
Functional Verification of

Local Move Link

Sub System at Module Level

Major Project Report

Submitted in Partial Fulfillment of the Requirements

For the Degree of

Master of Technology

In

ELECTRONICS & COMMUNICATION ENGG.
(VLSI DESIGN)

Prepared By
Gaurang K. Parmar

(07MEC009)

Under the Guidance of
Mr. Pranav Joshi Prof. Usha Mehta
Project Leader - ASIC EC Department,
E-Infochips, Institute of Technology,
Ahmedabad. Nirma University.

Department of Electronics & Communication Engineering,

Institute of Technology,
Nirma University of Science & Technology,

Ahmedabad - 382481.

CERTIFICATE

This is to certify that the M.Tech dissertation Major Project Report entitled “Functional

Verification of LMvL Subsystem at Module Level” submitted by Gaurang K.

Parmar (07 MEC 009) towards the partial fulfillment of the requirement for the Degree

of Master of Technology (Electronics & Communication Engineering) in the field

of VLSI Design of Institute of Technology, Nirma University of Science and

Technology, Ahmedabad is the record of the work carried our under our supervision and

guidance. The work submitted has in our opinion reached a level required for being

accepted for examination. The results embodied in this dissertation-project work to the

best of my knowledge have not been submitted to any other University or Institute for the

award of any degree or diploma.

Date:

Place: Ahmedabad

Project Guide Dr.N.M.Devashrayee
Prof. Usha Mehta P.G. Co-ordinator
Institute of Technology VLSI Design
Nirma University, Institute of Technology
Ahmedabad Nirma University,
 Ahmedabad

HOD Director
Prof. A. S. Ranade Dr. Ketan Kotecha
Dept. of EE Engineering Institute of Technology
Institute of Technology Nirma University,
Nirma University, Ahmedabad
Ahmedabad

 I

ACKNOWLEDGEMENT

It is an immense pleasure to express my gratitude towards all those people whose

contribution was of paramount importance in achieving the goals of this project.

I am indebted to Mr. Nilesh Ranpura, Project Manager, E infochips Ltd. for giving me

an opportunity to work in such a reputed Organization and providing the most compatible

environment for working as a trainee.

I particularly record my profound gratitude to Mr. Pranav Joshi, Team Leader, Asic

Group, for the valuable guidance, support, and encouragement played a very important

role in the successful completion of this project. His generous attitude and expertise in

the field of VLSI fundamentally important towards achieving the objectives of the

project.

I pay my special regard to Alay Shah, Ketul Parikh, Vilas Jadav, and Manish Ladani,

Malkesh Adesra, Vaibhav Tekale, Pratik Adesra and others in the team for their able

guidance, timely help and training that made my way towards the goal easy.

I extend my thanks to Prof. A. S. Ranade, Head of Electrical Engineering Department of

Institute of Technology, NIRMA University.

I express my special thanks to Prof. N.M. Devashrayee, PG Coordinator, EC

Department, NIRMA University for his unconditional support and encouragement. I am

thankful to Prof. Usha Mehta, EC Department, NIRMA University, for her continuous

support and guidance. I am also thankful to all the faculty members of the department for

their direct or indirect support. At last my deepest gratitude goes to those persons whose

names are not mentioned here but they directly/indirectly helped us in achieving success

in this project.

 Gaurang Parmar

 II

LIST OF FIGURES
Figure 2.1.1: Functional Verification Reconvergent Model .. 03

igure 3.3.1: Verification Flow.. 15

Figure 4.1.1: Block Diagram of LMvL... 21

Figure 4.2.1: Block Diagram of LMvL Packet Assembler.. 22

Figure 4.4.1 Block Diagram of LMvL Packet Assembly Controller........................... 23

Figure 4.4.1.1: State Machine of LMvL Packet Assembler... 24

Figure 4.4.3.1: L3 Segmentation State Machine.. 25

Figure 4.5.1: Move Request Controller.. 26

Figure 4.6.1: Packet Buffer Partitioning.. 29

Figure 4.8.1: LMvL Interface Block Diagram... 30

Figure 4.8.2: LMvL Interface State Machine.. 31

Figure 4.10.1: Drv TG Verification Environment Components.................................... 34

 Figure 6.2.1: ICC coverage Totals. .. 55

Figure 6.2.2: ICC Functional Coverage Results on GUI. .. 56

Figure 6.3.1: vManager Output File Status... 59

Figure 6.3.2: vManager Console... 59

 Figure 6.4.1: VM Coverage Analysis Results in VPLAN window. 61

 III

Contents

Certificate I

Acknowledgement II

List of Figures III

Abstract VIII

1. Introduction
 1.1 General Description .. 01

 1.2 Goal of the Project... 01

 1.3 Scope of Work .. 02

 1.4 Organization of Report ... 02

2. Introduction to Verification
 2.1 What is Verification?.. .. 03
 2.2 Types oF Verification 04

 2.3 Functional Verification .. 06

 2.4 Verification Methodology .. 08

 2.5 High Level Verification Languages .. 09

 2.6 The Cost of Verification ... 11

3. The Verification Methodology and Flow
 3.1 Introduction ... 12

 3.2 Verification Methodology .. 12

 3.2.1 The Bottom Top Methodology .. 13

 3.3 Verification Flow .. 13

 3.4.1 Design Plan, Software Plan & Verification Plan 15

 IV

 3.4.2 Verification Plan .. 15

 3.4.3 Development of VE ... 16

 3.4.4 Identifying Features ... 17

 3.4.5 Prioritizing Features ... 17

 3.4.6 Grouping into Testcases ... 17

 3.4.7 Writing & Execution of Testcases ... 18

 3.4.8 Regression .. 18

 3.4.9 Coverage .. 18

 3.4.10 Documentation .. 19

 3.5 Designer – Verification Engineer Interaction .. 19

 3.5.1 Design for Verification ... 19

4. Local Move Link
 4.1 Local Move Link.. 20

 4.2 L3 Packet Assembler ... 21

 4.3 DigCap interface and requirements... 22

 4.4 Packet Assembly Controller... 23

 4.4.1 Packet Assembler State Machine ... 24

 4.4.2 Packet Assembler Counters.. 24

 4.4.3 L3 Segmentation State Machine... 25

 4.4.4 L3 Header Mux... 26

 4.5 Move Request Controller ... 27

 4.5.1 Counters .. 28

 4.6 PACKET BUFFER... 28

 4.7 L2 Packet Burst Control.. 29

 4.8 LMvL Interface Block... 30

 4.9 LMvL FIFO & Bypass.. 33

 4.10 VERIFICATION ENVIRONMENT FOR LMvL.. 34

 4.11 C++ ENVIRONMENT ... 35

 4.12 VERILOG ENVIRONMENT... 40

 V

5. Local Move Link Sub System Verification
 5.1 Identification of Features .. 42

 5.2 Developing the Testbench ... 43

 5.3 Prioritization of Features.. 43

 5.4 Grouping of the Test Cases ... 44

 5.5 Environment Settings... 44

 5.6 Transactor .. 45

 5.7 Developing and Debugging Test cases .. 45

 5.8 Bugs Reporting .. 50

 5.9 Looping Structure .. 51

 5.10 Regression ... 51

 5.11 Coverage ... 51

 5.12 Documentation... 52

6. Functional Coverage Analysis
 6.1 Functional Coverage .. 53

 6.2 Incisive Comprehensive Coverage Report Tool (ICCR) 54

 6.3 vManager – ICC Integration.. 56

 6.4 Analyzing the Coverage .. 59

7. Languages, S/W & EDA Tools
 7.1 Platform for Verification ... 62

 7.2 OS: RED HAT LINUX .. 64

 7.3 SUPPORTING APPLICATIONS ... 65

 7.4 EDA TOOLS ... 69

APPENDIX

ACRONYMS

REFERENCES

 VI

ABSTRACT

The gate counts and system complexity growing exponentially, with that engineer

confront the most perplexing challenge in chip design cycle: Verification. Verification of

the design RTL is done at various phases of the chip design flow at different abstraction

levels. The Major Project traverses through the chip design flow and functionally verifies

the module of the chip. This is done at low abstraction level concentrating on the core

functionality of the module. The inputs to module are forced through the testbench and its

interfaces are not looked upon. This is the functional verification of chip at module level

and is done at the RTL design phase. The designer updates the RTL as per the feedback.

After the RTL is been finalized after fixing all the bugs, it is send to the fabrication unit.

The chip under functional verification is a tester instrument chip, which had various

blocks like Timing Generator block, Memory Pattern Generator block. To verify the

Timing Generator block and Memory Pattern Generator block verification environment

had to be developed around these blocks. So the Environment should me very generic

and flexible in order to verify all different kind of blocks in the chip. Various test cases

were developed to cover all the necessary features of the blocks. The test cases were fired

and the waveforms were analyzed to debug the RTL as well as test bench issues. Once all

the test cases are passing, code coverage is done using a code coverage tool. The code

coverage results are analyzed to uncover any dead code as well as logic which were never

exercised.

The main objectives are to learn the fundamentals of chip verification as well as ensure

functional correctness of blocks under verification from Environment to final coverage

against their specifications. The block to be verified is Local Move Link. To exercise the

modules for their core functionality test cases are to be written and simulated based on

the features. The failing tests have to be debugged for any RTL issues and once the

design is stable daily regression are to be carried out with random seeds to make sure that

the designs are bug free. At the end Code Coverage is to be carried out to reach to each

and every hidden corners of RTL and based on it new test scenarios are added.

