

SCHEDULING MULTIMEDIA TRAFFIC ON

IPV6 ENABLED REAL TIME LINUX
OPERATING SYSTEM

By

Ms. Priyanka Sharma
(05MCE017)

DEPARTMENT OF COMPUTER ENGINEERING
Ahmedabad 382481

April 2007

SCHEDULING MULTIMEDIA TRAFFIC ON

IPV6 ENABLED REAL TIME LINUX
OPERATING SYSTEM

Major Project

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology in Computer Science and Engineering

By

Ms. Priyanka Sharma
(05MCE017)

Guide
Dr. S. N. Pradhan

and
Prof. Jaladhi Joshi

DEPARTMENT OF COMPUTER ENGINEERING
Ahmedabad 382481

April 2007

This is to certify that Dissertation entitled

Scheduling Multimedia Traffic on Ipv6 enabled
Real Time Linux Operating System

Presented by

Ms. Priyanka Sharma

has been accepted toward fulfillment of the requirement

for the degree of

Master of Technology in Computer Science & Engineering

Prof. S. N. Pradhan Prof. D. J. Patel

Professor In Charge Head of The Department

Prof. A. B. Patel

Director, Institute of Technology

CERTIFICATE

This is to certify that the Major Project entitled “Scheduling Multimedia Traffic on

Ipv6 enabled Real Time Linux Operating System” submitted by Ms. Priyanka

Sharma (05MCE017), towards the partial fulfillment of the requirements for the

degree of Master of Technology in Computer Science and Engineering of Nirma

University of Science and Technology, Ahmedabad is the record of work carried

out by her under my supervision and guidance. In my opinion, the submitted

work has reached a level required for being accepted for examination. The

results embodied in this major project, to the best of my knowledge, haven’t

been submitted to any other university or institution for award of any degree or

diploma.

Dr. S. N. Pradhan

Guide,

Professor,

Department of Computer Science &

Engineering,

Institute of Technology,

Nirma University,

Ahmedabad.

Prof. Jaladhi Joshi

Co-Guide,

Assistant Professor

Department of Computer Science &

Engineering,

Institute of Technology,

Nirma University,

Ahmedabad.

Date: / /

 I

ACKNOWLEDGEMENT

With immense pleasure, I would like to present this report on the dissertation

work related to “Scheduling Multimedia Traffic on IPv6 enabled Real Time Linux

Operating System”. I am very thankful to all those who helped me for the

successful completion of the first phase of the dissertation and for providing

valuable guidance throughout the project work.

I would first of all like to offer thanks to Dr. S. N. Pradhan, Programme Co-

ordinator MTech CS&E, Institute of Technology, Nirma University, Ahmedabad

whose keen interest and excellent knowledge base helped me to finalize the topic

of the dissertation work. His constant support and interest in the subject

equipped me with a great understanding of different aspects of the required

architecture for the project work.

My sincere thanks and gratitude to Prof. D.J. Patel, Professor and Head

Computer Engineering Department, Institute of Technology, Nirma University,

Ahmedabad for his continual kind words of encouragement and motivation

throughout the Dissertation work

I would also like to thank Prof. Jaladhi Joshi, Assistant Professor. CE

Department, of Technology, Nirma University, whose knowledge and expertise in

Computer Networks has been of a great pillar of support for my work. He has

shown keen interest in this dissertation work right from beginning and has

offered a great motivating factor in outlining the flow of my work.

I am thankful to Nirma University for providing all kind of required resources. I

would like to thank The Almighty, my family, especially my husband and my

daughter, for supporting and encouraging me in all possible ways. I would also

like to thank all my friends who have directly or indirectly helped in making this

dissertation work successful.

 Ms. Priyanka Sharma
 Roll No.: 05MCE017

 II

ABSTRACT

Multimedia traffics are beginning to conquer computer networks. This thesis

investigates into the scheduling aspects of real time multimedia streams with a

real time test-bed environment. This will include the Operating System

Scheduling Issues, as well as Routing at the Network Layer.

The architecture configured for the project work has been put forward with

intricately defined requirements for each component. An Ipv6 enabled distributed

system is designed for priority based scheduling of Multimedia stream generated

by VLC’s VideoLAN Software. The traffic is further routed based on Quality of

Service requirements, through software based IP Router. The software router is

configured to run on the Real Time kernel (RTLinux3.1). Out of the two software

based routers (Zebra and XORP), which was configured and studied, XORP was

selected was the project work, due to its extensibility and robustness. As

compared to conventional hardware based routers, which are generally not open

systems, XORP can be used as a router and can be extended through new XORP

Processes, to implement new routing protocols, which can be integrated and

tested in real time working environment.

The Forwarding Plane of the XORP Router uses the internal file structures like

routing table of Linux kernel; hence the thesis work also deals with OS Kernel

level Scheduling mechanisms.

Another aspect of the project work is QoS based scheduling of the multimedia

traffic. This is because; the Multimedia Applications must adhere to stringent

real-time constraints and Quality-of-Service (QoS) requirements. Therefore, a

DiffServ based, QoS management approach is developed to orchestrate and

guarantee the timely interaction between such applications and services. In this

context, a kernel level module is developed to parse the network packets and

identify the DSCP value, which is marked during multimedia streaming at the

source. The further scheduling of the traffic is implemented based on this. The

report also covers; several other approaches that can be implemented for QoS

based scheduling of multimedia traffic.

 III

CONTENTS

Certificate I

Acknowledgement II

Abstract III

Contents IV

List of Figures VIII

List of Tables X

Glossary XI

Chapter 1 Introduction 01
1.1 General 01

1.2 Background 01

1.3 Objective of Study 03

1.4 Scope of Work 04

1.5 Organization of Major Project 04

Chapter 2 Literature survey 06

2.1 Introduction 06

2.2 Real Time Operating Systems 07

2.3 Multimedia and IPv6 08

2.4 Clustered Middleware for Real Time Multimedia

Routing

09

2.5 QoS based routing of Multimedia Traffic 10

2.6 IP Software Router 11

2.6.1 Purpose 11

2.6.2 Characteristics 12

 2.6.3 Zebra 14

 2.6.4 XORP 16

2.7 Real Time Scheduling 25

 2.7.1 Scheduling Multimedia on RTOS 26

2.8 Routing Multimedia 26

2.8.1 General 26

2.8.2 Multimedia Routing in Real Time 29

 IV

 2.8.3 QoS based Routing 29

 2.9 Summary 33

Chapter 3 Project Architecture 34

3.1 Introduction 34

3.2 Project Architecture 34

Installation and Configuration 36

3.3.1 RTLinux 3.1 with Linux kernel 2.4.20 and

Ipv6 stack implementation

36

3.3.2 Ipv6 Layer as a router 38

3.3.3 Ipv6 to IP4 Tunneling 39

 3.3

3.3.4 Streaming with VLC’s VideoLAN’s 43

 3.3.5 Installation and Configuration of Zebra 45

 3.3.6 Installation and Configuration of XORP with

Ipv6 Stack

47

 3.4 Summary 50

Chapter 4 QoS for Multimedia traffic in Ipv6 53

4.1 Introduction 53

 4.1.1 Issues related to QoS 53

 4.1.2 Parameters used to measure QoS at the

network layer

54

 4.1.3 Ipv4 header format 56

4.1.4 Ipv6 protocol header 57

4.1.5 Ipv6 flow label requirements 58

 4.1.6 Bandwidth, delay and buffer requirements

approach to Using flow labels

59

Approaches of Implementation 60 4.2

4.2.1 DiffServ Aware Video Streaming 61

 4.2.2 Ipv6 and flow label usage 64

 4.2.3 Real time linux kernel DiffServ

Implementation

66

 4.3 Summary 67

 V

Chapter 5 Real Time Linux Kernel DiffServ Implementation 68

5.1 Introduction 68

5.2 Enabling QoS Support in the Linux Kernel 69

5.3 Installing Traffic Control (tc) utility of iproute2 70

5.4 Diffserv implementation overview 71

 5.5 Resources 72

 5.6 Queuing discipline 74

 5.7 Classes 78

 5.8 Module invocation from real time kernel 79

 5.9 Summary 79

Chapter 6 Writing a XORP Process 80

6.1 Introduction 80

6.2 Creating a XORP process 80

6.3 Creating a XORP process for adding routes dynamically 81

6.3.1 Creating XRL interfaces 81

6.3.2 The Main Loop 84

6.3.3 Calling XRLs on the RIB 86

6.3.4 Returning values in XRLs 87

6.3.5 The XLOG logging facility 87

 6.4 Summary 88

Chapter 7 Results 89

7.1 General 89

7.2 Experimental setup 89

7.3 Traffic generation 90

7.4 Measurement tools 91

7.5 Methodology 92

7.6 Time synchronization 92

7.7 Traffic generation 93

7.8 Test 95

7.9 Results 96

 7.10 MPEG-2 TS dissector for ethereal 0.10.8 98

 VI

Chapter 8 Summary and Conclusion 101
8.1 Summary 101

8.2 Conclusions 101

8.3 Future Work 102

References 104
Appendix – A List of websites 106

 VII

LIST OF FIGURES

Fig 2.1 Zebra Architecture 16

Fig 2.2 XORP Process model 18

Fig 2.3 Example XRL Targets and client 25

Fig 2.4 A queue for each egress line 27

Fig 2.5 Set of queues associated with an exit 28

Fig 2.6 Connection between a router and a host in IS Internet 29

Fig 3.1 Project Architecture (Higher Level) 36

Fig 4.1 Ipv4 Packet format 56

Fig 4.2 Ipv6 Protocol Header

57

Fig 4.3 Soft Real Time Application Traffic

59

Fig 4.4 Hard Real Time Application Traffic

59

Fig 4.5 Straightforward AF mapping strategy for MPEG
Streams

62

Fig 4.6 IPv6 DiffServ-aware streaming system

63

Fig 5.1 Processing of network data

69

Fig 5.2 A simple queuing discipline with multiple classes

71

Fig 5.3 Combination of priority, TBF and FIFO queuing disciplines

72

Fig 5.4 Relation of elements of the IntServ and DiffServ architecture
to traffic control in the Linux kernel

73

Fig 5.5 Flow chart showing the functions called when enqueuing and
sending packets

76

Fig 7.1 IPv4 bandwidth consumption 96

Fig 7.2 IPv6 bandwidth consumption 96

Fig 7.3 Packet Loss for the High Priority Multimedia Traffic 96

 VIII

Fig 7.4 Packet Loss for different packet sizes 97

Fig 7.5 Latency for different packet sizes 97

Fig 7.6 Ethereal’s Open page for Transport stream file 98

Fig 7.7 Ethereal’s Transport stream file details 99

Fig 7.8 Transport stream file, showing a High Transport priority 100

 IX

LIST OF TABLES

Table 5.1 Networking options during kernel configurations 70

Table 5.2 QoS and fair Queuing Options during kernel configurations 70

Table 7.1 Profile for Traffic Generation for both IPv6 and IPv4

network

95

Table 7.2 Comparison of IPv4 and IPv6 95

 X

GLOSSARY

Quality-of-Service (QoS): A set of service requirements to be met by the

network while transporting a flow.

Traffic Control (tc): Traffic control is a module of iproute2 package. It is

related to network based Quality of Service (QoS) management issues.

Service class: The definitions of the semantics and parameters of a specific

type of QoS.

Integrated services: The Integrated Services model for the Internet

Defined in RFC 1633, allows for integration of QoS services with the best

effort services of the Internet. The Integrated Services (IntServ) working

group in the IETF has defined two service classes, Controlled Load Service

and Guaranteed Service.

Differentiated services: The field in which the differentiated services class

is encoded. It is the Type of Service (TOS) octet in the (DS) field IPv4 header

or the traffic class octet in the IPv6 header.

QoS-based routing: A routing mechanism under which paths for flows are

determined based on some knowledge of resource availability in the network

as well as the QoS requirement of flows.

XORP: XORP, or Extensible Open Router Platform, is an open source routing

software suite, aimed at being both stable and fully featured enough for

production use and also extensible to support networking research. It is

stable and secure and event driven. The router is developed on object

oriented paradigm and can be extended through XORP processes. The

software is coded in C++ and as a very active research area.

ZEBRA: Zebra is open source TCP/IP routing software that is similar to

Cisco's Internetworking Operating System (IOS). The software is distributed

 XI

under GNU (General public License). Though the software works very much

like CISCO routers, but lacks certain functionalities, like it is not

multithreaded. The API of the software is still under development.

Routing Information Base (RIB): In XORP router, the RIB holds a user-

space copy of the entire routing/forwarding table, complete with information

about where each route came from (e.g., which protocol, and when). It

communicates with the routing protocols such as BGP, RIP and OSPF to

instantiate routes, and with the FEA to install the appropriate forwarding

entries in the FEs

Forwarding Engine Abstraction (FEA): In XORP router, the FEA provides

a platform independent interface to the basic routing and network interface

management functionality. For example, get or set information about

network interfaces, install or modify unicast forwarding entries or multicast

routing support.

XORP Resource Locators (XRLs): The XORP Resource Locator is used to

communication between the modules of a XORP router. This includes

forwarding engine, routing daemons, router manager etc.

ipc finder: IPC (Inter-process Communication) finder process stores

mappings between application requests, such as “What are this router’s

interfaces?”, and the particular IPC calls necessary to answer those requests.

Xorpsh: The xorpsh is the process, that provides an interface; for interaction

with the XORP router.

 XII

1. INTRODUCTION

1.1 GENERAL

The dissertation work related to ‘Scheduling of multimedia traffic on IPv6

enabled Real Time Linux operating system’ demands the setup of a

distributed infrastructure. This requires to be done very meticulously, in

order to meet the demands of real time multimedia traffic. The proposed

architecture is inspired from a Video On Demand Server based application.

The system includes one Real Time Linux server where files are stored.

The client requests for a particular multimedia file from a remote host.

The file is streamed on the server and sent to the client side. The server

and the client lie on different networks. Hence routers come into picture

and the multimedia traffic needs to be routed, with Quality of Service

parameters. The routers used in the setup is XORP, a software based

router. There are at least four routers each configured for different

network is used. This forms the middleware of the implementation. Most

of the results derived are for unicast transmission of data.

The protocol stack on which the architecture is implemented is IPv6, since

Ipv6 has got inherent support for real time applications and multimedia

communications. Here the client side could be a Windows based system

also. But the source server and the software routers are all implemented

on XORP router running over RTLinux3.1 kernel, further configured on Red

Hat Linux or Fedora Core 6 nodes.

1.2 BACKGROUND

Multimedia has proven itself to be an efficient and effective medium for

information communication. Recently there have been many

developments in technologies, which have made multimedia information

communication possible to reach the unapproachable, over the best-effort

network i.e. the Internet, over the wireless devices i.e. through mobile

networks etc. The prominent developments can be grouped in six parts.

Chapter 1 Introduction

First, the improving bandwidth of the internet link. The backbone as well

as the last mile for internet has come out of its age. Growth from 56 kbps

to Gbps link backbone and 28 kbps to 2 Mbps (ADSL) last mile provided

the platform for the multimedia communications. The recent development

Internet2 has been speed benchmarked for 9 Gbps data transfers over

20,000 miles.

Second, the newer CODECS. The development of excellent CODECS for

video and audio greatly supported the cause. MPEG4, H264, Theora (open

video codec, targeted at competing with MPEG-4) and many others could

greatly shrink the heaviest component of multimedia, which includes; the

video & audio and still provide acceptable quality.

Thirdly, the alternate mediums. The existence of alternate mediums

provided the platform for wider reach. Wireless technology, the mobile

communications have grown to 4G age, providing the right set of Quality

of Service for the multimedia data communication.

Fourth, the newer better protocols. While addressing the shortcomings of

ancestors, newer protocols also provide novel ways for delivering better

services. Ipv6 have definite advantages over Ipv4. Likewise the advantage

of availability of multicasting over unicasting.

Fifth, the development of newer hardware technologies delivered faster

processing powers that enabled heavy data processing, the core

requirement of multimedia data. Faster CPUs, larger & faster RAMs, HDDs

made it possible to handle the heavy multimedia data in real-time

environments.

Sixth, the age of open source development. The open source community

has made it possible to assemble geographically distant groups of

technocrats for the development of a concept/technology. Many open

source tools/utilities have been developed which has enabled further R &

D into the subject. The Linux & VideoLan project is the best thing that

2

Chapter 1 Introduction

happened to the OS & multimedia streaming technologies from R&D point

of view, for academics.

The ball is rolling, but there are still many challenges to be met. The

multimedia with its demanding Quality of Service, have always been

providing the thrust/need for further developments. The continuous

nature of data, heavy data, compression related issues, communication

through heterogeneous systems, response times as well as efficient

handling of intermediately routers/schedulers, compatibility issues among

codecs & protocols are few related ongoing areas of active research.

1.3 OBJECTIVE OF STUDY

Apart from the above mentioned goals and vision, this report addresses

the specific aspect of QoS based routing of multimedia traffic. The

experimental setup has been created in a single Lab, with software based

routers configured with various network configurations. Hence, the

objective of the dissertation work can be summarized as:

Create architecture for streaming multimedia traffic on a real time

operating system and schedule them to the destination host. The

scheduling strategies should look into both operating system and network

related issues.

Study and configuration of software based routers and implement them

for the project work. This is a special feature of the thesis work. Study

related to various methods for QoS based routing of Multimedia IP Traffic

in Ipv6, hav also been made.

The next objective is, implementation of a kernel level module to read/set

the DSCP value in the Traffic Class of IPv6 header and TOS field of Ipv4

field. The UDP traffic that is generated by streaming a multimedia file is to

be scheduled as per the DiffServ architecture framework.

Finally, the objective is to test the performance of the network in routing

3

Chapter 1 Introduction

of multimedia traffic, with the developed module on the experimental test-

bed. For this purpose, a heavy traffic is generated artificially using traffic

Generation Tool.

1.4 SCOPE OF WORK

The experimental setup, prepared for the dissertation work, includes a

relatively small network established in a Computer Lab. Atleast four

routers with different network based configurations are used for this

purpose. A special feature of the thesis work is study and implementation

of XORP and ZEBRA, both software based routers. This is relatively a very

new technology and is like a boon for the Computer Network fraternity.

Out of the various QoS based implementation techniques for multimedia

traffic, the thesis work includes a detailed implementation of DiffServ

framework implementation in real time kernel.

1.5 ORGANIZATION OF THE PROJECT WORK

A large part of the project work comprised of the required infrastructure

for implementation for scheduling of multimedia traffic in a real time

environment. The next part was the development of a module for the

implementation of DiffServ framework in Real Time kernel.

The representation of the project work has been described chapter-wise in

total eight chapters. The Chapter2 describes various issues related to

literature survey for the project work. This includes a detailing of the

various components of the architecture, XORP and ZEBRA as software

based routers, and a theoretical analysis of the Multimedia QoS in Ipv6

and Ipv4 network. The Chapter 3 describes the required configuration

and installation of the required architecture. This includes the

configuration of XORP and ZEBRA routers also. Then the next three

chapters ie Chapter 4, Chapter 5 and Chapter 6 describe various

implementation modules developed for the project work. Chapter 4

describes a general view of the implementation strategies; Chapter 5

4

Chapter 1 Introduction

covers a detailed description of the development of a module at the Real

Time Linux kernel. This is based on the DiffServ Framework. Chapter6

covers a detailed description of the programming related to the extension

of the XORP process for including the provision, of identifying the

multimedia traffic based on the DSCP value and assigning it high priority,

which is interpreted by XORP. The next chapter i.e. Chapter 7, covers a

detailing of the experiments carried out and results obtained. The last

chapter i.e. Chapter 8 is the concluding chapter of the thesis work and

covers Summary, Conclusion and Future Scope of the project.

