrid Power Systems Using Stochastic Filtering Approaches” S. Yu, “State Estima-

tion of Doubly Fed Induction Generator Wind Turbine in Complex Power Systems”).

The rapidly increasing penetration of DFIGs results in its parallel operation with con-

ventional SGs and hence, necessitates defining integrated mathematical model. Such

integrated model can be implemented for concurrent DSE of all types of generators

by centralized dynamic state estimator. Simultaneous availability of dynamic states

can open up new dimensions of wide grid monitoring and control of conventional and

renewable energy sources.

After obtaining information regarding dynamic states of all the types of energy

sources, it becomes essential to utilize these for a control operation. On-shore and

off-shore hostile working environment of DFIGs can cause possibility of erroneous

operation of reasonably sensitive internal sensors viz. current, voltage and speed

sensors. It becomes worthy to explore domain of application of DSE, under erroneous

sensor output conditions, replacing the estimated outcome for improved operation.

1.2 Literature review

The power system state estimation equips user with the intricate details of the sys-

tem and its component states - measurable and non-measurable. The investigations

related to state estimation has been explored on various dimensions - on issues in esti-

mation, modelling requirements, tools for estimation, practicability of the estimated

states and its applications. The static and dynamic state estimations offer judge-

ment on system trends, behaviour and intuitive idea of stability. For a vast electrical

grid involving multi-machines and dynamic loads, at present there is no immediate

substitute to state estimation.

F. C. Schweppe et. al. first introduced the concept of power system state es-

timation (SE) and employed WLSE technique to obtain power system static states

(Schweppe and Wildes). Initially SE was used to achieve power system states viz.

voltage magnitudes and bus angles. Application of SE is then proposed for different

power system operations like network contingency analysis and security enhance-

ment (Schweppe and Rom Schweppe). In same era, real time tracking of states in

power system using dynamic state estimator was proposed by (Debs and Larson) in

1970. Considering quasi-static nature, model of power system is proposed and faithful
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tracking of states is presented using real time measurement in (Debs and Larson). A

variable-dimension and stage-invariant Kalman filter based approach to estimate flux

linkages of field and amortisseur windings of the synchronous generators is presented

in (Miller and Lewis). Currents and voltages of field and armature with rotor angles

of each generator are taken as measurements for successful state estimation (Miller

and Lewis). Nishiya et.al. presented a Kalman filter algorithm based DSE. The

paper shows the estimation of bus voltages and angles, which takes care of anoma-

lies in bad data, change in network topology as well as sudden variation in states of

network (Nishiya, Hasegawa, and Koike). Novel algorithm for real-time forecasting

and filtering the state vector using exponential smoothing and least-square estima-

tion technique is presented in (da Silva, Filho, and de Queiroz) and its performance

is compared with Kalman filtering technique. DSE using EKF for the system having

nonlinear measurement functions is discussed in (Mandal, Sinha, and Roy). Mandal

et. al proposed hierarchical scheme for dynamic estimation (HSDE), in which dy-

namic state estimation of large system is done by creating small subsystems (through

partitioning of large system). It leads to DSE of large system imbibing non-linearities

of measurement functions (Sinha and Mandal). Comparative analysis of different

techniques in estimating a significant parameter of power system i.e. frequency is

investigated in (Subudhi et al.).

Primary requirement to obtain DSE in power system is faster and accurate mea-

surements. With the implementations of PMUs, it has become possible for system

operator to avail measurement at faster rate and with higher accuracy than conven-

tional RTUs. The PMU enables the estimation of dynamic states in real time, based

on wide area measurement, due to synchronized sampling at higher rates. PMU with

typical sampling rate of ten through 120 samples/s, synchronized with the GPS clock,

offers consistent capturing of power system measurements under normal and abnor-

mal conditions (Zhou et al.). Reviewing impact of PMU usage on DSE algorithm’s

performance starts with the fact that measurement data accuracy as well as mea-

surement data update rate are important factors for DSE. Inclusion of PMUs as a

measurement tool, in addition to SCADA, show improvements in state estimation

algorithms’ performance and capabilities (Jain and Shivakumar, “Impact of PMU in

dynamic state estimation of power systems” “Power system tracking and dynamic



CHAPTER 1. INTRODUCTION 7

state estimation”). Kalman filter based estimator is applied for multi-area angle and

frequency estimation using PMU measurements in (Vahidnia et al.). In a large sys-

tem, small areas are formed by group of coherent generators in (Vahidnia et al.).

State estimation co-ordinated with load forecasting using Kalman filtering and dis-

cretized mathematical model is presented in (Blood, Krogh, and Ilic). Using mixed

integer programming and PMU assisted measurements DSE estimation approach is

proposed in (Aminifar et al.). It proposes simultaneous operation of discarding er-

roneous predicted values and offering accurate DSE of multi-machine systems under

dynamic conditions (Aminifar et al.).

In recent times, EKF algorithm has emerged as one of widely used tools for DSE

in power system (Simon). Using model decoupling, PMU data (real power, reactive

power, bus voltage and angle) are treated as inputs as well as measurements alterna-

tively. Real time EKF based estimation of synchronous generator’s dynamic states

as well as estimation of generator’s parameters (i.e. mechanical power, transient re-

actance, moment of inertia and damping factor) is presented in (Fan and Wehbe).

Real time estimation using Robust EKF (REKF) method, which has better perfor-

mance than EKF, is proposed for estimation of harmonic states of power system by

(Kumar, Das, and Sharma). With lesser number of measurements than EFK, REKF

is shown to estimate states better under bad data condition in IEEE- 14 bus sys-

tem (Kumar, Das, and Sharma). For single-machine-infinite-Bus (SMIB) system and

WSCC 3-generator 9-bus test system, performance of EKF based estimator under the

conditions of sudden load change and three phase-to-ground fault is analyzed with

anomalous measurement conditions in (Huang, Schneider, and Nieplocha). Improved

EKF using second order Euler method for EKF with multi-step prediction is offered

and its performance in case of topological error, parametric error and composite error

has been demonstrated with measurement update interval of 0.04s using 16-machine

68-bus system in (Huang et al., “Estimating power system dynamic states using ex-

tended Kalman Filter”).

It was Huang et. al. (“Estimating power system dynamic states using extended

Kalman Filter”) to suggest possibility of analyzing performance of EKF in case of

measurement data unavailability. To estimate dynamic states of a single-machine in-

finite bus (SMIB) system, Ghahremani and Kamwa showed the use of EKF algorithm



CHAPTER 1. INTRODUCTION 8

to simultaneously estimate the synchronous generator (SG) states and unknown in-

puts using EKF-UI approach (Ghahremani and Kamwa, “Dynamic State Estimation

in Power System by Applying the Extended Kalman Filter With Unknown Inputs to

Phasor Measurements”). Using simulation results from POWERWORLD simulator

platform, EKF based dynamic state estimation for dynamic states of synchronous

generators viz. δ, ω, E
′

d and E
′
q is presented using WSCC 3-generator 9-bus system

in (Tebianian and Jeyasurya). Possible application of dynamic states to activate tur-

bine governor control is discussed in (Tebianian and Jeyasurya). Generator dynamic

models are validated using disturbance recorded as PMU data is proposed in (Huang

et al., “Generator dynamic model validation and parameter calibration using phasor

measurements at the point of connection”). Proposed method uses EKF method for

automatic parameter calibration by sensing change is estimated and actual parame-

ters (“Generator dynamic model validation and parameter calibration using phasor

measurements at the point of connection”). In (Deshmukh, Natarajan, and Pahwa),

performance of EKF is deliberated in terms of error alongwith missing measure-

ment representation as communication packet drops. In (Deshmukh, Natarajan, and

Pahwa) estimated state error depends on boundedness of state error covariance ma-

trix and initial estimation error. For different standard multi-machine systems, using

local measurements viz. active power, reactive power, voltage phasor and frequency,

EKF and EKF-UI approach are presented to realize wide area power system stabi-

lizer (WA-PSS) and system integrated protection scheme (SIPS) (Ghahremani and

Kamwa, “Local and Wide-Area PMU-Based Decentralized Dynamic State Estimation

in Multi-Machine Power Systems”).

For application to large power system, EKF has some drawbacks like higher

computation time due to Jacobian calculation and more suitability to linear sys-

tem due to propagating linearization error (Julier, Uhlmann, and Durrant-Whyte).

UKF based DSE using unscented transform (UT) is proposed and its application and

advantages over EKF are well illustrated in literature (Julier, Uhlmann, and Durrant-

Whyte). UKF’s application for estimation of power (i.e. active and reactive power,

apparent power, power factor) and frequency using instantaneous power as an in-

put signal to algorithm is discussed in (Valverde and Terzija). Successful estimation

of round rotor and salient pole rotor synchronous generators’ parameters and states
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with novel square root unscented Kalman filter (SRUKF) approach is discussed in

(Huang, Li, and Yan). Approach of UKF for DSE in standard multi-machine power

systems viz. WSCC 3-generator 9-bus system and IEEE 14-bus system is presented

in (Wang, Gao, and Meliopoulos) under steady and transient conditions. UKF based

de-centralized DSE is offered using local measurements from PMUs (Singh and Pal).

Collection of measurements locally makes estimation procedure fast, accurate and

easy to implement (Singh and Pal). DSE at distribution network level, with integra-

tion of renewable energy, is described in (Nguyen et al.). The performance of UKF is

investigated at 18-bus distribution network level and validated with real time digital

simulator (RTDS) platform (Nguyen et al.). Performance of Kalman filter based algo-

rithms (EKF and UKF) heavily depends on quality of measurement data e.g. content

and nature of noise in measurement (Huang, Schneider, and Nieplocha Valverde and

Terzija S. Yu, “Realization of State-Estimation-Based DFIG Wind Turbine Con-

trol Design in Hybrid Power Systems Using Stochastic Filtering Approaches” S. Yu,

“State Estimation of Doubly Fed Induction Generator Wind Turbine in Complex

Power Systems”) and availability of measurement data e.g. discontinuity in mea-

surement and measurement data update rate (Huang, Schneider, and Nieplocha).

Hence, it becomes important to analyze performance of EKF and UKF in anomalous

measurement conditions with various measurement data update rates.

The power generation, mix of fossil fuel based and renewable power sources

is the reality today. The stochastic nature of renewable generations imposes need

for superior monitoring at system level for the stable operation of grid. Increasing

penetration of wind power to conventional power system has raised concerns regarding

aspects of power system e.g. system frequency and inertia control, reactive power

contributions, system stability etc. (Singh and Singh). In such and other conditions,

for efficient operation and control of a power system, it is essential for EMS operator

to have an accurate information about every machine’s dynamic states. On-shore

and off-shore wind generation is one of the major renewable penetrating segment.

Among various types of wind generators, DFIGs are gaining popularity due to high

energy efficiency, low mechanical stress on the wind turbine, relatively low power

rating of converters and flexible control of power (Feijo, Cidrs, and Carrillo). Reason

for increasing avenues of research in DSE for DFIG states is its highly nonlinear
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model, involving complex equivalent circuit and existence of converters along with

their controllers (Khedher, Khemiri, and Mimouni). With the increasing presence of

DFIG, its modelling and DSE become imperative. The performance of 3rd order and

5th order state-space model of DFIG under dynamic, transient condition is elaborated

for SMIB system in (Ekanayake, Holdsworth, and Jenkins). Mathematical models of

DFIG with different control strategies are presented in (Mishra et al. Wu et al.,

“Small signal stability analysis and optimal control of a wind turbine with doubly fed

induction generator” “Decentralized Nonlinear Control of Wind Turbine With Doubly

Fed Induction Generator” Abdelhafidh et al.). Eigenvalue sensitivity analysis and its

impact on FRT capability of DFIG can be found in (Yang et al., “Oscillatory Stability

and Eigenvalue Sensitivity Analysis of A DFIG Wind Turbine System” “Advanced

Control Strategy of DFIG Wind Turbines for Power System Fault Ride Through”).

Transient current analysis for DFIG based SMIB system is performed in (Senjyu et

al.). Equations are derived for induction generator before and during fault conditions,

and dependance of short circuit current on phase angle, at the occurrence of fault,

is also explained in (Senjyu et al.). Transient model of DFIG, considering rotor

dynamics, shows significant role of rotor converter for DPC control in (Kim, Moon,

and Nam) and the results are compared with the simulation. Nature of variation

of DFIG currents is explained using MATLAB/Simulink model in (Kim, Moon, and

Nam). Comparative analysis of different state-space models of DFIG is proposed in

(Jiang et al.). State-space model of DFIG comprised of modelling of all elements

viz. drive mass train, pitch controller, rotor side controller, grid side controller and

induction generator is presented and compared with other available models in (Jiang

et al.). State-space modelling approach suitable for variable and fixed speed induction

generators is presented in (Ugalde-Loo, Ekanayake, and Jenkins) and its eigenvalues

are derived. Using motoring conventions for operation, proposed model’s performance

is shown to meet grid code requirements. (Ugalde-Loo, Ekanayake, and Jenkins).

Instead of conventional stator flux oriented control, DFIG model is presented for direct

power control using non-linear detailed model in (Bourdoulis and Alexandridis). The

direct power control offers independence from flux measurement. With the help of

state space model of DFIG with reference to stationary axis viz. α and β, DSE of

stator and rotor current iα and iβ, rotor speed ωr and its position, θ with augmented
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integrals of iα and iβ is conceptualized using EKF for SMIB system in (Malakar,

Tripathy, and Krishnaswamy).

Application of EKF for DSE of DFIG using 15th order detailed non-linear model

is comprehensively presented in (Shahriari et al.). Robustness of EKF algorithm, for

DFIG based SMIB system, is verified under the conditions of wind velocity variations,

different measurement noises and 3-phase-to- ground short circuit condition. It is to

be noted that for checking the robustness, the measurements are obtained using PMU

(Shahriari et al.). Estimation of states of DFIG viz. idr, iqr, ids, iqs, ωr and a parameter

J (moment of inertia) using ensemble Kalman filter (EnKF) is described in (Fan et

al.). Fan et. al. gave insight to parameter calibration along with estimation of

parameter (Fan et al.). Application of EKF for estimation of parameters of DFIG

viz. stator and rotor resistances, leakage and mutual inductances, is proposed in

(Abdelrahem, Hackl, and Kennel).

Sensitivity of EnKF algorithm to different measurement noise levels, initial state

and parametric errors are discussed in (Fan et al.). Comparative analysis of parti-

cle filter (PF), EKF and UKF based dynamic state estimator along with bad data

detection algorithm are proposed in (S. Yu, “Realization of State-Estimation-Based

DFIG Wind Turbine Control Design in Hybrid Power Systems Using Stochastic Fil-

tering Approaches” S. Yu, “State Estimation of Doubly Fed Induction Generator

Wind Turbine in Complex Power Systems”) for DFIG states. For such estimation,

measurement data are understood to be available using local PMU. The literature

reviewed thus far, presents the DSE either for synchronous machine or for the asyn-

chronous machine, but not both at a time. Hence, it is desirable to have mathematical

model of generators viz. conventional and renewable, using which an EMS operator

establish dynamic states of all type of generators.

Widely used DFIG’s complex operation is mainly controlled by back-to-back con-

verters and supported by sensor and control circuitry. Performance of DFIG largely

depends on condition of network to which it is connected, as well as on faithful op-

eration of its own internal elements viz. back-to-back converters, voltage, current

and speed measurement devices. Hence, it becomes imperative to analyze effect of

faulty operation of sensors and/or control circuitry on operation of DFIG. Check on

possibility to utilize DSE under such faulty condition will be an archetype. Solution
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to fault in internal circuit of DFIG i.e. fault in back-to-back converter is narrated

using Fourier supported analysis in (Giaourakis, Safacas, and Tsotoulidis). Solution

to faulty speed measurement using fuzzy based sliding mode observer (FSMO) control

of DFIG is proposed in (BELFEDAL, ALLAOUI, BELABBAS, et al.). FSMO ap-

proach estimates the speed of DFIG for control and eliminates requirement of speed

sensor (BELFEDAL, ALLAOUI, BELABBAS, et al.). After detection of fault in

sensors, reconfiguration of closed loop control using bank of observers is proposed

in (Rothenhagen and Fuchs). Bunch of observers generate residual signal after fault

detection and reconfiguration using estimated variables by observers is proposed in

(Rothenhagen and Fuchs). To overcome effect of fault(s) in current sensors, hardware

approach with field programmable gate array (FPGA) based grid side converter con-

trol is proposed in (Karimi et al.). Using state- space based model of DFIG, coherent

current sensor observer is proposed in (Li et al.) using MATLAB/Simulink platform.

Robust observer presents substitute to current sensor under dynamic and transient

condition, but differs from actual quantity (Li et al.). El-hagry and Eskander pre-

sented estimation of ids, iqs, iqr and ωr (rotor speed) using EKF over sub-to-super

synchronous speed range of DFIG while employing ids, ωr and capacitor charging

current idc as measurement variables (EL-Hagry and Eskander). Further, estimated

ids, iqs, iqr and ωr of DFIG are used to derive vds, vqs, vdr and vqr. These derived

variables are consequently proposed in the control loop to obtain control parameters

which regulate rotor voltage and rotor position of DFIG (EL-Hagry and Eskander).

Usually, process of DSE provides information pertaining to crucial dynamic states

much earlier if the same state is collected using measurement sensors. Hence, when

information of crucial dynamic states, whether measurable or unmeasurable, is avail-

able at one time stamp ahead, then it would beneficial to use this information for

better monitoring and control of DFIG based wind generators.

1.3 Motivation

The SSE in power system has a limitation i.e. inability to capture fast changing dy-

namics of states. This is attributed to quasi-static nature and overall state estimation

duration is electrically large. Hence, for better system monitoring and control, DSE

becomes inevitable. With integration of renewable sources, power system dynamics
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further becomes prone to volatility and may behave abruptly.

The DSE of synchronous generator connected to SMIB and in multi-machine

system is successfully depicted in literature. Incidentally, SMIB connected DFIG’s

dynamic state estimation is described in literature. For a DFIG farm connected in a

multi-synchronous generator power system, literature indicates feasibility of estima-

tion of DFIG dynamic states alone. Research possibilities exist in untouched domain

of centralized concurrent DSE to apply in power system which can give information

of dynamic states of conventional and renewable energy generators simultaneously.

Such centralized concurrent DSE needs mathematical modelling of power system, es-

pecially of generators suitable to use for centralized DSE. With appropriate modelling,

wide area measurement system (WAMS) supported by PMUs offer an opportunity to

use these fast and accurate measurement to have centralized simultaneous DSE of all

kind of generators. Changes in machine dynamics introduced by the power network

shall also be faithfully recognized by DSE algorithm with an appropriate inclusion of

power system network model.

A multi-machine system contains induction generator based renewable sources

with conventional energy sources. It is noted that, state-space model of SGs as

voltages source (Kundur, Balu, and Lauby) and DFIGs as current source do not

permit their implementation for concurrent DSE of both types of generators centrally.

Necessity arises to have a state-space mathematical model which can be implemented

for EKF and UKF for simultaneous DSE of all generators. A correlated mathematical

approach is the pre-requisite for implementation of centralized concurrent DSE of

DFIG and synchronous generators in multimachine power system.