 VII

About eInfochips, India

eInfochips is an IP driven Product Development Services Company . The company offers

a full range of services & solutions in Chip/ASIC, Embedded Systems and Software

Product Development for various industries. The domain knowledge enables us to partner

with companies in diverse industries worldwide including Video, Security/Surveillance,

Semiconductor, Consumer Electronics, Industrial Automation, Medical/Healthcare,

Automotive, Networking, Avionics & Defense, Machine Vision/Image processing.

eInfochips has ability to address the entire spectrum of solutions differentiates us from

the others. eInfochips’ team takes the complete ownership of execution and its success.

We ensure that the technical skill of our team is constantly upgraded keeping in view the

ever changing demands of the technology industry.

Over the past decade, eInfochips has executed successfully over 300 projects in varied

areas for different customers ranging over different industries and different technologies.

Many of our projects required cross-platform, cross-technology skills. We have grown as

a design house with 730 strong team of professionals spread across the globe.

Vision, Core Values and Brand Promise

Vision:

Innovative technology company that transforms society by creating leaders and

generating stakeholder value.

Core Values:

 Customer First

 Disciplined Execution

 Embrace Impossible Challenges

 Self improvement through continuous learning

 Serving Society through Technology

Brand Promise: On Time, Every Time

Key Corporate Milestones at eInfochips:

 VIII

http://www.einfochips.com/services/asic/casestudies/chipdesign.php
http://www.einfochips.com/services/embeddedsystem.php
http://www.einfochips.com/services/applicationsoftware.php
http://www.einfochips.com/services/applicationsoftware.php
http://einfochips.com/industries.php?id=9
http://einfochips.com/industries.php?id=7
http://einfochips.com/industries.php?id=3
http://einfochips.com/industries.php?id=1
http://einfochips.com/industries.php?id=2
http://einfochips.com/industries.php?id=4
http://einfochips.com/industries.php?id=5
http://einfochips.com/industries.php?id=6
http://einfochips.com/industries.php?id=11
http://einfochips.com/industries.php?id=10

 eInfochips wins GESIA Award for the Best Innovation by ICT (Information

& Communication Technology) Company.

 eInfochips breaks into NASSCOM's 100 IT Innovators - 2007 list.

 Partners with PolyVision to Design Innovative Visual Communication Tool.

 eInfochips wins CII Award for "Emerging ICT Enterprise of Gujarat".

 Selected to operate QLogic™ Design Center.

 eInfochips' CEO receives AMA Outstanding IT Entrepreneur of the Year

Award 2004.

Embedded System Design Services
Einfochips provides concept-to-market Product Design Services to established

technology companies as well as technology startups. In this extremely fast-paced

competitive market, realizing an innovative cost-effective product is becoming

exceedingly difficult. eInfochips provides services to enable its clients maintain quality

standards to meet the stringent demands for product reliability, high performance & low

cost.

eInfochips‘s Product Engineering Services help our clients to stand out in the market

amongst all competitors by assisting them to bring new products quickly to the market

with highest reliability. eInfochips’ high-quality, cost-effective & business-focused

approach and extensive experience in Product Design Services helps our customers reap

significant year-on-year benefits. With our company’s product development expertise, we

focus on turning customer's concepts into world-class products through our unique set of

value-added product realization services & solutions.

Chip Design
eInfochips is a leading provider of IP driven silicon design and verification services and

solutions. Our capabilities extend from spec-silicon-system, with expertise spanning

front- end design, ASIC/SoC verification through verification methodologies and

Hardware Verification Languages (HVLs), physical design and verification, ASIC

prototyping (pre-silicon validation), post-silicon validation and industry-standard design

and verification IP development. eInfochips' offshore design centers have delivered

 IX

multitude silicon and product design solutions to technology companies worldwide,

helping customers reduce their time to market and build market strength.

eInfochips offers semiconductor IP development in OVM, URM, RVM, VMM and AVM

methodologies employing SystemVerilog, e, SystemC and Vera HDL. Our Design

Quality Engineers and Process Analysts are trained on DO-254 (Avionics standards) by

approved trainers enabling us to provide flight critical applications ASIC/SoC/FPGA

Design & Verification services. eInfochips’ ASIC physical design expertise covers RTL

synthesis, floor planning, place & route, clock tree synthesis, physical verification and

STA on 45nm, 65nm, 90nm, 130nm, 160nm, 180nm technologies. Our comprehensive

domain expertise in Networking, Automotive, Avionics, Wireless, Consumer,

Semiconductor, Video and Storage qualifies us as your ideal consultant in ASIC Design

and Verification Services.

Semiconductors
eInfochips is a prominent design services vendor to the semiconductor industry,

providing “Spec-to-Silicon-to-System” engineering services to semiconductor chip

companies, EDA tool companies and product development companies. Our group has

developed the requisite skill sets and industry specific solutions and provides complete

Product Design Services

• ASIC/SoC Design & FPGA Prototyping

• ASIC/SoC/FPGA Verification & Validation

• ASIC/SoC/FPGA Turnkey Services from Design to Tape-out

• IP Product Development, Integration & Support

• Chip Bring-up & Hardware/Board Design Services

• Complete Reference design development

eInfochips executed different projects of the entire silicon development spectrum,

including chip tester FPGA Module, EDA Tool verification, 15 million gates chip

physical layout, RF Device Tester System, Digital video processing board high

definition, and navigation system just to name a few.

 X

http://einfochips.com/services/asic/casestudies/design.php
http://einfochips.com/services/asic/casestudies/fpga.php
http://www.einfochips.com/services/asic/casestudies/verification.php
http://einfochips.com/services/asic/casestudies/chipdesign.php
http://einfochips.com/services/asic/IP/ip.php
http://einfochips.com/services/asic/casestudies/fpga.php
http://www.einfochips.com/services/embedded_hw.php
http://www.einfochips.com/services/reference_design.php

Chapter 1 Introduction - 1 -

Chapter 1

Introduction

1.1 General Description
Today, as the system complexity increases, the traditional capture and simulate

methodology has changed to design simulate & synthesize. The logic, functionality and

gate counts in a chip are increasing tremendously. With gate count and system

complexity growing exponentially, engineers confronts the most perplexed challenge in

the product design: functional verification. A bulk of time consumed in design of new

ICs and systems is now spent on verification. Engineers are compelled to use the best

verification and design tools available to shorten design cycle time. The true path to rapid

and accurate system verification includes both tool and methodology innovation.

Today, in the era of multi-million gate ASICs, reusable Intellectual Property (IP), and

System On Chip (SOC) designs, verification consumes about 70% of the design effort.

The number of verification engineers is usually twice the number of design engineers.

When design projects are completed, the code that implements the test benches makes up

to 80% of the total code volume. Verification of design is done at various levels of design

phase. Different type of verification is done on the design. The foremost of them is the

functional verification that verifies the functionality implemented by the design with

respect to the specifications.

1.2 Goal of the Project
The main goal of the project is to verify the submodule of a DUT fully by developing

generic environment, and test cases with the help of EDA tools, verification languages

and other related important softwares.

Chapter 1 Introduction - 2 -

1.3 Scope of Work
 The above design is divided in following phases:

 Reading Functional Interface Specifications.

 Identifying Features and writing Testplans.

 Writing Transactor and Testcases.

 Debugging and regression.

 Code coverage and Functional coverage.

 Results and Analysis.

1.4 Organization of Report
This project report is organized into seven chapters.

Chapter 2, Introduction to Verification, mainly describes the types of Verification,

Importance of Verification, Verification Methodology and Verification Languages.

Chapter 3, The Verification Methodology and Flow, presents Verification Methodology

Flow and description and importance of each step in the Verification process flow.

Chapter 4, Local Move Link, presents the functional Interface Specification of the Local

Move Link. It also contains the detailed functionality and implementation of each and

every sub block of Local Move Link.

Chapter 5, Local Move Link Sub System Verification, presents the Environment for the

Verification of LMvL. It also contains the procedure for the LMvL Verification.

Chapter 6, Functional Coverage Analysis, describes the functional verification and the

coverage generated in the ICCR tool. It also contain the integration of the vManager and

ICC for the analyzing the coverage.

Finally Chapter 7 EDA tools, contains various tools and verification languages used in

this project.

Chapter 2 Introduction to Verification - 3 -

Chapter 2

Introduction to Verification

2.1 What is Verification?
I will start with the IEEE definition of Verification. IEEE defines Verification as

“Confirmation by examination and provisions of objective evidence that specified

requirements have been fulfilled.” Let’s first understand the definition. The design

which is to be verified implements some specific functionality as per the

requirements. This is to be done by examination and not mere observation. It has to

be supported by some objective evidences [8].

Verification can be done at various granularity levels. Depending on the features of

the design to be verified, the abstraction level is decided. It follows methodology to

accomplish it accurately and quickly. It is a parallel process with the design.

Verification engineers and design engineers have to interact a lot to get a verified

design at the end of the design cycle. Various EDA tools and languages are available

for verification.

Verification Process is conceptually represented using a reconvergence model. It also

illustrates what exactly is being verified. The purpose of verification is to ensure that

the result of some transformation is as intended or as expected. This is analogous to

what we do daily in our life. e.g. confirming bank transactions with the available

balance.

Figure 2.1.1: Functional Verification Reconvergent Model [8]

Specifi-
cation

Interpretation

Interpretation

RTL Coding

Verification

Chapter 2 Introduction to Verification - 4 -

A design team interprets a written specification document and produces what they

believe to be functionally correct synthesizable HDL code. If the same individual

performs the verification of the RTL coding that initially required interpretation of a

specification, then the common origin is that interpretation and not the specification.