5

2. LITERATURE SURVEY

2.1 GENERAL

The dissertation work related to ‘Scheduling of multimedia traffic on IPv6

enabled Real Time Linux operating system’ requires the setup of a distributed

infrastructure. The proposed architecture describes a video on demand Server

(VOD). The system includes one source where, Multimedia Files are stored.

The selected Multimedia File is streamed using VideoLAN’s VLC software, with

DSCP field set with highest priority. The streamed data is processed by a

module running the real time kernel, and then forwarded to IP based Software

routers, based on the priority. Two Software routers have been selected for the

purpose. This includes Zebra and XORP routers.

The XORP router is extensible in nature, and can be extended for priority based

scheduling. The multimedia stream is passed onto one of the routers, which

may be forwarded to the destination based on some Quality of Service

parameters. The ZORP routers are software based routers hence can be

clustered to increasing the performance of a router in processing the routing

related jobs. This can be termed as the middleware of the proposed

architecture of the project work. The protocol stack on which the architecture

is implemented is IPv6. This is because Ipv6 has got inherent support for real

time applications and multimedia communications. It can support Quality of

Service related processing, through the eight bit Traffic Class field and the

twenty bit Flow Labels. Here the client side initiating the request for the

multimedia file could be on Microsoft Windows based system, but the software

routers and the source machine/multimedia server has Real-Time Linux

(RTlinux3.1) Operating System running over Fedora Core 6 (2.6.20) Operating

systems.

A significant part of the thesis work is preparation of a real time environment

for transmission of multimedia traffic and later scheduling them on priority

basis. The architecture can be divided into various components which are

covered in the following sections.

Chapter 2 Literature Survey

2.2 REAL TIME OPERATING SYSTEMS

A Real Time System is an information system whose performance does not only

depend on the logical output of the algorithms but also on the moment in time

when these output occurred. Real-time systems are typically implemented with

multiple asynchronous threads of execution. This is dictated by the need to

react to external events, and control asynchronous devices. Because of this

characteristic, an RTOS must support multithreading. Also, because the

criticality and rates of events are different, the RTOS must support a notion of

priority so that a time-critical task is not delayed because of a non-critical task.

Furthermore, tasks need to communicate. Therefore, the OS must provide

synchronization and communication facilities.

An RTOS also needs to support timing features like high-resolution timers and

clocks. Timers are used to support periodic processing and to detect system

timeout errors. Clocks are needed to keep track of time. Typical real-time

applications may need to be aware of time at a granularity of micro- or

milliseconds.

The design of a real-time system goes through several phases: First the tasks

to be performed and the temporal restrictions that must be satisfied are

identified, Secondly the code is written and Finally the run-time of each task is

measured and a schedulability test is done to ensure that the task will not miss

its deadline while the system is running. The schedulability test consists on

applying a number of tests to the whole set of tasks, and if they pass the tests

then it will be possible to warranty that no task will loose its deadline. If the

tests are not passed it is necessary to start our design again from the

beginning, picking a faster CPU or using other algorithms to implement the

tasks.

In summary, the tasks are identified with three time values: Pi stands for

Period of Task i, Di stands for Deadline for task i and Ci stands for worse case

Computational time for task i.

 7

Chapter 2 Literature Survey

The objective of the system is to warranty that all tasks (in all their executions)

will satisfy their deadlines. To warranty execution times the system must be

predictable. Saying that a system is real-time or that the system is predictable

is practically the same statement.

2.3 MULTIMEDIA AND IPV6

The transportation of multimedia traffic on IP networks is an important subject

because multimedia is becoming cheaper and cheaper and therefore used more

and more. All workstations and personal computers available today are

equipped with sound boards for recording and reproducing sounds and with

video boards for viewing MPEG images. Some of them are now equipped with

video input and with small video cameras. Problems with bearing multimedia

flows on IP networks are mainly related to the bandwidth they require and to

the strict maximum delay requirements that must be met. This second point is

particularly important when multimedia applications have to provide users with

real-time interaction.

Mbone is a network layered on the Internet for multimedia applications.

Multimedia traffic has a multicast nature intrinsically and therefore the need to

improve the routing of multicast packets on IP networks. Some characteristics

of IPv6 will improve the support of multimedia applications (in the following,

also called real-time applications), such as the availability of the Priority field

and of the Flow Label field on the IPv6 header [1] and the availability of a large

addressing space reserved for multicast addresses. Moreover, other protocols

of the stack introduce significant rationalizations in this field. ICMPv6 includes

functions for the management of multicast groups, and OSPFv6 provides the

treatment of multicast trees.

IPv6 is part of a more ambitious project called IS (Integrated Service) Internet,

which is discussed in RFC 1633; it aims to extend the Internet architecture to

allow the bearing of either best-effort or real-time traffic, as well as to control

the use of transmission links (controlled link sharing). The best-effort traffic is

 8

Chapter 2 Literature Survey

the only type of traffic that has been used on the Internet till now. It is based

on the idea that the network’s task is to do everything possible to deliver each

IP packet, without guaranteeing the packet is delivered or the delivery time.

Multimedia applications frequently generate real-time traffic—that is, a type of

traffic sensitive to queuing delays and to losses due, for example, to network

overloading. Moreover, this type of traffic frequently needs a guaranteed

minimum bandwidth. The possibility of reserving a minimum bandwidth on links

for particular classes of users, or protocol stacks, is in general a requirement

understood by network administrators, also independently from multimedia

applications.

Clearly, typical real-time applications—like the transmission of remote video

images, multimedia conferences, and virtual reality—require the extension of IP

by introducing the concept of QoS. The extension must in some way allow

limited packet delays and must be designed, from the beginning, for IP

multicast because most of the multimedia traffic is multicast.

2.4 CLUSTERED MIDDLEWARE FOR REAL TIME MULTIMEDIA

ROUTING

The routers used for the implementation are software based. The efficiency of

the software based routers can be combined, to extend the capability of

individual routers. This way the processing that are required for processing at

the forwarding plane, are combined through a cluster, to form a middleware.

The activities on the nodes (running routers) are synchronized by the message

passing libraries like LAM/MPI. The requirements for maintaining end to end

Quality of Service parameters are managed on this middleware. Thus, the main

reason behind having a clustered middleware is to manage the multimedia

traffic as well as schedule them, both at operating system as well as network

layer.

2.5 QOS BASED ROUTING OF MULTIMEDIA TRAFFIC

The advent of Quality of Service (QoS) in the Internet is being fostered by an

 9

Chapter 2 Literature Survey

increasing need to provide adequate network services to a vast range of QoS-

demanding applications. In the presence of distinct applications and traffic

profiles, service providers need to differentiate customers so that an efficient

and cost-effective network resource management can be achieved. In addition

to admission control, reservation protocols, resource management solutions, or

even when these are not present, acceptable QoS conditions can be obtained in

the presence of an appropriated delay differentiation mechanism. In fact, delay

differentiation can be extremely useful to integrate real-time applications and

other delay sensitive applications. From the applications’ perspective there are

two crucial aspects for the integration of real-time applications in IP networks:

the ability to satisfy end-to-end delay requirements and the capability to

absorb excess delays. The former aspect is related to real-time applications,

such as video conferencing systems and other interactive applications which

are highly delay sensitive. In this context, the deployment of scheduling

mechanisms providing queuing delay bounds plays a crucial role in the

integration of real-time traffic in IP networks.

The latter aspect is related to mechanisms used by real-time applications in

order to smooth excess delays or to adapt to network conditions. This means

that in addition to end-to-end delay bounds it is useful to provide expectable

differentiation mechanisms to handle excess queuing delays inside the network.

In this context, the use of rigid admission control procedures and resource

reservations protocols (e.g. in the IntServ architecture) play a relevant role.

These solutions, suffering from well known lack of scalability and flexibility, led

to lighter and easier to deploy solutions (e.g. DiffServ) [3]. As expected,

relaxing QoS-guarantees in the network raises additional problems of

integration of real-time applications mainly due to the absence of rigid

admission control in the core routers. Even existing admission control at

network edges the network core may cause feasibility problems to schedulers

due to: i) the transient effect caused by dynamic flow aggregation; ii) traffic

distortion and packet clustering caused by cascade queuing effects; iii) possible

shaping inaccuracies at edge routers and iv) path changes caused by a route

flip. In addition, delay-oriented scheduling mechanisms may show feasibility

problems as regards their configuration parameters.

 10

Chapter 2 Literature Survey

Hence in order to main QoS in multimedia networks, it is important to develop

scheduling mechanisms able to react to particular congestion situations in order

to achieve expectable differentiation behaviors among real-time traffic classes.

Since, the dissertation work involves a real time linux operating system,

running over linux kernel; the scheduling mechanisms will encompass both

operating system based scheduling as well as proper routing strategies for

multimedia traffic management for a video conferencing system.

2.6 IP SOFTWARE ROUTER

An IP software router has basically two tasks. Routing is generally

accomplished by maintaining a routing table in each end system and each

router, which gives, for each possible destination network, the next router to

which the internet datagram should be sent.

2.6.1 Purpose

In general, routers open the IP packet to read the destination address,

calculate the best route, and then send the packet toward the final destination.

If the destination is on the same part of an intranet, the packet would be sent

directly to the destination computer by the router. If the packet is destined for

another intranet or subnetwork (or if the destination is on the Internet), the

router considers factors like traffic congestion and the number of hops-a term

that refers to the number of routers or gateways on any given path. The IP

packet carries with it a segment that holds the hop count and a router will not

use a path that would exceed a predefined number of hops

This long description of router tasks summarizes the two parts. Firstly, the

router forwards the datagram from sender towards the destination in the

network. Secondly, the router keeps the routing table synchronized between

the other routers. In the following subsections we describe these two tasks in

detail.

The thesis work discusses two major IP based Software router. The first among

 11

Chapter 2 Literature Survey

them is ZEBRA Free routing software distributed under GNU General Public

License. The GNU Zebra is maintained through the support of IP Fusion, a

company which develops network software. The other software is XORP, an

eXtensible Open Router Platform. The core team is based at the International

Computer Science Institute in Berkeley, California, but contributors come from

around the world.

2.6.2 Characteristics

The following sections will discuss the general characteristics of a software

based router.

2.6.2.1 Traffic Forwarding

Forwarding is the process a router goes through, for each packet it receives.

The packet may be consumed by the router, it may be output on one or more

interfaces of the router, or both. Forwarding includes the process of deciding

what to do with the packet as well as queuing it up for (possible) output or

internal consumption.

We use the above definition for forwarding in this thesis. The process which

decides where the packets should be forwarded uses specific rules for that.

These rules are stored in the Forwarding Information Base (FIB). The table

containing the information necessary to forward IP Datagrams, in this

document, is called the Forwarding Information Base. At minimum, this

contains the interface identifier and next hop information for each reachable

destination network prefix.

Both forwarding and FIB are very important terms when we speak about

routing. If a router was a customer servant, IP Datagrams would be its

customers. The customer serving job would then be called forwarding. Even if

the packets were coming to the router itself, they should be forwarded to a

suitable receiving process. To continue more this example of customers and

their servant, we can imagine the situation in a hotel’s reception. The

receptionist receives customers. The receptionist is now our forwarder. He/she

 12

http://www.gnu.org/
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
http://www.icsi.berkeley.edu/
http://www.icsi.berkeley.edu/

Chapter 2 Literature Survey

looks the customer room from booking list, or FIB in our terms. Finally the

receptionist points the way to the room, or a next hop, to the customer. This

was a different situation, but the same forwarding functionality.

2.6.3 Routing Table Management

The second task of a router is to keep its routing table up to date. Routing table

can also be described by route database. The term "router" derives from the

process of building this route database; routing protocols and configuration

interact in a process called routing. This sentence tells the core idea behind the

route database. Router gathers information of the network via routing protocols

and saves that to the database. Another alternative is to modify the

configuration by hand. Both these ways makes the router able to adapt to the

network changes dynamically.

The hand made changes are easy to understand, but how can the router adjust

its internal database when network changes? This case was above in the

previous subsection where we thought about the case when one link goes

down. This failure can be noticed by routing protocols. A router uses them to

adjust its database automatically to the network changes. We have different

kinds of routing protocols, but in this case their functionality is similar. Routing

protocols constantly send polling messages over the link. Default time interval

for the polling packets for example in Routing Information Protocol (RIP) is 30

seconds. Then, if the router has not received the polling packet from the link

for 180 seconds, the link is marked as failed.

All these kinds of routing information is then in the routing table. We can

assume that in the beginning, when the network is initially set up, the network

has also other routing traffic. These messages include route add and probably

also route remove messages. But after this initial routing table synchronization

messaging, the network transfers only these link polling packets. This means,

from the routing table perspective, that routing table has minor alternating

needs after initialization.

 13

Chapter 2 Literature Survey

2.6.3 ZEBRA

Zebra is open source TCP/IP routing software that is similar to Cisco's

Internetworking Operating System (IOS). It is distributed under GNU

(General public License), GNU Zebra is maintained through the support of IP

Fusion. Flexible and powerful, it can handle routing protocols such as Routing

Information Protocol (RIP), Open Shortest Path First (OSPF), Border Gateway

Protocol (BGP), and all of their various flavors. It runs on Linux as well as other

UNIX variants. Zebra is included in most modern distributions as routing

software. The latest version, along with documentation, is available at the GNU

Zebra Web site.

Kunihiro Ishiguro and Yoshinari Yoshikawa wrote the original Zebra package

back in 1996. Today, primarily IP Infusion, of which Mr. Ishiguro is the CTO,

maintains the package, with the assistance of networking engineers and open

source volunteers. Zebra is unique in its design because it takes a modular

approach to the protocols that it manages. Protocols can be enabled or disabled

as network requirements dictate.

By far the most useful feature identified with Zebra was its close similarity to

the Cisco IOS configuration formats. While there are some differences from

IOS, the feel is close enough that network engineers already familiar with IOS

will feel very comfortable in the environment.

2.6.3.1 Features

Some of the features, which make zebra routing software suitable for

distributed routing platform, are discussed in the following section.

One of the main feature of Zebra, software based router is that, it provides a

modular mechanism to add new protocols as they are developed. The zebra

execution environment runs one process per protocol. Also, compared with

CISCO hardware based routers, it is easy to add new protocols because of the

API of zebra. The benefits of multiple servers are that, it increases modularity

and extensibility, and is easy to debug the zebra code. In Zebra, each server

 14

http://www.gnu.org/

Chapter 2 Literature Survey

has a terminal interface that is similar to the Cisco terminal interface. Servers

have their own configuration file.

But, the adverse side of this architecture is that, due to multiple processes, the

router can be slow in processing, because of the time incurred in inter-process

communication. Also, the kernel table updates and redistribution could be slow.

One of the major drawback of Zebra is, its API is not complete.

2.6.3.2 Zebra Architecture

Zebra is made from a collection of several daemons that work together to build

a routing table. There may be several protocol-specific routing daemons and

zebra the kernel routing manager. The ripd daemon handles the RIP protocol,

while ospfd is a daemon which supports OSPF protocol, bgpd supports the BGP-

4 protocol. For changing the kernel routing table and for redistribution of routes

between different routing protocols, there is a kernel routing table manager

zebra daemon. Zebra is the routing manager. It provides kernel routing table

updates, interface lookups and redistribution of routes between different

routing protocols.

Each daemon has its own routing table. Zebra daemon is responsible for kernel

routing table update (service) and its redistribution between different protocol

(e.g. RIPd). Other daemons are for protocol handling.

Zebra protocol is used between protocol daemon and zebra. Each protocol

daemon sends selected routes to the zebra daemon. The zebra daemon

manages which route is installed into the forwarding table. Zebra protocol is a

TCP based protocol.

All the daemons listen on a particular port for incoming VTY (Virtual Terminal

Interface). VTY is a command line interface (e.g. telnet) to change or view the

current configuration. Zebra’s daemon’s have their own VTY.

 15

Chapter 2 Literature Survey

Fig 2.1: Zebra Architecture

2.6.4 XORP

At present, XORP does not implement its own forwarding system. It is reliant

on the forwarding of the underlying host operating system. XORP can be

deployed in commercial and research environments. It is stable and secure.

XORP, or Extensible Open Router Platform, is an open source routing software

suite, aimed at being both stable and fully featured enough for production use

and also extensible to support networking research. The project was founded

by Mark Handley in 2000, with first production release in July 2004. The project

is now headed by Atanu Ghosh of the International Computer Science Institute,

in Berkeley, California. The current XORP release is version 1.4.As of 2007, the

code supports the several routing protocols like, BGP (including multiprotocol

extensions for IPv6, Route Reflection, Confederations, Communities), RIP (v2

for IPv4, and RIPng for IPv6), OSPF (RFC2328 (OSPFv2) and RFC2740

(OSPFv3) for both IPv4 and IPv6), PIM (Sparse Mode for both IPv4 and IPv6),

IGMP (v1, v2 and v3 (IPv4 only protocol)), MLD (v1 and v2 (IPv6 only

protocol)).The XORP codebase consists of around 500,000 lines of C++, and is

fairly portable running on FreeBSD, Linux, OpenBSD, DragonFlyBSD, NetBSD,

Mac OS X and there is even a port to Windows Server 2003 which only

supports IPv4.At present, XORP does not implement its own forwarding system.

It is reliant on the forwarding of the underlying host operating system. XORP

can be deployed in commercial and research environments. It is stable and

secure.

 16

Chapter 2 Literature Survey

2.6.4.1 Purpose

The basic purpose of the XORP router is specified by its basic functionalities

like; it is open source, the XORP code runs on commodity PC hardware and

operating systems. The modular design and separation of functional entities

into distinct processes means that failure of one component does not cause the

whole router to fail or malfunction. The modular design also enables future

integration with hardware forwarding planes. XORP components communicate

with a flexible IPC scheme. Components can run within a single host or be

distributed across multiple hosts. There is scope for building a distributed

router from low-cost PC hardware.

The router however has certain disadvantages like; its forwarding plane limits

the forwarding rate. Also, the number of features is much less as compared to

commercial hardware based routers. Support options do not exist like the big

vendors. The project core does not have the resources to provide this level of

support. If a company wants to commercialize XORP, this would be one area of

differentiation for the commercial product.

2.6.4.2 XORP Architecture

The XORP design philosophy stresses extensibility, performance and

robustness. For routing and management modules, the primary goals are

extensibility and robustness. These goals are achieved by carefully separating

functionality into independent modules, running in separate UNIX processes,

with well-defined APIs between them. Clearly, there are performance penalties

to pay for such architecture, but we believe that so long as careful attention is

paid to computational complexity, the costs associated with inter-process

communication will be acceptable given the obvious extensibility and

robustness benefits.

For the forwarding path, the primary goals are extensibility and performance.

Robustness here is primarily achieved through simplicity and a modular design

that encourages re-use of well-tested components.