Not only the estimation of states serves the purpose, its real time application for

better control and uninterrupted operation of DFIG under specific sensor condition

is an avenue to work upon. Employing the DSE results can be a possible solution

to faulty sensor issue and it can help in obtaining desired improvised control and

operation of renewable energy source and for power network as a whole.

The trending tools in power system measurements have made measurement data

reliable, accurate and offer insignificant transmission delay. A condition of total

or partial measurement data loss may arise or a scenario may happen where the

measurement data received are corrupted. It could be unintentional and / or due to
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malfunction of communication link, manual error, or shortcoming in communication

set up (Force). It becomes essential to check performance of widely accepted DSE

tools i.e. EKF and UKF under condition of missing measurement packet at different

measurement update rates.

1.4 Contribution of thesis

Objective #1: Establish base for the modelling of multi-machine power system in-

volving different types of generators. Conventionally, the mathematical models of

SGs and induction generators are significantly different, the former is usually repre-

sented as a voltage source and the later as a current source. It is essential to create a

common mathematical platform so as to implement Kalman filter based algorithms.

The objective is to study the available models, re-visit them and to arrive at common

generator model for both the types of generators. The novel model is arrived at,

tested and the implementation is presented.

Objective #2: To obtain the power system dynamics and DSE, employ the

cylindrical rotor synchronous generator model (derived from DFIG base model), in

coordination with the power system network model. It is imperative to assess the

validity of the models used under the cases of faults at the generator terminals and

faults in the power system. The validated mathematical model of the power system

as an entity be employed with the algorithms of EKF and UKF algorithm for faithful,

concurrent state estimation of all the measurable and non-measurable states using P

and Q as the measurement data. The model, dynamics and DSE results are presented

in the thesis. A performance analysis of EKF and UKF algorithms is highlighted.

Objective #3: Estimation of states helps in observing system stability and pre-

dicting upcoming issues. At the same time utilizing obtained states, as a real time

application for DFIG operation be meaningful. The DFIG rotor current is measured

by current sensor and the rotor power control loop uses the measured current as a

feedback. Under the scenario of erratic measurement output from the current sensor,

the DSE results be employed. Algorithm is used to detect erroneous sensor output

conditions and use of dynamic states is suggested to replace the measurement for bet-

ter control and desired operation of DFIG. The discussion and results are presented

in the thesis.
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An associated supplementary work describes the applicability of EKF and UKF

under limited certain measurement update rates. This is presented in Appendix A.

It is also proposed to use of static states achieved using WLSE as a back-up of load

flow under bad data measurement conditions. Insight and analysis is presented in the

thesis as Appendix B.

1.5 Outline of thesis

Chapter 2 gives insight to a novel current source model representation of syn-

chronous generator and DFIGs. The state-space model of DFIG is used as base model

to propose a novel approach to represent SG as current source state-space model.

State-space models of machines have been implemented using MATLAB/Simulink

environment. The validation of proposed models with standard software platform

viz. PSCAD/EMTDC platform is described in this chapter.

Chapter 3 depicts the use of proposed current source model of SGs with DFIG

for centralized concurrent dynamic state estimation. A state-space model is imple-

mented for standard WSCC 3-generator 9-bus system (Anderson and Fouad Sauer,

Pai, and Chow). Modification in this standard WSCC system is adopted to simulate

large penetration of wind power. With the help of proposed model, obtaining cen-

tralized DSE of dynamic states of DFIG and SGs using PMU measurements forms

the core part of this chapter. Successful DSE is achieved using both the tools of DSE

viz. EKF and UKF under dynamic conditions. Comparative performance aspects of

both DSE tools are presented at the end of chapter.

Chapter 4 shows the application of accurate dynamic states of DFIG achieved using

EKF for erroneous current sensor conditions. Three different erroneous current sensor

conditions are considered. Algorithm is used to detect the mal-operations of current

sensor. Successful application of dynamic states is displayed under faulty current sen-

sor conditions and hence, better control and continuous operation of DFIG is attained.

Chapter 5 concludes the thesis with summary of contributions and outlines ideas

for the further research. This chapter is followed by work citation and appendices.
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Appendices comprises of discussion on supplementary work and the typical algo-

rithmic procedures for EKF and UKF. As a part of initial learning, the offshoot work

is presented in Appendix A. It deals with comparative analysis of EKF and UKF

having various measurement update rates under different intermittent measurement

conditions. This is analyzed using two standard test systems viz. WSCC 3-generator

9-bus system (Sauer, Pai, and Chow Anderson and Fouad) and IEEE-14 bus test

system (Pai and Chatterjee Christie). Next appendix (Appendix B) undertakes the

SSE using WLSE method for standard WSCC test system. The estimated states are

employed as a back-up to load flow results under bad data measurement conditions.

The significant procedural steps of EKF and UKF form Appendix C and Ap-

pendix D respectively. Improvement to coalesced model of SG and DFIG presented

in Chapter # 2, is briefly conveyed in Appendix E using multi-machine approach

with corresponding results.



Chapter 2

Coalesced Model of Synchronous

Generator and DFIG

2.1 Introduction

In present scenario, multi-machine coherent power system involves abundance of en-

ergy sources normally represented by either voltage or current sources. The syn-

chronous generator typically conferred as voltage source in multi-machine power sys-

tem. Continuously increasing penetration of wind energy source has made wind

generators to operate in parallel with synchronous generators, normally pervasive

in power system. Under the constant power output condition (at constant speed)

with stable grid voltage, the widely accepted wind generator - doubly fed induction

generator (DFIG) functions as the current source and accordingly mathematically

represented. State-space modelling approach is ubiquitously accepted to analyze sta-

bility aspects of power system under dynamic conditions. To investigate stability

aspects of power network occupied with conventional synchronous generators (SGs)

and sizable penetration of DFIG based wind generators (DFIGs), it becomes indis-

pensable to represent both generators by state-space model built on common platform

i.e. either as voltage sources or as current sources.

Unified presentation of SGs and DFIGs offers opportunities to enhance central-

ized monitoring and control of power network. One significant aspect of enhanced

monitoring and control of power network operation is dynamic state estimation which

avails information regarding crucial dynamic states of power network under transient

17
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conditions. To enact centralized DSE of muti-machine power system incorporating

DFIG, an approach of current-source model presentation of synchronous generator

forms the core of work presented. In addition to better monitoring, it offers an op-

portunity to perform a stability analysis quickly. The SGs, when represented by

current source model, can be easily integrated in parallel with multi-machine system

possessing renewable sources. The SG current source state-space model is quite in-

volving and can be obtained by systematically restructuring the state model equations

appearing in (Kundur, Balu, and Lauby).

2.2 Aspects of modelling

Traditionally, DFIG is presented as current-source model. Hence, mathematical state-

space model of DFIG is adopted from (Fan et al.). The voltage (2.1, 2.2) and flux

linkage (2.3) equations employed for DFIG form the basis and this modelling approach

and its versatility is to be used for simulation of synchronous generator. The equations

from (Fan et al.) are represented here as under.

vds = Rsids − ωsλqs +
dλds
dt

vqs = Rsiqs + ωsλds +
dλqs
dt

(2.1)

vdr = Rridr − (ωs − ωr)λqr +
dλdr
dt

vqr = Rriqr + (ωs − ωr)λdr +
dλqr
dt

(2.2)

λds = Lsids + Lmidr

λqs = Lsiqs + Lmiqr

λdr = Lridr + Lmids

λqr = Lriqr + Lmiqs

(2.3)

The current state equations ids, iqs, idr and iqr for DFIG are given as (2.4)
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˙ids

˙iqs

˙idr

˙iqr


= lc



−RsLrids + [ωrL
2
m + ωs(LsLr − L2

m)]iqs +RrLmidr

+ωrLrLmiqr + Lrvds − Lmvdr

−[ωrL
2
m + ωs(LsLr − L2

m)]ids −RsLriqs − ωrLrLmidr

+RrLmiqr + Lrvqs − Lmvqr

RsLmids − ωrLsLmiqs −RrLsidr + [ωs(LsLr − L2
m)

−ωrLsLr]iqr − Lmvds + Lsvdr

RsLmiqs + ωrLsLmids −RrLsiqr − [ωs(LsLr − L2
m)

−ωrLsLr]idr − Lmvqs + Lsvqr



(2.4)

where lc = 1
LsLr−L2

m
= leakage co-efficient.

The input vector u is presented as (2.5)

[
u
]

=



vds

vqs

vdr

vqr


(2.5)

A critical observation indicates that the terms employed in (2.1 - 2.5) for DFIG,

are essentially used in synchronous generator as well, with same technical functionality

but slightly different nomenclature. It is therefore possible to assign appropriate

values and conditions to specific terms to realize both machines from the same set of

equations. It is to be noted that the DFIG model selected is a basic (low order) model

and other detailed models may be employed as offered in (Ekanayake, Holdsworth,

and Jenkins), (Bourdoulis and Alexandridis).



CHAPTER 2. COALESCED MODEL OF SYNCHRONOUS . . . 20

2.3 Simulation aspects for model validation

To prove the authenticity of the proposed current source state-space model, it is de-

sirable that the dynamic response of both machines as generators is to be obtained

using the DFIG state model. The responses of quantities are compared with the

standard established software responses. In this work, the proposed state equations

are developed in MATLAB / Simulink, initialized as in single machine infinite bus

(SMIB) case as shown in Fig. 2.1.

Figure 2.1: DFIG connected to infinite bus (source : internet)

The case is considered in which MATLAB/Simulink state-space model of DFIG

is connected to infinite bus. In steady state, DFIG is supplying 4.7 MW of active

power P at nearly unity power factor with value of Q given as 0.2 MVAR to grid. The

machine rating, parameters are mentioned in Appendix 2.1 (at end of the chapter).

System frequency is set at 60 Hz. All quantities are prescribed in real, unless specified.

To simulate the dynamic condition, 3-phase-to-ground metallic short circuit fault

is simulated at the point-of-common-coupling (PCC) at t= 1 s. Fault persist for total

simulation period of 2 s to observe the variation in terminal currents iabc of DFIG.

Variation in the current iabc of DFIG for MATLAB/Simulink model and PSCAD

model are shown in Fig.2.2(a) and Fig.2.2(b) respectively.
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Figure 2.2: Current states iabc under steady state (pre-fault) and dynamic condition

(during fault) obtained using PSCAD model and proposed model respectively, for (a,

b) DFIG, (c, d) SG

This work mainly focused on the coalesced model to analyze performance of

induction generator (DFIG) and synchronous generator under dynamic conditions.

On examining, except the slip, the asynchronous and synchronous machines have an

inherent logical correspondence. Hence, the asynchronous machine current source

state-space model can offer comparable attributes for synchronous machine. To vali-

date the proposed idea of current-source model presentation of synchronous generator,

state-space equation for synchronous generator is derived as shown in (2.6).
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˙ids

˙iqs

˙ifd

˙iD


= lc



−RsLrids + ωsLsLriqs +RrLmifd + ωsLrLmiD + Lrvds

−Lmvfd

−ωsLsLrids −RsLriqs − ωsLrLmifd +RrLmiD + Lrvqs

−LmvD

RsLmids − ωsLsLmiqs −RrLsifd − ωsL2
miD − Lmvds

+Lsvfd

ωsLsLmids +RsLmiqs + ωsL
2
mifd −RrLsiD − Lmvqs

+LsvD



(2.6)

where lc = 1
LsLr−L2

m
= leakage co-efficient.

To simulate second case, current source state-space MATLAB/Simulink model of

synchronous generator using (2.6) is proposed. Rating and parametric equality have

been maintained for suggested models of both generators. Analogous to the first case,

cylindrical rotor SG based SMIB system is simulated with minor modifications in the

base model of DFIG and subsequently, variation in output terminal current iabc is

observed during similar dynamic condition of persistent short-circuit fault. Dynamic

responses of both generators are compared with the PSCAD / EMTDC results (Fig.

2.2)(c,d). The current direction, inward to the machine, is considered positive for

both simulations.

For base case of DFIG, under the steady state condition and dynamic condition,

comparative variation in voltages viz. stator q axis voltage- vqs and rotor d axis

voltage - vdr achieved from PSCAD model and suggested MATLAB/Simulink model

are shown in Fig.2.3(a,b) and Fig. 2.3(c,d) respectively.

Employing the current states ids ,iqs, idr and iqr and input voltages vds, vqs, vdr

and vqr, the deviation in active power and reactive power of DFIG is obtained using
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Figure 2.3: Variation of DFIG’s different variables viz. vqs, vdr,Pdfig and Qdfig under

steady state (pre-fault) and dynamic condition (during fault) obtained using PSCAD

model and proposed model respectively

equation (2.7).

Pdfig =
3

2
(vdsids + vqsiqs + vdridr + vqriqr)

Qdfig =
3

2
(vqsids − vdsiqs + vqridr − vdriqr)

(2.7)

Enforcing similarity of DFIG model validation with PSCAD/EMTDC for derived

active and reactive power can be seen in Fig. 2.3 (e,f) and (g,h). Coherence in

variation of active and reactive power proves analogy between models.

Similarly, to prove coherence of proposed MATLAB/Similink current source

model of synchronous generator with synchronous generator model on PSCAD/EMTDC

platform, variation in parameters of significance- voltage parameters viz. vqs and vfd

is shown in Fig.2.4.

For synchronous generator, the active power and reactive power variation is
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Figure 2.4: Variation of SG’s different variables viz. vqs, vfd, Psg and Qsg under

steady state (pre-fault) and dynamic condition (during fault) obtained using PSCAD

model and Proposed model respectively

achieved using following equation.

Psg =
3

2
(vdsids + vqsiqs)

Qsg =
3

2
(vqsids − vdsiqs)

(2.8)

Active power and reactive power variation for proposed current-source synchronous

generator model using MATLAB/Simulink model and PSCAD/EMTDC model are

displayed in Fig. 2.4(e,g) and Fig. 2.4(h,f) respectively.

2.4 Discussion

2.4.1 State - space model as DFIG (base model)

For DFIG based SMIB system, the state model is initialized using appropriate voltage

inputs. The machine rating, parameters are mentioned in Appendix 2.1. The said

parameters are employed to get the current response in PSCAD/EMTDC software.

The current iabc or its components ids, iqs and idr, iqr are the states, which demonstrate

the variations under dynamic condition viz. 3-phase-to-ground short circuit fault at
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the machine terminals. Such condition in the machine model is realized by changing

the input voltage appropriately and the response is observed for iabc in PSCAD as

well as in MATLAB and is presented in Fig. 2.2(a) - 2.2(b) respectively. The pre-

fault duration in figures refers the steady state response and thereafter, the fault at

t = 1s is duly responded. These results validate the model. The PSCAD response

is depicted just around the fault, truncating its initialization issues. Needless to say

that the trends of ids, iqs and idr, iqr are similar.

To emulate the crowbar resistance effect, the voltage vdr and vqr are reduced to

zero using appropriate rate limiter, rather than a step change. The variations in the

MATLAB model response magnitude are due to the fact that the step change in pro-

posed models results in severe oscillations, which are normally limited by controllers

and rate limiters in the standard software models. Changes observed in other signifi-

cant parameters of DFIG viz. vqs, vdr, Pdfig and Qdfig are in resemblance to variation

of PSCAD/EMTDC model with modest assumption and modelling limitations (Fig.

2.3).

2.4.2 State - space model as SG

Absence of slip and effect of excitation is desired for SG . Using ωr = ωs, vdr = vfd

and vqr = vD= constant (close to zero, based on initial condition) can offer equivalent

SG performance. Although, the DFIG model does not reflect implementation of any

controllers or rate limiters, it is interesting to observe that the AVR effect for SG is

inherent in the equations being considered. The response of MATLAB state model

and the PSCAD model results fulfill the validation requirements in the Fig. 2.2(c) -

2.2(d) for SG. It is important to note that iqr and vqr hold negligible importance for

cylindrical rotor synchronous generator. However, in case of salient-pole rotor syn-

chronous generator variation in iqr and hence, vqr can reflect its proximity to damper

winding current and voltage respectively. Results shown in Fig. 2.4 provide strength-

ening support to prove proposed SG model operation analogous to SG model created

on standard software platform of PSCAD/EMTDC. It may be further noted that

the same model with proper sign changes can offer functionality of other induction

machines also.

Table 2.1 refers summary of the quantities to be modified for realization of
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synchronous machines, the DFIG model being a base machine (2.4).

Table 2.1: Quantities to be considered for realization of different machines

Machine Quantities Remark

ωr = ωs, vdr = vfd, vdr will be derived

SG vqr = Constant (close to zero, from state idr(ifd) in case

based on initial cond.) of short circuit studies

2.5 Conclusions

Reducing variety of sources on one type and making use of the same state - space

model for asynchronous and synchronous machines could make the power system

analysis much simple, requires less computational memory and time. Presented work

makes an effort to create the synchronous generator source type and state - model

unification by employing the DFIG basic current source state model. Using appro-

priate values of input quantities, supported by proper initialization of state model,

leads to use the same model as both machines by incorporating minor changes and

logical attributes. The responses of states under steady and dynamic conditions as

both machines are presented and validated using PSCAD model. These coalesced

models offer their usage as two different machines for multi-machine power system

stability analysis, state estimation, eigenvalue analysis etc..

Appendix 2.1

DFIG rated MVA = 5, rated line voltage 0.69 kV, rotor resistance (Rr) = 0.5779

mΩ, rotor inductance (Lr) = 1.1657 mH, mutual inductance (Lm) = 1.1138 mH,

stator resistance (Rs) = 0.514 mΩ, stator inductance (Ls) = 1.1632 mH, frequency

(f) = 60 Hz, synchronous speed (ωs) = 377 rad/s, rotor speed (ωr) = 410 rad/s, slip

(s) = −0.088.



Chapter 3

Kalman Filters based Centralized

Concurrent DSE

3.1 EKF based Centralized Concurrent Dynamic

State Estimation in Multi-machine Power Sys-

tem

3.1.1 Intoduction

A steep growth in energy requirement is supplied today by power generation mix of

fossil fuel based generators and renewable power generators. The stochastic nature

of renewable generations imposes need for superior monitoring at system level for the

stable operation. The PMU enables the estimation of dynamic states in real time,

based on wide area measurement, due to higher sampling rates and synchronized

sampling. PMU, with typical sampling rate ranging from 10 sa/s through 120 sa/s

with the GPS clock synchronization, offers consistent capturing of power system mea-

surements under normal as well as abnormal network conditions (Zhou et al.). To

estimate the dynamic states of a single-machine infinite bus (SMIB) system, Ghahre-

mani and Kamwa showed the use of EKF algorithm to simultaneously estimate the

synchronous generator (SG) states and unknown inputs (Ghahremani and Kamwa,

“Dynamic State Estimation in Power System by Applying the Extended Kalman Fil-

ter With Unknown Inputs to Phasor Measurements”). For multi-machine systems,

27
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Huang et al. (Huang, Schneider, and Nieplocha Huang et al., “Estimating power

system dynamic states using extended Kalman Filter” “Generator dynamic model

validation and parameter calibration using phasor measurements at the point of con-

nection”), Fan and Wehbe (Fan and Wehbe), Ghahremani and Kamwa (Ghahremani

and Kamwa, “Local and Wide-Area PMU-Based Decentralized Dynamic State Es-

timation in Multi-Machine Power Systems”), Tebianian and Jeyasurya (Tebianian

and Jeyasurya) have indicated plausible use of PMU data with the help of extended

Kalman filter (EKF) for online state and parameter estimation of conventional syn-

chronous generators.