In this case, verification verifies designer’s interpretation and not the specification. If

that interpretation is wrong, then verification will not be able to highlight it. Hence,

the process of verification also starts from the specification and verifies the RTL

coding against the specifications. Choosing the common origin and reconvergence

points determines what is being verified. For functional verification, it is the RTL

coding verification against specifications.

Currently, verification is on critical path. It is on target of new tools and

methodologies. These tools and methodologies attempt to reduce the overall

verification time by enabling parallelism of effort, higher level of abstraction and

automation. If effort can be parallelized, additional resources can be applied

effectively to reduce the total verification time. For this, it is necessary to be able to

write and debug testcases in parallel with each other as well as in parallel with the

implementation of the design. Higher level of abstraction enables to work fast but this

reduces control and hence should be used wisely. The verification process can be at

higher level of abstraction by working at the transactions or bus cycle levels instead

of dealing with lower level zeros and ones.

2.2 Types of Verification [8]

As explained earlier, in a reconvergence model, the points and path decides the types

of verification. Different tools are used for different types of verification. Broadly,

verification can be functional verification, formal verification, model checking and

testbench generators.

2.2.1 Functional Verification

 Functional verification is to verify the functionality implemented by the design

against the specification. This can be done at various granularity levels. This depends

on how much depth in verification is required based on the deadline. It can show that

Chapter 2 Introduction to Verification - 5 -

the design meets the intended specifications but cannot prove that design is free from

any discrepancy. More explanation on this is in the later chapters.

2.2.2 Formal Verification
 Establishing properties of hardware or software designs using logic, rather than just

testing or informal arguments is formal verification. This involves formal

specification of the requirement, formal modeling of the implementation, and precise

rules of inference to prove, say, that the implementation satisfies the specification.

 Equivalence Checking is a type of formal verification. This process mathematically

proves that the origin and output are logically equivalent and that the transformation

preserves its functionality. It compares two netlist to ensure that some netlist post

processing such as scan chain insertion, clock tree synthesis or any manual

modification, did not changed the functionality of the circuit. It is also used to verify

that the netlist correctly implements the original RTL code. It can be used to see that

the synthesizer tool is honest. It can also be used to verify that two RTL descriptions

are logically equivalent. Equivalence checking is interested in comparing Boolean

and sequential logic functions and not mapping these functions to a specific

technology.

Model Checking is a recent application of formal verification. It is a method to

algorithmically verify formal systems. This is achieved by verifying if the model

satisfies a formal specification. The specification is often written as temporal logic

formulas. A model-checking tool accepts system requirements or design (called

models) and a property (called specification) that the final system is expected to

satisfy. The tool then outputs yes if the given model satisfies given specifications and

generates a counterexample otherwise. The decision process often uses some form of

binary decision diagram (BDD). Here, assertions or characteristics of a design are

formally proven or not proven. For example, all state machines in a design could be

checked for unreachable or isolated states. Even deadlocks can be detected. The

greatest obstacle to model checking is identifying, through interpretation of the design

specification, which assertions to prove. Only a subset of identified assertions is

feasible to prove.

Chapter 2 Introduction to Verification - 6 -

2.2.3 Testbench Generation
Here, there is no reconvergence point. The RTL code is the common origin. With the

help of code coverage metrics and the source code under analysis, testbench

generators generate testbenches to either increase code coverage or to exercise the

design to violate a property.

2.3 Functional Verification
I will be concentrating more on functional verification as my project is functional

verification of an Tg(Timing Generator) Drv module Stay Functionality -design. The

main purpose of functional verification is to ensure that a design implements intended

functionality. The starting point for functional verification is specifications. The

verification engineer interprets the specification and verifies whether the design

coincides with the specifications or not. Functional verification, as a process can

show that a design meets the intent of its specifications, but cannot prove it. One can

easily prove that a design does not implement a desired functionality by identifying

just one discrepancy. But, the converse is not. No one can prove that there are no

discrepancies. Functional verification can be accomplished using three

complementary but different approaches: black box, white box and grey box.

Black Box Verification
As the name suggests, the design to be verified is looked upon as a black box. i.e.

only the interface is known for the design. The internal information of the design is

not known. The intention is to verify that the design generates required output for a

specific input applied. With a black box approach, the functional verification must be

performed without any knowledge of the actual implementation of the design. All

verification must be accomplished through the available interfaces, without direct

access to the internal state of the design, with knowledge of its structure and

implementation. This method suffers from an obvious lack of visibility and

controllability. It is difficult to set up interesting state combination or to isolate some

functionality. It is equally difficult to observe the response from the input and locate

the source of the problem.

Chapter 2 Introduction to Verification - 7 -

The advantage of black box approach is that it does not depend on any specific

implementation. Whether the design is implemented in a single ASIC, multiple

FPGAs or board, is irrelevant. It forms a true conformance verification that can be

used to show that a particular design implements the intent of a specification

regardless of its implementation. In very large or complex design, black box approach

requires some non functional modifications to provide additional visibility and

controllability. Additional software accessible registers to control some internal states

can be provided. In complex design, some module is taken from third party. This IP

(Intellectual Property) is fully verified, but to verify its working within our design, it

is verified using black box approach.

White Box Verification
As the name suggests, white box approach has full visibility and controllability of the

internal structure and implementation of the design being verified. This approach has

the advantage of being able to quickly setup an interesting combination of states and

inputs or isolate any functionality. Results can be observed as verification progresses

and the source of any problem can be located. This approach is tightly integrated with

a particular implementation and cannot be used on alternative implementations or

future redesigns. It also requires detailed

knowledge of the design implementation to know which significant conditions to

create and which results to observe. In my project, for module level functional

verification, all the modules were verified using white box approach. This approach

ensures that design behave properly with respect to any functionality. All FIFOs,

counters or datapaths are appropriately steered and sequenced.

This approach is the main verification used to verify any design. It is the foremost

important approach to verify any design that is done for the first time. It verifies the

design from all respects. The designer modifies and updates the design as per the

feedback from the functional verification team. The final outcome is the completely

verified and almost correct design which can be synthesized and fabricated further.

Chapter 2 Introduction to Verification - 8 -

Grey Box Functional Verification
 Grey box approach is a compromise between the aloofness of a black box approach

and the dependence on the implementation of white box approach. As in black box

approach, a grey box approach controls and observes a design through its top level

interfaces, but it is aware of the internal controls and can use them. This approach is

used based on the priority of the features to be verified. If functionality is to be

verified is not prime one, then to attain the deadline, grey box approach can be used.

2.4 Verification Methodology
Methodology is the step by step procedure to be followed for successful

accomplishment of any project. As digital logic designs grow larger and more

complex, functional verification has become the number one bottleneck in the design

process. Reducing verification time is crucial to project success. The only way to

address this problem is to adopt a reuse-oriented, coverage-driven verification

methodology built on the rich semantic support of a standard language. For

Verification, the Methodology used contributes great to the final conclusion for the

process. Design Methodology covers from plan to closure and it includes the

Verification Methodology midway. Some Approaches are stated under:

Constrained Random Stimulus Generation
Traditional verification relies on directed tests, in which the testbench contains code

to explicitly create scenarios, provide stimulus to the design, and check (manually or

with self-checks) results at the end of simulation. Directed testbenches may also use a

limited amount of randomization, often by creating random data values rather than

simply filling in each data element with a predetermined value. By building

randomization into the types of scenarios that are created, not just in the data values

that get generated, additional tests are much more likely to hit corner cases and

thereby find more design bugs.

Coverage-Driven Verification
Coverage metrics serve two critical purposes throughout the verification process. The

first is to identify holes in the process by pointing to areas of the design that have not

Chapter 2 Introduction to Verification - 9 -

yet been sufficiently verified. This helps to direct the verification effort by answering

the key question of what to do next — for example, which directed test to write or

how to vary the parameters for constrained-random testing.

Assertions based Verification
The capabilities of any verification environment can be enhanced by the addition of

assertions, which are statements of design intent. Ideally, as the designer writes the

RTL, he or she documents with assertions the requirements on how the design is

expected to behave and the assumptions on interfaces with adjoining blocks.

Assertions can range from low-level statements about how specific design elements

should behave to high-level, end-to-end rules about how information should flow

through a design. Assertions can be specified in many ways, including with general

RTL expressions, special statements within hardware verification languages, and the

built-in assertion constructs

2.5 High Level Verification Languages
Verilog and VHDL were widely used for verification languages. Due to increase in

complexity of functionality within designs, the need for developing language that

would aid verification grew. As a part of it, many new verification languages

developed. These languages are very powerful in creating conditions which

Verification Engineers require to verify the design from all aspects. Many features of

powerful languages are blended together in these languages to support all new

approaches. I will be discussing some high level verification languages. These

languages are now evolving fr both design and verification. Today's system-on-a-chip

designs require multi-discipline engineering teams with a range of skills covering

embedded software, system architecture, RTL design and verification. Traditionally

these teams use a variety of C modeling styles for architecture design and a variety of

hardware description languages (HDLs) and hardware verification languages (HVLs)

for RTL design and verification. These traditional methods have led to very complex

design flows, prohibited reuse, and have increased the total time to market and

development costs for today’s chip designs.

Chapter 2 Introduction to Verification - 10 -

Two industry standards have emerged to allow convergence of the different C-based

and HDL and HVL-based approaches. These are SystemC, for C-based system-level

modeling and SystemVerilog, providing a unified language for RTL design and

verification. Both SystemC and SystemVerilog span multiple levels of abstraction.

These languages can support verification at transaction level of abstraction. They

enable ease call to functions of other languages and hence provide good interface.

Assertion based approach is well supported. Object oriented approach and reusability

is taken care of in these languages.