 17

Chapter 2 Literature Survey

XORP can be divided into two subsystems. The higher-level i.e. User Space

subsystem consists of the routing protocols and management mechanisms. The

lower-level i.e. Kernel Space, provides the forwarding path, and provides APIs

for the higher-level to access. User-level XORP uses a multi-process

architecture with one process per routing protocol, and a novel inter-process

communication mechanism known as XORP Resource Locators (XRLs). XRL

communication is not limited to a single host, and so XORP can in principle run

in a distributed fashion. For example, we can have a distributed router, with

the forwarding engine running on one machine, and each of the routing

protocols that update that forwarding engine running on a separate control

processor system. The lower-level subsystem can use traditional UNIX kernel

forwarding, the Click modular router or Windows kernel forwarding (Windows

Server 2003). The modularity and minimal dependencies between the lower-

level and user-level subsystems allow for many future possibilities for

forwarding engines. As standards such as those being developed in the IETF

For CES Working Group emerge, we expect to support them to provide true

forwarding engine interchangeability.

Fig 2.2: XORP Architecture

 18

Chapter 2 Literature Survey

The Fig 2.2 shows the processes in XORP, although it should be noted that

some of these modules use separate processes to handle IPv4 and IPv6. For

simplicity, the arrows show only the main communication flows used for routing

information. Control flows are not shown - for example, the FEA may need to

inform the routing processes when an interface goes down.

We should note that even though our design philosophy is that each XORP

component in Fig 2.2 will run as a separate process, it would also be possible to

compile most of them together to run as one single process. Obviously, the

robustness of such a router would suffer because the crash of a single

component would bring down the whole router. However, the XORP

architecture is designed to be flexible, and other developers building on this

software can choose to use it in different ways. Let us take a look into the main

components of XORP architecture.

FEA (Forwarding Engine Abstraction)

The FEA provides a platform independent interface to the basic routing and

network interface management functionality. For example, get or set

information about network interfaces, install or modify unicast forwarding

entries, multicast routing support,

If the router is distributed, in the sense that some Forwarding Engines (FEs)

are not in the same chassis as the control software, then the FEA will also

handle control communications with the remote FEs. Note that, strictly

speaking, it is not required that all communication with the FE must go through

the FEA. For example, Click modules can communicate directly with a user-

space process. However, the FEA abstracts all the details about the underlying

system from the user-level XORP processes; therefore by using the common

API provided by the FEA we can greatly simplify the rest of the XORP

components. Note that the multicast-related functionalities are logically

separated from the unicast-based functionalities in the MFEA (Multicast

Forwarding Engine Abstraction), though the MFEA is part of the FEA process.

 19

Chapter 2 Literature Survey

RIB (Routing Information Base)

The RIB holds a user-space copy of the entire routing/forwarding table,

complete with information about where each route came from (e.g., which

protocol, and when). It communicates with the routing protocols such as BGP,

RIP and OSPF to instantiate routes, and with the FEA to install the appropriate

forwarding entries in the FEs.

The RIB also holds the routing information for multicast-capable routes (MRIB)

to be used for multicast Reverse-Path Forwarding (RPF) information. For

example, PIM-SM uses the MRIB information to route joins/prunes and to

determine the RPF interface for sources and for RPs. The MRIB is populated by

whatever “unicast” protocol is used to provide multicast capable path

information. Typically this is MBGP for inter-domain paths, where it is possible

to tell the difference between unicast-capable and multicast-capable routers.

For intra-domain routing, this usually is the regular unicast FIB information.

Note that, for unicast, routing and forwarding tables are practically the same.

In case of multicast, the RIB provides the RPF information, while the forwarding

information (the incoming and outgoing interfaces) is computed by the

particular multicast routing protocol. The multicast forwarding information is

kept by the multicast routing protocol itself, and installed directly through the

FEA. In the future, when there is more than one multicast routing protocols,

XORP may have the multicast equivalent of RIB that would be responsible for

coordinating among the different multicast routing protocols running on the

same router. On a router with multiple FEs, the RIB is responsible for splitting

up the routing table amongst the FEs and for figuring out how to forward

between FEs.

BGP4+

This is the BGP routing daemon. It implements IPv4 and IPv6 unicast routing in

a single process, as well as MBGP for both IPv4 and IPv6 multicast RIBs for

multicast routing purpose.

 20

Chapter 2 Literature Survey

OSPF

This is the OSPF routing daemon. There are separate IPv4 and IPv6 daemons,

because unlike BGP there is no real need to tie them together.

RIP

This is the RIP routing daemon. Similarly to OSPF, the IPv4 and IPv6 daemons

are separate.

MLD/IGMP

This is Multicast Listener Discovery/Internet Group Management Protocol

handler. It implements the router-side part of MLD and IGMP. Its main purpose

is to discover local multicast members and propagate this information to

multicast routing daemons such as PIM-SM. Similar to OSPF and RIP, the IGMP

(IPv4) and MLD (IPv6) daemons are separate.

PIM-SM

This is the PIM-SM multicast routing daemon. Similar to OSPF and RIP, the

PIM-SM IPv4 and IPv6 daemons are separate. The PIM-SM protocol requires

information about local multicast members, and Reverse-Path Forwarding to

operate properly. The former is obtained from the IGMP/MLD process; the

latter is obtained from the RIB.

RTRMGR: XORP Router Manager

The rtrmgr is the process responsible for starting all components of the router,

to configure each of them, and to monitor and restart any failing process. It

also provides the interface for the CLI to change the router configuration.

CLI: Command Line Interface

The CLI can be used by an user to access the router, view its internal state, or

to configure it on-the-fly. Its functionality is closely related to the rtrmgr.

However, because the robustness of the rtrmgr itself is extremely important, all

functionality that can be run as a separate CLI process are separated from the

rtrmgr. The process implementing this CLI functionality is called xorpsh.

 21

Chapter 2 Literature Survey

Inter-Process Communication Finder

The IPC finder is needed by the communication method used among all XORP

components, i.e., the XRLs. Each of the XORP components registers with the

IPC finder. The finder assists the XRL communications (more specifically, it

knows the location of each XRL target), therefore a XORP process does not

need to know explicitly the location of all other processes, or how to

communicate with them. The router manager process (rtrmgr) incorporates a

finder, so a separate finder process is only needed if the rtrmgr is not being

used such as during testing.

2.6.4.3 XORP Router Manager

The rtrmgr is normally the only process explicitly started at router startup. The

rtrmgr process includes a built-in XRL finder, so no external finder process is

required. The basic operation of the XORP, with respect to can be described as

follows:

The rtrmgr reads all the template files in the router’s template directory.

Typically there is one template file per XORP process that might be needed. A

template file describes the functionality that is provided by the corresponding

process in terms of all of the configuration parameters that may be set. It also

describes the dependencies that need to be satisfied before the process can be

started. After reading the template files, the rtrmgr knows all the configuration

parameters currently supportable on this router, and it stores this information

in its template tree. After all template files are read, the template tree is

checked for errors (e.g., invalid variable names, etc). The rtrmgr will exit if

there is an error.

The rtrmgr next reads the contents of the XRL directory to discover all the XRLs

that are supported by the processes on this router. These XRLs are then

checked against the XRLs in the template tree. As it is normal for the XRLs in

the XRL directory to be used to generate stub code in the XORP processes, this

forms the definitive version of a particular XRL. Checking against this version

 22

Chapter 2 Literature Survey

detects if a template file has somehow become out of sync with the router’s

codebase. Doing this check at startup prevents subtle run time errors later. The

rtrmgr will exit if a mismatch is discovered.

The rtrmgr then reads the router configuration file. All the configuration options

in the config file must correspond to configurable functionality as described by

the template files. As it reads the config file, the rtrmgr stores the intended

configuration in its configuration tree. At this point, the nodes in the

configuration tree are annotated as not existing - that is this part of the

configuration has not yet been communicated to the process that will

implement the functionality.

The rtrmgr next traverses the configuration tree to discover the list of

processes that need to be started to provide the required functionality.

Typically not all the available software on the router will be needed for a

specific configuration. The rtrmgr traverses the template tree again to discover

an order for starting the required processes that satisfies all their

dependencies.

Thus, the rtrmgr starts the first process in the list of processes to be started. If

no error occurs, the rtrmgr traverses the configuration tree to build the list of

commands that need to be executed to configure the process just started. A

command can be either an XRL or an external program. These commands are

then called, one after another, with the successful completion of one command

triggering the calling of the next. The commands are ordered according to the

command semantics (e.g., see below the description of commands %create,

%activate, etc). If the semantics of the commands do not specify the ordering,

then the commands follow the order they are defined in the rtrmgr template

files. Some processes may require calling a transaction start command before

configuration, and a transaction complete command after configuration - the

rtrmgr can do this if required. If no error occurred during configuration, the

next process is started, and configured, and so forth, until all the required

processes are started and configured.

 23

Chapter 2 Literature Survey

At this point, the router is up and running. The rtrmgr will now allow

connections from the xorpsh process to allow interactive operation.

2.6.4.4 XRL Interfaces

XRL Target as something that XRL requests can be directed to in order to be

executed. Multiple XRL targets can exist within a single process, though there

will typically be one target per process. Each XRL Target has an associated

name and a set of IPC mechanisms that it supports. At start-up each target

registers its name and IPC mechanisms with the Finder, so other processes are

able to direct requests to it. We define an XRL Interface to be a set of related

methods that an XRL Target would implement. XRL Interface Client is defined

to be a process that accesses a particular XRL Interface

Each XRL Interface is uniquely identified by a name and version number. An

XRL Target will nearly always implement multiple interfaces and potentially

multiple versions of particular interface. For instance, every XRL Target could

implement a process information interface that would return information about

the process hosting the target. Each XRL Target will implement interfaces

specific to their field of operation: a routing process would implement the

“routing process interface” so that the RIB process can make identity-agnostic

XRL calls for tasks like redistributing a route to another routing protocol.

 24

Chapter 2 Literature Survey

Figure 2.3: Example XRL Targets and clients: OSPF, RIB, and CLI. OSPF and

RIB processes are XRL targets. OSPF supports XRL interfaces “OSPF

Configuration/1.0” and “Routing Protocol/1.0”: the CLI is a client of the “OSPF

Configuration/1.0” interface and the RIB a client of the “Routing Protocol/1.0”

interface. RIB supports XRL interface “Routing Information Base/1.0”: the OSPF

is a client of that interface.

2.7 REAL TIME SCHEDULING

Real-time systems are typically implemented with multiple asynchronous

threads of execution. This is dictated by the need to react to external events,

and control asynchronous devices. Because of this characteristic, an RTOS must

support multithreading. Also, because the criticality and rates of events are

different, the RTOS must support a notion of priority so that a time-critical task

is not delayed because of a non-critical task. Furthermore, tasks need to

communicate. Therefore, the OS must provide synchronization and

communication facilities.

 25

Chapter 2 Literature Survey

2.7.1 Scheduling Multimedia on RTOS

The most significant characteristic of multimedia applications is probably the

real-time constraint. That is, a packet generated at the source should be

received by the receiver before a specified time which is denoted as the

deadline. Otherwise, this packet would become useless and will be dropped.

Besides the real-time constraint, different applications may have different

degrees of importance and hence will be assigned different levels of priority.

Since it is impossible for any scheduling policy to avoid dropping packets for

multimedia applications when the network load is heavy; hence, the good

scheduler should drop packets with lower priorities first if packet dropping is

unavoidable. We define normalized penalty denoted as NP[4], as

NP = sum of priorities of all lost packets / sum of priorities of all packets

Clearly, a good scheduling policy should be able to keep the value of NP as

small as possible. There have been works on the design of scheduling

algorithms for applications with real-time constraint. However, these works

treat all packets with equal importance; hence, their scheduling policies depend

only on the real-time constraints. The scheduling policy proposed in this paper

will take into account both the real-time constraint and the priority values of

packets.

2.8 ROUTING MULTIMEDIA

2.8.1 General

The basic implementation strategies of a router are subdivided into two parts:

the forwarding path (lower part) and the background code (upper part). The

additional blocks, in comparison with a common router, are the packet

scheduler, the admission control agent, the classifier, and the reservation setup

agent. These blocks operate on data flows, and this concept is clearly present

in IPv6.

 26

Chapter 2 Literature Survey

Current routers are designed for best-effort traffic; therefore, they treat

packets with a simple FIFO (First In, First Out) queuing for each egress line. As

for integrated services, a router must provide an appropriate QoS for each flow,

and it must therefore be equipped with a module for the traffic control. This

module consists of three sub-modules; packet scheduler, packet classifier and

admission control. The packet scheduler guarantees the QoS administering the

transmission of packets through a mechanism for the periodical visit of a set of

queues. The packet classifier recognizes which flow a packet belongs to and

queues it on the corresponding queue. A queue can be associated with a single

flow or to a class of flows. The admission control decides, in response to a

request of resource reservation from the reservation agent, whether this packet

can be accepted. The decision is made on the basis of resources reserved by

other flows, of the network administration policies set through the control

agent, and of globally available resources. In practice, this module checks

whether the requested QoS can be provided without colliding with the

guarantees of service provided to other flows.

The presence of a classification module and of a packet scheduler requires that

each egress line be associated with a set of queues.

Fig 2.4: A queue for each egress line

The presence of a set of queues is a necessary, but not sufficient, characteristic

to guarantee the QoS. It is, in fact, necessary that the scheduler guarantees

that the frequency with which each queue is served is greater than or equal to

that guaranteed during the resource reservation. This forces us to have a

separate queue for each real-time flow (in the example, R1, R2, R3 e R4) and a

shared queue for the best-effort traffic. The best-effort traffic will clearly be

penalized, and it will be served only in the absence of real-time traffic.

 27

Chapter 2 Literature Survey

The model of admission control is sometimes confused with the so called

policing, a control mechanism that checks packet by packet that a host doesn’t

violate traffic characteristics agreed upon by a previous QoS agreement. In this

case, the packet scheduler provides the policing. The fourth and last

component is the resource reservation protocol, which is necessary to create

and maintain the state of each flow on the routing path and which allows the

interaction between reservation agents. The protocol chosen by the IETF is

RSVP (Resource reservation Protocol)

Fig 2.5: Set of queues associated with an exit

The implementation for hosts is usually similar to that of routers, but with the

addition of applications. Fig 2.6 shows the interconnection between a host and

a router.

 28

Chapter 2 Literature Survey

Fig 2.6: Connection between a router and a host in IS Internet

The host’s data are received by an application that, if needing QoS for a flow,

must request it from the local reservation agent (the RSVP agent)

2.8.2 Multimedia routing in Real Time

Multimedia applications have become some of the most important applications

on high speed local and metropolitan area networks. One of the major

characteristics of multimedia traffic is the real-time constraint of packets.

Furthermore, in multimedia applications, packets of different applications may

have different levels of priority. Hence, a proper scheduling policy is necessary

to schedule packets with different priorities and real-time constraints. This

paper presented a scheduling policy for real-time traffic with priorities on

broadcast networks to reduce the probability of packet loss due to exceeding

the real-time constraint. Moreover, if packet loss is unavoidable, this scheduling

Policy will avoid dropping the packets with high priorities.

2.8.3 QOS based Routing

QoS-based routing was recognized as a missing piece in the evolution of QoS-

based service offerings in the Internet, in the past. This section will include

 29

Chapter 2 Literature Survey

some of the QoS based routing issues. The Internet Engineering Task Force

(IETF) has proposed many service models and mechanisms to meet the

demand for QoS. Notably among them are the integrated services/Resource

Reservation Protocol (RSVP) model, the differentiated services (DS) model,

multiprotocol label switching (MPLS), traffic engineering, and constraint-based

routing.

The integrated services model is characterized by resource reservation. For

real-time applications, before data are transmitted, the applications must first

set up paths and reserve resources. RSVP is a signaling protocol for setting up

paths and reserving resources. In differentiated services, packets are marked

differently to create several packet classes. Packets in different classes receive

different services. MPLS is a forwarding scheme. Packets are assigned labels at

the ingress of an MPLS-capable domain. Subsequent classification, forwarding,

and services for the packets are based on the labels. Traffic engineering is the

process of arranging how traffic flows through the network. Constraint-based

routing is to find routes that are subject to some constraints, such as

bandwidth or delay requirement.

It is important to understand the difference between QoS-based routing and

resource reservation. While resource reservation protocols such as RSVP

provide a method for requesting and reserving network resources, they do not

provide a mechanism for determining a network path that has adequate

resources to accommodate the requested QoS. Conversely, QoS-based routing

allows the determination of a path that has a good chance of accommodating

the requested QoS, but it does not include a mechanism to reserve the

required resources.

2.8.3.1 Objectives

Under QoS-based routing, paths for flows would be determined based on some

knowledge of resource availability in the network, as well as the QoS

requirement of flows. The main objectives of QoS-based routing are; dynamic

determination of feasible paths, Optimization of resource usage, Graceful

performance degradation.

 30

Chapter 2 Literature Survey

In dynamic determination of feasible paths scheme, QoS-based routing can

determine a path, from among possibly many choices, that has a good chance

of accommodating the QoS of the given flow. Feasible path selection may be

subject to policy constraints, such as path cost, provider selection, etc.

The Optimization of resource usage, refers to the fact that, a network state-

dependent QoS based routing scheme can aid in the efficient utilization of

network resources by improving the total network throughput. Such a routing

scheme can be the basis for efficient network engineering.

The graceful performance degradation, means that, the state-dependent

routing can compensate for transient inadequacies in network engineering

(e.g., during focused overload conditions), giving better throughput and a more

graceful performance degradation as compared to a state-insensitive routing

scheme.

2.8.3.2 Real Time Flows

In real-time quality-of-service, delay variation is generally more critical than

delay as long as the delay is not too high. Clearly, voice-based applications

cannot tolerate more than a certain level of delay. The condition of varying

delays may be expected to a greater degree in a shared medium environment

with datagrams, than in a network implemented over a switched substrate.

Routing a real-time flow therefore reduces to an exercise in allocating the

required network resources while minimizing fragmentation of bandwidth. The

resulting situation is a bandwidth-limited minimum hop path from a source to

the destination. In other words, the router performs an ordered search

through paths of increasing hop count until it finds one that meets all the

bandwidth needs of the flow. To reduce contention and the probability of false

probes (due to inaccuracy in route tables, the router could select a path

randomly from a "window" of paths which meet the needs of the flow and

satisfy one of three additional criteria: best-fit, first-fit or worst-fit. Note that

there is a similarity between the allocation of bandwidth and the allocation of

memory in a multiprocessing system. First-fit seems to be appropriate for a

 31

Chapter 2 Literature Survey

system with a high real-time flow arrival rates; and worst-fit is ideal for real-

time flows with high holding times.

2.8.3.3 QoS based Routing for Multicast Flows

QoS-based multicast routing is an important problem, especially if the notion of

higher-level admission control is included. The dynamism in the receiver set

allowed by IP multicast, and receiver heterogeneity adds to the problem. With

straightforward implementation of distributed heuristic algorithms for multicast

path computation, the difficulty is essentially one of scalability. To

accommodate QoS, multicast path computation at a router must have

knowledge of not only the id of subnets where group members are present, but

also the identity of branches in the existing tree. In other words, routers must

keep flow-specific state information. Also, computing optimal shared trees

based on the shared reservation style, may require new algorithms.

2.8.3.4 Intra-domain Routing Requirements

At the intra-domain level, the objective is to allow as much latitude as possible

in addressing the QoS-based routing issues. Indeed, there are many ideas

about how QoS-based routing services can be provisioned within ASs. These

range from on-demand path computation based on current state information,

to statically provisioned paths supporting a few service classes.

Another aspect that might invite differing solutions is performance optimization.

Based on the technique used for this, intradomain routing could be very

sophisticated or rather simple. Finally, the service classes supported, as well as

the specific QoS engineered for a service class, could differ from AS to AS. For

instance, some ASs may not support guaranteed service, while others may.