Among various types of wind generators, DFIGs are gaining popularity due to

high energy efficiency, low mechanical stress on the wind turbine, relatively low power

rating of converters and flexible control of power. With the increasing presence of

DFIG, its modelling and dynamic state estimation (DSE) becomes imperative. An-

other variant of Kalman filter viz. ensemble Kalman filter (EnKF) is used to estimate

dynamic states and parameters of DFIG with noisy measurement and initial para-

metric error in (Fan et al.). Comparative analysis of particle filter (PF), EKF and

unscented Kalman filter (UKF) based dynamic state estimator along with bad data

detection algorithm are proposed for DFIG states in (S. Yu, “Realization of State-

Estimation-Based DFIG Wind Turbine Control Design in Hybrid Power Systems

Using Stochastic Filtering Approaches” S. Yu, “State Estimation of Doubly Fed In-

duction Generator Wind Turbine in Complex Power Systems”). For such estimation,

measurement data are understood to be available using local PMU.

Research domain so far, presents the DSE either for synchronous machine or for

the asynchronous machine, but not for both at a time. For a vastly spread power sys-

tem, a fault in the system, sudden changes in wind generator output (e.g. wind speed

change) or change in load demand impacts the generation from synchronous genera-

tors and their dynamics. These dynamics of course can be obtained simultaneously

by the DSE approach, once the system model is integrated with the synchronous and

asynchronous machine models on same platform. This work offers integration of dif-

ferent types of generators in power system and considers the availability of active and

reactive power measurements centrally employing PMUs. In this section, this is em-

ployed in EKF based state estimator for concurrent DSE of conventional generators
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as well as DFIG.

To present the case, a standard WSCC 9-bus test system has been selected. The

standard test system is comprised of three synchronous generators of large capacity.

For the sake of employing asynchronous generator, a synchronous generator at a P−V

bus, bus #2, is replaced by a DFIG based wind farm of equivalent capacity (with

modest assumption employed). Remaining two synchronous generators are cylindri-

cal rotor machines. The P and Q controls of DFIG are adjusted such that its Pout and

Qout of DFIG are similar to the synchronous generator #2 of standard test system.

Highlighting feature of the work is that the DFIG as well as the synchronous gener-

ators are represented as current sources, unlike usual case of synchronous generator

as voltage source (Kundur, Balu, and Lauby). Availability of P and Q at generator

buses of all generators as measurement data (e.g. from PMU) and using initial val-

ues of bus voltages (based on load flow study of standard test system) in state-space

model offers the centralized faithful estimation using EKF for DSE of synchronous

generators and DFIG (under dynamic and transient conditions).

3.1.2 State-space current source models for EKF implemen-

tation

• State-space model of generators

To implement EKF based DSE, state-space model of DFIG is integrated with state-

space model of synchronous generators. Conventionally, DFIG is treated as current

source and its mathematical model is adopted from (Ekanayake, Holdsworth, and

Jenkins),(Fan et al.) as base model. The d and q axis voltages for any pth DFIG

generator are represented as:

vdsp = Rspidsp − ωsλqsp +
dλdsp
dt

vqsp = Rspiqsp + ωsλdsp +
dλqsp
dt

vdrp = Rrpidrp − (ωs − ωr)λqrp +
dλdrp
dt

vqrp = Rrpiqrp + (ωs − ωr)λdrp +
dλqrp
dt

(3.1)

In above equations λ terms represent flux linkages, vdsp , vqsp , vdrp and vqrp are

the stator and rotor voltages on synchronously rotating d and q axis, while ωs and ωr
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are synchronous speed and rotor speed respectively. Components of stator and rotor

flux linkages for DFIG are,

λdsp = Lspidsp + Lmpidrp

λqsp = Lspiqsp + Lmpiqrp

λdrp = Lrpidrp + Lmpidsp

λqrp = Lrpiqrp + Lmpiqsp

(3.2)

Using (3.1) and (3.2), state-space equations in form of stator and rotor currents

for DFIG (asynchronous generator) are as follows :



i̇dsp

i̇qsp

i̇drp

i̇qrp


= lcp



−RspLrpidsp + [ωrpL
2
mp

+ ωsp(LspLrp − L2
mp

)]iqsp +RrpLmpidrp

+ωrpLrpLmpiqrp + Lrpvdsp − Lmpvdrp

−[ωrL
2
mp

+ ωs(LspLrp − L2
mp

)]idsp −RspLrpiqsp − ωrLrpLmpidrp

−RrpLmpiqrp + Lrpvqsp − Lmpvqrp

RspLmpidsp − ωrLspLmpiqsp −RspLspidrp − Lmpvdsp + Lspvdrp

+[ωs(LspLrp − L2
mp

)− ωrLspLrp ]iqrp

ωrLspLmpidsp +RspLmpiqsp −RspLspiqrp − Lmpvqsp + Lspvqrp

−[ωs(LspLrp − L2
mp

)− ωrLspLrp ]idrp



(3.3)

where, lcp = 1
LspLrp−L2

mp
= leakage co-efficient.

The basic eqns. (3.1,3.2) and the model of DFIG machine in (3.3) forms the basis to

create current source model of synchronous generator. It is apparent that appropri-

ately considering quantities like ω, iD, ifd, etc. in a mathematical model of DFIG,

a synchronous machine can be easily realized. The derived state-space model of any
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nth synchronous generator as current source model is presented in (3.4).



i̇dsn

i̇qsn

i̇fdn

i̇Dn


= lcn



−RsnLrnidsn + ωsLsnLrniqsn +RrnLmnifdn + ωsLrnLmniDn

+Lrnvdsn − Lmnvfdn

−ωsLsnLrnidsn −RsnLrniqsn − ωsLrnLmnifdn −RrnLmniDn

+Lrnvqsn − LmnvDn

RsnLmnidsn − ωsLsnLmniqsn −RsnLsnifdn − ωsL2
mn
iDn

−Lmnvdsn + Lsnvfdn

ωsLsnLmnidsn +RsnLmniqsn −RrnLsniDn + ωsL
2
mn
ifdn

−Lmnvqsn + LsnvDn



(3.4)

where, lcn = 1
LsnLrn−L2

mn
.

It is important to note that this model inherently comprises of AVR and a damper

winding behaviour.

The standard test system, WSCC 3-generator 9-bus system (Anderson and

Fouad),(Sauer, Pai, and Chow), is used as the base for simulation purposes. To

demonstrate the large penetration of wind energy, as mentioned earlier, in WSCC

3-generator 9-bus system, a synchronous generator (Gen #2) is replaced with DFIG

based wind farm of equivalent rating as shown in Fig.3.1. The other synchronous

generators viz. Gen #1 (swing gen), Gen #3 and loads in the system are maintained.

• Mathematical model for DSE using EKF

For the DSE, the precise mathematical modelling of the power system components is

very essential. For a power system, having inherent non-linear relationship between

its state and measurements, it becomes necessary to imbibe these non-linearities in es-

timation process to have accurate estimation of power system state variables (Mandal,

Sinha, and Roy). In the work that follows, a variant of Kalman filter approach - the

discrete extended Kalman filter (EKF) is used for DSE. Vital mathematical steps for
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38 Wind Generators

Figure 3.1: WSCC 3-generator 9-bus test system, where synchronous gen. #2 is

replaced with equally rated DFIG based wind farm

discrete EKF are intricately treated in many literature (Ghahremani and Kamwa,

“Dynamic State Estimation in Power System by Applying the Extended Kalman Fil-

ter With Unknown Inputs to Phasor Measurements” Wang, Gao, and Meliopoulos

Huang, Schneider, and Nieplocha Simon) and is enumerated in Appendix C.

The fundamental state-space equation representation is required to be formu-

lated for the implementation of EKF based DSE of a 9-bus test system i.e.

ẋ = Ax + Bu. (3.5)

It is derived based on the (3.3) - (3.4).

In the present 3-generator, 9-bus test system, Gen #1 and #3 are the conven-

tional synchronous generators and Gen #2 is the asynchronous (DFIG) generator.

In the following, four currents of each generator are the state, and hence the matrix

dimension of x is of 12 × 1 and A is 12 × 12. The sub-subscript to components in
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vectors x and u refer to the generator number.

[
ẋ
]

=
[
i̇ds1 i̇qs1 i̇fd1 i̇D1 i̇ds2 i̇qs2 i̇dr2 i̇qr2 i̇ds3 i̇qs3 i̇fd3 i̇D3

]T
(3.6)

and u is comprised of input voltages and represented by,

[
u
]

=
[
vds1 vqs1 vfd1 vD1 vds2 vqs2 vdr2 vqr2 vds3 vqs3 vfd3 vD3

]T
(3.7)

The matrices A and B are apparently presented in (3.8), (3.9).

[
A
]
12×12

=



A11 A12 A13 A14 0 0 0 0 0 0 0 0

A21 A22 A23 A24 0 0 0 0 0 0 0 0

A31 A32 A33 A34 0 0 0 0 0 0 0 0

A41 A42 A43 A44 0 0 0 0 0 0 0 0

0 0 0 0 A55 A56 A57 A58 0 0 0 0

0 0 0 0 A65 A66 A67 A68 0 0 0 0

0 0 0 0 A75 A76 A77 A78 0 0 0 0

0 0 0 0 A85 A86 A87 A88 0 0 0 0

0 0 0 0 0 0 0 0 A99 A910 A911 A912

0 0 0 0 0 0 0 0 A109 A1010 A1011 A1012

0 0 0 0 0 0 0 0 A119 A1110 A1111 A1112

0 0 0 0 0 0 0 0 A129 A1210 A1211 A1212



(3.8)

Non-zero elements of matrix A12×12 (3.8) are,

Elements of Generator # 1

A11 = A22 = −lc1Rs1Lr1 , A12 = −A21 = lc1ωsLs1Lr1 ,

A13 = A24 = lc1Rr1Lm1 , A14 = −A23 = lc1ωsLr1Lm1 ,

A31 = A42 = lc1Rs1Lm1 , A32= −A41 = −lc1ωsLs1Lm1 ,

A33 = A44 = −lc1Rs1Ls1 , A34= −A43= −lc1ωsLs1Lr1
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Elements of Generator # 2

A55 = A66 = −lc2Rs2Lr2 , A56 = −A65 = lc2[ωrL
2
m2

+ ωs(Ls2Lr2 − L2
m2

)],

A57 = A68 = lc2Rr2Lm2 , A58 = −A67 = lc2ωrLr2Lm2 ,

A75 = A86 = lc2Rs2Lm2 , A76 = −A85 = −lc2ωrLs2Lm2 ,

A77 = A88 = −lc2Rs2Ls2 , A78 = −A87 = lc2[ωs(Ls2Lr2 − L2
m2

)− ωrLs2Lr2 ]

Elements of Generator # 3

A99 = A1010 = −lc3Rs3Lr3 , A910 = −A109 = lc3ωsLs3Lr3 ,

A911= A1012= lc3Rr3Lm3 , A912 = −A1011= lc3ωsLr3Lm3 ,

A119= A1210= lc3Rs3Lm3 , A1110= −A129 = −lc3ωsLs3Lm3 ,

A1111= A1212 = −lc3Rs3Ls3 , A1112= −A1211= −lc3ωsLs3Lr3

In above, lcn = 1
LsnLrn−L2

mn
;n = 1, 2, 3 are leakage co-efficients of three generators.

Matrix B is given by,

[
B
]
12×12

=



B11 0 B13 0 0 0 0 0 0 0 0 0

0 B22 0 B24 0 0 0 0 0 0 0 0

B31 0 B33 0 0 0 0 0 0 0 0 0

0 B42 0 B44 0 0 0 0 0 0 0 0

0 0 0 0 B55 0 B57 0 0 0 0 0

0 0 0 0 0 B66 0 B68 0 0 0 0

0 0 0 0 B76 0 B78 0 0 0 0 0

0 0 0 0 0 B86 0 B88 0 0 0 0

0 0 0 0 0 0 0 0 B99 0 B911 0

0 0 0 0 0 0 0 0 0 B1010 0 B1012

0 0 0 0 0 0 0 0 B119 0 B1111 0

0 0 0 0 0 0 0 0 0 B1210 0 B1212



(3.9)

Matrix B12×12 (3.9) is comprised of following non-zero elements,
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Elements of Generator# 1 Elements of Generator# 2

B11= B22 = lc1Lr1 , B55= B66 = lc2Lr2 ,

B13 = B31 = B24 = B42 = − lc1Lm1 , B57= B75 = B68 = B86 = − lc2Lm2 ,

B33 = B44 = lc1Ls1 , B77= B88 = lc2Ls2

Elements of Generator# 3

B99= B1010 = lc3Lr3 ,

B911= B119 = B1012 = B1210 = −lc3Lm3 ,

B1111= B1212 = lc3Ls3

For EKF implementation, measurement matrix y is constituted by output active and

reactive power from all three generators. Measurement matrix y comprised of active

and reactive powers is given by (3.10).

[
y
]

=



P1

Q1

P2

Q2

P3

Q3



=
3

2



(vds1ids1 + vqs1iqs1)

(vqs1ids1 − vds1iqs1)

(vds2ids2 + vqs2iqs2 + vdr2idr2 + vqr2iqr2)

(vqs2ids2 − vds2iqs2 + vqr2idr2 − vdr2iqr2)

(vds3ids3 + vqs3iqs3)

(vqs3ids3 − vds3iqs3)



(3.10)

Here Pn and Qn are the active power and reactive power output of generators;

n = 1, 2, 3. As shown in Fig.3.1, all measurement data are centrally collected through

various PMUs. Measurements are received at the sample rate of 0.001s.

Innate nature of EKF includes process of prediction and estimation along with

filtering of noises viz. measurement noise and process noise. As per IEEE standard -

1159 noise content permitted up to 1% of voltage magnitude (“IEEE Recommended
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Practice for Monitoring Electric Power Quality”). Characterization and quantifi-

cation of PMU measurement noise is presented in (Brown et al.). Additive white

Gaussian noise with various degree(s) of noise has been considered by researchers.

References (Ghahremani and Kamwa, “Local and Wide-Area PMU-Based Decentral-

ized Dynamic State Estimation in Multi-Machine Power Systems”) (Shi, Tylavsky,

and Logic)(Zhou) use white Gaussian noise with zero mean and standard deviations

of 0.2%, 2% and 3% respectively. In (Chen et al.) a standard deviation of 0.5% and

1% is considered for voltage and current data. Zero mean Gaussian noise distribu-

tion with standard deviation of 2% is considered in (Tripathy, Srivastava, and Singh).

To emulate the noise in measurements, all the P and Q measurements are corrupted

with white Gaussian noise having zero mean and standard deviation of 1%. Further,

a uniform process noise with standard deviation of 0.0001% and process noise covari-

ance is presumed accordingly. Justifiable assumption of initial state error covariance

of 1% of actual values is taken for proposed EKF approach. Under the steady state

condition, active and reactive power generation of synchronous generators and DFIG

are alike the standard WSCC 3-generator 9-bus test system. For EKF implementa-

tion, initialization of state variables is derived from the load flow results.

• Simulation Details

Presented work studies DSE when the large quantum of wind based generation is fed

in synchronous generator dominated grid. To replicate such renewable penetration

situation, a synchronous generator (Gen. #2) in standard WSCC 3-generator 9-bus

system is replaced with equivalent rating of DFIG based wind farm (Fig.3.1, 3.2 (Fan

and Wehbe)). The wind farm is assumed to have large DFIG generators, of which

38 generators are running in parallel to provide the equivalent output power. Each

generator is rated for 5 MVA, 0.69 kV and connected to system bus of 18 kV through

the transformers. The machine rating, parameters of DFIG based wind generator

are given in Appendix 3.1 (at the end of chapter). It is assumed that the DFIG

generators’ operation is coherent, the wind speed is constant for a simulation duration

of 20s, the wind farm P and Q output is controllable. Each wind generator MPPT is

considered to provide tracking of maximum power point and LVRT control is affected

during the fault. These assumptions are justifiable, as the constant wind speed is



CHAPTER 3. KALMAN FILTERS BASED CENTRALIZED . . . 37

realistic for the simulation duration and as it is steady, the mechanical input to the

DFIG is constant and hence the MPPT operation can be fixed. The system frequency

is 60 Hz. All quantities are real, unless specified.
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Figure 3.2: DFIG integrated with rest of WSCC 3-gen. 9-bus test system

Proposed state-space modelling, which represents all generators as current sources,

is done using MATLAB/Simulink platform. Synchronous generators are modeled ex-

hibiting the effect of excitation control. The modelling of turbine-governor system is

not a part of the present work. In two-axis (d and q) representation of all generators,

q axis leads d axis by 90◦, and hence,a motoring convention is adopted through out

the text. In modelling of DFIG, linearized operation of controllers is assumed. Focus

of presented section is to show estimation of non- measurable states of generators,

hence modelling of drive train and wind turbine and its control is not included here.

The modelling of crowbar circuitry in suggested model is realized during the short

circuit condition of the DFIG. The measurement data of Pn and Qn are required for

the EKF algorithm and hence to obtain them, PMUs are assumed to be available at

bus #1, bus #2 and at bus #3.

The performance of integrated current source models of generators in a multi-
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machine test system (created using MATLAB/Simulink platform) is validated with

similar test system created on PSCAD/EMTDC platform. The indicative block dia-

gram of state-space implementation of MATLAB/Simulink model is shown in Fig.3.3.

Similarly to prove corroboration of MATLAB/Simulink model, similar model is built

on standard PSCAD/EMTDC platform as shown in Fig. 3.4.

Figure 3.3: Block diagram of MATLAB/Simulink implementation of WSCC system

with DFIG
The steady - state and transient conditions are simulated and various measure-

ments are analyzed to ensure the correctness of the integration of current source

generator models. It is observed that the active and reactive power, current and

voltages obtained in both the systems are reasonably identical in waveshape and the

magnitude mismatch is of only a few percentage. The periods before 10 s and after

∼ 13 s indicate steady state behaviour for all the generators and the transient state

exists between 10 s to 13 s. The results are presented, mainly focussed on transient

state, for both the platforms viz. MATLAB/Simulink and PSCAD/EMTDC in Fig.

3.5 (for iabcn). This manifests the utility of the created MATLAB model and offers

a feasibility of this model for the EKF based state estimation. Since the test system

involves the participation of power system network (in terms of bus or line faults, pa-

rameter changes etc.), the generator terminal voltage variations are realized by using
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Figure 3.4: Implementation of WSCC with DFIG system in PSCAD/EMTDC

reduced Ybus matrix as given below (Anderson and Fouad). V

Vb

 =

Y nn Y nb

Y bn Y bb


−1  I

0

 (3.11)

Here, n=1..a , a= number of generator buses (a=3 in this case), Vb is complex bus

voltage where b=1, 2...b, b= total number of buses (b=9 in this case).