System Verilog

IEEE 1800TM SystemVerilog is the industry's first unified hardware description and

verification language (HDVL) standard. SystemVerilog is a major extension of the

established IEEE 1364TM Verilog language. It was developed originally by

Accellera to dramatically improve productivity in the design of large gate-count, IP-

based, bus-intensive chips. SystemVerilog is targeted primarily at the chip

implementation and verification flow, with powerful links to the system-level design

flow. SystemVerilog has been adopted by 100's of semiconductor design companies

and supported by more than 75 EDA, IP and training solutions worldwide.

System C
SystemC provides hardware-oriented constructs within the context of C++ as a class

library implemented in standard C++. Its use spans design and verification from

concept to implementation in hardware and software. SystemC provides an

interoperable modeling platform which enables the development and exchange of

very fast system-level C++ models. It also provides a stable platform for development

of system-level tools. The Open SystemC Initiative (OSCI) is an independent not-for-

profit organization composed of a broad range of companies, universities and

individuals dedicated to supporting and advancing SystemC as an open source

standard for system-level design.

Chapter 2 Introduction to Verification - 11 -

Vera
Vera is an industry-leading testbench automation product that increases design quality

by finding simple as well as corner-case bugs, quickly. Vera allows engineers to

create coverage-driven tests using advanced testbench concepts like constrained-

random stimulus generation, real-time data and temporal checking and extensive

analysis of functional coverage. Vera combines next-generation constraint solving

and coverage analysis engines with a proven reference verification methodology and

interfaces to leading Verilog and VHDL simulators. Vera supports the OpenVera®

hardware verification language, including OpenVera Assertions, and is an integral

part of the Synopsys Discovery™ Verification Platform.

Specman – e Language
It is the most powerful HVL. Specman is the compiler/debugger/simulator is for e

language. Specman Elite offers a comprehensive verification environment that is

based on the e hardware verification language (HVL). The Verisity's Specman Elite is

acquired now by Cadence. It is playing an important part in developing reusable

verification components.

2.6 The Cost of Verification
Verification is a necessary evil. It always takes too long and costs too

much.Verification does not generate a profit or make money: after all it is the design

being verified that will be sold and ultimately make money. Yet verification is

indispensable. To be marketable and create revenues, a design must be functionally

correct and provide the benefits that the customer requires. Today, in the era of IP and

reusable components, verification is foremost to gain trust in the design.

Chapter 3 The Verification Methodology & Flow - 12 -

Chapter 3

The Verification Methodology & Flow

3.1 Introduction
Methodology is defined as

 (1) "a body of methods, rules, and postulates employed by a discipline"

 (2) "a particular procedure or set of procedures"

 (3) "the analysis of the principles or procedures of inquiry in a particular field".

The common idea here is the collection, the comparative study, and the critique of the

individual methods that are used in a given discipline or field of inquiry.

Methodology refers to more than a simple set of methods; rather it refers to the

rationale and the philosophical assumptions that underlie a particular task.

Verification is a critical part in the specification to silicon path. Hence, it should be

done with proper planning and proper methods to make the process effective and

quicker. The ultimate aim is to attain the most critical challenges while maximizing

overall speed and efficiency. Following an appropriate path is very important for this.

Hence, for any verification process, first the approaches, methods, algorithms,

sequences, etc is decided upon from all aspects.

 3.2 Verification Methodology
As already mentioned earlier, the methodology adopted plays a vital role in the

progress and accomplishment of the process. Verification remains the single biggest

challenge in the design of system-on-chip (SoC) devices and reusable IP blocks. As

designs continue to grow in size and complexity, new techniques emerge that must be

linked by an effective methodology for significant adoption and deployment. The

SoC industry needs a reuse-oriented, coverage-driven verification methodology built

on the rich semantic support of a standard language. Different approaches are

possible for targeting verification of a design.

http://en.wikipedia.org/wiki/Body

Chapter 3 The Verification Methodology & Flow - 13 -

3.2.1 The Bottom Top Methodology
 In the project, Bottom Top Methodology is followed. The designers have written the

RTL Code for the design. But the design is not complete yet. It will be modified and

new features will be added based on the feedback from verification process. In

Bottom Top Methodology, the verification starts with from the base of the design. In

the project, the complete design is divided into functional modules which can be

individually verified. These modules are to be verified using white box approach with

full visibility. The designer and verification engineer interact to find bugs with the

design and modify the RTL to get a functionally correct design. The level of

abstraction at module level is very low. Not many assumptions are made. Interest is to

verify the design with transaction in each signal. The modules are to be verified for

all possible inputs and even the invalid inputs. Corner cases are to be identified to

verify the design from all aspects. After the completion of this phase, the level of

abstraction rises. Now all the modules are to be integrated to and verification is done

for correctness of the interactions between the modules. At this time, the modules are

assumed to be functionally correct and only there mutual interactions are verified.

After this phase system level verification is done. The design is verified for its

functionality with the all peripherals and system components. The level of abstraction

is highest here. The approach will be clearer as I start with the Verification flow.

3.3 Verification Flow [4]

I will be discussing the complete flow followed by the company to achieve the

verification. I will start with common approach for any designing and will proceed

with concentration on the verification. Any project is the outcome of some

requirement. As without any requirement, there is no profit in going for any project.

Hence, depending on the market requirement and market availability for the project

product, a project is finalized. Figure 3.3.1 below shows the Verification Flow

followed for the project. It shows the complete flow from Plan to Closure. Different

Tools are used at each step. The Flow goes in loop as the project progresses.

Depending on the feedback from tool or updation of RTL due to addition of new

feature or fixing of some bug, the flow undergoes in a loop.

Chapter 3 The Verification Methodology & Flow - 14 -

Requirements

Design Plan Verification Plan S/W

Plan

Resource Requirements

 Man/Machine/Tools
 Language to be used

 Verification
Phase/Levels.Granularity

 Development of VE. Understanding of Tools,VE, Specification
 BFM, Checkers, Analyzers, Assersions, Functions

 Identifying the features of module to be verified at Component level.

 This will be White box verification approach.
 The abstraction level is very low.

 Developing the Testbench for the module.
 Module and other tasks will be instantiated here.

Prioritizing the features to define first time success

 Smoke test(make sure that VE and RTL is stable).
 Reg Register Reset and R/W values verification.

 Prime functionality.

Grouping the features into test cases. Identifying number of test cases
 Common features (functionality/Resourse required)

 Form same category of test cases.

Chapter 3 The Verification Methodology & Flow - 15 -

Writing & Execution of test cases with diff i/p combinations

Valid and Invalid Inputs

 Regression
This step is done several times as RTL undergoes updation

 When bugs get fixed.

 Coverage
Code Coverage and Function coverage.

 Documentation

 Done

Figure 3.3.1: Verification Flow

3.4.1 Design Plan, Software Plan & Verification Plan

 The Project Plan decides other plans for the project. These are the Design Plan,

Software Plan and the Verification Plan. These three teams play part in the project.

These are the most important teams responsible for successful completion of the

project. Design Plan and Software Plan states all the requirements from there point of

view.

3.4.2 Verification Plan
The Verification plan acts as a specification for the verification effort. It is used to

define what first time success is, how the design is verified and which testbenches are

written. The verification plan states everything related to Man/Machine & Tool

requirements. It gives the approach to verify every module. The verification plan

includes:

1. Requirements (Man/Machine) Verification.

2. The languages to be used for verification.

3. The tools to be used for all tasks in verification.

4. The engineers to be worked on the project and the duties to be assigned to them.

5. The requirements in terms of System OS, S/W Drivers, Application S/W, etc.

Chapter 3 The Verification Methodology & Flow - 16 -

6. The CHIP configuration.

7. Level of granularity/abstraction for all modules to be verified.

8. Division of the complete verification process into different phases with deadlines

 defined for each of them.

9. All the verification specific things.

The verification process is divided into phases.

First Phase: This is the Block level verification. Each block is assigned to individual

and is verified with interactions with the designer.

Second Phase: This is Cluster level verification. Few blocks with high mutual

interactions are combined and are verified.

Third Phase: This is Full Chip level verification. All blocks are combined and the

functionality of the complete design is verified.

Fourth Phase: This is System level verification. The chip is verified with the system

in which it will be used. Third Party Models are included here.

3.4.3 Development of VE
As the complete plan for all three major team is ready, now they start working on the

project. Design team starts the designing of individual blocks depending on the

architecture finalized. Software team starts with the implementation of algorithm to

be used to make sure that it will work in the design. If the algorithm works well, then

RTL coding for it is done. The software team then starts with the necessary software

required by the project.

The verification team's task starts with complete understanding of the specification.

In our project, the chip works on a protocol. So, we need to completely understand

that the protocol first and then the specifications stated for each block. While

verifying, it is required to also check that designer stick to the protocol. Then all the

tools to be use used is studied. I have described all the tools used in our project in

detail in later chapters. Then starts the development of Verification Environment. All

the requirements required from VE is mentioned in verification plan. The VE is

developed accordingly. The VE in our project is in C++ and Verilog. The BFMs

Chapter 3 The Verification Methodology & Flow - 17 -

(Bus Functional Models), Checkers, Analyzers, Assertions, etc are written as a part of

VE.

When the design will be verified, it is required that the design should be given the

same environment which it will find when it will be actually used in the system. The

testbench is like a universe for the design. Testbench is a closed system. It generates

all the inputs and compares the outputs generated by the design. Testbench will

configure the design as per the requirements by the test case which verifies design

functionality. It is important to be able to develop generic testbench which is

applicable for verification of all functionality of the design. The testbench is updated

as per the feedback from verification process later.