Also, some ASs supporting the service may be engineered for a better delay

bound than others. Thus, it requires considerable thought to determine the

high level requirements for intradomain routing that both supports the overall

view of QoS-based routing in the Internet and allows maximum autonomy in

developing solutions.

Hence, intra-domain routing in order to be qualified as “QoS-based” routing

 32

Chapter 2 Literature Survey

must satisfy certain minimum requirements. These are, the routing scheme

must route a flow along a path that can accommodate its QoS requirements, or

indicate that the flow cannot be admitted with the QoS currently being

requested. Also, the routing scheme must indicate disruptions to the current

route of a flow due to topological changes. The routing scheme must also,

accommodate best-effort flows without any resource reservation requirements.

That is, present best effort applications and protocol stacks need not have to

change to run in a domain employing QoS-based routing. Finally, the routing

scheme may optionally support QoS-based multicasting with receiver

heterogeneity and shared reservation styles. Thus, the intra-domain

requirements are expected to be rather broad.

2.9 SUMMARY

The chapter discusses, literature survey related to various components of the

project work. The first part dealt with, analysis of the subparts of the topic of

the dissertation, like real time operating system, multimedia and IPv6, QoS of

Multimedia in IPv6. The description regarding two software based routers

studied was also discussed. The last section, which was core to the discussion,

was related to issues governing routing of multimedia traffic.

 33

3. PROJECT ARCHITECTURE

3.1 GENERAL

Multimedia traffic is known for its stringent quality of service requirements. The

dissertation work that includes study work related to scheduling of multimedia

traffic. The proposed architecture described in this chapter, is influenced by a

Video On Demand Server (VOD) Architecture. The system comprises of one

source where, Multimedia Files are stored. The operating platform identified for

implementation of the source is a Real Time Linux operating system (RTLinux

3.1), which is configured to run on Linux Kernel (Fedora Core 6 with kernel

2.6.20). The multimedia file is streamed using VLC’s VideoLAN software, from

the source computer. This multimedia IP traffic, while going to the destination

passes through software based routers (XORP, configured with iPv6

support)[4]. The network is also overloaded with heavy TCP traffic generated

artificially by a Traffic Generator Tool called Mgen. The multimedia traffic is

prioritized by a module developed to run in the Real Time Linux kernel. The

XORP router is also extended, to identify the priority based traffic and route

them accordingly to the destination host. The extension of the XORP router is

through a XORP Process, created and running at the XORP routers. The

requested file is later displayed at the client side. Various QoS Parameters, like

Packet Loss, Latency, Throughput, and bandwidth occupied, are tested in the

above configuration.

3.2 PROJECT ARCHITECTURE

As per the above discussion the proposed architecture is like a Video On

Demand Server. The source computer is where multimedia files are stored.

RTLinux kernel runs over Linux kernel in this node. The Real Time distribution

which has been selected for work is RTLinux from FSMLabs. The base operating

system on which RTLinux works is Fedora Core 6 and Red Hat Linux 9. IP

Software router has been installed and configured on both the types of Linux

platforms. The routers used for experimental purpose includes Zebra and

Chapter 3 Project Architecture

XORP. The features of both these routers have been discussed in Section 2.2.2

and Section 2.2.3 of the report.

Out of the two XORP router can be configured to work as a cluster, in which the

routing based decisions and the forwarding plane can remain common. Hence

the requirement of having a clustered middleware has been accomplished.

VideoLAN’s VLC Software has been selected for streaming a multimedia file.

The file is streamed and sent from the output interface with the specified

destination address. An interface to send the request for a multimedia file to

the VOD Server, from the client side is also created.

Fig 3.1: Project Architecture (Higher Level)

The streamed data is first sent to IP based Software routers, which works as a

clustered middleware. The protocol stack on which the architecture is

implemented is IPv6, since Ipv6 has got inherent support for real time

applications and multimedia communications. Two strategies of managing

quality of service of the multimedia stream have been implemented. The first

strategy is related to developing a Multimedia Transport Dissector[] before the

streamed traffic is out of the source server into the network stream. The other

strategy is similar to the implementation of the Differentiated Services

Architecture. In this technique the Type of Service field of the IPv4 and the

 36

Chapter 3 Project Architecture

Traffic Class of the IPv6 header are updated. The multimedia traffic are

forwarded to the destination based on some Quality of Service parameters.

Since the thesis work has various aspects to its overall architecture of

implementation, the section below will discuss each in detail.

3.3 INSTALLATION AND CONFIGURATION

The Installation and configuration of the proposed architecture can be divided

into various sections. This includes installation of Real Time Linux (RTLinux3.1)

on Fedora Core 6 (kernel 2.6.20). The kernel would support both IPv6 and IPv4

stack. Steps required to tunneling traffic from IPv6 to IPv4 network are also

discussed. The next part of the discussion is related to installation and

configuration of Software routers, both Zebra and XORP, working on VLC’s

VideoLAN for streaming multimedia traffic on both Linux and Windows

operating system. Let us look into the required configurations in detail in the

following sections.

3.3.1 RTLinux 3.1 with Linux Kernel (2.6.20) , with IPv6 support

As mentioned in the previous discussion in Chapter 2, the network stack on

which the implementation has been carried is Ipv6. This is due to Ipv6’s

inherent support for real time traffic management, especially the 8 bit field

Traffic class and the 20 bit field FlowLabel. These fields will be used for Quality

of Service of the multimedia stream. This will be discussed in the coming

chapters. The present section discusses the steps required to configure Ipv6

support in the RTLinux kernel running on Linux kernel 2.4.20. In the RTKernel,

running over fedora Core6, the option for Ipv6 stack support can be mentioned

during installation itself.

The first step is to download the Prepatched Linux kernel from FSMLabs in

/usr/src folder and uncompress it:

tar -xzf prepatched_linux_kernel-2.6.20.tar.gz

You will have a directory called linux.2.6.20-rtl. Create a link to this directory:

 37

Chapter 3 Project Architecture

ln -s /usr/src/linux-2.6.20-rtl /usr/src/linux_ipv6

Having done that, you need to configure the new kernel to enable support for

IPv6:

$make xconfig

We need to enable two options in the kernel configuration. First, go to Code

Maturity Level and enable development/incomplete code/drivers:

"Prompt for development and/or incomplete code/drivers" YES

Then go to the Networking Options. There you will enable the IPv6 protocol:

IPv6 Protocol (EXPERIMENTAL) YES

Also select the Davicom Fast Ethernet Driver under 10 B Fast Ethernet section,

from Load drivers section. This is the configuration required at the kernel level.

The next step is to save the configuration and exit by clicking on the Save and

Exit button. This will create a .config file in /usr/src/linux, which is the kernel

configuration file. Now the kernel is to be compiled, by following these steps:

make clean

make dep

make bzImage

The result will be a new kernel image created in /usr/src/linux/arch/i386/boot/.

If some other features are added as modules, then the compilation has to be

done by the following procedure.

make modules

make modules_install

At this point, copy the new IPv6-enabled boot image to /boot, and update the

System.map file:

cp /usr/src/linux/arch/i386/boot/bzImage /boot/bzImage.ipv6

cp /usr/src/linux/System.map /boot/System.map-2.6.20-ipv6

ln -fs /boot/System.map-2.6.20-ipv6 /boot/System.map

The only remaining step is to update /etc/grub.conf.conf file to add an entry for

the new IPv6-enabled kernel. Edit the /etc/grub.conf file and add a new entry

as follows:

 38

Chapter 3 Project Architecture

title Real Time Linux (Ipv6)

kernel /boot/System.map ro root/dev/hda5

Then the grub loader is to be reinstalled, by the following command.

$grub-install /dev/hda0

Reboot the System, by selecting the option of ‘Real Time Linux (Ipv6)’. The

system should boot properly.

3.3.2 Ipv6 Layer as a Router

Datagrams flow through the IPv6 layer in two directions: from the network

up to user processes and from user processes down to the network. Using

this orientation, IPv6 is layered above the network interface drivers and below

the transport protocols such as UDP and TCP.

The IPv6 layer will normally act as a router (forwarding datagrams that are

not addressed to it, among other things) when the machine has two or more

IPv6 interfaces that are up. This behavior can be overridden by using

ndd(1M) to set the /dev/ip6 variable, ip6_forwarding. The value 0 means, do

not forward; the value 1 means forward. The initialization scripts (see

/etc/init.d/inetinit) set this value at boot time based on the number of "up"

interfaces and whether or not the neighbor discovery protocol daemon

configuration file /etc/inet/ndpd.conf exists. The default value is zero;

ip6_forwarding is set to 1 only if more than one interface has been configured

for IPv6 and if /etc/inet/ndpd.conf exists.

Additionally, finer grained forwarding can be configured in IPv6. Each interface

will create an ifname:ip6_forwarding /dev/ip6 variable that can be modified

using ndd(1M). If a per-interface: ip6_forwarding variable is set to 0, packets

will neither be forwarded from this interface to others, nor forwarded to this

interface. Setting the ip6_forwarding variable will toggle all of the

per-interface: ip6_forwarding variables to the setting of ip6_forwarding.

3.3.3 IPv6 TO IPv4 Tunneling

 39

http://bama.ua.edu/cgi-bin/man-cgi?ndd+1M
http://bama.ua.edu/cgi-bin/man-cgi?ndd+1M

Chapter 3 Project Architecture

Before we start of with this discussion, it is worth mentioning that, all the

networking related files, required at kernel level are available in the

/usr/src/linux/Documentation/networking folder of any linux installation. There

are more than one possibility to tunnel IPv6 packets over IPv4-only link. They

are mentioned below:

Displaying the Existing tunnels

Using ip

/sbin/ip -6 tunnel show [<device>]

Using route

/sbin/route -A inet6

The output displayed is:

sit0: ipv6/ip remote any local any ttl 64 nopmtudisc

Kernel IPv6 routing table

Destination Next Hop Flags Metric Ref Use Iface

::1/128 :: U 0 0 0 lo

fe80::280:adff:fe83:559/128 :: U 0 4 1 lo

fe80::/10 :: UA 256 0 0 eth0

ff00::/8 :: UA 256 0 0 eth0

::/0 :: UDA 256 0 0 eth0

Here lo and etho are the available network interfaces.

Adding a Tunnel (Point to Point)

/sbin/ip tunnel add sit1 mode sit ttl 64 remote 222.222.3.6 – creates a tunnel

But, this can throw error:

ioctl: No buffer space available, this may be thrown if the tunnel sit1 already

exists. Therefore check using ifconfig -a option (...). The optput displayed,

after this is:

eth0 Link encap:Ethernet HWaddr 00:80:AD:83:05:59

 inet addr:222.222.3.5 Bcast:222.222.255.255 Mask:255.255.0.0

 inet6 addr: fe80::280:adff:fe83:559/10 Scope:Link

 40

Chapter 3 Project Architecture

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:419000 errors:0 dropped:0 overruns:0 frame:0

 TX packets:2686 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:100

 RX bytes:45657975 (43.5 Mb) TX bytes:336243 (328.3 Kb)

 Interrupt:3 Base address:0xd800

lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0

 inet6 addr: ::1/128 Scope:Host

 UP LOOPBACK RUNNING MTU:16436 Metric:1

 RX packets:152 errors:0 dropped:0 overruns:0 frame:0

 TX packets:152 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:15381 (15.0 Kb) TX bytes:15381 (15.0 Kb)

sit0 Link encap:IPv6-in-IPv4

 NOARP MTU:1480 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

sit1 Link encap:IPv6-in-IPv4

 POINTOPOINT NOARP MTU:1480 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

Creating tunnels using "ifconfig" and "route" (deprecated)

This not very recommended way to add a tunnel because it's a little bit strange.

No problem if adding only one, but if you setup more than one, you cannot

easy shutdown the first ones and leave the others running.

 41

Chapter 3 Project Architecture

Removing a tunnel using "ip"

Usage for removing a tunnel device:

/sbin/ip tunnel del <device>

Configuration of kernel parameters at runtime

The sysctl system call is used to modify kernel parameters at runtime. The

parameters available are those listed under /proc/sys/. You can use sysctl(8)

to both read and write sysctl data. The location of the various networking

related configuration files are at: /proc/sys/net/ipv6/

For example, let us take the example of forwarding related details. This enables

global IPv6 forwarding between all interfaces. In IPv6 you can't control

forwarding per device, forwarding control has to be done using IPv6-netfilter

(controlled with ip6tables) rulesets and specify input and output devices. This is

different to IPv4, where you are able to control forwarding per device (decision

is made on interface where packet came in). This also sets all interfaces'

Host/Router setting 'forwarding' to the specified value. See below for details.

This referred to as global forwarding. If this value is 0, no IPv6 forwarding is

enabled, packets never leave another interface, neither physical nor logical like

e.g. tunnels.

Retrieving the value of forwarding parameter:

sysctl net.ipv6.conf.all.forwarding

net.ipv6.conf.all.forwarding = 0

Setting a value

A new value can be set (if entry is writable):

sysctl -w net.ipv6.conf.all.forwarding=1

net.ipv6.conf.all.forwarding = 1

Test for IPv6 support of network configuration scripts

You can test, whether your Linux distribution contain support for persistent

IPv6 configuration using the following command

/etc/sysconfig/network-scripts/network-functions-ipv6

 42

Chapter 3 Project Architecture

Auto-magically test:

test -f /etc/sysconfig/network-scripts/network-unctions-ipv6 && echo "Main

IPv6 script library exists"

Short hint for enabling IPv6 on current RHL 7.1, 7.2, 7.3, ...

Check whether running system has already IPv6 module loaded

modprobe -c | grep net-pf-10

alias net-pf-10 off

If result is "off", then enable IPv6 networking by editing

/etc/sysconfig/network, add following new line

NETWORKING_IPV6=yes

Reboot or restart networking using

service network restart

Now IPv6 module should be loaded

modprobe -c | grep ipv6

alias net-pf-10 ipv6

Displaying neighbors using "ip"

With following command you can display the learnt or configured IPv6

neighbors

ip -6 neigh show [dev <device>]

3.3.4 Streaming with VideoLan’s VLC

Streaming media is Multimedia, that is continuously received by, and normally

displayed to, the Enad User while it is being delivered by the provider. When

audio or video is streamed, a small buffer space is created on the user's

computer, and data starts downloading into it. As soon as the buffer is full

(usually just a matter of seconds), the file starts to play. As the file plays, it

uses up information in the buffer, but while it is playing, more data is being

 43

Chapter 3 Project Architecture

downloaded. As long as the data can be downloaded as fast as it is used up in

playback, the file will play smoothly

3.3.4.1 Streaming with Ipv6 support on Windows

The file to be streamed can be from a disc, network or some capture device.

The ‘Stream/Save’ needs to be checked first. The tool also supports various

protocols like RTP, HTTP, MMSH, UDP. The address selected for unicasting or

multicasting is al mentioned with the required port number. Under that

Networking options, the Ipv6 option can be enabled, and also. Once the above

options are specified, the streaming starts. The receiver side can be accordingly

configured to receive IP stream with the help of source Ip address and port

number. The file can be simply played or also buffered, to be saved at the

same time on the receiver side

3.3.4.2 Streaming with Ipv6 support on RTLinux

This includes the following steps:

vlc -vvv videofile.mpeg –ipv6 –sout udp:\[ff08::1%eth0\] –ttl 12

Here videofile.mpeg is the file that is to be streamed.

Ff08::1 is either the Ipv6 address of the machine you need to unicast to, or the

multicast address.

Here 12 is the TTL, (Time To Live), the stream will be able to cross 12 routers.

eth0 is the name of the output network interface.

3.3.4.3 Receive a stream from VLC

An active stream from VLC is received in the following way in Linux

vlc -vvv udp (unicast stream) OR

vlc -vvv udp:@239.255.12.42 (multicast stream), where 239.255.12.42 is the

multicast address.

3.3.5.4 Saving the stream to the disk

 44

Chapter 3 Project Architecture

VLC can save the stream to the disk. In order to do this, use the following

command

vlc --sout file/ts:filestream.mpeg

Here ts stands for the format supported by VLC for MPEG2-TS format.

The filestream is the name of the file, the data is to be saved to.

3.3.5 Installation and configuration of Zebra

The installation of Zebra includes configuring and then installing the software

from the tar file available from [].

Starting Zebra

 # zebra –b zebra.conf

The next step is to verify whether the IP Forwarding option is set. This is done

by the following command.

 #cat /proc/sys/net/ipv4/ip_forward

If the result is 0 then the following is executed to enable the router with IP

packet forwarding support:

echo 1 >> /proc/sys/net/ipv4/ip_forward

The configuration of various routing details on zebra can be doen through the

VTY interface. VTY stands for Virtual TeletYpe interface. It means you can

connect to the daemon via the telnet protocol.

To enable a VTY interface, you have to setup a VTY password. If there is no

VTY password, one cannot connect to the VTY interface at all. The zebra

username and password needs to be written into zebra.conf file. The file is to

be copied to /usr/local/etc/ folder. This file is to be given as an input to zebra

command, while invoking the server. This is done as follows:

root#zebra -b zebra.conf &

The zebra server is now running on port number 2600, hence a telnet onto this

port will invoke the VTY interface for communication with the routing server.

 45

http://www.zebra.org/zebra/Starting-and-Stopping-ripd.html#Starting and Stopping ripd

Chapter 3 Project Architecture

root# telnet localhost 2601

 Trying 127.0.0.1...

 Connected to localhost.

 Escape character is '^]'.

 Hello, this is zebra (version 0.94)

 Copyright 1997-2000 Kunihiro Ishiguro

 User Access Verification

 Password: XXXXX

 Router> ?

 enable Turn on privileged commands

 exit Exit current mode and down to previous mode

 help Description of the interactive help system

 list Print command list

 show Show running system information

 who Display who is on a vty

 Router> enable

 Password: XXXXX

 Router# configure terminal

 Router(config)# interface eth0

 Router(config-if)# ip address 10.0.0.1/8

 Router(config-if)# ^Z

 Router#

The configuration options available from the router# prompt is similar to the

one available with CISCO’s Router.

Configuration of OSPF with IPv6 support in zebra

The Open Shortest Path First (OSPF) protocol is a link-state, hierarchical

interior gateway protocol (IGP) for network routing. Dijkstra's algorithm is used

to calculate the shortest path tree. It uses path cost as its routing metric. Path

cost is determined generally by the speed (bandwidth) of the interface

addressing the given route.

 46

http://en.wikipedia.org/wiki/Link-state_routing_protocol
http://en.wikipedia.org/wiki/Interior_gateway_protocol
http://en.wikipedia.org/wiki/Routing
http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
http://en.wikipedia.org/wiki/Shortest_path_tree

Chapter 3 Project Architecture

Starting and Stopping ripd

Copy /ZEBRA_HOME/ospf6d/ospf6d.conf.sample to /usr/local/etc/ospf6d.conf

and execute the command,

root@priyanka zebra]# ospf6d -d ospf6

The command starts the OSPF protocol as the daemon process. To stop ospf6d,

Please use kill `cat /var/run/ospf6d.pid`. Certain signals have special

meaningless to ospf6d. The various options required to further configure

OSPF6, is available with ZEBRA []

3.3.6 Installation and Configuration of XORP with IPv6 Stack

There is a single XORP process that manages the whole XORP router - this is

called xorp_rtrmgr (short for XORP Router Manager). The xorp_rtrmgr will

expect to find a configuration file in the same directory it is started from. By

default this configuration file is called config.boot. Typically xorp_rtrmgr, must

be run as root. This is because it starts up processes that need privileged

access to insert routes into the forwarding path in the kernel.