Hence, having knowledge of current vector I, (3.12) can be derived using (3.11)

to obtain the generators bus terminal voltage vector V as,

V = Y reduced
−1.I,where Y reduced = (Y nn − Y nbY

−1
bb Y bn)−1 (3.12)

Based on this for presented case, the voltages (input) are fed back using V =

[Zreduced]I = [Y reduced]
−1I as per the current changes due to fault conditions. This

information is employed with the P and Q measurements available from all PMUs at

the generator buses for the state estimation.
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Figure 3.5: Currents iabc1 , iabc2 and iabc3 under steady state and dynamic condition

obtained using MATLAB model and PSCAD model for (a, b) synchronous generator

#1, (c, d) DFIG and (e, f) synchronous generator #3

3.1.3 Case studies

The mathematical model of a test system presented hereby involves asynchronous

generator, synchronous generators and a bus network. The measurement data (cor-

rupted with 1 % SD Gaussian noise, see Fig. 3.6) from generator buses are made

available at a central data collector through PMUs. This results in implementation

of model with discrete EKF based central state estimator. The striking feature of

this work is the ability of centralized state estimator to simultaneously predict the dy-

namic states of all the generators during steady - state and in the events of transient

conditions, either faults or other changes. Performance of this centralized dynamic

state estimator is evaluated in this work for two specific cases viz. (1) a terminal

fault near DFIG bus, 3-phase-to-ground fault at bus #7 and (2) a quick reduction in

output active power of DFIG in the event of sudden reduction in wind speed. The

states of all the generators are predicted and are discussed.
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Figure 3.6: Active and reactive power measurements with 1% SD Gaussian noise

Case I: A short circuit fault near DFIG terminals

Usually, in a test system like SMIB or a multi-machine system, the state estimation of

one synchronous generator is performed using Kalman approach (as in (Ghahremani

and Kamwa, “Dynamic State Estimation in Power System by Applying the Extended

Kalman Filter With Unknown Inputs to Phasor Measurements”)). This case depicts

the 3-phase-to-ground metallic short circuit fault near the induction generator bus and

hence the consequent change in the bus network Ybus. The fault persist only for 5 cycle

duration (from t = 10 s) and circuit re-establishes subsequently. In the absence of

current limiter circuits, oscillation in currents is observed at the instance of re-closure

of breaker at the time of fault removal. It is to be noted that the DFIG behaves as a

constant current source, not offering any change in its current output (voltage reduces

to LVRT level, about 0.1 p.u.). Both the synchronous generator current output varies

as per the new condition and the swing bus offers the most as compared to Gen. #3.

All 12 current states are estimated using the Pn and Qn as noisy measurements (n

= gen. no.) and are depicted along with output three phase current variations. The

d and q axis stator currents of synchronous generators (ids1 , iqs1 , ids3 , iqs3) and field

and damper winding currents (ifd1 , iD1 , ifd3 , iD3) are successfully predicted during the

network fault condition. Equally it is treated to observe the variations in DFIG states
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viz. ids2 , iqs2 , idr2 , iqr2 in Fig.3.9.

During transient condition, variation in actual state variables of Gen.# 1 i.e.

ids1 , iqs1 , ifd1 , iD1 are shown in Figs. 3.7-3.8. The oscillations in attaining initial

states, due to initial conditions observed in all the cases, however, quickly converges

to actual states e.g. ids1 as shown in Fig. 3.7(a-b) (MATLAB and PSCAD platform

results). The period before 7.5 s and after ∼ 15 s is the steady state behaviour of

all the generators and the transient state in between, are presented for rest of the

figures. These initial convergence are not depicted for rest of the cases to highlight the

precise practicability of EKF algorithm during pre, during and post fault conditions.

Estimation of rest of states of synchronous Gen #1 viz. iqs1 , ifd1 , iD1 are shown in

Fig. 3.8(a-c).
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Figure 3.7: Actual and estimated ids1 under steady-state and transient condition for

synchronous generator #1 showing initial convergence of estimation algorithm

Further, using the PMU measurements, an accurate estimation is observed for

current states of DFIG viz. ids2 , iqs2 , idr2 , iqr2 and synchronous generator #3 viz.

ids3 , iqs3 , ifd3 , iD3 as depicted in Fig. 3.9 and Fig. 3.10 respectively. From the esti-

mation results, it is evident that with the proposed integrated model, EKF based

estimator described here, estimates dynamic states of generators concurrently with

accuracy in the event of bus fault.
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Figure 3.8: Actual and estimated iqs1 , ifd1 , iD1 under steady-state and transient con-

dition for synchronous generator # 1
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Figure 3.9: Actual and estimated ids2 , iqs2 , idr2 , iqr2 under steady-state and fault con-

dition for DFIG

Case II: Sudden reduction in output active power from wind generator

Stochastic nature of wind governs the output power from individual wind generator

and in turn from wind farm. A dynamic condition is simulated and analyzed where
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Figure 3.10: Actual and estimated ids3 , iqs3 , ifd3 , iD3 under steady-state and fault con-

dition for synchronous generator #3

due to sudden reduction in wind speed and hence, the input mechanical power to

wind turbines of wind farm, the output active power from wind generator suddenly

reduces by 50% at simulation time instant t = 10 s. The wind farm continues to feed

the grid in this condition for the remaining simulation period. It is apparent that

sudden reduction in the wind power generation, with load maintained as before, the

synchronous generators in the system are required to meet the prevailing load. The

states of all the generators are affected due to the change and is to be estimated by

the discussed multi-machine model.

For the case under discussion, DFIG now delivers 81.5 MW of active power, in

the reduced wind speed condition. It is important to notice that majority of active

power deficit is supplied by the swing bus (as shown in Fig.3.11) due to large load at

bus #5 and overall less line impedance. An insignificant change is observed in delivery

of active power from generator #3 and reactive power from all three generators.

The effect of generation change from each generator is apparent in reduction

in wind power on all the state variables. Change in output active power causes

substantial variation in d and q axis currents of stator and rotor belong to Gen. #1

and Gen. #2 and a modest change is observed for Gen. #3. Changed active and
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38 Wind Generators

Figure 3.11: WSCC 3-generator 9-bus system in steady state with sudden 50% re-

duction in output active power of DFIG wind farm

reactive power injected to generator bus #1, #2 and #3 are measured using PMUs

and are given as input, with an added noise, to EKF based estimation algorithm.

From Fig. 3.12, it is observed that, for all four current quantities of Gen. #1,

satisfactory estimation is achieved with the help of proposed model and EKF.

The centralized dynamic state estimator simultaneously estimates dynamic states

of DFIG (Gen. #2) as Fig. 3.13. The state estimator removes the measurement and

process noise and faithfully estimates the DFIG states. The active power compen-

sation offered by swing and other synchronous generator is clearly traced by the

estimator and the quantities with appropriate changes are shown in Fig. 3.12 and

3.14.

Important to note that having achieved accurate dynamic current states of all

generators using (3.10) active and reactive power output can be derived easily for all

generators. This consequently offers an added advantage to achieve other important

dynamic states of synchronous generator viz. load angle-δ, rotor speed - ω, tran-
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Figure 3.12: Swing generator #1 current states - actual and estimated, due to output

active power reduction in DFIG
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Figure 3.13: DFIG current states - actual and estimated, due to output active power

reduction in DFIG

sient voltage behind d axis - E
′

d and transient voltage behind q axis- E
′
q in real time

using standardized equations (Kundur, Balu, and Lauby). Similarly, knowledge of

dynamic states of DFIG can help to obtain its other dynamic states viz. rotor speed-



CHAPTER 3. KALMAN FILTERS BASED CENTRALIZED . . . 47

0

0.5

1

1.5

2

 (a) i
ds3

− Generator 3
C

u
rr

e
n

t 
(k

A
) 

→

 

 

i
ds3

i
ds3−estimated

−7

−6

−5

−4

−3

−2

−1

0

(b) i
qs3

− Generator 3

C
u

rr
e
n

t 
(k

A
) 

→

 

 

i
qs3

i
qs3−estimated

9.5 10  10.5 11  11.5 12  
0

1

2

3

4

(c) i
fd3

− Generator 3

time (s) →

C
u

rr
e
n

t 
(k

A
) 

→

 

 

 i
fd3

i
fd3−estimated

9.5 10  10.5 11  11.5 12  
0

1

2

3

4

5

6

7

 (d) i
qr3

− Generator 3

time (s) →

C
u

rr
e
n

t 
(k

A
) 

→

 

 

i
D3

i
D3−estimated

Figure 3.14: Synchronous generator #3 current states - actual and estimated, due to

output active power reduction in DFIG

ωr and capacitor voltage - vdc (Ekanayake, Holdsworth, and Jenkins EL-Hagry and

Eskander).

In summary, the simulation results in Fig. 3.7 to Fig. 3.14 show quite con-

vincingly that the estimated states can track the actual responses ,relatively well,

under nonlinear simulations with proposed state-space model. This satisfactory es-

timation results endorses the use of proposed state-space model to build centralized

coordinated dynamic state estimator using EKF which can estimate dynamic states

of synchronous generators and DFIG concurrently. With the help of PMUs, this ap-

proach can give boost to idea of global centralized approach for control and stability

of wide power system having significant penetration of wind energy.

3.2 UKF based centralized concurrent DSE of

multi-machine system

3.2.1 UKF as a DSE tool

Though EKF has been accepted widely as DSE tool, it suffers from few limitations.

Generally encountered limitation in implementing EKF are,
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• Linearization error

With highly nonlinear and complex mathematical model, especially in large

power system, inherent Jacobian implementation while prediction of dynamic

states there exist a potential for linearization error. Once it exist, due to imbibed

nature of EKF, it will result in cascading effect. This results in divergence of

EKF and provides erroneous results of DSE.

• Computation time

EKF employs Jacobian matrices calculation for prediction of state from one

instance to the next one. In case of large power system, calculation of Jaco-

bian matrices take much time. High computation time leads to a paradox to

requirement of DSE which itself offers information and trends of fast changing

dynamics in real time. This aspect constraints application of EKF as DSE tool,

especially for large power system.

To overcome limitation of EKF, approach of UKF is proposed for DSE which works on

principle of unscented transform (UT) to achieve estimation of dynamic states (Julier,

Uhlmann, and Durrant-Whyte). DSE for multi-machine power system (WSCC 3-

generator 9-bus system) incorporating synchronous generators is detailed by (Valverde

and Terzija Wang, Gao, and Meliopoulos). Implementation of UKF in multi-machine

power system to estimate dynamic states of only DFIG which is integrated with

conventional synchronous generators is presented in (S. Yu, “Realization of State-

Estimation-Based DFIG Wind Turbine Control Design in Hybrid Power Systems

Using Stochastic Filtering Approaches” S. Yu, “State Estimation of Doubly Fed In-

duction Generator Wind Turbine in Complex Power Systems”). This section of work

presents the centralized DSE of synchronous generators and DFIG simultaneously us-

ing UKF. Detailed algorithmic steps have been presented in many literatures, hence

only important steps of UKF algorithm for DSE is narrated in Appendix D.

3.2.2 Simulation preliminaries

In this section, to present a case, standard WSCC 3-generator 9-bus system is selected.

Alike first section, enhanced wind energy penetration is simulated by replacing gen-

erator # 2 with equal rating of consolidated wind farm as shown in Fig. 3.15.



CHAPTER 3. KALMAN FILTERS BASED CENTRALIZED . . . 49

38 Wind Generators

UKF

Figure 3.15: WSCC three-generator nine-bus test system, where synchronous gen.

#2 is replaced with equally rated DFIG based wind farm

All simulation aspects of MATLAB/Simulink model of WSCC system are similar

to the presented in first section of this chapter. Dynamic condition adopted as well as

mathematical modelling for implementation of WSCC system for UKF is identical to

first section. The focus of this section is the UKF implementation in state estimation

and related discussion.

3.2.3 Simulation results and discussion

After 3-phase-to-ground metallic short circuit fault near bus #7 on transmission line

# 5-7 (Fig.3.15) at t=10 s, fault is cleared by reclosure of circuit breakers on both sides

of transmission line. During pre-fault, during fault and post-fault conditions, active

and reactive power measurements are collected by PMUs installed at all generator

buses as shown in Fig. 3.15. Similar to first case, all measurements are corrupted

with Gaussian noise having 1% of standard deviation. All measurements are given to

UKF based centralized dynamic state estimator to achieve DSE of all dynamic states



CHAPTER 3. KALMAN FILTERS BASED CENTRALIZED . . . 50

of all generators. The ids, iqs, idr and iqr are the dynamic states to be estimated for

DFIG and ids, iqs, ifd and iD are the dynamic states to be estimated for remaining

two synchronous generators using UKF. The estimation results obtained using UKF

are presented in Fig. 3.16, Fig. 3.17 and Fig. 3.18.
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Figure 3.16: Actual and estimated ids1 under steady-state and transient condition for

synchronous generator #1 showing initial convergence of estimation algorithm
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Figure 3.17: Actual and estimated iqs1 , ifd1 , iD1 under steady-state and transient con-

dition for synchronous generator#1
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Figure 3.18: Actual and estimated ids2 , iqs2 , idr2 , iqr2 under steady-state and fault con-

dition for DFIG
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Figure 3.19: Actual and estimated ids3 , iqs3 , ifd3 , iD3 under steady-state and fault con-

dition for synchronous generator #3

Prior knowledge of accurate initial values of estimated states (12 states in this

case) is the phenomenon does not exist always. As shown in Fig.3.16(a), assumption of

initial value of state is different (taken 5 % of initial deviation), and hence, UKF based



CHAPTER 3. KALMAN FILTERS BASED CENTRALIZED . . . 52

estimation depict initial oscillations and converges within very short time duration

as can be observed for one case of ids1 for generator #1. Accurate estimation of ids1

displaying the capability of UKF based DSE tool, under dynamic condition, can be

seen in Fig. 3.16(b) for pre-fault, during fault and post-fault conditions. Authentic

estimation is observed for other states of generator #1 viz. iqs1 , ifd1 and iD1 as shown

in Fig.3.17.

Employment of proposed current source model is for centralized concurrent DSE

using UKF is further enforced by observing estimation results of generator # 2 (DFIG)

and generator # 3 (SG) as shown in Fig.3.18 and Fig. 3.19 respectively. Result prove

that with proposed current source model, dynamic states of both kind of generators

i.e. synchronous generators and DFIGs can be estimated, concurrently, using both

Kalman filter based estimation tools viz. EKF and UKF.

3.3 Observations on comparative performance of

EKF and UKF

Successful concurrent DSE for synchronous generators and DFIG is achieved employ-

ing EKF and UKF. EKF and UKF both are equipped with their own pros and cons.

It is important to investigate and analyze performance aspects of both DSE tools

which are significant for concurrent dynamic state estimation, which subsequently

helps to decide their applicability to most suitable condition for optimum results.

1) Root mean square error (RMSE) comparison

To evaluate the performance of EKF and UKF, standard RMSE approach is adopted.

RMSE method commonly used to avail the information regarding error between val-

ues predicted by estimation algorithm and actual values obtained from the actual

model. RMSE approach is presented by,

RMSE =

√∑n
i=1(xactuali − xestimatedi)2

n
(3.13)

where i represents particular instance, n is total number of samples. Individual differ-

ence at instance i, (xactuali − xestimatedi) is the residual. However, RMSE aggregates

individual residuals to represent single entity which symbolizes accuracy of predic-

tions.
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To represent a case, 12 states of 3 generators viz. SG #1 , DFIG and SG #3 is

presented here in its entirety. Initial oscillatory nature of DSE is due to normally ar-

bitrary initial values of states. This condition can be avoided in case of knowledge of

initial states. Hence, sample size of n = 4000 is taken excluding condition dependent

initial oscillatory span to precisely check RMSE of EKF and UKF. In accordance to

(3.13), xactual is a vector comprised of original values of all 12 states at instant i.

Similarly xestimatedi
represents vector of estimated output of all 12 states using EKF

and UKF respectively. The RMSE obtained for all 12 states are shown in Table 3.1.

It is important to note that, all RMSE are presented as normalized percentage value

Table 3.1: Comparison of RMSE for EKF and UKF

State % RMS Error for EKF % RMS Error for UKF

ids1 13.36795 16.32879

iqs1 2.98479 5.11601

ifd1 5.40765 6.69298

iD1 2.85792 4.89716

ids2 15.67944 33.42504

iqs2 2.73335 5.71519

idr2 8.19939 17.47713

iqr2 2.61697 5.47068

ids3 10.43923 38.38857

iqs3 1.18061 4.56137

ifd3 2.44148 8.98722

iD3 1.13025 4.36593

with reference to their steady state value. For standard two area system (Kundur,
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Balu, and Lauby) comprised of synchronous generators, accuracy of EKF over UKF

is endorsed by (Zhou et al.).

Results presented in Table 3.1 emanates the fact that in case of limited bus

power network (9-bus system) incorporating DFIGs, EKF based centralized concur-

rent DSE also reflects better accuracy as compared to UKF. For almost all states

observed error differences of both EKF and UKF are insignificant. However, Large

RMS errors in a few states is mentioned in Table 3.1. This is due to algorithmic

limitations of UKF approach as highlighted in (Zhou et al.). Considering detailed (or

higher order) modelling (at the cost of time involved in estimation) with insignificant

measurement noise would help to reduce these RMS errors.

2) Estimation time during fault

DSE results are obtained using measurements from PMU with 0.001 s of measurement

update rate. It may be noted that as the no. of states to be estimated increases, the

time required for estimation too shall increase and vice versa. It becomes difficult to

provide sample-wise time calculations per state due to algorithm initializations, time

required for adding noise and loading of samples etc., and hence average estimation

time is presented.

Once measurement data are available to dynamic state estimator, DSE algorithm

must be able to produce accurate estimates in shortest possible span. This feature

results in information about critical states ahead of its measuring counterpart. Use

of information of dynamic states achieved in advance, can be a boon for better mon-

itoring and control. This section evaluates estimation time taken by EKF and UKF

algorithms for centralized concurrent estimation.

Estimation time is calculated only during dynamic condition of fault. The dynamic

condition of fault is same as mentioned in Section 3.1.3 (Case I). To present a case,

from t= 10 s to t=10.083 s ( for 84 measurements at the measurement update rate

of 0.001 s) time to estimate all 12 states employing EKF and UKF is determined.

The average time of estimation is derived from total estimation time required for 84

samples. Result are tabulated in Table 3.2. It is important to note that, all results
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Table 3.2: Comparison of estimation time

Total estimation time Average estimation

for 84 measurements (t = 10.0 s to 10.083 s) time

EKF 13.0499 s 0.1554 s

UKF 21.0371 s 0.2504 s

are obtained using MATLAB 8 R2014b platform with Intel Core i7-4500 CPU 1.80

GHz processor supported by 8 GB of RAM. Results highlight the fact that in case

of centralized concurrent DSE for 12 dynamic states of synchronous generators and

DFIG, EKF takes lesser time as compared to UKF. These results are in affinity to the

case of synchronous generators presented in (Zhou et al.). However for large power

systems, having large number of buses and associated dynamic states, due to need of

linearization through Jacobian calculation may incur more estimation time for EKF

than UKF.

3) Convergence time with initialization errors

For DSE process in power network, initialization of dynamic states is done using

steady state results achieved by load flow. However, accurate information regarding

initial values of non-measurable states of power network is not the condition which

frequently prevail. In such cases, approximate values of initial states are assumed

employing postulations and knowledge of network synthesis. Hence, it becomes sig-

nificant to investigate the performance of DSE tools, based on aspect of convergence

time, with different initialization error as a consequence to assumption of initial val-

ues of dynamic states. Important to note that convergence time is derived using same

processing hardware capability mentioned in previous case.