3.4.4 Identifying Features

The development of VE is completed at this point. It would be modified or updated

later depending on the requirements as verification proceeds. Now, each verification

engineer is given individual module and it is his/her responsibility to verify it. Now,

starts the identifications of the features to be verified. This is a white box approach

and hence all the features have to be verified. There would be some features which

are to be verified at full chip level and not at module level. e.g. interrupt propagation

structure.

3.4.5 Prioritizing Features

For any design, few features are of prime importance. Bugs in such functionality

leads to more bugs in the functionalities depending on them. Hence, such

functionality must be considered first. In any design, you will find many configurable

registers. The configuration, operation and output from the design depend on these

registers. So, it is of prime importance to see that all registers are functionally correct.

3.4.6 Grouping into Testcases

The ultimate aim is to verify all the features of the design within the deadline. So,

time taken is very important. Hence, the prime objective is to keep the number of test

Chapter 3 The Verification Methodology & Flow - 18 -

cases less and still be able to verify all the features. Hence, the features are grouped

into same category of test cases depending on the functionality they implement. Some

features require similar configuration, granularity or verification strategies. Hence, to

increase the productivity, these features should be grouped into common testcase.

Again here the priority among the features is always taken care of. Now, all the test

cases required are known. Number of testcases required for each functionality

verification is known.

3.4.7 Writing & Execution of Testcases

The test cases are written and are executed with valid and invalid inputs. All possible

corner cases are applied on the design. For the failing test cases, debugging is done.

The source of problem is found. The issue could be related to VE, Test Case or RTL.

Once it is confirmed that the problem is related to the RTL, bug is filled for that.

Designer debugs the design and locates the problem. The RTL is modified

accordingly to fix the bug. The test case is executed again. This process repeats till

the test cases passes.

3.4.8 Regression

As and when bugs are filed, the designer debugs the RTL and modifies it. Hence, the

RTL goes on updating as the verification progresses. Hence, there can be a chance

that a test case passing previously might fail with this new updated RTL. Hence, after

every updating of RTL, regression of all test cases is done. Again, at the end of the

verification, all test cases are executed for the same.

3.4.9 Coverage [9]

This is very important task to which defines the effort placed by verification

engineers and the completion of the verification task. From the feedback from the

coverage tool, new test cases required are written and executed. It is desirable to get

100% coverage. But this is a difficult task. Depending on the deadline of the project,

the coverage required can be loosen.

Chapter 3 The Verification Methodology & Flow - 19 -

3.4.10 Documentation

This is the final step in the process and declares the closure of the verification

process. It includes documenting all the effort done and the results generated. This

documentation can be used by some other person in case the design is updated later.

3.5 Designer – Verification Engineer Interaction
At all the steps discussed earlier, interaction between designers and verification

engineers is required. Any open bug is discussed by both to come to a conclusion.

The partition of the design into modules is done by the both teams together. Many

Design for Verification features are added to the RTL to aid the verification process.

Some more register or some multiplexer to bypass some functionality can be added.

3.5.1 Design for Verification

There are two major reasons for the presence of design errors (bugs) in a design.

First, the sheer complexity of a module, often including multiple-state machines,

makes it virtually impossible to anticipate all possible conditions to which the module

can be subjected in the context of an application. Typically the state space is very

large and bugs can be buried very deep into the logic. Hence, some corner cases may

simply not have been anticipated in the implementation. Second, designing a module

often requires the designer to assume a particular behavior on the interface, that is,

make assumptions on the behavior of modules physically connected to the module

under design. These assumptions are needed to assure minimum area/maximum speed

micro architectures to be designed. To improve the quality of the design process we

clearly have to address specification, design, and verification in a concerted manner.

Similar to other seemingly independent tasks in the past such as manufacturing test,

design quality needs to become the whole team's concern, and the methodology

employed must support this notion. That is exactly what the DFV methodology offers

coherent methodology to find design errors through constrained-random stimulus

generation and advanced tools for formal state-space analysis, powerful means to

eliminate ambiguity in specifications, and improved conformance checking

capabilities to ensure that the imported design IP complies with required standards.

Chapter 4 Local Move Link - 20 -

Chapter 4

Local Move Link

Now a day there is a revolutionary growth in the field of chip development, it further

revolutionized growth of instruments that verify chips. So to ensure correct functioning

of the chips, market of tester instruments is increasing. Depending on the customer's

requirements and need, the company came up with a chip tester instrument having a SoC

DART.

4.1 Local Move Link [1]

Figure 4.1.1 shows the block diagram of LMvL. From the block diagram, it is seen that

there are many independent modules which performs specific functionality. Each

verification engineer owns individual/multiple module block/s verification. Local Move

Link (LMvL) is one of the block of chip, which interfaces the DigCap module and

Processor outside the chip to analyze the capture data captured by DigCap.

The L3 Packet Assembler receives and acknowledges move requests from/to the DigCap,

and starts the move of data onto the LMvL by building an L3 packet. It requests and

receives data from the DigCap memory controller and forms that data into packets, which

are stored into the packet buffers. The packet buffers are a staging area for packet data

between the DigCap memory and the LMvL, which run at different data rates. The

packet buffers also bring the packet data path across frequency domains, from clk_ddr to

clk_db. The L2 Packet Burst Controller detects and reads packets from the packet buffer

and bursts them following an L2 header onto the LMvL interface, which handles the

physical interface to the LMvL data and control lines. The LMvL Fifo & Bypass block

serves as an interface to the external LMvL data and control lines, with the ability to

bypass the chip if no data moves are required. My Project work for LMvL is the

Functional Verification of LMvL SubSystem – L3 Packet Assembler.

Chapter 4 Local Move Link - 21 -

Figure 4.1.1: Block Diagram of LMvL[1]

4.2 L3 Packet Assembler
There is one L3 Packet Assembler per LMvL. It builds packets from capture data in the

capture DDR-SDRAM and loads them into the packet buffers of each of the 8 channels.

It Accepts move requests from the DigCap and sends requests for data to the DigCap

memory controller. It Builds the L3 packet header and trailer, and assembles the packets

by combining the L3 header and trailer information with the capture data from the

DigCap memory. The packets are assembled as they are stuffed into the packet buffers.

Packet Assembler Signals the L2 Packet Burst Control block when a packet is ready by

LMVL IN
LMVL OUT

H
E
A
D
E
R

M
U
X

PACKET
BUFFER

L3
PACKET
ASSEMBLER

L2
PACKET
BURST
CONTROL

L
M
V
L

I
N
T
E
R
F
A
C
E

DIGCAP
MEMORY
CONTROLLER

LMVL
BYPASS
FIFO

MOVE
INITIATION
FROM
DIGCAP

Chapter 4 Local Move Link - 22 -

way of the packet buffer status bits. It also handshakes with the per-chip DigCap to

inform it that the requested move has completed.

Figure 4.2.1: Block Diagram of LMvL Packet Assembler [1]

4.3 DigCap interface and requirements

The L3 Packet Assembler needs to interface with the DigCap functional block.

 DigCap initiates a move by asserting the i_mv_rqst_ddr pin. This pin is all the

LMvL knows about move initiation.

 DigCap identifies when all data for the current move has been sent to the LMvL

by asserting the i_rqst_done_ddr pin on the same cycle that the last data word is

transferred from DigCap to LMvL.

 The DigCap cannot send another move request until the LMvL has acknowledged

the previous move by asserting the o_mv_done_ddr line high.

DIGCAP
INTERFACE

PACKET
ASSEMBLY
CONTROLLER

MOVE
REQUEST
CONTROLLER

L3 HEADER
MUX

FROM
DIGCAP

TO DIGCAP

TO
PACKET
BUFFER

Chapter 4 Local Move Link - 23 -

 The 16 bit Segment Identification Number from the DigCap to be inserted into

word 3 of the L3 header is sent to the LMvL on the i_ch#_pkt_payld lines during

move initiation. ID is defined on when i_mv_rqst_ddr is asserted.

4.4 Packet Assembly Controller
As shown in Figure 4.4.1 It interfaces to the Packet Buffers, the Header Mux, and the

Move Request Controller. The Packet Assembly Controller controls the flow of L3

header and L3 trailer data into the packet buffers, and monitors the flow of payload data

into the packet buffers from the capture DDR-SDRAM controller.

It writes packet size and the “last” bit into the Packet Buffer status buffers. It also sets

and monitors the Packet Buffer “Packet Present” bits to indicate a packet is ready to be

sent and to determine if the current packet buffer is empty, ready for a new packet. The

Packet Assembly Controller is made up of three counters and two state machines.

Figure 4.4.1 Block Diagram of LMvL Packet Assembly Controller

DIGCAP
SIGNALS

L3 SEGMENTATION
STATE MACHINE

PACKET ASSEMBLY
STATE MACHINE

L2 WORD COUNTER
L3 WORD COUNTER
L3 PACKET COUNTER

Chapter 4 Local Move Link - 24 -

4.4.1 Packet Assembler State Machine

Figure 4.4.1.1: State Machine of LMvL Packet Assembler

The Packet Assembler State Machine is implemented with the inputs coming from

DigCap, Move Request Controller, Packet Buffer and DRAM Controller. The output

state is given to the Move Request Controller State Machine, Header Mux and Packet

Buffer.

4.4.2 Packet Assembler Counters

L2 Packet Word Counter [4:0]: It counts running count of the number of 16 bit words

loaded in the current packet buffer. Reset to zero when advancing to the next packet

buffer. Increments during L3 header build, or when packet payload write enable = 1.

This value is used in various next state calculations as well as to define the packet status

buffer “size” field.