A XORP router must be configured to perform the desired operations. The

configuration information can be provided, by using the config.boot file or

though XORP Shell.

Use a configuration file when the rtrmgr is started. The config.boot file needs to

be used after tailoring the IP addresses, interfaces and routing protocols to

match the required local network environment.

 xorp_rtrmgr -b config.boot

Use the xorpsh command line interface after the rtrmgr is started. The xorpsh

has to be in configurational mode:

 user@hostname> configure

 Entering configuration mode.

 There are no other users in configuration mode.

 [edit]

 user@hostname#

 47

http://www.zebra.org/zebra/Starting-and-Stopping-ripd.html#Starting and Stopping ripd
http://www.zebra.org/zebra/Starting-and-Stopping-ripd.html#Starting and Stopping ripd
http://www.zebra.org/zebra/Starting-and-Stopping-ripd.html#Starting and Stopping ripd
http://www.zebra.org/zebra/Starting-and-Stopping-ripd.html#Starting and Stopping ripd

Chapter 3 Project Architecture

On UNIX, only an user who belongs to group "xorp" can run xorpsh in

configuration mode. It should be noted that command line completion in the

xorpsh does greatly simplify configuration. The mixture of both methods is

permissible. For example, a configuration file can also be loaded from within

the xorpsh.

3.3.6.1 Network Interfaces

A XORP router will only use interfaces that it has been explicitly configured to

use. Even for protocols such as BGP that are agnostic to interfaces, if the next-

hop router for a routing entry is not through a configured interface routes the

route will not be installed. For protocols that are explicitly aware of interfaces

only configured interfaces will be used.

Every physical network device in the system is considered to be an "interface".

Every interface can contain a number of virtual interfaces ("vif"s). In the

majority of cases the interface name and vif name will be identical and will map

to the name given to the interface by the operating system. A virtual interface

is configured with the address or addresses that should be used. At each level

in the configuration hierarchy ("interface", "vif" and "address") this part of the

configuration is implicitly enabled.

interfaces {

 restore-original-config-on-shutdown: false

 interface eth0 {

 description: "data interface"

 disable: false

 /* default-system-config */

 vif eth0 {

 disable: false

 address ::10.10.10.10 {

 prefix-length: 24

 broadcast: 10.10.10.255

 disable: false

 48

Chapter 3 Project Architecture

 }

 interface eth1 {

 description: "data interface"

 disable: false

 /* default-system-config */

 vif eth0 {

 disable: false

 address ::222.222.10.87 {

 prefix-length: 16

 broadcast: 222.222.255.255

 disable: false

 }

 }

 }

}

Note: Prior to XORP Release-1.1, the "enabled" flag was used instead of

"disable".

It is recommended that you select the interfaces that you want to use on your

system and configure them as above. If you are configuring an interface that is

currently being used by the the system make sure that there is no mismatch in

the "address", "prefix-length" and "broadcast" arguments. If the "default-

system-config" statement is used, it instructs the FEA that the interface should

be configured by using the existing interface information from the underlying

system. In that case, the "vif’s” and "addresses” must not be configured.

3.3.6.2 Forwarding Engine Abstraction

It is a requirement to explicitly enable forwarding for each protocol family.

fea {

 unicast-forwarding4 {

 disable: false

 }

 unicast-forwarding6 {

 49

Chapter 3 Project Architecture

 disable: false

 }

}

If IPv4 and IPv6 forwarding are required you will require the configuration

above.

3.3.6.3 Static Routes

This is the simplest routing protocol in XORP. It allows the installation of

unicast or multicast static routes (either IPv4 or IPv6). Note that in case of

multicast the routes are installed only in the user-level Multicast Routing

Information Base and are used for multicast-specific reverse-path information

by multicast routing protocols such as PIM-SM.

protocols {

 static {

 route ::10.10.10.0/24 {

 next-hop: ::10.10.10.10

 metric: 1

 }

 route ::222.222.10.0/16 {

 next-hop: ::222.222.10.87

 metric: 1

 }

 } //static

}//protocols

3.4 SUMMARY

The basic theme of the chapter is to cover details related to the architecture of

the project work. The system comprises of one source where, multimedia files

are stored. The operating platform identified for implementation of the source

is a Real Time Linux operating system (RTLinux 3.1), which is configured to run

on Linux Kernel (Fedora Core 6 with kernel 2.6.20). The multimedia file is

streamed using VLC’s VideoLAN software, from the source computer and

passed through a group of XORP routers that are configured with Ipv6 support.

 50

Chapter 3 Project Architecture

The configuration of the architecture was a quite a challenging experience, and

required an in depth knowledge of Linux system intricacies.

 51

4. QOS FOR MULTIMEDIA TRAFFIC IN IPV6

4.1 INTRODUCTION

Quality of Service refers to the ability of the network, its elements and its

providers to provide for a certain assurance and consistency to transport a

users’ traffic. QoS can be defined as “any mechanism that provides distinction

of traffic types, which can be classified and administered differently throughout

the network” [5]. The above definition can be explained further with a brief

example. Consider an organization, which intends to have a remote

videoconference over the Internet with its remote branch situated at a different

geographical location. The nature of this traffic begin real-time intolerant

requires that the network it passes through, transports the traffic with limited

or no delay and jitter. Also the network transporting this traffic needs to control

all the packet loss parameters in order to ensure that none of the packets in

the transmission are lost. The network also could ensure that in the case where

the bandwidth is scarce, the network has to reserve enough bandwidth for this

traffic to pass through. QoS mechanisms allow the application or the user to

request for a certain guarantee thereby classifying the packets of this

transmission into a separate class or flow.

QoS mechanisms also allow the network administrator to administer and

control the resources necessary for the successful transmission of these

packets. Finally QoS mechanisms allow the intervening routers to process this

request by reserving network resources such as bandwidth and controlling

delay, jitter and packet loss.

4.1.1 Issues related to QoS

QoS has not been an area that has been widely understood and accepted with

various individuals and organizations defining it to suit their requirement.

“Quality of Service (QoS) is one of the most elusive, confounding, and

confusing topics in data networking today” [5]. Efforts by organizations such as

the IETF are underway to better define QoS and the underlying principles and

Chapter 4 QoS for Multimedia Traffic in Ipv6

practices that govern this technology. Along with this QoS faces various issues.

Various network protocols offering QoS support such as IP, ATM, MPLS operate

in the Internet which give rise to the problem of choosing the correct protocol

for a specific setup and the ability to integrate the various protocol to offer an

end-to-end QoS support [6]. Various QoS architectures such as IntServ and

DiffServ have been developed but there has not been a common consensus on

which technology to use. Bandwidth is not infinite and introducing QoS in a

bandwidth deprived network does not offer any solution. QoS does not increase

the bandwidth but only aims at utilizing it as effectively as possible [6]. Reliable

QoS measuring tools have not been developed which would provide the Service

Provider and the customer to determine whether adequate QoS capability is

being provided [5]. The IPPM charter of the IETF is currently working on

providing a baseline for defining QoS measurements. Vendor support to QoS is

mostly through integrated software that offers QoS support. This might

relatively cause a performance drop due to the delay introduced in the

processing and hence it is essential that QoS be supported at the hardware

level too [6].

4.1.2 Parameters used to Measure Qos at the Network Layer

The traditional parameters used to measure Network QoS have been

bandwidth, delay, buffer requirements, packet loss, latency and jitter.

Bandwidth is also commonly known as throughput. The bandwidth of a link

refers to the ability of the link to transfer data at a rate expressed commonly in

bits per second. Higher bandwidth provides the link with a higher capacity to

transport data at a faster rate. Bandwidth is an important factor in evaluating

and providing for QoS since lower bandwidth links lead to congestion, packet

loss and packet transmission delays when there is too much data to be

transported on the link. Delays in packet transmission affect the quality of real-

time traffic. Real time traffic can be categorized on Real-Time-Tolerant (RTT)

and Real Time Intolerant (RTI) traffic. Live video feeds and multimedia traffic

are examples of real-time intolerant traffic. Packets belonging to such traffic

require minimal delay across networks. Real-time-tolerant traffic such as an

audio streaming session can tolerate a little delay in transmission due to the

buffering and reconstruction capabilities offered by intelligent end devices. To

 54

Chapter 4 QoS for Multimedia Traffic in Ipv6

assure adequate QoS, delay has to be kept minimal. Packet loss results due to

various factors such as low bandwidth and congestion on links. Intelligent end

devices are capable of reconstructing data using various algorithms. But

extreme packet losses may result in the inability to reconstruct data. Also RTI

applications are very sensitive to packet losses. Latency is defined as the time

taken for a packet of data to move from the source to the destination. Latency

is a combination of all delays accrued during the packet transmission such as

the propagation delay, the transmission delay, the processing delay and other

induced delays. Latency is commonly measured by the round-trip-time which is

the time taken for a packet to travel from the source to the destination and

back to the source. Latency can be introduced at various points in the path.

While offering end-to-end QoS this is an important parameter that has to be

considered. The QoS enabled devices have to negotiate such that the latency

in-between various points along the path are kept minimal. Jitter is defined as

the variation in the delay introduced between different packets of a single

transmission. Jitter may be caused due to timing issues, bandwidth constraints,

network congestion or a synchronization problem. End systems are capable of

buffering data and handling delays in order to provide the packets in a

synchronized format to the upper layers. Jitter introduces uncertainty and

makes it difficult for the intelligent algorithms to buffer and reconstruct data.

This is very important for RTI traffic. Jitter is hence considered an important

parameter in evaluating QoS.

To provide for efficient QoS on the Internet the quality, performance, and

reliability of Internet data delivery services has to be studied and known.

Parameters have to be identified which allow us to study and measure the

Internet. The IETF IPPM working group (IPPM-WG) is involved in defining

specific metrics and procedures for accurately measuring and documenting

these metrics2.

4.1.3 IPv4 Header Format

The Type of Service field in IPv4 is a key mechanism of the IP service and is

used to indicate the quality of service desired by the user or an application. The

IP packets can be marked with an abstract or generalized set of parameters

 55

Chapter 4 QoS for Multimedia Traffic in Ipv6

which can be used to guide the routers to indicate the choice of service that are

provided by the networks forming the Internet. The service types are based on

the factors of delay, throughput and reliability. The IPv4 header consists of an

8 bit Type of Service (TOS) field to provide for the classification of service.

Originally, the first three bits in this field were used to set the precedence, the

next three were used to signify delay, throughput and reliability parameters

and the last 2 bits were reserved for future use. The packet format is as below:

Fig 4.1: Ipv4 Packet format

Bits 0-2: Precedence.

Bit 3: 0 = Normal Delay, 1 = Low Delay.

Bit 4: 0 = Normal Throughput, 1 = High Throughput.

Bit 5: 0 = Normal Reliability, 1 = High Reliability.

Bits 6-7: Reserved for Future Use.

Precedence

111 - Network Control

110 - Internetwork Control

101 - CRITIC/ECP

100 - Flash Override

011 - Flash

010 - Immediate

001 - Priority

000 - Routine

Currently the 3 bit precedence field8 is ignored [Stevens99] and the next 4 bits

are used to denote the QoS parameters necessary to classify the packets into

different classes. The current implementation uses bits 3 through 6 to set

values for delay, throughput, reliability, monetary cost and normal service.

 56

Chapter 4 QoS for Multimedia Traffic in Ipv6

The semantics for the 4 bits is as follows:

1000 -- minimize delay

0100 -- maximize throughput

0010 -- maximize reliability

0001 -- minimize monetary cost

0000 -- normal service

4.1.4 IPv6 Protocol Header

Consider the figure below to illustrate the Ipv6 header format

Fig 4.2: Ipv6 Protocol Header

The IPv6 header consists of an 8 bit Traffic Class field which allows for similar

functionality as the IPv4 TOS field. The Traffic Class field in IPv6 provides for

originating nodes to classify packets into different classes or priorities based on

the QoS requirements. It also enables the forwarding routers to identify

packets belonging to different classes. [RFC2460] lists a few general

requirements that need to be applied to the Traffic Class field.

The IPv6 header also defines a 20 bit field called the Flow Label field which is to

be used for providing QoS in IPv6. The flow label field enables an IPv6 enabled

host to label a sequence of packets for which the host requests special handling

by the IPv6 routers [RFC2460]. This enables the host to request non-default

quality of service from the IPv6 network.

 57

Chapter 4 QoS for Multimedia Traffic in Ipv6

4.1.5 IPv6 Flow Label Requirements

The RFC 3697 specifies the flow labeling requirements for the IPv6 flow label

field. A summary of the specification as listed in [RFC3697] is give below.

Flows should be unique for different transport connections and application data

streams in order for proper flow label based classification. A source node which

does not assign traffic to flows must set the Flow Label to zero. Application and

transport layer protocols should be able to specify Flow Label values so that

they can define what packets constitute a flow. The source node should be able

to select unused Flow Label values for flows not requesting a specific value to

be used. A source node must ensure that it does not unintentionally reuse Flow

Label values it is currently using or has recently used when creating new flows

Flow Label values previously used with a specific pair of source and destination

addresses must not be assigned to new flows with the same address pair within

the flow state lifetime of 120 seconds. Accidental Flow Label value reuse must

be avoided by providing for sequential or pseudo-random generation of new

flow values. The method for flow state establishment must provide the means

for flow state cleanup from the IPv6 nodes providing the flow-specific

treatment. Flow state establishment methods must be able to recover from the

case where the requested flow state cannot be supported

4.1.6 Bandwidth, delay and buffer requirements approach to using flow
labels

Several Approaches to modifying the flow labels has been defined. The above

is just one of them. This approach lists the important QoS parameters as

Bandwidth, Delay or Latency, Jitter, Packet Loss and Buffer Requirements.

Jitter and Packet Loss values are desired to be a minimum by any application

and hence need not be defined in the flow label. It suggests the use of the Hop-

by-Hop extension header as an alternative to specify these values. There are

three parameters, to be used to define the value of the flow label field. They

are, Bandwidth (to be expressed in multiples of kbps), Delay (to be expressed

 58

Chapter 4 QoS for Multimedia Traffic in Ipv6

in nanoseconds) and Buffer requirements (to be expressed in bytes)

The first bit of the remaining 17 bits of the flow label field to be used to

differentiate between Soft Real Time (RTT - Real Time Tolerant) and Hard Real

Time applications (RTI - Real Time Intolerant) applications.

Fig 4.3: Soft Real Time Application Traffic

This implementation sets the fourth bit in the flow label to 0 to indicate average

bandwidth requirement and intermediate end-to-end delay for an arbitrary

packet. This implementation for soft real time applications indicates that the

application can manage even if QoS requirements are not strictly met.

Figure 4.4: Hard Real Time Application Traffic

This implementation sets the fourth bit in the flow label to 1 to demand

minimal latency and jitter and indicate that any delay is unacceptable for hard

real time application traffic. The implementation proposes that the applications

can decrease delay by increasing demands for bandwidth. In this scenario the

minimum or maximum values specified in the Flow Label have to be exactly

met.

The last 16 bits of the 20 bit flow label field are used to denote parameters

such as Bandwidth, Buffer and Delay requirements. Bandwidth requirements

are indicated by using the 6 bits of the remaining 16 bits. The next 5 bits are

used to indicate the Buffer requirements and the final 5 bits are used to

indicate the delay requirements. This approach supports DiffServ based model

where applications are able to provide exact values of Bandwidth, Delay and

 59

Chapter 4 QoS for Multimedia Traffic in Ipv6

Buffer requirements.

4.2 APPROACHES OF IMPLEMENTATION

The above section discussed various intricacies, which played a key role in

selecting the implementation strategy for the implementation of Quality of

Service based scheduling of Multimedia traffic in real time environment. Three

implementation strategies were selected, to suit the kind of experimental setup

that was created, especially the inclusion of Software based IP routers. The

first approach is the Diffserv aware video streaming, which is an

implementation, to mark the multimedia steams generated through VLC’s

VideoLAN software. A multimedia stream parser needs to be created, by

extending the VideoLAN’s internal library. The other strategy is using the 20 bit

FlowLabel field of the IPv6 header. This module captures the multimedia

packets at the network interface of the source machine, where video streaming

is being conducted and marks the Flow label field as per the bandwidth, delay

and buffer requirements approach discussed above. The third approach is for

real time kernel diffserv implementation. This satisfies the basic goal of

scheduling multimedia traffic as per the goal of the project work. The module is

implemented successfully. The module is inserted at every node, that is

participating in the routing of the multimedia traffic. It works at the real time

kernel level. Let us discuss each of the approaches introduced above in detail in

the following sections.

4.2.1 DiffServ aware video streaming

Differentiated Services (Diffserv) is architecture for providing different types or

levels of service for network traffic. One key characteristic of Diffserv is that

flows are aggregated in the network, so that core routers only need to

distinguish a comparably small number of aggregated flows, even if those flows

contain thousands or millions of individual flows.

Support for Differentiated Services on Linux is part of the more general Traffic

Control architecture. But the kernel in its minimal form does not have this

support. The kernel needs to be recompiled to include this support.

 60

Chapter 4 QoS for Multimedia Traffic in Ipv6

4.2.1.1 General

The term DiffServ-aware video streaming is used here to describe a type of

streaming system characterized by the integration of two main components: a

DiffServ-enabled IP network and a DiffServ-aware video streaming [7]

application. The general idea behind this concept is that performance may be

improved if applications are aware (make use) of the enhanced network

capabilities offered by the DiffServ architecture. Thus, a DiffServ-aware

application marks its packets in order for them to take advantage of the

advanced rate, delay, jitter and/or loss features offered by the network. This

approach is called application-driven (or application-controlled) marking, and is

different from the typical DiffServ router-based marking which is done by edge

routers based on rate-metering or flow identification.

The compressed streams generated by video codecs are usually organized in a

hierarchical structure. For example, at the frame level, an MPEG-compressed

video stream contains three types of frames: I, P and B. The loss of each type

of frame has a different impact on the visual quality of the received signal. The

loss of an I frame has a bigger impact than that of a B frame. If an I frame is

lost, in addition to the loss of the frame itself, some neighboring frames can

also be considered lost for practical reasons. This is due to the fact that they

cannot be properly decoded even if they are correctly received, because the

reference information from the lost I frame is not available. One can speak then

of error propagation.

In the case of layered coding, a video stream is made up of one base layer and

one or more enhancement layers. The base layer represents the video

sequence with the lowest quality but also the lowest required bit-rate. Each

successive enhancement layer adds up quality and bit-rate. In a multicast

environment, clients with low access rates may ask only for the base layer,

while clients with higher access rates may additionally ask for as many

available enhancements layers as their links can accept. In any of the cases

above, a DiffServ-aware video application marks the outgoing packets taking

 61

Chapter 4 QoS for Multimedia Traffic in Ipv6

into account the type of video information they carry. This way, the

differentiated treatment inside the DiffServ network should yield a better visual

quality by assuring a particular rate, limiting delay and jitter, or discarding first

less important packets when congestion arises. This type of marking has also

been called semantic marking. Note that when we speak of DiffServ-aware

streaming, we refer to methods in which a video stream is somehow separated

in “segments” (layers, frame types, partitions, etc.) that are marked and

forwarded using different DiffServ classes or drop priorities. This means that we

do not regard as DiffServ-aware streaming the case in which a complete video

flow is isolated and transported in a single class (like a premium class, for

instance).