The investigation on convergence time is carried out for EKF and UKF with

three cases viz. 10%, 20 % and 30% of initialization error in dynamic states respec-

tively. DSE is carried out afterwards. In methodology adopted, maximum tolerance

considered in settling is εt = 5 % . With initial state value error of 10 %, 20 % and 30
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%, time up to convergence of differential state vector (x̂− xactual) for 12 states lesser

than εt is noted and results are presented as shown in Table 3.3.

Table 3.3: Comparison of convergence time with different % of initialization error

Initialization Convergence time for (x̂ − xactual) < εt

error EKF UKF

10 % 3.293 s 6.322 s

20 % 3.641 s 6.439 s

30 % 3.927 s 6.729 s

Results indicate, unscented transform based UKF takes more time to converge

for all 12 states to tolerance level εt. Result endorses, use of EKF is preferable, over

UKF, for small system involving reasonable non-linearity of state-space model.

3.4 Conclusions

The research in the domain of simultaneous DSE of multiple generators in a multi-

machine test system is presented in this work. A synchronous generator current source

model is presented using the asynchronous generator (DFIG) current source model

as base model. The work depicts the integration of synchronous and asynchronous

generators’ integration with the power system network. The mathematical approach

for the integration is validated against results from PSCAD platform. Assuming

power measurement data availability using PMUs, installed at generator buses, this

work proposes to estimate the current states of all the generators. The presented

mathematical approach, combined with EKF based dynamic state estimator offers

noise removal as well as the predictability. The performance of estimation algorithm

for the state-space model is tested under dynamic conditions viz. network fault and

sudden change in DFIG output. Results embedded in the section prove that EKF

based estimator, with proposed mathematical model, track dynamic states precisely

and concurrently for all generators. Expansion in this approach for wide power sys-

tem having larger integration of renewable can be helpful to EMS operator, to acquire
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information of internal dynamic states and future trends of generators for better mon-

itoring and control of power system i.e. a real time wide area monitoring. Results

of centralized concurrent DSE of synchronous and asynchronous generators’ using

UKF approach endorses use of presented model for DSE employing multiple Kalman

filter based DSE tool. Comparative investigation for EKF and UKF for root mean

square error (RMSE), estimation time during dynamic condition of fault and conver-

gence time to different errors in initialization of state is presented. Results defend

use of EKF over UKF for comparatively smaller and unremarkable non-linear system.

Postscript : DFIG based wind generator is installed, on-shore or off-shore, op-

erates in adverse environmental conditions. Moreover, the operation of DFIG is

emphatically dependent on various voltage and current sensors used inside the DFIG.

Significant dependence of DFIG operation on internal sensors opens up new debate of

possibility of its faithful operation under sensor mal-operation, either current sensors

or voltage sensors. Can dynamic state obtained in real time provide solution this

problem ? Next chapter deals with application of DSE to overcome mal-operation of

DFIG under the condition of erroneous sensor function.



Chapter 4

Application of EKF based DSE for

DFIG under Faulty Current Sensor

Measurements

4.1 Introduction

Increasing presence of wind power has made it essential for EMS operator to have

knowledge of dynamic states of conventional as well as induction generators. Rea-

son for increasing avenues of research in dynamic state estimation (DSE) for DFIG

states is its highly nonlinear model, involving complex equivalent circuit, existence

of converters as well as controllers (Khedher, Khemiri, and Mimouni). El-hagry and

Eskander presented estimation of ids, iqs, iqr and ωr (rotor speed) using EKF over

sub-synchronous to super-synchronous speed range of DFIG while employing ids, ωr

and capacitor charging current - idc as measurement variables (EL-Hagry and Eskan-

der). Further, estimated ids, iqs, iqr and ωr of DFIG are used to derive vds, vqs, vdr

and vqr. These derived variables are consequently used in the control loop to obtain

control parameters to regulate rotor voltage and rotor position of DFIG (EL-Hagry

and Eskander). Estimation of five states of DFIG viz. idr, iqr, ids, iqs, ωr and a

parameter J (moment of inertia) using EnKF is documented (Fan et al.). Here, Fan

et. al. gives insight to parameter calibration along with estimation of parameter.

Sensitivity of EnKF algorithm to different measurement noise levels, initial state and

parametric errors are discussed in (Fan et al.). With the help of state space model

58
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of DFIG with reference to stationary axis viz. α and β, DSE of stator and rotor

current Iα and Iβ, rotor speed ωr and its position, θ with augmented integrals of Iα

and Iβ is conceptualized using EKF for SMIB system in (Malakar, Tripathy, and Kr-

ishnaswamy). In IEEE-39 bus system, dynamic states of DFIG (which is connected

to an additional bus # 40) is estimated using UKF in (S. Yu, “State Estimation of

Doubly Fed Induction Generator Wind Turbine in Complex Power Systems”). It uses

measurement data of voltage phsaor and current phasor obtained by PMU installed at

bus # 40. Along with comparative performance of EKF and UKF for DSE of DFIG

dynamic states, solution is proposed to overcome condition of bad measurement. In

work suggested by Yu et. al., algorithm is proposed using normal innovation ratio

to detect outliers (bad data) in measurement data as well as in the pesudo-input

variables derived using PMU data. After detection of bad data, that bad data and/or

pesudo-input variables are discarded and replaced with corresponding data available

at previous instant (“State Estimation of Doubly Fed Induction Generator Wind

Turbine in Complex Power Systems”).

With the sudden variations in active and reactive powers supplied to point

of common coupling (PCC), control circuit of DFIG undergoes rapid variations of

different control variables. Quick and frequent changes in control variables is also

supported by fast operation of sensors. This may cause mal-operation or failure of

sensors. For better stability and control of DFIG, knowledge of accurately estimated

dynamic states offers an opportunity to explore in case of a mal-functioned current

sensor conditions. The noisy measurement case, measurements with outliers and

condition of measurement data unavailability are simulated for faulty current sensor

operations. Output of EKF based estimation algorithm is proposed as substitute

of mal-functioned current sensor measurements for controlling of DFIG rotor circuit

behaviour. In brief, application of estimated output using EKF algorithm for better

control of DFIG based wind power forms core of presented work in this chapter.

4.2 Mathematical Approach for DSE of DFIG

The DFIG in an SMIB system, described in Fig. 2.1, is considered here for the

discussion.

Generally, DFIG operating speed is restricted to ± 30 % of synchronous speed.
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During wide variations in speed, two main components viz. rotor side converter

(RSC) and grid side converter (GSC) play significant role in injecting power at grid

frequency. In the present research, rotor side control circuit is presented for analysis.

Operation of RSC control circuit is explained through block diagram representation

in Fig. 4.1. The P ∗,Q∗,i∗qr,i
∗
dr,v

∗
qr and v∗dr represent pre-determined and/or derived

reference signals.

i

i

i

ii

v

v

dq i
i

Figure 4.1: Rotor side converter (RSC) control circuit for DPC

Considering stator field oriented (SFO) DFIG operation, the stator direct axis

voltage is assumed to be vds= 0. SFO allows decoupled control of P and Q by

employing measurement signals iqr and idr respectively as shown in Fig. 4.1.

Total simulation duration considered is 6 s for all the cases. Relatively small

simulation period supports consideration of wind speed to be constant during simula-

tion. The dynamics and mathematical modelling of mechanical components of system

are not been focused. However, it is possible to perform the estimation of desired

variables provided, a state-space model adaptable to EKF algorithm is employed.

Currents entering in to machine are positive i.e. motoring conventions are adopted

for the DFIG operation as denoted in Fig. 2.1. As shown in control circuit (Fig. 4.1),

outer measurement loop continuously monitors P and Q, whereas for RSC operation

rotor current ir is observed continuously by inner measurement loop using current

sensor. The rotor current measurements idr and iqr are fed to the RSC circuit to con-

trol active and reactive power output. Primary focus of presented work is application

of resulting (estimated) states (as EKF output) for controlling of rotor power. EKF
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algorithm runs concurrently with DFIG operation and provides estimated dynamic

states using measurement data collected using PMU i.e. in this case active and re-

active power output of DFIG. The linearized operation of converters, controllers and

control circuit is considered as the parameter variations are slower as compared to

controller actions.

The voltage and flux linkage equations for the DFIG as an induction machine

are available in (Ekanayake, Holdsworth, and Jenkins Bourdoulis and Alexandridis),

and presented in Chapter #2 are used for simulation objective (2.1-2.3).

Rotor current components viz. direct and quadrature axis components, are the

vital variables to control active and reactive power output of DFIG (Wu et al., “Decen-

tralized Nonlinear Control of Wind Turbine With Doubly Fed Induction Generator”).

These currents are considered here as state variables along with direct and quadrature

axis components of stator current. Differential equations presented in Chapter #2

(2.4) are utilized here, hence not presented again. Active and reactive power output

of DFIG, acquired from PMU, are used as measurement variables for EKF based

DSE. Stator active and reactive power of DFIG is presented as,

Ps =
3

2
(vdsids + vqsiqs)

Qs =
3

2
(vqsids − vdsiqs)

(4.1)

Rotor active and reactive power is given by,

Pr =
3

2
(vdridr + vqriqr)

Qr =
3

2
(vqridr − vdriqr)

(4.2)

Total active and reactive power output from DFIG is formed by following equations,

P =
3

2
(vdsids + vqsiqs)︸ ︷︷ ︸

Ps

+ (vdridr + vqriqr)︸ ︷︷ ︸
Pr

Q =
3

2
(vqsids − vdsiqs)︸ ︷︷ ︸

Qs

+ (vqridr − vdriqr)︸ ︷︷ ︸
Qr

(4.3)

Measurement matrix y for EKF algorithm is,

[
y
]

=
[
P Q

]T
(4.4)
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Stator and rotor voltages referred to d and q axis are input to EKF based DSE

algorithm. Hence, input vector u is given by,

[
u
]

=
[
vds vqs vdr vqr

]T
(4.5)

4.3 EKF implementation for DFIG

In present work, EKF a variant of Kalman filter approach is used for dynamic

state estimation of DFIG based wind generating system connected to infinite bus (an

SMIB). DFIG based power system modelling and necessary mathematical steps for

EKF implementation are covered in literature (Huang, Schneider, and Nieplocha Si-

mon). A detailed description of mathematical steps involved in EKF implementation

is presented in Appendix C.

4.3.1 Discrete model of DFIG for EKF implementation

To perform EKF based state estimation, discretized model of DFIG is employed.

Stator currents ids, iqs and rotor currents idr, iqr are the states to be estimated

using DSE algorithm. DFIG’s output active power - P and reactive power - Q,

the measurement variables, are considered to be available from PMU. Differential

algebraic equations (DAEs) presented in previous section are discretized to achieve

DSE. State equations shown in Chapter # 2 - (2.4) and measurement equations in

(4.4) are represented in discretized form as (4.6) and (4.7) respectively ,

idsk

iqsk

idrk

iqrk


=



idsk−1

iqsk−1

idrk−1

iqrk−1


+ f(idsk−1

, iqsk−1
, idrk−1

, iqrk−1
, uk−1)∇t (4.6)

Here, k indicates the number of instance and ∇t is time step.

Pk =
3

2
(vdskidsk + vqskiqsk + vdrkidrk + vqrkiqrk)

Qk =
3

2
(vqskidsk − vdskiqsk + vqrkidrk − vdrkiqrk)

(4.7)
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Apart from the state and measurement equation, the input vector u is presented

in discrete form as 4.8, [
uk
]

=
[
vdsk vqsk vdrk vqrk

]T
(4.8)

4.3.2 Simulation preliminaries and DSE of DFIG using EKF

• Simulation aspects

SMIB system (Fig.2.1) is mathematically simulated using MATLAB / Simulink plat-

form. Details of machine specifications is provided in Appendix 4.1 (at the end of

chapter). Total simulation time is 6 s and system frequency is 50 Hz. Dynamic con-

dition is simulated by considering sudden demand reduction in active power by grid.

The demand is reduced by 40 % at an instance t = 2 s. Sudden drop in required active

power output warrants for change in reference active power of DFIG. Direct power

control (DPC) scheme is employed to adapt to new power requirements. RSC control

circuit adapts to change its output in accordance to new power requirement. In this

work, synchronized operation of GSC and RSC control circuit is considered to adjust

to dynamic conditions. Output active power from DFIG to grid is changed from 5.69

MW to 3.4 MW and output reactive power is changed from 0.3293 to 0.3986 MVAR

as shown in Fig. 4.2. It is important to note that the reduction in power delivery is

met by the reduction observed in the stator and rotor output both, as limited power

control is offered by the rotor circuit.

With reduced power output condition, RSC control loop causes proportionate

change in other current parameters viz. ids, iqs, idr and iqr and voltage parameters

viz. vds, vqs, vdr and vqr.

• EKF implementation for DFIG

EKF algorithm provides dynamic estimation of the states using measurements col-

lected at faster rate. Normally active power and reactive power are measured with

the help of current transformer (CT) and potential transformer (PT) on AC side

and with the help of sensors on converter side. Due to unforeseen hostile conditions

of operation for wind generator, the possibilities exist where measurement data ob-

tained from these instrument transformers are corrupted with noise. To simulate such
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Figure 4.2: (a) Change in output active and (b) change in output reactive power,

under dynamic condition

a noisy measurement environment, measured P and Q are corrupted with Gaussian

noise (standard deviation of 1% ) as show n in Fig. 4.3. Process noise is considered

having SD of 0.01%.
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Figure 4.3: (a) Active power and (b) reactive power, with and without noise
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EKF algorithm is employed to estimate quantities for rotor control circuit viz.

idr and iqr as well as stator currents ids and iqs. For EKF based DSE,, P and Q forms

measurement matrix y. EKF works perfectly as DSE tool and it estimates all four

dynamic state viz. idr,iqr,ids and iqs of DFIG accurately as shown in Fig. 4.4 and Fig.

4.5 and hence, validating accuracy of EKF algorithm.
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Figure 4.4: (a) ids actual and ids−est estimated using EKF algorithm (b) iqs actual

and iqs−est estimated using EKF algorithm

4.4 Case studies and discussions

4.4.1 Case I: Current sensor measurement with noise

In DFIG, idr and iqr, rotor currents are sensed using internal current sensors and

then used for control of active and reactive power output. Post sudden output active

power changes at t = 2 s, the output of current sensor is assumed to be corrupted by

noise at t = 2.3 s. This simulates faulty current output from sensor. The decoupled

measurements idr and iqr contains Gaussian noise having standard deviation of 5 %.

Effect of noise on measurements of idr and iqr are depicted in Fig.4.6(a) and Fig.



CHAPTER 4. APPLICATION OF EKF BASED DSE . . . 66

1

1.5

2

1.5

i d
r
 (

k
A

)
 →

(c) i
dr

 and estimated i
dr

  using EKF

 

 

i
dr

i
dr−est

0 1 2 3 4 5 6
2

3

4

5

2

3

4

time (s) →

i q
r
 (

k
A

)
 →

(d) i
qr

 and estimated i
qr

 using EKF

 

 

i
qr

i
qr−est

Figure 4.5: (a) idr actual and idr−est estimated using EKF algorithm (b) iqr actual
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Effect of noise in idr and iqr deteriorate the performance of control loop and

hence, its effect on rotor active power Pr and reactive power Qr are seen in Fig.4.8(a)

and Fig.4.9(a) respectively. Noisy power output from rotor also tend to affect total

power output of DFIG (4.7). Main focus is to observe impact of noise on various

quantities due to noisy ir (idr, iqr), hence linearized propagation of noise to Pr and

Qr, to P and Q is assumed.

The moment at which effect of consistent noise is observed in output of current

loop and consequently on active and reactive power at t = 2.3 s, in a short while

(t = 2.32 s) output of current sensors idr and iqr are replaced with output of EKF

based estimation algorithm î+dr and î+qr as shown in Fig. 4.6(b) and Fig. 4.7(b). From

t = 2.32 s onwards estimated currents î+dr and î+qr compared with i∗dr and i∗qr (Fig.

4.1) to produce controlled rotor output Pr and Qr to desired level in RSC control

circuit. With estimated current inputs of î+dr and î+qr , nature of output rotor active

and reactive power is observed as shown in Figs. 4.8(b)-4.9(b) respectively. This

consequently causes noise free active power P and reactive power Q (4.7). Results

endorses successful application of EKF based dynamic states to overcome effect of
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Figure 4.8: a) Effect of noisy idr and iqr on Pr (b) Pr after noisy currents replaced

with idr−est and iqr−est

high magnitude noise on active and reactive rotor power output.

4.4.2 Case II: Current sensor measurement with outliers

Apart from noise, internal current sensors may also have gross errors that deflect

significantly from the real data due to hostile environment. DFIG being low in inertia

and supported with fast controlling actions of RSC and GSC, outputs may tend to

diverge from delivering pre-defined active and reactive powers. Power network with

large penetration of DFIG may see an imbalanced power delivery and consequent

change in frequency of power network when connected in multi-machine power system.

Therefore, it becomes imperative that bad data must be detected and eliminated from

measurement pool. Simulating another possibility, the realistic condition is tested

where random outliers show up in measurements by current sensors (in ir and hence

in idr and iqr) as shown in Fig. 4.10(a) and Fig. 4.11(a) respectively.

Due to outliers in measurement signals, rotor active and reactive power change

abruptly. The abrupt change in Pr and Qr due to change in idr and iqr are shown in

Fig. 4.12-(a) and Fig. 4.12-(b) respectively.
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with idr−est and iqr−est
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To detect the unwanted outliers, method of normalized innovation ratio is pro-

posed by (S. Yu, “State Estimation of Doubly Fed Induction Generator Wind Turbine

in Complex Power Systems”). Appendix 4.2 (at the end of chapter) provides an

overview of this method of normalized innovation ratio to detect outliers.

To overcome effect of outliers in measurement, suggested algorithm (Appendix

4.2) detects for existence of outliers at any instant k in output of idr current sensor.

In presented case, once outlier is detected by the algorithm at t = 3 s, immediately

current measurement from sensor (which are input to rotor control circuit) is replaced

with î+dr and î+qr instead of idr and iqr, as shown in Fig. 4.10(b) and Fig.4.11(b)

respectively. Generally, outliers or bad data are momentary in nature. Hence, to

ensure smooth and uninterrupted power output, estimated values of idr and iqr i.e.

î+dr and î+qr are continued to provide input for duration of t= 0.2 s. Subsequently,

normal measurement from idr current sensor resumes as an input to RSC. If bad data

is detected again in output of current sensor, then same procedure is repeated for every

such incidence. In the present case, 4 random occurrence of outliers are considered.

Replacement with estimated variables î+dr and î+qr gives smooth and error free control of

DFIG. Once erroneous values are replaced with accurate output of EKF algorithm,

it provides outlier free rotor active power Pr as indicated in Fig.4.12(b). Results

endorse that EKF based estimator values can be used as back-up for better control

of DFIG when current sensor used in RSC control circuit is infected with outliers.