L3 Packet Word Counter [27:0]: It counts running count of the number of 16 bit words

already loaded into the packet buffer for the current L3 packet. Valid values are all

within address range. Reset to zero before starting a new L3 packet. Increments during

L3 header build, L3 trailer build, and on every cycle when packet payload write enable =

1. This value is compared to the value in the payload size register to determine when the

current L3 packet is complete. This value is converted to a 32-bit word count value to

become the “word count” field in the L3 trailer.

Chapter 4 Local Move Link - 25 -

L3 Packet Counter [7:0]: Count of the number of L3 packets sent. Incremented each

time the packet assembly state machine leaves the assembly state build L3 trailer.

Databus can reset and program this value. Software will reset this value at the beginning

of a pattern burst. This count becomes the “L3 Count” field in the L3 header.

4.4.3 L3 Segmentation State Machine
The L3 Segmentation State Machine determines what type of L3 packet is currently

being burst. There are 4 types of L3 packets:

1. L3_FIRST = 2’b01

2. L3_MID = 2’b00

3. L3_LAST = 2’b10

4. L3_ONLY = 2’b11

The type is dependent on:

1. The size of the transfer from the DigCap.

2. The size of L3 packets as defined by L3 Pay Size Register.

3. The previous L3 packet type.

The L3 packet type is used to define the L3 trailer Start/End Indicator field, so the output

of this L3 Segmentation State Machine module feeds directly into this trailer field in the

Header Mux.

Figure 4.4.3.1: L3 Segmentation State Machine

Chapter 4 Local Move Link - 26 -

4.4.4 L3 Header Mux
The L3 Header Mux gives the Packet Assembly Controller the ability to multiplex in

header and trailer information onto the data path between the capture DDR-SDRAM

controller and the Packet Buffers.

It also contains logic that generates a channel mask forwarded to and used by the packet

buffers to determine which channels are participating in the current move. Some values

are assigned on the fly by DigCap or by the state machines inside the L3 Packet

Assembler. A channel mask is generated and passed along with the Packet Data and write

enable outputs of the Header Mux to the Packet Buffers. The per channel channel packet

payload write enable register is used to communicate which channels will participate in

the current move request. The value on that register is latched when the move request

register pin is asserted by DigCap.

4.5 Move Request Controller[1]

Figure 4.5.1: Move Request Controller

The Move Request Controller interfaces with the DigCap, Packet Buffers, and the other

blocks of the L3 Packet Assembler. It receives requests to build and send an L3 packet

MOVE REQUEST CONTROLLER
STATE MACHINE

L2 WORD REQUEST COUNTER

L3 WORD REQUEST COUNTER

PKT BUFFER PARTITION COUNTER

TO
DIGCAP

PACKET
BUFFER

CAPTURE
MEMORY

FROM
DIGCAP

PACKET
BUFFER

CAPTURE
MEMORY

Chapter 4 Local Move Link - 27 -

and interfaces with the external memory controller to access the payload data for the L3

packet.

Move requests are received from the DigCap by way of the move request register signal.

This signal indicates when the data is available to be accessed. Only one move request is

submitted at a time. No new requests are accepted until the current request is completed

and acknowledged.

The LMvL does not know what size the total data transfer will be until all the data has

been received from the DigCap. When all data for the current move request has been

retrieved from capture memory and transferred to the LMvL RLM, the DigCap signals

that the transfer is complete on the request done register signal. The DigCap asserts the

request register signal on the same cycle that the last data word of the move is transferred

from the DigCap to the LMvL.

When the LMvL completes the pending move request (final complete L3 packet loaded

into the Packet Buffer), output move done register is set high, indicating to the DigCap

that the move is complete. Only then is the DigCap allowed to submit another move

request.

The Move Request Controller will request only enough data to fill an L3 Packet the size

of that specified by L3 packet size register, and will then wait for the Packet Assembly

Controller to finish building the current L3 packet and the header for the next L3 Packet

before submitting more data requests.

Data requests are sent to the DigCap memory controller by way of the output 32 bit

request register is set high during a clock cycle to submit a request for 32 bits of data per

channel. (Inside the DigCap, this signal increments a counter, which represents pending

4 byte word requests). Requests for data sent to the DigCap are based on available

packet buffer space.

Chapter 4 Local Move Link - 28 -

The Move Request Controller determines if the currently selected packet buffer is empty

by oring together the “packet present” bits from each channels packet buffer. It knows

how much space is available by keeping track of which packet buffer is the first in an L3,

indicating it has space for 256 bits. All other packet buffers have 384 bits of available

space to fill.

4.5.1 Counters
Move Request Pending Buffer Count [1:0] - Count of packet buffer partitions with

pending data requests submitted to the DigCap. Incremented by the Move Request State

Machine in the advanced buffer pointer state.

L2 Word Request Counter [4:0] – Counts running count of the number of 16 bit words

already requested from the DigCap DDR-SDRAM controller.

L3 word request counter [25:0] – Counts running count of the number of 32 bit words

already requested from the DigCap DDR-SDRAM controller.

4.6 PACKET BUFFER
The Packet Buffer is per Channel Move Block. It is positioned between the L3 Packet

Assembler and the L2 Packet Burst Controller. L3 packets staged in the packet buffer in

preparation for transmission onto the LMvL.

Each Packet Buffer contains a Data Buffer holds the actual packet payload from the

DigCap DDR-SDRAM, as well as L3 header information.

The Data Buffer is made from a 72 X 16 register array. It is partitioned down to three 24

X 16, or 384 bit data buffers.

Status Buffer holds data describing the contents of the data buffer. The Status Buffer is a

3 X 6 buffer made from discrete registers. Each of the three locations hold 6 bits that

Chapter 4 Local Move Link - 29 -

represent status of the corresponding data buffer. The first 5 bits are the SIZE field,

which represent the number of 16 bit words in the corresponding Data Buffer. The 6th bit

is the LAST field, which indicates if the data in the corresponding Data Buffer is the last

L2 Packet of an L3 Packet.

Status Flags called “Packet Present Bits”: are used by the controllers on each side to

status if the Packet Buffers are empty. The three “Packet Present” bits correspond to each

of the three partitions in the data and Status Buffers. with the L3 Packet Assembler able

to set the “Packet Present” bit when finished filling the corresponding data and Status

Buffers, and the L2 Burst Controller able to clear the “Packet Present” bit when finished

reading the corresponding data and status buffers. The reset value of the Packet Present

bits is low. The packet buffer is sized and partitioned such that three maximum sized

LMvL L2 Packet payloads may be stored at one time.

Figure 4.6.1: Packet Buffer Partitioning

4.7 L2 Packet Burst Control [1]

It detects if a packet in the Packet Buffer is ready to be sent. If a packet is ready, a request

is sent to the LMvL Interface to catch the Bus Available Token. The LMvL Interface

responds to indicate when the Bus Available Token is latched, signaling that the packet

burst may begin. The L2 Packet Burst Control module then sends an L2 header onto the

LMvL Interface module, followed by L2 packet data read from the Packet Buffers. The

L2 Packet Counter keeps track of the number of L2 packets that have been sent. It is set

to zero when the packet burst state machine is in the IDLE state. It is incremented each

Chapter 4 Local Move Link - 30 -

time a packet burst is completed, when the Burst Control State Machine is in the BURST

DONE state. It is compared to the maximum L2 packets per bus available token

possession Databus register to determine if another packet should be sent. If the counter

is greater then the limit, the burst control state machine goes into the IDLE state and the

Bus Available Token is released.

4.8 LMvL Interface Block
In the following Figure 4.8.1 after reset, the LMvL Interface is in a pass through mode.

Data is received from the previous device, registered, and then sent on to the output ports

to the next device. When the bus available token is received, the LMvL Controller state

machine sends data and/or forwards the bus available token. The controller then returns

to pass through mode. The following state diagrams, state table, and waveform diagrams

describe this modules operation in more detail.

Figure 4.8.1: LMvL Interface Block Diagram

i/p frame

i/p pause

i/p bus available

i/p Data [15:0]

D Q

o/p frame

o/p pause

o/p bus available

o/p Data [15:0]

Move packet data
[15:0]

Packet frame

o/p bus available

clk

Hold available token

LMvL Interface
State Machine

clk

From previous
Chan Move Block or
LMvL Fifo & Bypass

To/From L2 Packet
Burst Control

To next
Chan Move Block or
LMvL Fifo & Bypass

pause

Chapter 4 Local Move Link - 31 -

The LMvL interface state m he first are the

ing from the previous channel (or LMvL Fifo & Bypass module for channel

t reset, the LMvL interface state machine is in the PASS_THRU state. In this state,

b, which is tied to the select on the output mux, is low. This creates a

 the HOLDING_TKN state, the o_have_token_db signal goes high, disconnecting the

nnecting the inner L2 packet burst controller to the LMvL outputs.

pause

Figure 4.8.2: LMvL Interface State Machine

achine connects to three sets of signals. T

signals com

0) which include all the LMvL token, framing, and data bits. The second are the LMvL

signals going to the next channel (or LMvL Fifo & Bypass module for channel 7). The

third are the signals going to and from the L2 Packet Burst Controller module, which

include framing and data bits, as well as handshaking signals to communicate orders to

hold the bus available token and identify when it is ok to burst a packet.

PASS_THRU

A

o_have_token_d

data path from the LMvL inputs from the previous channel, to the LMvL outputs to the

next channel. The state machine does not leave PASS_THRU state until the bus

available token is received on the I_lmvl_bus_avail_in_db line.