4.2.1.2 Mapping strategy and Architecture

The figure below shows the DiffServ mapping strategy behind the implemented

IPv6 DiffServ-aware video streaming. It’s a straightforward mapping that

consists of forwarding an MPEG-coded stream in a single three-precedence AF

class where the discard priorities (the colors) of each packet are set according

to the type of frame they carry. This way, packets carrying I frames are

marked green, packets carrying P frames are marked yellow and packets

carrying B frames are marked red. The goal of this mapping strategy is to

protect the reference frames, highly relevant for quality, under heavy network

congestion. The prioritized discard of the AF network (enforced by Active Queue

Management in the routers) should assure that packets carrying I frames are

the last to be discarded if congestion builds up.

Fig 4.5: Straightforward AF mapping strategy for MPEG streams

 62

Chapter 4 QoS for Multimedia Traffic in Ipv6

Based on the general mapping strategy described above, the architecture for

IPv6 DiffServ-aware streaming would look like the one shown in Figure 14: a

video client-server system that sends the MPEG source-marked stream through

an IPv6 AF network.

Figure 4.6: IPv6 DiffServ-aware streaming system

The VideoLAN streaming system for the implementation of the DiffServ-aware

features because it is free, open source, multi-platform and is already IPv6-

enabled. The DS-aware features are now incorporated to the VideoLAN’s VLC

software. The above implementation requires a MPEG-2 Transport Stream (TS)

Parser, which should the following: identify the frame type carried in the

transport packets and assign them the corresponding priority. This parser is

under development.

4.2.2 Ipv6 and flow label usage

The Flow Label is a 20 bit field in the IPv6 header that has been planned to

operate for per flow QoS treatment. General rules for the Flow Label field were

proposed recently in RFC 3697. The RFC 3595 defines textual conventions to

represent the Flow Label field. Actually the flow label tries to integrate the

classic Diffserv operation where traffic is aggregated into classes with the flow

establishment. Therefore RFC 3697 defines that the 20-bit Flow Label field is

used by a source to label packets of a flow and the zero value is used to

indicate packets that are not part of any flow. Packet classifiers use the triplet

of Flow Label, Source Address, and Destination Address fields to identify which

flow a particular packet belongs to. Packets are processed in a flow-specific

manner by the nodes (routers) that have been set up with that flow-specific

state. In all cases the Flow Label value set by the source must be delivered

 63

Chapter 4 QoS for Multimedia Traffic in Ipv6

unchanged to the destination node.

If an IPv6 node is not providing flow-specific treatment, it must ignore the field

when receiving or forwarding a packet. Each established flow should expire

when the flow is idle in order to increase router performance. Therefore, the

RFC defines that nodes should not assume that packets arriving 120 seconds or

more after the previous packet of a flow still belong to the same flow (unless a

flow state establishment method defines a longer flow state lifetime or the flow

state has been explicitly refreshed). Also, this flow expiration allows the re-use

of Flow Label values. Flow Label values previously used with a specific pair of

source and destination addresses must not be assigned to new flows with the

same address pair within 120 seconds of the termination of the previous flow.

Finally, to avoid accidental Flow Label value reuse, the source node should

select new Flow Label values in a well-defined sequence (e.g., sequential or

pseudo-random) and use an initial value that avoids reuse of recently used

Flow Label values each time the system restarts. In addition, a major issue at

the deployment of QoS services that uses the Flow Label field is the security

aspect. In particular, it is crucial to avoid theft of service attacks by

unauthorized traffic. Such attacks are possible in two ways: by spoofing the

Flow Label value (only on valid nodes that uses the correct source address) or

by spoofing the whole 3-tuple (Flow Label, Source Address, Destination

Address). The latter can be done in an intermediate router or in a host that is

not subject to ingress filtering. Also, we should notice that IPsec protocol does

not include the IPv6 header's Flow Label in any of its cryptographic calculations

(in the case of tunnel mode, it is the outer IPv6 header's Flow Label that is not

included). As a consequence IPsec does not provide any defense against an

adversary's modification of the Flow Label. Finally it is recommended that

applications with an appropriate privilege in a sending host should be entitled

to set a non zero Flow Label. But this is an issue that depends on the host’s

operating system or on the used policy and authorization mechanisms.

The implementation of the concept was made using the libpcap library, and

several network programming based header files like ipv6.h. The basic process

 64

Chapter 4 QoS for Multimedia Traffic in Ipv6

of implementation, was identification of the network interfaces status, and

reading packets from them. The packets are read in two parts, ie header and

payload. The header is identified using the ipv6.h file and values set for the 20

bit Flow label.

4.2.3 Real Time linux kernel DiffServ Implementation

The key characteristic of DiffServ architecture is that, flows are aggregated in

the network, so that core routers only need to distinguish a comparably small

number of aggregated flows, even if those flows contain thousands or millions

of individual flows. Support for Differentiated Services in Linux kernel, is part of

the more general Traffic Control architecture. But the kernel in its minimal

form does not have this support. The kernel needs to be recompiled to include

this support. This will be covered in the following sections

The next chapter describes how new control functions can be added to the

Linux kernel traffic. The implementation captures the multimedia packets

received at the network interface and categorizes their flow as per the traffic

class parameters. This parameter is read from the Ipv6 header’s Traffic class

field. At present it is assumed, that the UDP traffic coming at the network

interface is the multimedia traffic and it is prioritized at the output network

interface. The multimedia stream is released into the network. The module

that is created for the above implementation is a kernel module, inserted in the

Real Time kernel. The module is invoked whenever there is a packet at the

network interface. A heavy TCP traffic is also created using the Mgen tool. The

description regarding this tool will be given in the coming chapter. The kernel

module described above, only marks the UDP traffic from a particular source, ie

the VOD Server, with DSCP value = 16. This signifies the highest priority. The

DSCP value is also set while streaming the multimedia file from the VLC Server.

The option is specified, when VLC is invoked from the command line parameter.

Note that this facility is available in the latest version of the Video LAN software

ie. 0.9.0-svn-20070112-0001. The TCP traffic is handled with low priority;

marked by DSCP value of zero, and may be queued for longer times, till a

resent routine is called to clear all the logged TCP traffic.

 65

Chapter 4 QoS for Multimedia Traffic in Ipv6

4.3 SUMMARY

The major focus of the chapter is on the approaches that were actually

implemented for QoS based scheduling of multimedia traffic. However, the

initial focus was also on the IPv header’s 8 bit Traffic class field and 20 bit Flow

Label field, that is required for attaching various QoS parameters with

multimedia IP traffic. The first technique of implementation was related to

DissServ aware Video streaming that dealt with marking the I-Frame of

multimedia stream with highest priority. The next technique was related to

implementation of a module at the Real Time Linux Kernel level for scheduling

the IP traffic based on their values in TOS (Ipv4), TC or Flow Label(IPv6) field.

 66

5. REAL TIME LINUX KERNEL DIFFSERV IMPLEMENTATION

5.1 INTRODUCTION

Differentiated Services (DiffServ) is architecture for providing different types or

levels of service for network traffic. One key characteristic of DiffServ is that

flows are aggregated in the network, so that core routers only need to

distinguish a comparably small number of aggregated flows, even if those flows

contain thousands or millions of individual flows.

Support for Differentiated Services on Linux is part of the more general Traffic

Control architecture. But the kernel in its minimal form does not have this

support. The kernel needs to be recompiled to include this support. This will be

covered in the following sections

This chapter describes how new control functions can be added to the Linux

kernel traffic. The implementation captures the multimedia packets received at

the network interface and categorizes their flow as per the traffic class

parameters. This parameter is read from the Ipv6 header’s Traffic class field. At

present it is assumed, that the UDP traffic coming at the network interface is

the multimedia traffic and it is prioritized at the output network interface. The

multimedia stream is released into the network. The module that is created for

the above implementation is a kernel module, inserted in the Real Time kernel.

The module is invoked whenever there is a packet at the network interface. A

heavy TCP traffic is also created using the Mgen tool. The description regarding

this tool will be given in the coming chapter. The kernel module described

above, only marks the UDP traffic with DSCP value = “16”, with highest

priority. The DSCP value is set while streaming the multimedia file from the

VLC Server. The option can be specified, when VLC is invoked from the

command line parameter. Note that this facility is available in the latest version

of the Video LAN software ie. 0.9.0-svn-20070112-0001. The TCP traffic is

handled with low priority and may be queued for longer times, till a resent

routine is called to clear all the logged TCP traffic.

http://www.ietf.org/html.charters/diffserv-charter.html

Chapter 5 Real Time Linux Kernel Diffserv Implementation

The Figure 5.1 shown below, gives a broader picture of, how the kernel

processes data received from the network and how it generates new data to be

sent on the network: incoming packets are examined and then either directly

forwarded to the network (eg, on a different interface, if the machine is acting

as a router or a bridge), or they are passed up to higher layers in the protocol

stack (e.g) to a transport protocol like UDP or TCP) for further processing.

Those higher layers may also generate data on their own and hand it to the

lower layers for tasks like encapsulation, routing and eventually transmission.

Fig 5.1:Processing of network data

Forwarding includes the selection of the output interface, the selection of the

next hop, encapsulation, etc. Once all this is done, packets are queued on the

respective output interfaces. This is the point where traffic control comes into

play. Traffic control can, among other things, decide if packets are queued or if

they are dropped, it can send the packets in a specific order, it can delay the

sending of the packets. Once the packet is released, the network device driver

picks it up and emits it on the network.

5.2 ENABLING QOS SUPPORT IN THE LINUX KERNEL

The steps required for kernel compilation have been covered in Chapter2. Apart

from the options selected before, the kernel compilation should also include the

options for setting Quality of Service related details. The following kernel

configuration options have to be enabled in the Networking options[8]

section:

 69

Chapter 5 Real Time Linux Kernel Diffserv Implementation

Table 5.1: Networking options during Kernel configuration

Sr. No. Options

1 Kernel/User netlink socket (CONFIG_NETLINK)

2 Network packet filtering (CONFIG_NETFILTER)

3 QoS and/or fair queueing (CONFIG_NET_SCHED)

The following kernel configuration options should be enabled in the section

Networking options, QoS and/or fair queuing:

Table 5.2: QoS and fair Queuing Options during kernel configuration

Sr. No. Options

1 CBQ packet scheduler (CONFIG_NET_SCH_CBQ

2 The simplest PRIO pseudoscheduler (CONFIG_NET_SCH_PRIO)

3 RED queue (CONFIG_NET_SCH_RED)

4 GRED queue (CONFIG_NET_SCH_GRED)

5 Diffserv field marker (CONFIG_NET_SCH_DSMARK)

6 Ingress Qdisc (CONFIG_NET_SCH_INGRESS)

7 QoS support (CONFIG_NET_QOS

8 Packet classifier API (CONFIG_NET_CLS

9 TC index classifier (CONFIG_NET_CLS_TCINDEX)

10 Firewall based classifier (CONFIG_NET_CLS_FW)

11 U32 classifier (CONFIG_NET_CLS_U32)

12 Traffic policing (CONFIG_NET_CLS_POLICE)

5.3 INSTALLING TRAFFIC CONTROL (TC) UTILITY OF IPROUTE2

Linux Traffic Control is configured with the tc utility, which comes with iproute2

package. Fedora Core 6 kernel includes the iproute2 package. But in Red Hat

Linux the package can be installed by first extracting the iproute2 package and

then editing the iproute2/config file to enable DiffServ. i.e. tar -xvzf iproute2-

 70

Chapter 5 Real Time Linux Kernel Diffserv Implementation

current.tar.gz, followed by TC_CONFIG_DIFFSERV=y. Finally run make

command in iproute2 folder.

5.4 DIFFSERV IMPLEMENTATION OVERVIEW

The traffic control code in the Linux kernel consists of the four major parts,

Queuing disciplines, Classes, Filters and Policing. Each network device has a

queuing discipline associated with it, which controls how packets queued on

that device are treated. The simple queuing discipline is FIFO. But it could as

well use filters to distinguish among different classes of packets and process

each class in a specific way, e.g. by giving one class priority over other classes.

Figure 5.2 gives example of such a queuing discipline. It is possible that

multiple filters map onto the same class.

Fig 5.2: A simple queuing discipline with multiple classes.

Filters can be combined arbitrarily with queuing disciplines and classes as long

as the queuing discipline has classes at all. The figure, Fig 5.3 shows a stack:

first, there is queuing discipline with two delay priorities. Packets, which are

selected by the filter, go to the ‘high’ priority class, while all other packets go to

the ‘low’ priority class. The sch_prio queue works this way.

 71

Chapter 5 Real Time Linux Kernel Diffserv Implementation

Fig 5.3: Combination of priority, TBF and FIFO queuing disciplines.

Packets are enqueued as follows: when the enqueue function of a queuing

discipline is called, it runs one filter after the other until one of them indicates a

match. It then queues, the packet for the corresponding class, which usually

means to invoke the enqueue function of the queuing discipline “owned” by

that class. Packets that which do not match any of the filters are typically

attributed to some default class.

5.5 RESOURCES

The tc is a user space program used to manipulate individual traffic control

elements. Its source is in the iproute2/tc package. The kernel code resides in

the net/sched/folder. The interfaces between kernel traffic control [9]

elements and the user space programs using them are declared in

include/linux/pgk_cls.h and include/linux/pkt_sched.h. Declarations used only

inside the kernel and the definitions of some inline functions can be found in

include/net/pkt_cls.h and include/net/pkt_sched.h

The rtnetlink mechanism used for communication between traffic control

elements in user space and in the kernel is implemented in net/core/rtnetlink.c

and include/linux/rtnetlink.h. The rtnetlink is based on netlink, which can be

found in net/netlink/ and include/linux/netlink.h

 72

Chapter 5 Real Time Linux Kernel Diffserv Implementation

Fig 5.4: Relation of elements of the intserv and diffserv architecture to traffic

control in the Linux kernel.

The Figure 5.4 describes the architectural models of IntServ and Diffserv, and

how the elements of Linux Traffic Control systems are related to them. The

classes play an ambivalent role, because they determine the final outcome of a

 73

Chapter 5 Real Time Linux Kernel Diffserv Implementation

classification and they can also be part of the mechanism that implements a

certain queuing or scheduling behavior.

5.6 QUEUEING DISCIPLINE

Each queuing discipline, provides the following set of functions to control its

operations. The structure Qdisc_ops defines a queuing discipline. It is located in

/net/pkt_sched.h file. The structure is displayed below:

struct Qdisc_ops

{

struct Qdisc_ops *next;

struct Qdisc_class_ops *cl_ops;

char id[IFNAMSIZ];

int priv_size;

int (*enqueue)(struct sk_buff *, struct Qdisc *);

struct sk_buff * (*dequeue)(struct Qdisc *);

int (*requeue)(struct sk_buff *, struct Qdisc *);

unsigned int (*drop)(struct Qdisc *);

int (*init)(struct Qdisc *, struct rtattr *arg);

void (*reset)(struct Qdisc *);

void (*destroy)(struct Qdisc *);

int (*change)(struct Qdisc *, struct rtattr *arg);

int (*dump)(struct Qdisc *, struct sk_buff *);

int (*dump_stats)(struct Qdisc *, struct gnet_dump *);

struct module *owner;

};

The main components of the structure are:

1. init: initializes the queuing discipline. The queuing displines are usually

referenced by a pointer to the corresponding struct Qdisc.

2. change: changes the configuration of a queuing discipline

 74

http://www.gelato.unsw.edu.au/lxr/source/include/net/ident?i=Qdisc_ops
http://www.gelato.unsw.edu.au/lxr/source/include/net/ident?i=Qdisc_ops
http://www.gelato.unsw.edu.au/lxr/source/include/net/ident?i=next
http://www.gelato.unsw.edu.au/lxr/source/include/net/ident?i=Qdisc_class_ops
http://www.gelato.unsw.edu.au/lxr/source/include/net/ident?i=id
http://www.gelato.unsw.edu.au/lxr/source/include/net/ident?i=IFNAMSIZ
http://www.gelato.unsw.edu.au/lxr/source/include/net/ident?i=sk_buff
http://www.gelato.unsw.edu.au/lxr/source/include/net/ident?i=Qdisc
http://www.gelato.unsw.edu.au/lxr/source/include/net/ident?i=sk_buff
http://www.gelato.unsw.edu.au/lxr/source/include/net/ident?i=Qdisc
http://www.gelato.unsw.edu.au/lxr/source/include/net/ident?i=sk_buff
http://www.gelato.unsw.edu.au/lxr/source/include/net/ident?i=Qdisc
http://www.gelato.unsw.edu.au/lxr/source/include/net/ident?i=Qdisc
http://www.gelato.unsw.edu.au/lxr/source/include/net/ident?i=init
http://www.gelato.unsw.edu.au/lxr/source/include/net/ident?i=Qdisc
http://www.gelato.unsw.edu.au/lxr/source/include/net/ident?i=rtattr
http://www.gelato.unsw.edu.au/lxr/source/include/net/ident?i=arg
http://www.gelato.unsw.edu.au/lxr/source/include/net/ident?i=reset
http://www.gelato.unsw.edu.au/lxr/source/include/net/ident?i=Qdisc
http://www.gelato.unsw.edu.au/lxr/source/include/net/ident?i=destroy
http://www.gelato.unsw.edu.au/lxr/source/include/net/ident?i=Qdisc
http://www.gelato.unsw.edu.au/lxr/source/include/net/ident?i=change
http://www.gelato.unsw.edu.au/lxr/source/include/net/ident?i=Qdisc
http://www.gelato.unsw.edu.au/lxr/source/include/net/ident?i=rtattr
http://www.gelato.unsw.edu.au/lxr/source/include/net/ident?i=arg
http://www.gelato.unsw.edu.au/lxr/source/include/net/ident?i=dump
http://www.gelato.unsw.edu.au/lxr/source/include/net/ident?i=Qdisc
http://www.gelato.unsw.edu.au/lxr/source/include/net/ident?i=sk_buff
http://www.gelato.unsw.edu.au/lxr/source/include/net/ident?i=Qdisc
http://www.gelato.unsw.edu.au/lxr/source/include/net/ident?i=gnet_dump
http://www.gelato.unsw.edu.au/lxr/source/include/net/ident?i=module

Chapter 5 Real Time Linux Kernel Diffserv Implementation

3. destroy: removes a queuing discipline.

4. enqueue: enqueues a packet with the queuing discipline. It removes all

classes and possible also all filters, cancels all pending events and

returns all resources held by the queuing discipline.

5. dequeue: returns the next packet eligible for sending. It returns NULL,

when there are no packets to be sent.

6. requeue: puts a packet back into the queue.

7. drop: drops one packet from the queue

When a packet is enqueued on an interface (dev-queue_xmit in

net/core/dev.c), the enqueue function of the device’s queuing discipline (field

qdisc of struct device in include/linux/netdevice.c) is invoked. Afterwards,

dev_queue_xmit calls qdisc_wakeup in include/net/pkt_sched.h on that device

to try sending the packet that was just enqueued.

The qdisc_wakeup immediately calls qdisc_restart in net/sched/sch_generic.c,

which is the main function to poll queuing disciplines and to send packets.

Qdisc_restart first tries to obtain a packet from the queuing discipline of the

device, and if it succeeds, it invokes the device’s hard_start_xmit function to

actually send the packet. If sending fails for some reason, then the packets are

retuned back to the queuing discipline by the requeue function.

It is worth noting that queuing disciplines never make call to delivery functions.