Similar abrupt effect of measurement outliers and removal of unstable output using

î+dr and î+qr has been observed for other variables viz. P and Q as shown in Fig.4.13.

Second possibility is considered, when the outliers exist in measurement of cur-

rent sensor during dynamic condition. Generally change in current due to dynamic

condition is slower as compared to bad data generated due internal current sensor

mal-function. Algorithm for outlier detection differentiate between sudden change

in measurement from current sensor considering the abrupt differential change in

measured quantity in respective time duration. The condition of outliers in currents

idr and iqr during dynamic condition are shown in Fig. 4.14(a) and Fig. 4.15(a)

respectively.
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EKF algorithm estimates dynamic states viz. idr, iqr alongwith ids, iqs using the

active power and reactive power output of DFIG as an measurement. As suggested in

Appendix 4.2, once outliers are detected during dynamic conditions, immediately

idr, iqr are replaced with idr−est, iqr−est respectively. Then onwards, idr−est and iqr−est

are input to rotor power control circuit. Hence, idr−est and iqr−est are fed for small

duration alike to first condition, thereafter normal measurement data available from

current sensor are given as control signal to RSC. At every detection of outliers similar

method is adopted. The effect of idr−est and iqr−est are observed in Fig. 4.14(b) and

Fig. 4.15(b) respectively. The effect of outliers on Pr and Qr are depicted in Fig.

4.16(a) and Fig. 4.16(b) respectively. Employing dynamically estimated states idr−est

and iqr−est, achieved using EKF, smooth and accurate active and reactive power

delivery is observed under dynamic condition as shown in Fig. 4.16(c) and Fig.

4.16(d) respectively.
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Figure 4.16: (a)-(b) Effect of idr and iqr having outliers on Pr and Qr, (c)-(d) Pr and

Qr after measurement with outliers replaced with idr−est and iqr−est

4.4.3 Case III: Measurement unavailability due to current

sensor failure

An another possibility, taking a worst case scenario following transient load change,

a current sensor fails and hence measurement data to RSC control circuit are not

available continuously. This results in random intermittent measurement packet drop.

This conditions is simulated by taking random periods of measurement unavailability.

The measurement current ir i.e. idr and iqr to RSC control circuit is considered to

be erratically unavailable due faulty current sensor. Faulty current sensor conditions

cause measurement unavailability in idr and iqr for period 0.5 s from t = 2.3 s to t =

2.8 s and subsequently for period of 1.4 s i.e. from t = 3.8 s till t = 5.2 s as shown in

Fig. 4.17(a)-(b).
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Figure 4.17: (a)-(b) idr and iqr measurement unavailability for 0.5 s and 1.4 s duration,

(c)-(d) idr and iqr when unavailable measurements are replaced with idr−est and iqr−est

To overcome this condition, following algorithm is used:

Figure 4.18: Flowchart showing application of DSE under measurement data unavail-

ability
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Figure 4.19: (a)-(b) Pr and Qr measurement unavailability for 0.5 s and 1.4 s duration,

(c)-(d) Pr and Qr when unavailable measurements are replaced with idr−est and iqr−est

Proposed algorithm first checks availability of measurement and if it recognizes

the unavailability of measurement (in this case at time t=2.3 s), input to RSC control

circuit is provided with the output of EKF algorithm viz. î+dr instead of idr and î+qr

instead of iqr until input from current measurement resumes (in this case at time

t = 2.8 s) as shown in Fig. 4.17 (c)-(d). Results indicate that estimated values

obtained using EKF based DSE faithfully fills the measurement void existed due to

faulty current sensor operation. Hence, EKF based DSE works as a substitute to

actual measurement from current sensor during measurement data unavailability. As

seen in Fig. 4.19(a)-(b), absence of measurements idr and iqr also affects active and

reactive power output of rotor. This discontinuity in rotor power is also overcome

when current sensor measurement are replaced with î+dr and î+qr as shown in Fig.4.19(c)-

(d). It assures that during unavailable measurement condition, continuity in active

and reactive power from rotor and consequently total active and reactive power can be

maintained utilizing estimated values obtained using EKF. Similar effect of idr and iqr

unavailability and their replacement with î+dr and î+qr is also observed on other output
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quantities viz. P and Q (4.3). Results prove ability of EKF based DSE algorithm,

operating concurrently with DFIG, to achieve dynamically estimated state variables.

Outcome also endorses that states achieved through DSE can be used to overcome

different internal current sensor issues.

4.5 Conclusions

DFIG based wind power has made it imminent for an EMS operator to have knowl-

edge of its dynamic states for better power control. After obtaining accurate DSE of

DFIG, it can be used further to provide better control of DFIG, mainly for controlling

its rotor active and reactive power. Inherent nature of continuous dynamic operation

of DFIG, sometimes causes mal-operation and / or faulty operation of current sen-

sor. The work presented demonstrates successful application of estimated dynamic

states achieved using EKF to provide robust control under different faulty conditions

of current sensor. Faulty conditions of current sensor which measures ir (idr and

iqr ) for RSC control circuit is simulated by considering three conditions viz. noisy

measurement output, measurements with outliers and measurement unavailability.

In all three conditions, the moment abnormality is detected in current sensor mea-

surements, actual measurements are replaced by faithfully estimated quantities î+dr

and î+qr resulted from EKF algorithm. Results indicate use of proposed novel scheme

which employs dynamically estimated states instead of faulty measurements and suc-

cessfully overcomes disadvantage of undesired output from DFIG due to ambiguous

input to control circuit under current sensor malfunctions.

Appendix 4.1

DFIG parameters

Rated MVA: 6 MVA, rated line voltage 0.69 kV, rotor resistance (Rr)= 0.5779 mΩ

, rotor inductance (Lr) = 1.1657 mH, mutual inductance (Lm) =1.1138 mH, stator

resistance (Rs)= 0.514 mΩ, stator inductance(Ls) = 1.1632 mH, frequency(f) = 50

Hz, synchronous speed (ωs) = 314 rad/s, rotor speed (ωr)=360 rad/s, slip (s) = −

0.1469.
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Appendix 4.2

Normalized innovation ratio for particular measurement is the ratio of difference of

predicted measurement and actual measurement to square root of covariance of that

measurement i.e.

εk = (yik − ŷ+ik)/
√
Pyyk (4.12)

where i=1,2,. . .m, m = number of measurement. k is number of instance, εk is nor-

malized innovation ratio for measurement i at kth instance. yik is ith measurement

collected from sensor and ŷ+ik is estimated ith measurement acquired using EKF algo-

rithm at the kth instance. Here, Pyyk represents error covariance and hence, standard

deviation is
√
Pyyk . Result of normalized innovation ratio is compared with maximum

tolerance level εmax to detect the outliers. Procedural steps to detect and remove bad

measurements or outliers at kth instance and thereafter use of estimated states instead

of removed bad measurements are:

a. Acquire ith measurements yik and obtain predicted ith measurements ŷ+ik at kth

instance (ir i.e. idr and iqr)

b. With the help of Pyyk and using (4.12) find normalized innovation ratio εyk .

c. If εyk < εmax then outlier does not exist at kth instance.

d. If εyk > εmax then outlier exist in measurement at kth instance.

e. Replace the measured value idrk and iqrk with the predicted value î+drk and î+qrk

respectively.

f. Observe the output of the control loop. Keep on feeding output estimated values

î+dr and î+qr till condition in step no. d does exist.



Chapter 5

Conclusions

DSE in power system has been implemented using wide variety of approaches / tools

i.e. from earlier WLSE approach to recent different variants of Kalman filters and

others. With the implementation of PMUs, capable of providing faster and accu-

rate measurement than conventional remote terminal units (RTUs), DSE in power

system has attained a great leverage. DSE of conventional synchronous generators

under transient conditions, using EKF and UKF, is widely adopted. With the de-

tailed modelling of induction generators, requirement of DSE of DFIG is also met.

With increasing penetration of DFIGs, the need of concurrent DSE of conventional

synchronous generators and DFIG based wind generators emerges.

This thesis contributes a novel approach for concurrent DSE of multi-type gener-

ators in a large power systems. A mathematical model of the generators integrated in

the power system is provided so as to realize centralized DSE. Extended Kalman filter

(EKF) and unscented Kalman filter (UKF) are the two tools employed to estimate

accurate dynamic states of synchronous generators (SG) and doubly fed induction

generator (DFIG) simultaneously. Applicability of both the DSE tools is checked for

standard WSCC 3-generator 9-bus test system considering measurement availability

from PMUs. Encouraging results of dynamic state predictions supports the model

proposed and the approach adopted. The comparison of results obtained using EKF

and UKF indicate selection of the appropriate tool for the state estimation. For

continuous and desired operation of DFIG (or its circuitry) under mal-functioned

sensor conditions, real time application of estimated dynamic states is well discussed

in thesis.

79
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Chapter #1 is a brief introduction, focusing on the need of centralized concurrent

DSE for a power network comprising of conventional and renewable energy sources.

Erstwhile efforts for DSE in power network (consisting of synchronous generators)

using EKF and UKF are analyzed and discussed. Literature referring performance of

EKF and UKF subjected with anomalous measurement condition are also presented.

Attempts for DSE of dynamic states of DFIG connected to power network dominated

by synchronous generators are elaborated and scrutinized. Limited application of DSE

for improvised operation of DFIG is deliberated. The usefulness of the DSE of DFIG,

for its application for smooth and uninterrupted operation of DFIG is elucidated. As

a direct repercussion of the analysis of published literature, research objectives are

formulated. The chapter ended with scope of research work and outline of the thesis.

Chapter #2 comprises of a novel approach for modelling a SG and DFIG on a

unified platform. DFIG, conventionally presented as current-source model is taken

as base for representation of current-source model of synchronous generator. Critical

observations led to an analogy between current-source state-space model of DFIG

and state-space model for SG and it is deliberated. Minor modifications and inherent

logical correspondence between DFIG and synchronous generator variables is pre-

sented. Mathematical representation of base DFIG model is prepared in MATLAB

/ Simulink and validated with standard software platform PSCAD / EMTDC. In-

corporating minor modification and observations, current-source state-space model of

synchronous generator is proposed. Performance of proposed synchronous generator

MATLAB / Simulink model is established with synchronous generator model of stan-

dard PSCAD/EMTDC software under dynamic condition. Current envelops, of short

circuit currents, observed at point-of-common-coupling (PCC) endorses the idea of

current-source model of synchronous generator. Highlights of this chapter are:

• Except slip, inherent logical correspondence is observed for all four states of

current-source state space models of DFIG and SG.

• Variation in rotor direct axis current of DFIG is analogous variation of field

current of SG. Outcome suggest naturally imbibed effect of AVR in proposed

current-source model of SG.

• Change in input voltage parameters and derived active and reactive power com-
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ponents of state-space current-source model of SG is similar to standard PSCAD

/ EMTDC model.

Chapter #3 encompasses a novel approach of centralized concurrent DSE of

power network comprised of synchronous generators with significant penetration of

wind energy sources (DFIGs). WSCC 3 - generator 9 - bus multi-machine system

is taken as reference in which Gen. #2 is replaced with similar rating of coher-

ently operative DFIG wind generator farm (comprised of 38 generators). Model of

multi-machine power system (WSCC 3-generator 9-bus system) is presented using

MATLAB / Simulink platform where both synchronous generators and DFIGs are

represented as current-sources. Proposed multi-machine current-source model is vali-

dated with identical PSCAD/EMTDC model. EKF and UKF are tools used to form

centralized concurrent dynamic state estimator, supported with PMU measurements,

to estimate dynamic states of SGs and DFIG. Results of simultaneously estimated

dynamic states of SGs and DFIG endorses ability of proposed novel approach for DSE

under dynamic condition, as well. The dynamic conditions arising due to stochastic

nature of DFIG as well as due to network fault, suggested approach of centralized

concurrent DSE delivers accurate results. Chapter ends with aspects on comparative

analysis of EKF and UKF performance. Noteworthy outcomes of this chapter are:

• Suggested novel approach using current source models can be expanded for

larger power network comprised of more synchronous generators and DFIGs

after due consideration of intricacies.

• Dynamic states achieved based on current source models of both kind of gener-

ators, can further used to achieve real time information of other critical states

of both types of generators.

Chapter #4 focuses on application of estimated dynamic states achieved, in real

time, for uninterrupted and robust control of DFIG during conditions of sensor mal-

operation. Emphatic dependence of DFIG on internal rotor current sensor is discussed

in direct power control (DPC) scheme. Normally encountered erroneous conditions of

current sensor includes high noise, content of outliers and intermittent communica-

tion link failure post transient conditions are discussed. Subsequent effect of current

sensor faulty operation on output rotor power and total power of DFIG is inevitable.
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Supported with algorithms to detect faulty operation of current sensor, scheme to

replace these current sensor measurement with dynamically estimated states is dis-

cussed at length. Results portray that replacement of dynamic state with current

sensor measurement as an input to rotor side power control circuitry is successful in

overcoming after effects caused by current sensor faulty operation.

5.1 Future Scope

In above discussion, centralized concurrent DSE is proposed for multi-machine power

network consists of synchronous generators and DFIG. As far as wind energy is con-

cerned, wide spread installation of fixed speed induction generator (FSIG) is already

in existence and permanent magnet synchronous generator (PMSG) has started ac-

quiring its space. Alike to DFIG and SG, using current source model approach for

FSIG and PMSG, centralized concurrent DSE of all kind of generator (SGs, DFIGs,

FSIGs and PMSGs) using EKF and/or UKF offers new realm of research possibilities.

The variations in the wind speed conditions, power train modelling, modelling with

higher order terms and salient pole synchronous generator current source modelling

is still an area to ponder upon. Considering geographical benefit, many nations like

India have increased penetration of solar energy i.e. solar PV systems. These are

typically an inverter system for the grid to view, acts inherently as current-source

model. Thoughts may be put to integrate the inverters along with the modelling

approaches of the machines can offer a new domain for research.

PMU aided measurement allows DSE estimator to avail knowledge of critical

states in real time and in lesser time as compared to measurement devices measur-

ing similar quantities. In fast changing and highly dynamic power network, knowing

critical information regarding dynamic states e.g. δ, ωr, frequency for synchronous

generators and ωr, capacitor voltage vdc in real time offers a new domain to activate

controlling action like AVR, TG much quicker than activation initiated by conven-

tional measurement devices. This shall help to achieve quicker stabilization of vast

power networks.

More penetration of renewable energy sources in power network can alter cri-

terion for relay based protection- designed in accordance to ubiquitous synchronous

generators. Increased complexity and renewable integration can cause occasional
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zonal mis-coordination of relays. New realm of opportunities can be explored to

overcome shortcomings of present protection system and to adapt to new coordina-

tion requirement arises due to renewable integration by using DSE-based protection

(EBP) (Meliopoulos et al.).

Postscript : DSE tools viz. EKF and UKF are emphatically rely on measure-

ment data provided by fast sensors, PMUs and SCADA. Though PMU is fast and

accurate in providing measurement data, the communication link error and measure-

ment packet drop hamper the desired performance (Gu and Jirutitijaroen). Hence,

it becomes interesting to know performance of EKF and UKF under the condition of

measurement packet drop along with different measurement update rates. Appendix

A, as an offshoot of preceding work, gives performance comparison of EKF and UKF

for intermittent measurement condition with different measurement update rates.

The weighted least square estimation (WLSE) method, normally used for static

state estimation (Grainger, Grainger, and Stevenson), in coordination with load flow,

to provide steady state picture of power system considering power network’s quasi-

static nature. Conventionally load flow is done by collecting various measurement

from RTU. What effect would be on load flow, if RTU measurements provide bad data

in any of measurements? And can WLSE be the solution of the that? Appendix B,

briefly, conveys an effort to answer these questions.



Appendix A

Comparative Analysis of EKF and

UKF with Multiple Measurement

Update Rate during Intermittent

Measurement

A.1 Introduction

EKF based DSE algorithm application to power system has been widely deliberated

in literature. This algorithm has capability to incorporate non-linearity in power

system functions. EKF has limitation due to propagating linearization error and

high computation time for Jacobian calculation. (Julier, Uhlmann, and Durrant-

Whyte Valverde and Terzija Wang, Gao, and Meliopoulos) Unscented Transform

based UKF offers better estimation performance as compared to EKF, especially for

large system. The reason is linearization and Jacobian calculation are not required

in UKF (Valverde and Terzija Wang, Gao, and Meliopoulos).

Both DSE algorithms’ (viz. EKF and UKF ) performances significantly depend

on measurement data update interval and noise content in measurement (Huang,

Schneider, and Nieplocha Valverde and Terzija Wang, Gao, and Meliopoulos Zhou

et al.). Measurement data update rate is crucial factor to judge estimation aspects

of DSE tools. Normally PMU provides measurements at the rate of 120 sa/s (Zhou

et al.). However, in recent times PMUs have observed significant technological de-

84
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velopment. PMUs are capable to provide and transmit data at sampling rate of 48

samples/cycle i.e. 2880 sa/s for 60 Hz system (CERTS). Wide range of measurement

update rate of PMU warrants for evaluation of EKF and UKF algorithms provided

with different measurement update rates. It is noticed that UKF performs better

than EKF in measurement conditions wherein exist high measurement update time

interval and high measurement noise content (Wang, Gao, and Meliopoulos). State

tracking ability of EKF and UKF, and other filters viz. particle filter (PF) and en-

semble Kalman filter (EnKF), is presented using 100 Monte Carlo simulations for

two-area four-machine system (Zhou et al.). The performance of EKF and UKF in

case of missing measurement data is addressed in Zhou et.al.. Issue of measurement

unavailability for a duration of 1 sec is addressed by (Zhou et al.). Here estimation

algorithm is provided measurement through linear interpolation, which consequently

increases effective measurement update rate (Zhou et al.). With this linearly inter-

polated measurement data, computation time of all filters are compared and EKF

offers least computation time of 4.9 s with interpolated effective measurement update

time interval of 0.005 s ( i.e. measurement update rate of 200 sa/s )(Zhou et al.).

However, the performance of both the EKF and UKF based DSE algorithms under

unavailability of partial and complete measurement data with different measurement

update rate needs attention. It is to be clarified here that partial data unavailability

to the algorithm means that a few data set are not available for certain duration (and

no algorithmic data manipulation is performed), whereas complete unavailability of

data means all the data sets are failed to update the algorithm with required sets of

input information.

Though PMU technology has made measurement data reliable and accurate

with insignificant transmission delay, a worst case condition of complete measurement

data loss to SE algorithm may arise. It could be due to malfunction or failure of

communication link (Zhou et al.). The rare possibility seeks attention to observe

the DSE algorithm’s performances, if all measurement data is lost for a few cycles.

Addressing this, the work presented here compares and analyzes capability of EKF

and UKF algorithms to estimate dynamic states viz. synchronous generator rotor

speed, rotor angle, under partial and complete measurement data unavailability (loss)

condition for a few cycles with different measurement data update rates. Results
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suggest desirable trade-off in selection of suitable measurement update time interval

for certain duration of data unavailability for observing convergence of both filters.

The possibility is explored on two multi-machine standard test systems viz. WSCC

3-generator, 9-bus system and IEEE 14 bus system (Anderson and Fouad Sauer, Pai,

and Chow Pai and Chatterjee Christie).