HOLDING_TKN

In

bypass path, and co

o_have_token_db is also sent to the L2 packet burst controller which goes high to

indicate that this channel has possession of the bus available token and it is now ok to

_tkn

RESET

Pass_
thru

Holding
_ tkn

Release

Paused

avail_token received

!pause

!avail_token received

!hold_avail_tkn,
!pause

pause

o_have_token = 0
o_pause = 0
o_tkn_avail_out = 0

o_have_token = 0
o_pause = 0
o_tkn_avail_out = 1

o_have_token = 1
o_pause = 0
tkn_avail_out = 0

o_have_token = 1
o_pause = 1
o_tkn_avail_out = 0

hold_avail_tkn, !pause

Chapter 4 Local Move Link - 32 -

send a packet onto the LMvL. The state machine will stay in this state (in other words,

hold the bus available token”), until the L2 packet burst controller allows it to release

 signal

ill be low. When a channel goes into HOLDING_TKN state that does not have any

ED

hen the SLC needs to flow control the LMvL, it does so by holding the “pause” bit

n the I_lmvl_pause_in_db signal goes high with the state machine in the

TKN

hen not paused, and the L2 packet burst controller is done (or doesn’t want to start)

the state machine jumps from the HOLDING_TKN to the

“

the token, sending the state matching into the RELEASE_TKN state, or it is paused by

the I_lmvl_pause_in_db signal, sending the state machine into the PAUSED state.

When the L2 packet burst controller has no data to send, the I_hold_avail_tkn_db

w

packets ready to be sent, the state machine will advance to the RELEASE_TKN state in

only one cycle. This is important to understand when calculating the per channel latency

of the bus available token through channels with no packet data. If the L2 packet burst

controller has data to send, the I_hold_avail_tkn_db signal will be high. The state

machine will release the bus available token until the I_hold_avail_tkn_db signal returns

low.

PAUS

W

high. The

HOLDING_TKN state, the state machine jumps into the PAUSED state. In this state, the

o_pause_db signal to the L2 packet burst controller goes high, signaling that a new

packet burst should not be started. The output mux select signal, which is connected to

o_have_token_db, stays high to allow the current packet burst to complete without

interruption. The state machine stays in the PAUSED state until the I_hold_avail_tkn_db

signal low.

RELEASE_

W

sending packets,

RELEASE_TKN state. In this state, the o_lmvl_bus_avail_out_db signal is set high.

Since o_lmvl_bus_avail_out_db is low in all other states, and RELEASE_TKN is a one

cycle state, a one clock cycle wide pulse is sent onto the o_lmvl_bus_avail_out_db line.

Chapter 4 Local Move Link - 33 -

Note that the bus available token will NOT flow through the channel path inside the

empe device from the board level LMvL unless at least one of the L2 packet burst

 device, registered, and then sent on to the output ports

 the next device. When the Bus Available Token is received, the LMvL Controller

vL FIFO & Bypass

odule for channel 0) The second are the LMvL signals going to the next channel (or

ip block in the LMvL. Receives LMvL clock,

ious device in the ring into a FIFO, which makes

T

controllers in the TEMPE has set the O_hold_avail_tkn_db signal. Instead, the bus

available token will flow through the bypass path inside the Tempe. The

O_hold_avail_tkn_db signal is sent to the LMvL Interface module for that channel, as

well as the per Tempe LMvL Bypass & Fifo module, to identify when to bring the bus

available token onto the internal (non-bypassed) path. If no channels within a Tempe

have packets ready to be burst, all the LMvL Interface state machines in that Tempe will

remain in the PASS-THRU state.

Data is received from the previous

to

State Machine sends data and/or forwards the Bus Available Token.

The first are the signals coming from the previous channel (or LM

m

LMvL FIFO & Bypass module for channel 7). The third are the signals going to and

from the L2 Packet Burst Controller module, which include framing and data bits, as well

as handshaking signals to communicate orders to hold the Bus Available Token and

identify when it is ok to burst a packet.

4.9 LMvL FIFO & Bypass
 LMvL FIFO and Bypass circuit is a per ch

data, and control signals from the prev

them synchronous with the local clock domain. Forwards and receives LMvL data and

control to and from the per-channel LMvL Interface Blocks. Monitors if the device is

ready to move a packet onto the LMvL. If ready to move a packet, the Bus Available

Token is captured and sent to the internal LMvL path. If the device is not ready or has no

data to send, it provides a Bypass path for the LMvL, and immediately forwards the Bus

Available Token to the next device. When bypassed, the device adds less latency to the

Chapter 4 Local Move Link - 34 -

LMvL ring. The block is only allowed to switch out of Bypass mode when it takes

ossession of the Bus Available Token.

ONMENT FOR LMvL
o simplify the task of Verification at functional level, the verification environment is

and Registers.

Figure 4.10.1: Drv TG Verification Environment Components

They interact with each other through SystemC. The C++ Components forms the basic

platform for ch portion.

p

4.10 VERIFICATION ENVIR
T

made as generic as possible. Most of the portion is based on MACROS

The VE comprises of C++ (C Side) and Verilog components (V Side).

the VE. The Verilog components deal with the test ben

Generation of clocks, source and sink drivers are part of Verilog components. It has a

common test bench file which is used by module blocks, It is complied selectively based

on the working module block.. All top level headers are defined in a separate file. It

includes many tasks to govern the complete verification process.

TEST CASE

API

TRANSACTION BUS

Stim Gen Predictor Rcv
Monitor

DUT

C

S
I
D
E

V

S
I
D
E

Chapter 4 Local Move Link - 35 -

4.11 C++ ENVIRONMENT [4]

 Test Case

r/Drv Monitor

).

The C ration of Testcases and API that act as

terface between Testcases and VE. Testcases uses API routines to pass their

tcases configure DUT and VE basically. To do that it uses API’s apiTestFlowCtrl.h to

UT and VE parameters to directed values. According to Feature requirement

It acts as interface medium between testcase and rest of the VE. Various API routines are

for VE configuration, control, handshaking, synchronism between VE elements.

 API

 X Bus

 Stimulus Generator(C Side only)

 Predicto

 Monitor/Rcv Monitor(C Side only

++ components deal with initial gene

in

configurations to VE.

TestCase

Tes

configure D

testcase generate specific scenario using this file of API and pass it to other VE

components StimGen, Predictor, Monitor. Using this file Status, Control, Configuration

related information are also provided. Testcase can also configure VE parameters and

DUT parameters to random value within their scope using tgDriveScenarioGen.h file.

This file define default random constrain of all configuration parameters. Testcase uses

TestCommon.h file to have other platform file ex. msg.h, types.h etc.

API

used

Under API directory there are files have all VE and DUT configuration parameters

declaration and initialization.ex. tgDrvTestCase.h, define default constrains for VE and

DUT parameters using SystemC ex. tgDriveScenarioGen.h, files that governs flow of

data through VE ex. apiTestFlowCtrl.h. PatternDrvRcvStart(), routines to abstract

hardware configuration from testcase for DUT and write down bitcharts(registers) ex.

Chapter 4 Local Move Link - 36 -

testFlowUpdHwCfg(testcase) ,routine to abstract VE configuration from testcase and then

end information to StimGen, Predictor, Monitor through X Bus ex.

estFlowUpdVerCfg(testcase),routines to read status of StimGen, DrvMonitor,

ackets with which API deals mainly.

 1) Config Packet: Includes configuration parameters for VE components

r to reset VE components

T

A ly. Any client can put a

packet onto the X Bus but only those clients can take packet from the X Bus which is

e of packet. VE elements do not need to register to transmit on

n

ered that zero time expires when this call is made

s

t

RcvMonitor using X Bus ex. PatternDrvRcvBusy().

API sends/receives information (configuration, control, status) to StimGen, Predictor,

Monitor in form of packets. There are three kind of p

 (StimGen, Predictor)

 2) Ctrl Packet: Includes parameters that are used to start VE components

 (StimGen, Predictor, Monitor), to stop VE components

 (StimGen, Predictor) o

 (StimGen, Predictor, Monitor).

 3) Staus Packet: Includes parameters that are used to check current state of VE

 components (StimGen, Predictor, Monitor) .

ransaction(X) Bus

ny VE components communicate with testcase using X Bus on

registered for that typ

Transaction Bus. There are total three types of clients on Transaction Bus:

1) Send Client: Using routine TRR_Send(Datatype*) routine; where

 Datatype* is pointer to data structure client transmit o

 Bus.

2) ReadImmediate: Using routine TRR_ReadImmediate(DataType*);

 Client where Datatype* is pointer to data structure, it is

 consid

 and that the data structure is returned.

3) Request Client: Using routine TRR_Request(Datatype*); where

Chapter 4 Local Move Link - 37 -

Datatype* is pointer to data structure, request for particular

ata structure is made.

For listening particul lf for

p ECLARE_CLIENT(<routine>, Datatype*);

where Datatype* shows pointer to data structure and routine is receipt routine, and it has

or Request Client server can give its

 the configuration parameters

btained from testcase and drive this data stream Vside of StimGen to DUT and to

s well. For stimulus generation, synchronization, handshaking.. StimGen has

r which kind of packet it is interested and also

for which of its routine. So StimGen declares itself as

atusT*) in tgDrvStimTran.h

utines and trTgDrvStimCfgT,

StimGen registers itself as

 d

ar type of data structure VE element has to declare it se

articular data type using routine TRR_D

to register itself with receipt routine using

TRR_REGISTER_SendClient(<routine>) or

TRR_REGISTER_ReadImmediateClient(<routine>) or

TRR_REGISTER_RequestClient(<routine>). F

delayed response using routine TRR_Response(Datatype*) ; where Datatype* shows

pointer to data structure. File corresponds to X Bus related operations is trRouterIntf.h

file included into API, StimGen, Predictor, Monitor files.