Rather, they have to wait until they are polled. The queuing discipline has to be

registered using register-qdisc, from the init-module function, which is invoked

from the kernel space. This can be done since the queuing discipline is

developed as a kernel module. This kernel module can be inserted in the Real

Time Linux kernel, and it gets activated whenever a packet is sniffed from the

User Space program.

 75

Chapter 5 Real Time Linux Kernel Diffserv Implementation

Fig 5.5: Flow chart showing the functions called when enqueuing and sending

packets.

The include/linux/rtnetlink.h has declarations of the following types:

#define RTPROT_ZEBRA 11 /* Zebra */

#define RTPROT_XORP 14 /* XORP */

#define RTPROT_STATIC 4 /* Route installed by administrator

Ideally, the values of protocol >= RTPROTO_STATIC are not interpreted by

kernel. But when the routed is disabled, inorder to route packets manually, the

value is read, to send packets to XORP or ZEBRA routing daemons. The

rtnetlink.h [10] file also contains, a structure (struct rtattr*) to control vector

of options, that are passed while creating or changing an instance of queuing

disciplines. Each value is encoded with its type, the length of the value and the

value(eg zero or other data types). Option types and the data structures used

for values are declared in include/linux/pkt_sched.h. The option vector is

parsed by calling rtattr_parse, which returns an array of pointers to the

individual elements, indexed by the option type. The length and the content of

the option can be accessed via the macros RTA_PAYLOAD and RTA_DATA,

 76

http://www.gelato.unsw.edu.au/lxr/source/include/linux/ident?i=RTPROT_ZEBRA
http://www.gelato.unsw.edu.au/lxr/source/include/linux/ident?i=RTPROT_XORP
http://www.gelato.unsw.edu.au/lxr/source/include/linux/ident?i=RTPROT_STATIC

Chapter 5 Real Time Linux Kernel Diffserv Implementation

respectively.

In the realtime kernel, the option vectors are passed between user-space

programs and the kernel using the rtnetlink mechanism. The synopsis of the

rtnetlink method is as follows:

#include<asm/types.h>

#include<linux/netlink.h>

#include<linux/rtnetlink.h>

#include <sys/socket.h>

rtnetlink_socket = socket(PF_NETLINK, int socket_type, NETLINK_ROUTE);

Here, the first argument specifies that the address family is netlink. The second

argument speciefies that raw network protocol access is being sought. The third

argument contains information related to the type of netlink socket.activity. It

can contain the following values

1. NETLINK_ROUTE Modify most of IPv4 control parameters

2. NETLINK_FIREWALL Receive packets sent by IPv4 firewall

3. NETLINK_ARPD Manage ARP table from user space

4. NETLINK_ROUTE6 IPv6 routing table update

5. NETLINK_IP6_FW Currently not implemented

6. NETLINK_TAPBASE Ethertap device

7. NETLINK_SKIP Reserved for Enskip

The value used in the implementation is NETLINK_ROUTE6 for Ipv6 traffic

support. The rtnetlink utility allows the kernel's routing tables to be read and

altered. Network routes, ip addresses, link parameters, neighbour setups,

queueing disciplines, traffic classes and packet classifiers are controlled through

NETLINK_ROUTE sockets. It is based on netlink messages.

5.7 CLASSES

Queuing disciplines with classes provide the following set of functions to

manipulate classes (ie struct Qdisc_class_ops in include/net/pkt_sched.h).

 77

Chapter 5 Real Time Linux Kernel Diffserv Implementation

Classes can be identified in two ways: (1) by the class ID, which is assigned by

user and (2) by the internal ID, which is assigned by the queuing discipline.

The internal Id is of type unsigned long, whereas class ID is of type u32 [11].

The implementation uses internal Id, because that is the way by which kernel

identifies classes internally.

Two classes have been identified for the implementation. The first one is the IP

Premium Traffic, ie for the UDP Traffic, or the IP traffic, in which the DSCP

value is 16. This value is set while streaming the Multimedia traffic through

VLC’s VideoLAN software. The other traffic is represented by the Best Effort

Class, which has a DSCP value of zero. This is otherwise the default value, of a

non prioritized IP traffic. The Best Effort traffic is the TCP traffic created

through Mgen Traffic generator tool.

The traffic can be prioritized by the specifications in the Class Id, if skb ->

priority (struct sk_buff in include/linux/skbuff.h)is equal to a particular ClassId.

If this is not true, the skb -> priority is set to skb -> priority (struct sock in

include/linux/skbuff.h). The sk -> priority can be set with the SO_PRIORITY

socket option (sock_setsockopt in net/core/sock.c). The SO_PRIORITY can be

set to a number greater than 10, to mark a relatively higher PRIORITY. In this

case the value used is 16. After this the enqueue function of the respective

inner queuing discipline is invoked.

5.8 MODULE INVOCATION FROM REAL TIME KERNEL

The most common communication model between a Real Time Code/kernel

code and User Space code is FIFO. A process on one end writes to a FIFO,

which appears as a normal file, while another one reads from the other end.

With RTLinux, the reader might be a real-time process, while the writer is a

user-space program shuttling directives to the real-time code through the FIFO

or vice versa. In either case, the FIFO devices are normal character devices

(/dev/rtf*), and both ends can interact with the device through normal POSIX

calls, such as open(), close(), read() and write().

 78

Chapter 5 Real Time Linux Kernel Diffserv Implementation

In this implementation, the User Space code comprises of a program to read

the configured network interface for outgoing packets. This is done using the

pcap utility available in the pcap.h header file.

The moment there is a packet at the network interface, the information is

passed onto the kernel module, which starts reading the processing the packets

as mentioned above. This is a preferred technique for the implementation,

because it is a wrong practice to keep the kernel module engaged in wait

operations. Hence the work is divided between the User Space and Kernel

Space for better execution and performance. The module is inserted at all the

computers where XORP is running. The above implementation adds Priority

based Scheduling or Class based Scheduling, which was otherwise lacking in

XORP.

5.9 SUMMARY

The major focus of the chapter was description of the work related to

implementation of priority based scheduling of multimedia traffic at the Linux

kernel level. The implementation uses libraries of iproute2 package for traffic

control mechanisms. The module is later inserted into the Real Time Linux

kernel and invoked whenever there is a packet at the network interface.

 79

6. WRITING A XORP PROCESS

6.1 INTRODUCTION

The software router is extensible in nature. It is implemented in C++ and can

be extended to include desired facilities in the router. One such implementation

has been written for the router to verify the incoming packets, for its required

QoS fields marked Ipv6 header. If the packets require a high QoS, then they

are buffered on the router for a very short time comparatively, and

immediately sent to the best possible routes [11]. The routes are calculated

dynamically and communicated to the RIB. This feature was already available

with XORP in the static routes program. [12] But the logic for scheduling based

on priority have been added. The implementation uses a basic characteristic of

XORP routers, ie it is event driven.

A distinguishing factor between implementations of software router, is based on

the fact, that a router is event-driven or it uses a periodic route scanner to

resolve dependencies between routes. The scanner-based approach is simpler,

but has a rather high latency before a route change actually takes effect. Cisco

IOS and Zebra both use route scanners, with a significant latency cost; MRTD

and BIRD are event-driven, but this is easier given a single monolithic process.

In XORP, the decision that everything is event-driven is [13] fundamental and

has been reflected in the design and implementation of all protocols, and of the

IPC mechanism. Note that the router is running with certain initial

configuration, which is coded in the config.boot file under rtrmgr folder of XORP

distribution. Refer Appendix B for configuration made in the config.boot file.

6.2 CREATING A XORP PROCESS

The basic process of creating a XORP process includes creating XRL interface

(.xif) file, parsing the XRL Interface specifications using clnt-gen and

generating a header and related library source file to simplify invoking the

XRL’s of that interface. The next process is to create target interface (.tgt) file

And the generate a header and related library source file, using tgt-gen. This is

Chapter 6 Writing a XORP Process

later used to simplify invoking the XRL’s of that interface.

6.3 CREATING A XORP PROCESS FOR PRIORITY BASED ROUTING

The static routes program is a very simple XORP process. To a first

approximation, it receives XRL configuration requests from the xorp rtrmgr to

set up static routing entries, store the entries, and communicate them to the

RIB using XRLs.

It exports an XRL interface to other processes (typically the xorp rtrmgr) and

calls XRLs on the XRL interface of another XORP process (the RIB). The major

segments of the code are the XRL interface of static routes, implementation of

the XRL interface of static routes, coding the main loop of static routes and

then calling XRLs on the RIB.

6.3.1 Creating XRL interfaces

An interface is declared using the interface keyword and a set of XRL methods

associated with it. There are two types of interfaces defined for a XORP

process, ie client interface and the target interface. The interfaces consist of

XRLs. Each item in the XRL Method list consists of a method name, its dispatch

arguments, and return arguments specified in the default XRL text form.

6.3.1.1 Client Interface

The client interface is saved as a .xif file and stored in xorp/xrl/interfaces. The

interface is basically defined as:

interface <interface name>/<interface version> { . . . xrl method list . . . }

The code snippet showing the interface definition for the static routes process is

shown below:

interface static_routes/0.1 {

enable_static_routes ? enable:bool

start_static_routes

 81

Chapter 6 Writing a XORP Process

stop_static_routes

add_route4 ? unicast:bool & multicast:bool & network:ipv4net & nexthop:ipv4

& metric:u32

add_route6 ? unicast:bool & multicast:bool & network:ipv6net & nexthop:ipv6

& metric:u32

}

Thus the first XRL in this file is:

static routes/0.1/enable static routes?enable:bool

When this XRL is actually called, it would look like:

finder://static routes/static routes/0.1/enable static routes?enable:bool=true

The finder part is on the target side. In the call, the first static routes indicates

the name of the target process, and the second static routes is the name of the

interface, taken from the XIF file. A process can support more than one

interface, and an interface definition can be used by more than one process,

hence the duplication in a process as simple as static routes.

Generating stub code for the caller

The clnt-gen (XRL Interface Client Generator) parses Xrl Interface specifications

and generates a header and related library source file to simplify invoking the

XRL’s of that interface. Each XRL Interface specification generates an XRL

Interface Client C++ class. The generated C++ class has a send method for

each XRL in the XRL interface specification and takes care of argument

marshalling when the XRL is dispatched and when it returns. The call required

to invoke clnt-gen is mentioned in the Makefile.am (the automake Makefile) in

xorp/xrl/interfaces

static_routes.xif is processed by clnt-gen to produce static routes xif.hh and

static routes xif.cc, which are then compiled and linked into the library

libstaticroutesxif.la. Any process that wants to call the static routes interface

can link with this library.

 82

Chapter 6 Writing a XORP Process

6.3.1.2 Target Interface

The basic synopsis of the XRL targets is declared in .tgt files using:

target < target name > implements <interface> [, <interface> . . .]

Target specification files use the standard C include primitive to include the

appropriate interface specifications. The file is saved with .tgt extension and

stored in xorp/xrl/targets. A sample code snippet showing the Interface file is

as follows:

#include "common.xif"

#include "test.xif"

target test implements common/0.1, test/1.0

Generating stub code for the target

A XORP process can implement more than one interface. In fact most XORP

processes implement a special-purpose interface. The MakeFile.am includes the

procedure to add static_routes.tgt to the list of tgt files. The tgt-gen (XRL

Interface Target Generator) takes an XRL target specification and generates

list of XRL’s supported by the target and a class to be sub-classed that takes

care of argument marshalling and unmarshalling and sanity checks.

From each .tgt file, a .xrls file will be generated using the python script tgt-gen.

The libstaticroutesbase.la is a library, which is going to be used to link the

static routes process, to get access to all the stub code to implement the

target part of this interface. The libstaticroutesbase.la defines a class called

XrlStaticRoutesTargetBase which will be used to receive XRL requests. The

constructor for XrlStaticRoutesTargetBase takes a single parameter which is

typically the XrlRouter for the process. An XrlRouter is an object that is bound

to an EventLoop and which sends and receives XRL requests.

6.3.2 The main loop

The main loop of a XORP process includes a header file that includes

 83

Chapter 6 Writing a XORP Process

information like XORP_MODULE_NAME and XORP_MODULE_VERSION.

Then we include the functionality from libxorp that we’ll need:

• libxorp/xorp.h: generic headers that should always be included.

• libxorp/xlog.h: XORP logging functionality. The convention is to use

XLOG macros to log warnings and error messages, so we can redefine

how logging if implemented in future without rewriting the code that

uses logging. See Section 7 for more information about the XLOG facility.

• libxorp/debug.h: XORP debugging functionality.

• libxorp/callback.hh: XORP callback templates, needed to pass a handle

into event handling code to be called later when an event occurs.

• libxorp/eventloop.hh: the main XORP eventloop.

• libxorp/exceptions.hh: standard exceptions for standard stuff - useful as

a debugging aid.

The other main class is the static_routes_module.cc file. The most important

function of the class is the static_routes_main method.

static void static_routes_main(const string& finder_hostname, uint16_t

finder_port)

{

 // Init stuff

 EventLoop eventloop;

 // StaticRoutes node

 XrlStaticRoutesNode xrl_static_routes_node(

 eventloop,

 "static_routes",

 finder_hostname,

 finder_port,

 "finder",

 "fea",

 "rib");

 wait_until_xrl_router_is_ready(eventloop,

 84

Chapter 6 Writing a XORP Process

xrl_static_routes_node.xrl_router());

 // Startup

 xrl_static_routes_node.startup();

 // Main loop

 while (! xrl_static_routes_node.is_done()) {

 eventloop.run();

 }

}

Then we create an instance of the XrlStaticRoutesNode class we defined earlier

to receive XRLs on the static routesXRL target interface. Inside this object there

will be the corresponding XrlStdRouter object for sending and receiving XRLs

from this process. The following parameters are passed to the

XrlStaticRoutesNode.

• The EventLoop object.

• The XRL target name of this process: in this case "static routes".

• Information about the host and port where the XRL finder is located.

• Information about the names of other XRL targets we need to

communicate with: the Finder, the FEA, and the RIB.

Before we proceed any further, we must give the XrlStdRouter time to register

our existence with the Finder. Thus we call wait until XRL router is ready().

6.3.3 CALLING XRLS ON THE RIB

The static routes process will do some checks and internal processing on these

routes (such as checking that they go out over a network interface that is

currently up). Finally it will communicate the remaining routes to the RIB

process for use by the forwarding plane. We will now see how we send these

routes to the RIB.

The rib.xif file is processed by a python script to produce the files rib xif.hh and

rib xif.cc in the xorp/xrl/interfaces directory which are then compiled and linked

 85

Chapter 6 Writing a XORP Process

to produce the libribxif.la library. rib xif.hh. To use this code, we must first

create an instance of this class, calling the constructor and supplying a pointer

to an XrlSender. Typically such an XrlSender is an instance of an XrlRouter

object.

The class XrlStaticRoutesNode actually defined an instance of XrlRibV0p1Client

called xrl rib client as a member variable, so this object is created

automatically when our main loop creates xrl static routes node The xrl router

into the constructor for xrl rib client. So, once everything else has been

initialized, we’ll have access to xrl rib client from within xrl static routes node.

In order to send a route to the RIB we simply call xrl rib client.send add

route4() with the appropriate parameters,

The only real complication here is related to how we get the response back

from the XRL. Recall that xrl rib client.send add route4() will return

immediately with a local success or failure response, before the XRL has

actually been transmitted to the RIB. Thus we need to pass a callback in to

send add route4(). This callback will wrap up enough state so that when the

response finally returns to the XrlRouter in the static routes process, it will

know which method to call on which object with which parameters so as to

send the response to the right place. Eg,

XorpCallback1<void, const XrlError&>::RefPtr

This defines a callback function that returns void and which takes one argument

of type const XrlError.

6.3.4 Returning values in XRLs

In the rib.xif file, the XRL lookup route by dest4 returns one value of type ipv4

called nexthop. XRLs can actually return multiple parameters, eg.

lookup_route_by_dest4 ? addr:ipv4 & unicast:bool & multicast:bool &

nexthop:ipv4

 86

Chapter 6 Writing a XORP Process

6.3.5 The XLOG logging facility

The XORP XLOG facility is used for log messages generation, similar to syslog.

The log messages may be output to multiple output streams simultaneously.

int main(int argc, char *argv[])

{

// Initialize and start xlog

xlog_init(argv[0], NULL);

xlog_set_verbose(XLOG_VERBOSE_LOW); // Least verbose messages

// Increase verbosity of the error messages

xlog_level_set_verbose(XLOG_LEVEL_ERROR, XLOG_VERBOSE_HIGH);

xlog_add_default_output();

xlog_start();

// Do something

// Gracefully stop and exit xlog

xlog_stop();

xlog_exit();

exit (0);

}

Typically, a developer would use the macros described below to print a

message, add an assert statement, place a marker, etc. If a macro accepts a

message to print, the format of the message is same as printf(3). The only

difference is that the XLOG utility automatically adds ’\n’, (i.e. end-of-line) at

the end of each string specified by format:

6.4 SUMMARY

The main focus of the chapter was discussion regarding creating a new XORP

process. This includes writing code for XRL interfaces, both client and target,

generating required libraries, class files and header files using. The

methodology also includes writing the main loop of execution, and

implementing logging facility. The process requires a delicate balance of

processes, and is to be coded very meticulously.

 87

7. RESULTS

7.1 GENERAL

This chapter covers a quick overview of the intricacies of the development of

the infrastructure for the implementation of the scheduling of multimedia traffic

in real time environment. After the experimental setup tests have been

conducted by streaming a multimedia file through VLC’s VideoLAN software and

also generating a heavy background traffic (TCP), through MGEN Traffic

generator tool. The results are derived and displayed in the following sections.

7.2 EXPERIMENTAL SETUP

The experimental set up created for the implementation of priority based

scheduling of multimedia traffic through a real time linux operating system, and

routing the stream through software based routers; required tremendous

effort. The installation and configuration of the real time kernel on Red Hat

kernel 2.4.20 and Fedora Core 6 kernel 2.6.18, with IPv6 stack, and Quality of

Service support was done successfully. The next major configuration was the

installation of the XORP and Zebra, a Software based router.

XORP was considered more preferable from implementation point of view, due

to its extensibility features, powerful API, event driven approach. It is worth

noting that, a distinguishing factor between implementations of software

router, is based on the fact, that a router is event-driven or it uses a periodic

route scanner to resolve dependencies between routes. The scanner-based

approach is simpler, but has a rather high latency before a route change

actually takes effect. Cisco IOS and Zebra both use route scanners, with a

significant latency cost; MRTD and BIRD are event-driven, but this is easier

given a single monolithic process. In XORP, the decision that everything is

event-driven is fundamental and has been reflected in the design and

implementation of all protocols, and of the IPC mechanism.

Chapter 7 Results

The next part of the project work was related to streaming of a multimedia file,

through VLC’s VideoLAN software. The streaming is done through command

line interface on Fedora core, with the –-dscp option.

Note: The option is concatenated with the vlc command line statements with –

dscp =<integer> DiffServ Code Point. The Differentiated Services Code point

for outgoing UDP streams (or IPv4 Type Of Service, or IPv6 Traffic Class). This

is used for network Quality of Service –packetize implementation.

The core part of the implementation was development of a module at the

kernel level, which gets invoked, which is event driven and gets invoked when

there is a packet at the network interface. The module parses the packets and

reads the dscp value. A DSCP value of 16 is identified as a high priority

multimedia traffic and if put in the High Priority queue. The other traffic, which

is mostly TCP traffic is kept in the Low Priority queue. The packets are released

to the XORP router. On the routers, the DSCP value is checked propagated to

the Routing Information Base (RIB) at the Router. The RIB, in turn notifies this

to the forwarding plane and release the traffic at a high priority. This

mechanism has been added as a new process to the XORP.