A.2 Test systems and simulations preliminaries

A.2.1 State representation and measurement aspects

All synchronous generators’ rotor speed ωi, rotor angle δi are the dynamic states to

be estimated. Initialization of the states is done using load flow data. For mathemat-

ical modelling, the classical model of synchronous generator is preferred, and related

differential equations are reproduced in (A.1)-(A.2) with usual notations (Anderson

and Fouad Sauer, Pai, and Chow). Automatic voltage regulator and turbine governor

have not been considered as a part of the model. Frequency is taken 50 Hz for both

the systems.

Mi
dωi
dt

= Pmi
− Pgi − Pdi (A.1)

where Pdi = Di(ωi − ωs)/ωs and i = 1 to n, n= number of generators.

dδi
dt

= ωi − ωs (A.2)

Unless specified, the p.u. representation is used. δi rotor angle is in (elec.rad). Mi

is inertia constant and Di is damping constant of synchronous generators. Input

mechanical power Pmi
is assumed constant. Pgi is electrical power generated, ωi is

actual rotor speed and ωs is synchronous speed.

The state vector x is presented as,

x = [ωi δi]
T

The measurements for both test systems are : 1) active and reactive power at gener-

ator buses; 2) bus voltage magnitudes and angles.
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Hence measurement equation are,

[h] =



Pgi

Qgi

Vm

θm


+


v


(A.3)

m = 1,2,...b, b is total number of buses. Pgi and Qgi are injected active and reactive

power at generator bus respectively. Vm and θm represent bus voltage magnitude

and bus voltage angle respectively. v is a random white Gaussian measurement noise.

To obtain measurement data for active and reactive powers at every generator

bus, current is derived using Yexp expanded nodal bus matrix ( which includes internal

transient reactances of generators X
′

d ), is given as below (Huang, Schneider, and

Nieplocha Anderson and Fouad)

Y nn Y nb

Y bn Y bb


︸ ︷︷ ︸

Yexp

 Eg

V

 =

 I
0


I is vector of current injected to bus, Eg is vector of internal complex voltages be-

hind transient reactance for every generator. V shows complex bus voltage vector i.e.

V = RVEg = −Y −1
bb .Y bnEg (A.4)

RV is bus reconstruction matrix. Using I, active and reactive powers injected to

generator buses are derived.

Intentional corruption of white Gaussian noise having zero mean and standard

deviation of 0.01 p.u is introduced in all measurements. Uniform process noise co-

variance of 0.0001 p.u. is used and initial state error covariance is 0.0001 p.u.. Initial

state error covariance matrix P 0, Rk as measurement noise covariance matrix and

Qk as process noise covariance matrix are presented as,

P0 = diag[0.0001]a×a

Qk = diag[0.0001]a×a

 , a = number of states
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Rk = diag[0.0001]d×d, d = number of measurements

Procedural steps of EKF and UKF based DSE approaches are discussed optimally

in Appendix C and Appendix D respectively. Hence, it is not presented here.

Important to note that, in presented work, for estimation employing EKF and UKF

techniques, fourth order Runge - Kutta method is used to achieve better accuracy

(Kundur, Balu, and Lauby Bila).

A.2.2 Simulated anomalous measurement conditions

Three measurement data update rates are chosen i.e. 50 sa/s, 33 sa/s and 25 sa/s

indicating measurement data update time intervals of 0.02 s, 0.03 s and 0.04 s re-

spectively. Abnormal operations or failure of measurement communication devices

can cause measurement data transmission interruption. Hence, data may become

unavailable to DSE algorithm. Such condition is simulated at 4 s i.e. 2 s after three

phase-to-ground metallic short circuit fault. The measurement data are lost, partially

as well as completely, for a few cycle as mentioned in Table A.1.

Table A.1: Summary of anomalous measurement conditions for both test systems for

all three measurement update rates (50 sa/s, 33 sa/s and 25 sa/s)

Measurement data Measurement data unavailability for both EKF and UKF based estimator

unavailability Complete measurement unavailability

duration Active power Reactive power Bus voltage magnitude Bus voltage angle

3 cycles X X X X

4 cycles X X X X

5 cycles X X X X

Partial measurement unavailability

3 cycles
√ √

X X

4 cycles
√ √

X X

5 cycles
√ √

X X

√
- Measurement available X - Measurement not available
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Measurement data resumes after data lost duration. Test systems are analyzed

for missing measurement data conditions having durations of 1 cycle to 5 cycles using

EKF and UKF approaches. Only a few results are presented here for brevity.

A.3 Case studies

A.3.1 Complete loss of measurement data

Case 1 − WSCC three generator nine bus system : Performance of both

algorithms viz. EKF and UKF is checked for complete unavailability of measurement

using WSCC 3-generator 9-bus system (Anderson and Fouad Sauer, Pai, and Chow).

Total duration for simulation is 10 s.

2

PMU

Synchronization

Kalman !lter
Based dynamic
State Estimator

P [k] Q [k]3 3 V [k] [k]3 3

PMU

PMU

P [k] Q [k]2 2 V [k] [k]2 2

P [k] Q [k]1 1 V [k] [k]1 1

P [k] Q [k]3 3 V [k] [k]3 3

P [k] Q [k]2 2 V [k] [k]2 2

P [k] Q [k]1 1 V [k] [k]1 1

Figure A.1: WSCC- three generator nine bus test system (Anderson and Fouad).

Three phase-to-ground, metallic short, fault is simulated at t= 2 s between

bus #5 and #7. Fault is cleared after 100 ms by removing the line between bus

#5 and bus #7 leading to topological change (change in network configuration) of
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system. This leads to changes in Ybus matrix. After clearing the fault, at time t=4

s all measurement data got interrupted for time duration of 3 cycles. In the similar

manner, measurement data lost durations of 4 cycles and 5 cycles are also presented.

In Fig.A.2, Fig.A.3 and Fig.A.4, it is depicted to show EKF and UKF algorithms’

performance for measurement update time intervals of 0.02 s (50 sa/s) , 0.03 s (33

sa/s) and 0.04 s (25 sa/s) respectively.
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Figure A.2: Performance of EKF and UKF in estimation of variations in speed of

generator 2 (ω2) (WSCC system), measurement update interval of 0.02 s and all

measurements missing for (a) 3 cycles, (b) 4 cycles and (c) 5 cycles duration

Keeping in view the location of fault, results are presented only for estimation

of speed of generator 2 (ω2) for EKF and UKF algorithms. Results of similar analysis

of other dynamic states are not presented for the brevity.

Case 2 − IEEE 14-bus system : The IEEE 14 bus test system (Pai and

Chatterjee Christie) is employed for proposed observation. Similar to previous case,

three phase-to-ground metallic short circuit fault is simulated at t = 2 s on the line

between bus #4 and #5 and faulty line between bus #4 and #5 is removed by

opening relevant circuit breakers after 100 ms. Necessary topological changes are

used while formation of pre-fault and post-fault Ybus. Classical model of generator is

considered and hence in absence of AVR and TG, system takes longer to settle to a
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Figure A.3: Performance of EKF and UKF in estimation of variations in speed of

generator 2 (ω2) (WSCC system), measurement update interval of 0.03 s and all

measurements missing for (a) 3 cycles, (b) 4 cycles and (c) 5 cycles duration
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Figure A.4: Performance of EKF and UKF in estimation of variations in speed of

generator 2 (ω2) (WSCC system), measurement update interval of 0.04 s and all

measurements missing for (a) 3 cycles, (b) 4 cycles and (c) 5 cycles duration
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new equilibrium condition after clearing of fault as shown in Figs. A.2 - A.8.

Figure A.5: IEEE 14 bus test system (courtesy: internet source).

At t = 4 s, measurement data update is terminated to algorithm input for

different three time periods (as shown in Table A.1) and then resumes. For these

missing data time durations, the tracking ability of both- EKF and UKF algorithms

is observed with three measurement update rates. Total duration for observation is

20 seconds in this test case so as to check convergence possibility of both algorithms.

Considering location of fault, only representative results of estimation of speed

of generator 2 (ω2) for both EKF and UKF algorithms are presented here.

A.3.2 Partial loss of measurement data

In a second case, performance of EKF and UKF is analyzed for both the test systems

under the condition of partial loss of measurement data i.e. out of four measurements

only two measurements are unavailable. At t= 4 s, only two measurements i.e. active

and reactive power are available for state estimation to both DSE algorithms as indi-

cated in Table A.1. Remaining two measurements i.e. voltage magnitude and voltage

angle of buses are not provided to both estimation algorithms for the period of 3, 4

and 5 cycles. Ability of estimation is analyzed for measurement update interval of

0.02 s (update rate 50 sa/s) which displayed divergence for all three missing measure-

ment durations in previous case. Under these conditions, with the availability of two
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Figure A.6: Performance of EKF and UKF in estimation of variations in speed of

generator 2 (ω2) (IEEE 14 bus system), measurement update interval of 0.02 s and

all measurements missing for (a) 3 cycles, (b) 4 cycles and (c) 5 cycles duration
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Figure A.7: Performance of EKF and UKF in estimation of variations in speed of

generator 2 (ω2) (IEEE 14 bus system), measurement update interval of 0.03 s and

all measurements missing for (a) 3 cycles, (b) 4 cycles and (c) 5 cycles duration
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Figure A.8: Performance of EKF and UKF in estimation of variations in speed of

generator 2 (ω2) (IEEE 14 bus system), measurement update interval of 0.04 s and

all measurements missing for (a) 3 cycles, (b) 4 cycles and (c) 5 cycles duration

measurements of active and reactive powers, both EKF and UKF algorithm estimates

variation in speed of generator 2 (ω2) accurately for WSCC system and IEEE 14 bus

system as shown in Fig. A.9 and Fig. A.10 respectively. With successful estimation

of one dynamic state under the condition of partial availability of measurement data,

similar result of other dynamics states are not presented here.

A.4 Discussion

A.4.1 Case I − WSCC test system

Ability of EKF and UKF algorithms to estimate dynamic states, post transient condi-

tion is observed under the condition of measurement data unavailability. Estimation

performance is tested for data unavailablity durations of 3, 4 and 5 cycles with mea-

surement data update rates of 50 sa/s, 33 sa/s and 25 sa/s each.

For measurement update rate of 50 sa/s (measurement time interval=0.02 s) as

well as for 33 sa/s (measurement time interval 0.03 s), EKF estimator fails to track

variation in speed of generator 2 (ω2) for all three measurement data unavailability
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Figure A.9: Performance of EKF and UKF in estimation of variations in speed of

generator 2 (ω2) (WSCC system), measurement update interval of 0.02 s and two

measurements missing for (a) 3 cycles, (b) 4 cycles and (c) 5 cycles duration

1

1.002

1.004

1.006

ω
2
 (

 i
n
 p

.u
.)

 

 

1

1.002

1.004

1.006

ω
2
 (

in
 p

.u
.)

 

 

0 2 4 6 8 10 12 14 16 18 20
1

1.005

time (s)

ω
2
 (

 i
n
 p

.u
.)

 

 

ω
2
 Actual ω

2
 Est(EKF) ω

2
 Est(UKF)(a)

(b)

(c)

Figure A.10: Performance of EKF and UKF in estimation of variations in speed of

generator 2 (ω2) (IEEE 14 bus system), measurement update interval of 0.02 s and

two measurements missing for (a) 3 cycles, (b) 4 cycles and (c) 5 cycles duration
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durations i.e. 3 , 4 and 5 cycles as shown in Fig.A.2 and Fig.A.3 respectively. Diver-

gence continues though availability of measurement data resumes. On the contrary,

UKF based estimator displays efficient estimation of variations in speed of generator 2

(ω2) for measurement update rates of 50 sa/s and 33 sa/s under all three measurement

data unavailability durations as Figs. A.2-A.3 depict.

Further, in case of measurement update rate of 25 sa/s (measurement update

interval 0.04 s), EKF estimation diverges the moment data is lost (for durations

of 3 and 4 cycles), but converges as measurement data resumes. The estimation

diverges in case of data lost duration of 5 cycles and divergence continues even after

measurement data resumption as shown in Fig.A.4. For measurement update interval

of 0.04 s, UKF estimates speed of generator 2 (ω2) with accuracy except a momentary

divergence.

Inherent nature of limited linearization and Jacobian matrix calculation in EKF

cause sustained divergence once measurement data become unavailable at specific

update rate. Derivation of mean and covariance of non-linear measurement functions

of power system state using UT contributes to convergence after measurement data

unavailability.

A.4.2 Case II − IEEE 14 bus test system

Considering location of fault, results for estimation of variation in speed of generator

2(ω2) is discussed here in detail. Fig. A.6 and Fig. A.7 show UKF’s edge over EKF.

For higher measurement update interval (0.04 s), efficient estimation noticed for EKF

in case of 3 and 4 cycles data lost duration but divergence observed when data are

missing for 5 cycles duration as shown in Fig. A.8. For measurement update rate of

25 sa/s, UKF based estimator accurately estimates variation in speed of generator

2(ω2) in all three cases as displayed in Fig. A.8.

It has been observed that if measurement data become unavailable for prolonged

duration, however such severe condition may arise very rarely, the UKF based esti-

mator shows divergence in case of both the multi-machine systems. Also important

to note that, computational time (for 5 cycles measurement data unavailable with

measurement update interval of 0.04 s) of EKF based estimator are 0.348217 s and

0.493501 s for WSCC system (total simulation time - 10 s) and IEEE 14 bus system
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(total simulation time - 20 s) respectively. With similar simulation conditions, the

computation time of UKF based estimator are 0.47624 s and 0.653194 s for WSCC

system and IEEE 14 bus system respectively. Computation time is calculated using

MATLAB version 2009a for a computer having 3.1 GHz processor, 32-bit operating

system and 4 GB of RAM.

Summary of results, for both systems, is presented in Table A.2.

Table A.2: Comparison of EKF and UKF based estimators’ performance for three

measurement data unavailable conditions and measurement update time intervals

Measurement data Measurement data update time interval (s)

unavailability EKF UKF

duration 0.02 s 0.03 s 0.04 s 0.02 s 0.03 s 0.04 s

3 cycles X X
√ √ √ √

4 cycles X X
√ √ √ √

5 cycles X X X
√ √ √

√
- Estimation feasible X - Estimation diverges

A.5 Conclusions

Abnormal operation or failure of measurement communication devices may cause

unavailability of measurement data, either partially or completely. This work has fo-

cused on behaviour of Kalman filter based DSE algorithms viz. EKF and UKF under

the rare condition in which, post to transient condition, all measurement data be-

come unavailable for a few cycles. For EKF based estimator, normally preferred high

measurement update rate, can cause divergence in case of measurement data unavail-

ability. Application of EKF as dynamic state estimator in power system demands

for trade-off between measurement data missing durations and specific measurement

update rate to achieve sustained convergence. On the contrary, results shows UKF
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based dynamic state estimator performs better than EKF for all three durations of

missing measurement conditions in combination with all three measurement data up-

date rates. Hence, employing UKF based dynamic state estimator is more suitable

than EKF to achieve continued convergence in case of infrequent condition of all

measurement data unavailability.



Appendix B

WLSE Assisted Load Flow under

Bad Measurement Conditions

B.1 Introduction

The state estimation (SE) is very important for having a more secure and economic

operation in todays complicated power system. F. C. Schweppe introduced the con-

cept of power system state estimation in the 1970s and employed the weighted least

square estimation (WLSE) method to solve the state estimation problem (Schweppe

and Wildes).SE determines the best estimate of the real-time power system states

viz. voltage magnitudes, their angles considering circuit breaker (CB) status, trans-

former tap positions etc. with the help of latest measurements provided by super-

visory control and data acquisition (SCADA) system. The results of SE are then

used in different power system operations like network contingency analysis, security

enhancement, optimal power flow, transient security analysis and other applications

(Schweppe and Rom).

Many contributions to SE have been made (Schweppe). Among many methods

employed, the weighted least-squares estimation (WLSE) method was extensively

employed (Debs and Larson Grainger, Grainger, and Stevenson). Considering the

accuracy of different measuring instruments, relative weights are applied to the mea-

surement quantities in WLSE. Other alternative estimators proposed are the weighted

least absolute value (WLAV) estimator to deal with multiple gross errors. The least

median of squares estimator (LMS) is another estimator alternative. Despite the

99
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existing wide range of estimators, the WLSE is the most used estimator in power

systems for static state estimation(SSE) , due to its simplicity.

Process of load flow in power system significantly depends on accuracy of mea-

surements collected through remote terminal units (RTUs). Traditionally, after load

flow, based on its result and subsequent analysis, controlling action is initiated by

supervisory control and data acquisition (SCADA) system. There exist a possibil-

ity of occurrence of bad measurements in measurement system due to problems in a

communication channel, measuring instruments, A/D converters etc. Gross errors or

bad measurements, collected by load flow algorithm, can determine erroneous steady

state condition of power network, which consequently leads to wrong decision making.

SSE process has the capability to estimate different states at specific instance

using measurement data collected at that instance considering quasi-static nature of

power network. Bad data detection algorithm can be used to identify gross errors in

power systems and consequently SSE algorithm is used to estimate accurate states

using remaining measurement. This makes the results of the SSE process reliable than

the SCADA raw data (Falcao and Arias). To deal with unexpected violations caused

by bad measurements, a number of methods have been proposed in the literature

(Smith et al. Baldick et al.).

Presented work depict effect of one bad measurement data on load flow. Work

envelopes WLSE method for state estimation after removing bad data using χ2 algo-

rithm. Further, use of estimated true states is suggested for monitoring and control

in place of erroneous load flow results.

B.2 Brief on WLSE and bad data detection

SSE is essential for the observation and control of modern power system. The aim of

SSE is to obtain the best possible values of the bus voltage magnitudes and angles by

processing the available network measurement similar to load flow analysis. Before

any security assessment undertaken or control actions performed, a reliable estimate

of the existing state of the system is useful for the better decision making process.

The inputs to the conventional power-flow program are confined to the P, Q injections

at load buses and P, V values at voltage-controlled buses. If even one of these inputs

is unavailable, the conventional power flow solution cannot be obtained. Moreover,
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gross errors in one or more of the input quantities can diverge the expected power-flow

results. In practice, other conveniently measured quantities such as P , Q line flows

are available, but they cannot be used in conventional power-flow calculations. These

limitations can be overcome by removal of bad data followed by state estimation based

on WLSE calculations. The process involves removal of imperfect measurement data

and then process of estimating the system states is based on a statistical criterion that

estimates the true value of the state variables to minimize or maximize the selected

criterion

B.2.1 Method of WLSE for static state estimation

Details of WLSE method and bad data detection is comprehensively covered in

(Grainger, Grainger, and Stevenson). Hence, excerpts of both procedures are pre-

sented here. Let x is a vector of n state variables (x1, x2, x3 . . . xn) and z is another

vector of m measurements (z1, z2, z3 . . . zm) and both are related as

z = H.x + e (B.1)

where H is a measurement Jacobian matrix of dimension (m × n) and e is a zero-

mean random Gaussian error vector having the same dimension as z which is (m ×

1). In (B.1), x represents vector of true state variables, which is normally not known.