7.3 TRAFFIC GENERATION

Apart from the multimedia stream generated from VLC, the project work also

required a heavy TCP traffic on the network. The traffic is generated to create a

real time scenario of loads of traffic in network, with different bandwidth and

delay requirements; within a Computer Lab. The traffic was generated using

the Mgen tool.

The Multi-Generator (MGEN) is open source software by the Naval Research

Laboratory (NRL) PROTocol Engineering Advanced Networking (PROTEAN)

group which provides the ability to perform IP network performance tests and

measurements using UDP/IP traffic (TCP is currently being developed).

The toolset generates real-time traffic patterns so that the network can be

loaded in a variety of ways. The generated traffic can also be received and

logged for analyses. Script files are used to drive the generated loading

 90

http://www.nrl.navy.mil/
http://www.nrl.navy.mil/
http://protean.itd.nrl.navy.mil/

Chapter 7 Results

patterns over the course of time. These script files can be used to emulate the

traffic patterns of unicast and/or multicast UDP/IP applications. The receive

portion of this tool set can be scripted to dynamically join and leave IP

multicast groups. MGEN log data can be used to calculate performance

statistics on throughput, packet loss rates, communication delay, and more.

MGEN currently runs on various Unix-based (including MacOS X) and WIN32

platforms.

7.4 MEASEREMENT TOOLS

The tools have been chosen keeping in mind their open-source origins and

flexibility of use.

1. OpenIMP :The OpenIMP tool which is used to measure one way delay

and jitter follows the IETF measurement standards and is compliant for

both IPv6 anf IPv4.

2. MGEN : This tool is used to generate traffic flows. Its log files are also

helpful in gauging packet loss.

3. Ethereal 0.10.8: This tool integrated with support for MPEG2 TS Parser

was highly useful in analyzing the multimedia packets.

4. Ping: ICMP packets were used when setting up the testbed to check the

link characteristics of loss and delay.

7.5 METHODOLOGY

The OpenIMP clients were run on the routers and the data was collected at the

end of the experiment at the monitoring host C where the tool used the

captured statistics to derive one-way delay, one-way delay distribution and

jitter with separate graphs for traffic with different TOS field.. The test-bed

never demonstrated any sort of transmission errors during the experiments.

 91

Chapter 7 Results

Fragmentation was also not detected since the packet size that we used was

below the link MTUs. MGEN was run at the transmitting host to generate traffic

with different characteristics. A MGEN client was run at the receiver to receive

the transmitted data. Since the measurements are relative to time, we had to

make sure the skew between the clocks at the routers and hosts did not affect

the results obtained. The Network Time Protocol daemon process, NTPD was

used to synchronize time and reduce skew. More of it is described later. NTPD

was run at regular intervals of 1 second when the time at Host C was used as

reference point for all the other test-bed entities.

7.6 TIME SYNCHRONIZATION

NTP is a protocol designed to synchronize the clocks of a computers over a

network. NTP version 3 is an internet draft standard, formalized in RFC 1305.

A key component of any computer analysis may be it is in terms of security or

network performance analysis is time. If computers are running on different

times, it becomes almost impossible to accurately log packets timings, and

hence results in errors in calculation.

The Network Time Protocol (NTP) is used to synchronize the time of a computer

client or server to another server or reference time source, in our case a

machine in our network. It provides accuracy typically within a millisecond on

LAN. On request, the server sends a message including its current clock value

or timestamp and the client records its own timestamp upon arrival of the

message. For the best accuracy, the client needs to measure the server-client

propagation delay to determine its clock offset relative to the server. There are

few security issues concerned with the server to prevent any malicious attack

which is not considered on our case.

To update from a server:

ntpdate –u 192.168.5.3

To constantly update each two seconds:

watch ntpdate –u 192.168.5.3

 92

Chapter 7 Results

7.7 TRAFFIC GENERATION

The Multi-Generator (MGEN) is open source software by the Naval Research

Laboratory (NRL) Protocol Engineering Advanced Networking (PROTEAN) group

which provides the ability to perform IP network performance tests and

measurements using UDP/IP traffic. The toolset generates real-time traffic

patterns so that the network can be loaded in a variety of ways. The generated

traffic can also be received and logged for analyses. Script files are used to

drive the generated loading patterns over the course of time. These script files

can be used to emulate the traffic patterns of unicast and/or multicast

applications. The receive portion of this tool set can be scripted to dynamically

join and leave IP multicast groups. MGEN log data can be used to calculate

performance statistics on throughput, packet loss rates, communication delay,

and more. MGEN currently runs on various Unix-based and WIN32 platforms.

The principal tool is the mgen program which can generate, receive, and log

test traffic.

Syntax:

Mgen[ipv4][ipv6][input<scriptFile>][save<saveFile>][outputlogFile>][log<logF

ile>][binary][txlog][nolog][flush][hostAddr{on|off}][event"<mgenevent>"][po

rtrecvPortList>][instance<name>][command<cmdInput>][sink<sinkFile>][blo

ck][source<sourceFile>][interface<interfaceName>][ttl<timeToLive>][tos<typ

eOfService>][label<value>][txbuffer<txSocketBufferSize>][rxbuffer<rxSocket

BufferSize>]

Since MGEN allows us to set various parameters that define a particular traffic,

like video, audio, VOIP, bulk data etc we used this tool to generate the required

traffic with varying characteristics. This allowed us the flexibility to try out

various types of streams for our experiments and validation. For example, a

multimedia video traffic as having random bursts at irregular intervals through

MGEN’s parameters. The bursts can be generated with varying parameters. The

BURST command which is used to write the burst traffic activity scripts is as

follows :

BURST [REGULAR|RANDOM <aveInterval (sec)> <patternType>

 93

Chapter 7 Results

[<patternParams>] FIXED|EXPONENTIAL <aveDuration (sec)>]

The BURST pattern generates bursts of other MGEN pattern types at a specified

average interval. The first parameter of the BURST pattern is either "REGULAR"

resulting in periodic burst uniformly distributed in time by the <aveInterval>

value, or "RANDOM" which exponentially distributes the traffic generation

bursts in time with an average burst interval as specified by the <aveInterval>

parameter value. The characteristics of the MGEN messages generated during a

burst is given by the <patternType> and associated <patternParams>

parameters. The <patternType> may any MGEN pattern type including

PERIODIC, POISSON, or, yes, even BURST. The <patternParams> must be

appropriate for the given <patternType>. When a traffic generation burst

occurs, its duration is either of a FIXED value as given by the <aveDuration>

or a randomly varying duration with EXPONENTIAL statistics and an average

duration as given by the <aveDuration> parameter. An example use of the

BURST pattern would be to roughly emulate the "talk spurts" which might

result from video conferencing system. As a voice conversation commences, a

user's burst of activity (talk spurts) might be RANDOM with some average

interval and the duration talk spurts approximate EXPONENTIAL statistics. >

When the talk spurt (burst) occurs, the voice compression codec might

generate messages following something like a PERIODIC flow with packet rates

and packet sizes dependent upon the voice codec in use. Other uses of the

BURST pattern might be to roughly model message/packet generation

occurring with random use of a network such as web browsing, etc. The BURST

model provided by MGEN does not presuppose any specific traffic model, but

might be useful in approximating some models of regular or intermittent

network activity.

7.8 TEST

This experiment was conducted using 2 streams, of which one was multimedia

traffic while the other was normal periodic traffic. The bandwidth required is

120Mbps which is greater than 100Mbps link. The multimedia traffic being

Periodic with regular bursts, it was expected the delays would increase abruptly

 94

Chapter 7 Results

at burst instances when the traffic bandwidth required would be much greater

than that available [14]. The queuing delays increase and average delay shoots

up. Table 7.1 describes the traffic profile of the multimedia traffic’s

characteristics.

Table 7.1: Profile for Traffic Generation for both IPv6 and IPv4 network

Stream Type Rate (packet/sec) Size (in bytes)
Multimedia

(UDP)

Periodic

Burst (every 4.5 sec)

4500

4500

1024

1024

Normal

(TCP)

Periodic 3000 1024

For some experiments to calculate latency for different packet size, different

packet size has been considered.

7.9 RESULTS

The experiments were conducted for both IPv6 and IPv4 networks. The

comparison between the two, with reference to, Packet Loss, Average and

Maximum Jitter and Average receive time, is displayed in Table 7.2. Note that

jitter is defined to be the difference between the minimal and maximal

datagram delays.

Table 7.2: Comparison of IPv4 and IPv6

 Packets

Lost (%)
Average jitter
(msec)

Maximum jitter
(msec)

Average receive
time(msec)

IPv4 5 40 81 98

Ipv6 1 21 65 20

The IPv6 network showed a better quality, as compared to the IPv4 network.

Also the bandwidth consumption of the IPv6 network is much more stable as

compared to the IPv4 network. This is shown in the figure Fig 7.1 and Fig 7.2.

 95

Chapter 7 Results

Also, the UDP foreground traffic, ie, multimedia traffic, suffers less packet loss

w.r.t the TCP background traffic (generated artificially through MGEN Traffic

Generator Tool). The results derived after the experiment was used to display

packet loss, delay and latency.

Fig 7.1: IPv4 bandwidth consumption

Fig 7.2: IPv6 bandwidth consumption

Fig 7.3: Packet Loss for the High Priority Multimedia Traffic.

 96

Chapter 7 Results

Fig 7.4: Packet Loss for different packet sizes.

Fig 7.5: Latency for different packet sizes

7.9 MPEG-2 TS DISSECTOR FOR ETHEREAL 0.10.8

The MPEG-2 TS (Transport Stream) dissector for Ethereal can display transport

stream and section heading information, reassemble the sections and analyze

the PSI (Program Specific Information) data. The following section covers the

procedure required to open a MPEG2 TS Stream and analyze its fields. Open

the .ts file (created through VideoLAN), from Ethereal (version 0.10.8). This is

required to dissect the MPEG2 TS stream sections contained in the .ts file.

 97

Chapter 7 Results

Fig 7.6: Ethereal’s Open page for Transport stream file

There are two possibilities to dissect MPEG 2 ULE, ie analyze ULE datagrams

with specific PIDs, analyze a Stream only containing ULE SNDUs. In order to

analyze a transport stream carrying both ULE SNDUs and normal sections click

the check box ”Enable MPEG2 ULE SNDU analyzation” and enter the ULE PIDs

into the ”ULE PID” text field separated with blanks either in hexadecimal or

decimal format (e.g. 0x12 25 0x34 ...). If the value is correct the text field

background will turn green. To analyze a stream only consisting of ULE SNDUs

just click the check box ”Enable MPEG2 ULE SNDU analyzation” and the whole

transport stream will be analyzed as a stream only containing ULE SNDUs as

shown in Figure 7.7. If these settings are wrong the analysis will be incorrect.

 98

Chapter 7 Results

Fig 7.7: Ethereal’s Transport stream file details

 99

Chapter 7 Results

The figure below shows the Transport priority marked with red circle. The

priority was marked at source while streaming the multimedia stream.

Fig 7.8: Transport stream file, showing a High Transport priority

 100

8. SUMMARY AND CONCLUSION

8.1 SUMMARY

The experimental set up created for the implementation of priority based

scheduling of multimedia traffic through a real time linux operating system,

and routing the stream through software based routers; required tremendous

effort. The installation and configuration of the real time kernel on Red Hat

kernel 2.4.20 and Fedora Core 6 kernel 2.6.18, with IPv6 stack, and Quality

of Service support was done successfully. The next major configuration was

the installation of the XORP and Zebra, a Software based router.

The next part of the project work was related to streaming of a multimedia

file, through VLC’s VideoLAN software. The streaming is done through

command line interface on Fedora core, with the –-dscp option.

However, the core part of the implementation was development of a module

at the kernel level, which gets invoked, which is event driven and gets

invoked when there is a packet at the network interface. The module parses

the packets and reads the DSCP value. A DSCP value of 16 is identified as a

high priority multimedia traffic and if put in the High Priority queue. The

other traffic, which is mostly TCP traffic is kept in the Low Priority queue. The

packets are released to the XORP router. On the routers, the DSCP value is

checked propagated to the Routing Information Base (RIB) at the Router.

The RIB, in turn notifies this to the forwarding plane and release the traffic at

a high priority. This mechanism has been added as a new process to the

XORP.

8.2 CONCLUSION

XORP was considered more preferable from implementation point of view,

Chapter 8 Summary And Conclusion

due to its extensibility features, powerful API, event driven approach. It is

worth noting that, a distinguishing factor between implementations of

software router, is based on the fact, that a router is event-driven or it uses

a periodic route scanner to resolve dependencies between routes. The

scanner-based approach is simpler, but has a rather high latency before a

route change actually takes effect. Cisco IOS and Zebra both use route

scanners, with a significant latency cost; MRTD and BIRD are event-driven,

but this is easier given a single monolithic process. In XORP, the decision

that everything is event-driven is fundamental and has been reflected in the

design and implementation of all protocols, and of the IPC mechanism.

The experimental results indicated that IPv6 traffic has less of packet loss,

latency and jitter problems as compared to the IPv4 network. One reason

could be the overall packet flow strategies of IPv6 and the other could be

that IPv6 network are relatively less congested, due to less usage, w.r.t the

IPv4 network. Also the foreground traffic, ie multimedia (high priority) traffic

showed less jitter and latency w.r.t the background traffic (TCP traffic)

generated through the MGEN traffic generator.

8.3 FUTURE SCOPE

The methodology that is implemented successfully for the project work, is

related to implementation of a module for DiffServ architecture in the real

time kernel.

The other strategy which is under implementation is DiffServ-aware Video

Streaming. This refers to a streaming system characterized by the

integration of two main components: a DiffServ-enabled IP network and a

DiffServ-aware video streaming application. The general idea behind this

concept is that performance may be improved if applications are aware

(make use) of the enhanced network capabilities offered by the DiffServ

architecture. Thus, a DiffServ-aware application marks its packets in order

 102

Chapter 8 Summary And Conclusion

for them to take advantage of the advanced rate, delay, jitter and/or loss

features offered by the network. This approach is called application-driven

(or application-controlled) marking, and is different from the typical DiffServ

router-based marking which is done by edge routers based on rate-metering

or flow identification.

The compressed streams generated by video codecs are usually organized in

a hierarchical structure. For example, at the frame level, an MPEG-

compressed video stream contains three types of frames: I, P and B. The

loss of each type of frame has a different impact on the visual quality of the

received signal. The loss of an I frame has a bigger impact than that of a B

frame. If an I frame is lost, in addition to the loss of the frame itself, some

neighboring frames can also be considered lost for practical reasons. This is

due to the fact that they cannot be properly decoded even if they are

correctly received, because the reference information from the lost I frame is

not available. One can speak then of error propagation.

Thus overall the dissertation work is a mix of exhaustive configurations in

Linux environment and core level network programming, which also looks

into the operating system level intricacies for scheduling of multimedia

traffic, in a real time environment.

 103

REFERENCES

1. Deering, S. & Hinden, R., RFC 2460 Internet Protocol,Version 6 (IPv6)

Specification, December 1998

2. Rajahalme, J., Conta, A., Carpenter, B., & Deering, S., RFC3697: IPv6

Flow Label Specification, March 2004

3. Manish Mahajan and Manish Parashar, Managing QoS for Multimedia

Applications in the Differentiated Services Environment, The Applied

Software Systems Laboratory (TASSL), 94 Brett Road, Piscataway,

New Jersey, October 2004

4. Ashwin Kumar Chimata, A Route Control Platform using XORP Design

Considerations, July 27, 2006

5. Ferguson, P., & Huston, G., Quality of Service: Delivering QoS on the

Internet and in Corporate Networks. New York, NY: Wiley Press, 1998.

6. Almquist, P, RFC1349: Type of Service in the Internet Protocol Suite.,

July 1998

7. Johann Max Hofmann Magalhaes, Paulo Roberto Guardieiro, A New

QoS Mapping for streamed MPEG Video over a DiffServ Domain Larisa

Rizvanovic, Gerhar Fohler, Federal University of Uberlandia, 2002

8. W Stevens, M. Thomas, RFC 2292: Advanced Socket API for IPv6,

AltaVista, February 1998

9. R. Gilligan, S. Thomson, Bellcore, J. Bound, Compaq W. Stevens, RFC

2553 - Basic Socket Interface Extensions for IPv6, March 1999

 104

10. Jau-Hsiung Huang and Ing-Chau Chang, Communications and

Multimedia Lab, A real-time scheduling policy for Multimedia

applications on broadcast Network, Department of Computer Science

and Information Engineering, National Taiwan University, Taipei,

Taiwan, 2003

11. Ahmed, T. Nafaa, A. Mehaoua, A. , An object-based MPEG-4

multimedia content classification model for IP QoS differentiation,

CNRS-PRiSM Lab., Versailles Univ., France; July 2003

12.Michael Barabano, A Linux based real time operating system, New

Maxico Institute of Mining and Technology, 1998

13.Mark Handley Adam Greenhalgh, XORP: Breaking the Mould in Router

Software, Dept of Computer Science, University College London, 2004

14. Reinder J. Brill. Real-time scheduling for media processing using

conditionally guaranteed budgets. Ph.D Thesis, Technical University

Eindhoven, 2004.

 105

http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(ahmed%20%20t.%3cIN%3eau)&valnm=Ahmed%2C+T.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20nafaa%20%20a.%3cIN%3eau)&valnm=+Nafaa%2C+A.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20mehaoua%20%20a.%3cIN%3eau)&valnm=+Mehaoua%2C+A.&reqloc%20=others&history=yes

APPENDIX A LIST OF WEBSITES

1. XORP Website: http://www.xorp.org/

2. ZEBRA Website: http:// www.zebra.org

3. Linux kernel: http:// www.kernel.org

4. FSMLsbs: http://www.fsmlabs.com

5. IP QoS Project: http://dpnm.postech.ac.kr/research/01/ipqos/

6. Ipv6 Website: http://www.ipv6.org/

7. OpenIMP: http://www.ip-measurement.org/openimp/

8. Fedora Project: http://fedoraproject.org/wiki/

9. Linux Ipv6 HowTo: http://tldp.org/HOWTO/Linux+IPv6-

HOWTO/index.html

10.VideoLAN HOW TO: http://tldp.org/HOWTO/VideoLAN-HOWTO/ and

http://www.videolan.org/vlc

11. RFC’s repository: http://www.rfc-archive.org/getrfc.php

 106

http://www.zebra.org/
http://www.fsmlabs.com/
http://dpnm.postech.ac.kr/research/01/ipqos/
http://www.ipv6.org/
http://www.ip-measurement.org/openimp/
http://fedoraproject.org/wiki/
http://tldp.org/HOWTO/Linux+IPv6-HOWTO/index.html
http://tldp.org/HOWTO/Linux+IPv6-HOWTO/index.html
http://tldp.org/HOWTO/VideoLAN-HOWTO/
http://www.videolan.org/vlc

	Coverpage.doc
	CerT.doc
	chapter1.doc
	Chapter2.doc
	chapter3.doc
	Displaying the Existing tunnels

	chapter4.doc
	Precedence
	4.2.1.2 Mapping strategy and Architecture

	chapter5.doc
	chapter6.doc
	Generating stub code for the caller
	Generating stub code for the target

	chapter7.doc
	chapter8.doc
	reference.doc