Hence, estimation of state is required, which fulfills the criterion of

ẑ = H.x̂ (B.2)

where x̂ is accurate estimate of desired state. ẑ represents accurate estimated mea-

surements derived using x̂. Based on error estimate ê is given by,

ê = z− ẑ (B.3)

Finally, equation to obtain static state estimate of desired variables using WLSE is

given by (B.4),

x̂ = (HTWH)−1HTWz (B.4)

where, W is a real symmetric diagonal weighting matrix of dimension (m × m).

Gain matrix G is given by HTWH. It allows giving different weights to measurements

depending on their accuracy and it is inversely proportional to error covariance matrix.
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B.2.2 Bad data detection

When the system model is correct and the measurement data are accurate, there is a

good reason to accept the state estimates calculated by the WLSE based estimator.

But if a measurement is grossly erroneous or bad, it should be detected and then iden-

tified so that it can be removed from the estimator calculations. One or more of the

measured data can be affected by malfunctioning of either the measuring instruments

or the data transmission system or both. Even when care is taken to ensure accuracy,

unavoidable random noise and/or outliers enters into the measurement process to

distort more or less the physical results of states.

The weighted least-squares estimates x̂i at any ith measurement vector ẑi is given

using (B.4) as,

x̂i = (HT
i WHi)

−1HT
i Wẑi (B.5)

where i indicate all quantities at ith measurements. Estimated value of the measure-

ments ẑi can be calculated by using the obtained value of x̂i and then estimated error

can be determined as in the (B.2). All the measurement errors are assumed to be

Gaussian random variables. Objective function for bad data detection is evaluated

as shown in (B.6).

f̂ =
m∑
i=1

Wiê
2
i =

m∑
i=1

ê2i /σi
2 (B.6)

where σ represents standard deviation. Measurement errors and hence, measure-

ments are considered Gaussian in nature. Method of χ2 test is used to identify bad

measurements.

According to the degrees of freedom k = m − n (where m = number of mea-

surements and n = number of states) and a confidence level α, critical value χ2
k,α is

obtained which plays pivotal role in bad data identification. After obtaining value of

objective function f̂ , the conditions to check bad data in measurement are given by,

a. if f̂ < χ2
k,α i.e. no bad data exist in measurements.

b. if f̂ > χ2
k,α

2
i.e. bad data do exist in measurements.

If condition #2 exist, then it becomes imperative to find bad measurement

among all measurement variables. After such detection, the measurement with largest

standardized error e corresponding to each measurement is calculated using (B.7).
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ei =
zi − ẑi√
R
′
ii

(B.7)

where
√

(R
′
ii) is standard gaussian random variable. The measurement with largest

standardized error is omitted as bad measurement. Again the same procedure of

omission is repeated till either new value of f̂ which satisfies f̂ < χ2
k,α- the chi-square

test or the value of degree of freedom remains k > 2, whichever is earlier. In practical

power system applications, the number of degrees of freedom is large (because number

of measurements are higher than states to be estimated), which allows discarding a

group of measurements corresponding to the largest standardized residuals.

B.3 Case study

To present a case, standard WSCC 3-generator 9-bus test system (Fig. A.1) is con-

sidered. Under steady state condition, load flow is carried out using conventional

Newton-Raphson method. Result of the load flow is as displayed in (Fig. A.1)

(Anderson and Fouad). Generally, load flow is aimed to deliver voltage magnitude

and angle at all buses, especially at load buses. Adopting a conventional approach,

voltage angles and voltage magnitudes of load bus #5, bus # 6 and bus # 8 viz. δ5,

δ6, δ8, V5, V6 and V8 are taken as the state variables respectively, alike to load flow

results. Known quantities of PV buses and PQ buses viz. real power injection at

bus #2 , #3, #5, #6 and #8 viz. P2,P3,P5,P6,P8; reactive power injection at bus

#5, #6 and #8 viz. Q5, Q6, Q8 are taken as measurements. This work proposes

use of WLSE based estimation results for two purposes, one for verifying accuracy

of load flow results and in case of bad measurements employing results of WLSE for

control purpose instead of erroneous load flow results. Hence, having considered the

knowledge of voltage magnitudes at bus #5, # 6 and #8 viz. V5, V6 and V8 are

taken as measurement inputs as well for the state estimation process. So, 11 mea-

surements and 6 state variables have been taken into consideration. WSCC system

simulation and data collection is performed using Power System Analysis toolbox

(PSAT) environment.

Presented work focuses on effect of bad measurement i.e. measurement with

gross error on load flow. Hence, to simulate the same, few measurements are inten-

tionally corrupted with bad data at random time intervals. Considering the fact that
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nature of error is random either in terms of magnitude as well as time of occurrence,

real power measurement P2 from bus # 2 is corrupted with random error of 0.37 p.u.

at an instant of t= 0.2 s ; real power measurement P5 from bus #5 is corrupted with

gross error of 0.2 p.u. in at an instant of t= 0.5 s and corruption of bad data with

magnitude of 0.2 p.u. is simulated to reactive power measurement Q6 from bus #6

at an instant of t= 0.8 s . To observe the effect of this bad measurement on load

flow, using Newton-Raphson method, load flow has been done for WSCC system.

Then after results are presented of WLSE following bad data detection. Flowchart

depicting methodology adopted is shown in Fig. B.1.

Collect the 
measurements

Measurement input 
to bad data detection 

algorithm

Bad data 
exist ?

Perform the load 
flow using NR 

method

Use results for 
further decision 

making 

Identify  and 
removal of the bad 

data using chi-square 
method 

Perform WLSE and 
achieve the data 

same as load flow 

No

Yes

Figure B.1: Algorithm for WLSE backed load flow

B.4 Results and discussion

Without any bad data in measurement results of load flow and state estimation using

WLSE is achieved. Result shown in Table B.1 validates use of both the approach to

achieve voltage magnitude and angles in steady state.

To simulate the effect measurement with bad data, first case is presented where

active power measurement from bus #2 is corrupted with gross error of 0.37 p.u.

With the error of 0.37 p.u. in P2, the state variables output from load flow and SE
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Table B.1: Results of WLSE and Load flow under without bad measurements

State variable Load flow result WLSE result

(1) (2)

δ5 -0.0696 -0.0698

δ6 -0.0644 -0.0645

δ8 0.0127 0.124

V5 0.9965 0.9954

V6 1.0127 1.0124

V8 1.0159 1.0159

are shown in Table B.2. As shown in column #1 of Table B.2, one bad measurement

( in P2) results in all erroneous output data of load flow. Effect of measurement error

of 0.37 p.u. can be seen explicitly on load flow as shown in column #2 of Table B.2.

Discussing about just one output variable of δ5 is given by load flow with bad data is

-0.0321 rad. against its original value of -0.0694 rad. .

To overcome effect of bad data in measurement, result are obtained using method-

ology shown in Fig. B.1. With proposed method, measurement with bad data - P2

is detected using χ2 test and using remaining measurement ( i.e. 10 measurements

out of 11) value of all load flow results are obtained. Results achieved are shown in

Table B.3. As shown in column # 2, WLSE approach faithfully removes measurement

with bad data and provide accurate result alike to load flow without any bad mea-

surements. It is important to notice that even one bad measurement can affect the

overall load flow results and hence, affecting the value of important decisive param-

eters of load flow i.e. bus voltage magnitude and angle. This can be overcome using

standby results obtained using WLSE approach with bad data detection algorithm.

To validate the method, second case is considered when bad measurement or

outlier exist in the measurement of reactive power delivery of bus # 6. Reactive power
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Table B.2: Comparative results of WLSE and Load flow under static condition when

P2 is corrupted with 0.37 p.u. of error

State variable Load flow result with bad data WLSE result

(1) (2)

δ5 -0.0321 -0.0698

δ6 -0.0339 -0.0645

δ8 0.0790 0.124

V5 0.9989 0.9954

V6 1.0083 1.0124

V8 1.0133 1.0159

measurement - Q6 is corrupted by error of 0.2 p.u. Effect of this bad measurement is

shown in column # 1 of Table B.3.

Results displayed in column # 2 of Table B.3 endorses the capability of WLSE

method to remove bad measurement using χ2 test and it estimates accurate states

analogous to load flow result without any bad measurement. Hence, results shown

in Table B.2-B.3 proves that once bad measurement is detected, instead of load flow

results, result obtained using WLSE can be used for monitoring of steady state con-

dition of power network and further decision making process for control.

B.5 Conclusion

Two cases of load flow for WSSC 3-generator 9-bus test system are presented under

the effect of bad measurement data of active and reactive power. One bad measure-

ment results in a significant divergence of overall load flow with erroneous output

results. Hence, output variables of load flow are taken as states to be estimated us-

ing WLSE method. WLSE method gives accurate results of voltage magnitude and

angle after detection, identification and removal of bad measurements. In condition
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Table B.3: Comparative results of WLSE and Load flow under static condition when

Q6 is corrupted with 0.2 p.u. of error

State variable Load flow result with bad data WLSE result

(1) (2)

δ5 -0.0674 -0.0698

δ6 -0.0691 -0.0645

δ8 0.0133 0.124

V5 1.0154 0.9954

V6 1.0807 1.0124

V8 1.0272 1.0159

of measurements corrupted with bad data, results obtained using load flow can be

replaced with results obtained through SSE , after removal of bad measurement data

for better monitoring and control in the power system. However, presented work

considers one bad measurement at a time and keeping open the possibility to analyze

the performance of WLSE under the condition of more than one bad measurements.



Appendix C

Extended Kalman Filter(EKF)

Algorithm

Generic representation of non-linear system is as shown in (C.1) (Simon),

ẋ =
dx

dt
= f(x,u,w) (C.1)

f is vector of non-linear function, x represents state vector, u shows input vector

and w random white Gaussian process noise vector.

Measurement function having inherent non-linearity is represented as,

y = h(x,u,v) (C.2)

where h is vector of non-linear function and v is random white Gaussian measure-

ment noise vector. The error (e) between actual measurement (y) and estimated

measurement (ŷ) obtained using state x is given in (C.3),

e = y − ŷ (C.3)

Elaborative mathematical treatment for EKF is covered in literature (Ghahremani

and Kamwa, “Dynamic State Estimation in Power System by Applying the Extended

Kalman Filter With Unknown Inputs to Phasor Measurements” Wang, Gao, and

Meliopoulos Huang, Schneider, and Nieplocha Simon Bishop and Welch), hence not

presented in detail. However, some significant mathematical steps of EKF algorithm

are enumerated here briefly.
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Extended Kalman Filter

Step 1 : State and measurement equations shown in (C.1) and (C.2) can be repre-

sented in discretized form as :

xk = xk−1 + f(xk−1,uk−1,wk−1) · ∇t

yk = h(xk,uk,vk)

wk ≈ (0,Q) and v ≈ (0,R)

(C.4)

where Q is process noise covariance matrix and R is covariance matrix for measure-

ment noise.

Step 2 : Initialization of filter is given by,

x̂+
0 = E(x0)

P+
0 = E[(x− x̂+

0 )(x− x̂+
0 )T ]

(C.5)

where x̂+
0 is initial estimate of state matrix and P+

0 represents initial state error

covariance matrix. E is expected value.

Step 3 : Transition matrices for state as well as measurement vector, necessary for

time updare, are,

Fk−1 =

(
∂fk−1

∂x

)
x̂+
k−1

and Lk−1 =

(
∂fk−1

∂w

)
x̂+
k−1

(C.6)

F k−1 and Lk−1 are the Jacobian of partial derivative of f with respect to x and w,

respectively. x̂+
k−1 represents posteriori state estimate at instant k − 1.

Time update and measurement update steps repeated for every instant k are given

below.

Step 4 : Time update - Time update of state and error covariance matrix is done

by,

P−
k = F k−1P

+
k−1F

T
k−1 +Lk−1Q

+
k−1L

T
k−1

x̂−
k = f(x+

k−1,uk−1, 0)
(C.7)

Step 5 : Transition matrices for measurement update are,

Hk =

(
∂hk
∂x

)
x̂−k

and M k =

(
∂hk
∂v

)
x̂−k

(C.8)

Hk and M k are Jacobian of partial derivatives of h with respect to x and v, respec-

tively.
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Step 6 : Measurement Update - Measurement update of state and state error

covariance matrix are done by ,

Kk = P−
kH

T
k (HkP

−
kH

T
k +M kRkM

T
k )

x̂+
k = x̂−

k +Kk(yk − h(xk,vk))

P+
k = (I −KkHk)P

−
k

(C.9)

where Kk is Kalman gain, x̂+
k is vector of updated state estimate and P+

k is updated

state error covariance matrix.



Appendix D

Unscented Kalman Filter (UKF)

Algorithm

UKF is based on concept of UT which was first proposed in (Julier, Uhlmann, and

Durrant-Whyte). Although mathematical formulation and description of UKF based

on UT is described in literature (Julier, Uhlmann, and Durrant-Whyte Valverde and

Terzija Wang, Gao, and Meliopoulos Simon), only necessary mathematical steps for

UKF based DSE are reproduced here for completeness.

First two steps, mathematical presentation and initialization of filter (i.e. states and

state error covariance matrix) are done in same manner as shown in Appendix C

- (C.1) to (C.3). In case of UKF, time update and measurement update are carried

out as described below :

Step 3 : Time update - State vector and state error covariance matrix use following

steps for transition from one time instant to another.

(a) Sigma points x̃(r) (where r = 1, 2, 3...2c) are derived as shown in (D.1).

x̃(r1) =

(√
(r + λ)P+

k−1

)T
r1

x̃(r1+c) = −
(√

(r + λ)P+
k−1

)T
r1

r1 = 1, 2, 3, ....c

(D.1)

The variable 2c represents total number of sigma points. The parameter λ is a

scaling parameter and is defined by λ = α2(a + κ) − a. Value of α, that determines

the spread of the sigma points around x̂+
k−1, lies between 10−4 ≤ α ≤ 1 and second
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scaling parameter κ = 3 − c or κ = 0 is preferred. Square root matrix can be

approximated by P = AAT , where A is lower triangular matrix obtained from

the Cholesky factorization of P (Julier, Uhlmann, and Durrant-Whyte Valverde and

Terzija).

Addition of sigma points x̃(r) to recently updated posteriori estimate x̂+
k−1 results in

x̂rk−1 sigma points as shown in (D.2).

x̂rk−1 = x̂+
k−1 + x̃(r) (D.2)

These sigma points are necessary for transition from (k − 1)th instant to kth instant.

(b) Non-linear function f is used to transform these sigma points to get vector x̂rk

from x̂rk−1, so

x̂
(r)
k = f(x̂

(r)
k−1,uk, tk) (D.3)

uk is driving function and tk is time at instant k.

(c) Obtain priori estimate x̂−
k , combine all x̂rk using following equation,

x̂−
k =

1

2c

2c∑
r=1

x̂
(r)
k (D.4)

(d) To evaluate priori state error covariance considering effect of process noise Qk−1

using

P̂
−
k =

1

2c

2c∑
r=1

(x̂
(r)
k − x̂

−
k )(x̂

(r)
k − x̂

−
k )T +Qk−1 (D.5)

Step 4 : Measurement Update

(a) Utilize latest time updated x̂−
k and P̂

−
k to find optimum sigma points x̂

(r)
k with

help of following equations,

x̂rk = x̂−
k + x̃(r)

x̃(r1) =

(√
(n+ λ)P−

k

)T
r1

x̃(r1+c) = −
(√

(n+ λ)P−
k

)T
r1

(D.6)

(b) Similar to time update step, for measurement update non-linear function h is

used to transform these sigma points to get vector ŷrk from x̂rk such that

ŷ
(r)
k = h(x̂

(r)
k , tk) (D.7)
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(c) Obtain predicted measurement ŷk by combining all ŷrk using following equation,

ŷk =
1

2c

2c∑
r=1

ŷ
(r)
k (D.8)

(d) To derive measurement error covariance with effect of measurement noise Rk at

instant k using

P̂
−
y =

1

2c

2c∑
i=1

(ŷ
(r)
k − ŷk)(ŷ

(r)
k − ŷk)

T +Rk (D.9)

(e) Find cross covariance P̂
−
xy with the help of,

P̂
−
xy =

1

2a

2c∑
r=1

(x̂
(r)
k − x̂

−
k )(ŷ

(r)
k − ŷk)

T (D.10)

(f) Finally updated state estimate x̂+
k and state error covariance P+

k are achieved

using (D.11).

Kk = P−
xyP

−
y

x̂+
k = x̂−

k +Kk(yk − ŷk)

P+
k = P̂

−
k − (KkP yK

T
k )

(D.11)

where Kk is Kalman gain and yk = h(xk,vk).



Appendix E

Improved Coalesced Model of

Synchronous Generator and DFIG

In Chapter # 2 coalesced model of synchronous generator and DFIG is presented using

SMIB system. Unification of SG and DFIG is presented using current source model.

Base model of DFIG is used to derive the current source state space model of SG

with minor modifications as suggested in Table 2.1. Results of MATLAB/Simulink

platform is compared with results of similar model created on standard software plat-

form PSCAD/EMTDC during transient condition. Except minor differences due to

limited order of modelling, resemblance between results of both platforms endorses

unification approach (Fig. 2.2).

Further improvement in modelling is done to proposed model. Using suggested

current source state space model approach for DFIG and SG, modified WSCC 3-

generator 9-bus system is created. To emulate higher penetration of wind energy

sources, modification to standard WSCC system is done as suggested in Section 3.1.2,

Chapter # 3. State space model implementation on MATLAB/Simulink platform is

simulated as shown in Fig. 3.3, Chapter # 3. Analogous model of modified WSCC

system is created on PSCAD/EMTDC platform as presented in Fig. 3.4.

The highlighting feature of improved proposed model is consideration fault MVA

and fault feeding capacity of each generator during fault. Each generator is feeding

fault according to its fault feeding capacity considering fault MVA and by observ-
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ing typical X/R ratio during fault duration. With proposed improvement, during

transient condition (3-phase to ground fault at bus #7 and fault clearance by auto

reclosure), variation in output currents iabc, ids and iqs is observed for DFIG (Gen.#

2). Change in output currents is observed on both platforms viz. MATLAB and

PSCAD as presented in Fig. E.1. The intermediate transient condition for period

between 9.8 s and after 10.2 s for Gen.# 2 is presented for both the platforms.

Figure E.1: Instantaneous currents of DFIG (Gen.# 2) (a)−(b) iabc, (b)−(c) stator

direct axis current− ids, (c)−(d) stator quadrature axis current − iqs

To approve unification and current source model representation of SG, in sec-

ond case DFIG (Gen.#2) is replaced with SG of similar rating, created using current

source state space model, on MATLAB/Simulink platform. Alike to previous case,

same WSCC model with similar rating of generators is simulated on PSCAD/EMTDC

platform with SG as shown in Fig. E.2.

Results of both platforms are observed for the case of WSCC with SG as Gen.#

2. Comparative plot for iabc, ids and iqs is presented in Fig. E.3.
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Figure E.2: WSCC 3-gen. 9-bus system with SG (Gen. #2) on PSCAD/EMTDC

platform
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Figure E.3: Instantaneous currents of SG (Gen.# 2) (a)−(b) iabc, (b)−(c) stator

direct axis current− ids, (c)−(d) stator quadrature axis current − iqs
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Results shown in Fig.E.1 and Fig. E.3 enforces the model unification approach

using current source model. Modification employed considering fault MVA and fault

feeding capacity approves model unification approach with thrust.
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