StimGen

StimGen is used to generate data stream according to

o

Predictor a

files that shows configuration, control and status parameters. Ex. tgDrvStimCfg.h,

tgDrvStimCtrl.h, tgDrvStimStatus.h files

As StimGen can receives configuration, control, status packets from X Bus so as

mentioned earlier it has to register itself fo

 TRR_DECLARE_Client (txCfg, trTgDrvStimCfgT*)

 TRR_DECLARE_Client (txCtrl, trTgDrvStimCtrlT*)

 TRR_DECLARE_Client(rxStatus, trTgDrvStimSt

file ;where txCfg, txCtrl, rxStatus are receipt ro

trTgDrvStimCtrlT, trTgDrvStimStatusT are data types.

Chapter 4 Local Move Link - 38 -

 TRR_REGISTER_SendClient (txCfg)

 TRR_REGISTER_SendClient (txCtrl)

 TRR_REGISTER_ReadImmediateClient(rxStatus)

us are receipt routines so whichever packets come on to the X

 having any of the data types described earlier, are been fed to corresponding

onfiguration StimGen generates data stream,

ata stream to predictor by putting packet on to

t we will discuss how this is mapped with

erilog side.

s divided in various files that have configuration, control, status parameters

x. tgDrvPredCfg.h, tgDrvMonCtrl.h, tgDrvMonStatus.h files.

bool InfRepEn;

Predictor declares itself as

 rvDat, trTgDrvDatT*)

 at, trTgMonDatT*)

;where txCfg, txCtrl, rxStat

Bus,

StimGen routines only. Based on the c

forward it to V Side. It also forward this d

the X Bus using TRR_Send(&trTgDrvDatT).

After generation of stimulus for DUT StimGen form a bundle and using library routines

ex. WriteBFM(*bundle, size). It forward the stimulus data stream from C side to V side.

To have definition of WriteBFM(*bundle, size) we have to include library file platform.h

file In later section of V Side of Environmen

v

Predictor (Drv Monitor)

Predictor collects stimulus from StimGen through Transaction Bus and predict that what

should be the output of DUT. For synchronization, handshaking, configuration Predictor

source code i

e

tgDrvPredCfg.h

Class tgDrvPredCfg
{
 // Configuration variables
 int MajorCycCnt,PreCycCnt;

 .
 }

 TRR_DECLARE_Client (txD

 TRR_DECLARE_Client (txRcvD

Chapter 4 Local Move Link - 39 -

 TRR_DECLARE_Client (txTgDrvPredCfg, trTgDrvPredCfgT*)

 R_DECLARE_Client (txTgDrvMonCtrl, trTgDrvMonCtrlT*)

(rxTgDrvMonStatus, trTgDrvMonStatusT*)

DrvMonCtrl, rxTgDrvMonStatus

MonCtrlT, trTgDrvMonStatusT,

rTgDrvDatT , trTgMonDatT are data types.

Ctrl)

 TRR_REGISTER_ReadImmediateClient(rxTgDRvMonStatus)

gDrvMonCtrl, rxTgDrvMonStatus, txDrvDat, txRcvDat

me on to the X Bus, having any of the data

esponding Predictor routines only. Based on

enerates the expected data. Predictor

 is also registered for the packet that

 with expected value of

As Monitor just act as buffer medium to transfer data from DUT to C side, it is interested

les that it has to fetch from DUT that is exactly same as

T*)

 TR

 TRR_DECLARE_Client

;where txDrvDat, txTgRcvDat, txTgDrvPredCfg, txTg

are receipt routines and trTgDrvPredCfgT, trTgDrv

t

Predictor registers itself as

 TRR_REGISTER_SendClient (txDrvDat)

 TRR_REGISTER_SendClent (txRcvDat)

 TRR_REGISTER_SendClient (txTgDrvPredCfg)

 TRR_REGISTER_SendClient (txTgDrvMon

;where txTgDrvPredCfg, txT

are receipt routines so whichever packets co

types described earlier, are been fed to corr

the data stream, forwarded by StimGen, Predictor g

has only C Side implementation. Note Drv Monitor

comes from Monitor as a result of DUT response and compared

Predictor.

Monitor (Rcv Monitor)

Monitor C side receives data from its V side and then forward the outcomes of DUT on

to the X Bus which are received by Drv Monitor where they are compared with expected

output of Predictor. Monitor is registered to receive control packet.

to know only no of cyc

transmitted by StimGen C side to its V side to DUT. So Monitor declare itself as

 TRR_DECLARE_Client (txTgRcvMonCtrl, trTgRcvMonCtrlT*)

 TRR_DECLARE_Client (txTgRcvMonStatus, trTgRcvMonStatus

Chapter 4 Local Move Link - 40 -

;where txTgRcvMonCtrl, txTgRcvMonStatus is receipt routines and trTgRcvMonCtrlT,

rTgRcvMonStatusT is data type of packet

Monitor registers itself as

 TRR_REGISTER_SendClient (txTgRcvMonCtrl)

 TRR_REGISTER_SendClient (txTgRcvMonStatus)

ts

scribed earlier, are been fed to corresponding

Monitor C side receives data from its V side and then put onto X Bus that is compared at

T response from SC Interface to C side library functions of

dle,size) In later section of Verilog

de and V side using SC Interface.

C side of the environment. It includes many tasks to govern the complete verification

the overall

o DUT & to have definition

 library file maps SC Interface function SIM_Write() function to

;where txTgRcvMonCtrl, txTgRcvMonStatus is receipt routine. So whichever packe

come on to the X Bus, having data types de

Drv Monitor. To take DU

library file platform.h is used ex. ReadBFM(*bun

Environment we discuss this platform matching of C si

4.12 VERILOG ENVIRONMENT
The Verilog components deal with the test bench portion. It includes V side of StimGen,

Monitor and DUT section. Along with StimGen, Monitor - Generation of clocks, source

and sink drivers are part of Verilog components. All top level headers and V side

environment are instantiated in a separate file. There is also a separate file to instantiated

process. The following sections explain in detail,

contribution of all these files. The module specific test bench is in its folder of module.

This file is having the instantiation of the module and the other required supported

verilog modules.

As discussed earlier that in StimGen using various library routines ex.

WriteBFM(*bundle, size) stimulus packets are sent to V side t

of WriteBFM(*bundle, size) we have to include library file platform.h and zipSC.h file

that maps C side function WriteBFM(*bundle, size) to SC Interface function SIM_Write()

and cside_Interface.h

Chapter 4 Local Move Link - 41 -

verilog task Write_BFM. Write_BFM task includes library function TBP_getdata(status,

data) take data from SC Interface which are forwarded to DUT.

Similar to StimGen Monitor receives response of DUT through binding of ports into

stbench and forward the response to SC Interface through library functions ex.

ead_BFM task at Verilog side of Monitor which has library routine TBP_Putdata() to

(*bundle, size) to form

packet for comparison with expected values. Again platform.h, zipSC.h,

his section includes .cmd file ex. config_tg.cmd file that defines transactors of RTL,

The C Side TestBench Section

ex. tg_config_table.txt that defines C side of all VE

te

R

send data to SC Interface. Which is further forwarded to C side using SC Interface library

routines ex. SIM_Read() maps with C side function ReadBFM

cside_Interface.vh files are included as for platform mapping.

The testbench is constructed using a modular approach. There are three main

components to the testbench as indicated below. These sections are merely broken up

for clarity, maintainability and portability across the various aspects of VE.

The V Side Testbench Section

T

other top level modules wrappers ex. _wrapper.v, V sides of all VE component (StimGen,

Drv Monitor, Rcv Monitor, Clock) by including corresponding .cmd files, RTL Netlist.

This section includes .txt file

components (StimGen, Predictor, Monitor) and also defines their C to V side SC

interface.

Chapter 5 Local Move Link Subsystem Verification - 42 -

Chapter 5

Local Move Link Subsystem Verification

This Chapter discusses the complete verification process for the Local Move Link LMvL

Interface Block. As already discussed earlier, this is the first phase where module level

verification is done. The complete LMvL Interface block is divided into functional blocks

capable of being verified individually and also completely. The design is to be verified

against all the functionality specified in its hardware specification and which states the

features of the design. The chapter discusses the complete verification process as the flow

followed.

5.1 Identification of Features
This is the first step to the verification. Before deciding how to verify, it is necessary

what is to be verified. For that module/block Functional Interface Specification is studied

very preciously without any assumptions. This Functional Interface Specification

provided by Designer is able to explain all aspects of functionality to be implemented by

each module. The addresses and configuration of all registers is explained here. Hence,

all behaviors specified into Functional Interface Specifications can be considered as

Expect Model for the verification Engineers.

As said earlier as Designers and Verification Engineers interpret the specifications

independently and hence the verification will be for the specification and not for the

interpretation. Now, as the functionality desired by the module/block is understood, the

next step is to identify the features of the module/block. Identified features are reviewed

by Designer as some tine it may possible that some of the functionality doesn’t need any

verification or they can not be verified. Identification of features will help in identifying

the number of test cases required to be written. The features are grouped into categories

and test cases are identified for each group. LMvL Interface verification features can be

well summarized by dividing LMvL Interface into Four branches.

Chapter 5 Local Move Link Subsystem Verification - 43 -

5.2 Developing the Testbench
The Testbench connects C Side and V side into one for verification. The Testbench is

applicable to all test cases of LMvL Interface. The LMvL Drv module is instantiated in

the Testbench. Other required sub modules like Paragon are also instantiated in the

Testbench. This Test Bench Works in conjunction with the generic Testbench that is

applicable to all the Functionalities of module.

The generic Testbench is based on Macros and complier directives. Hence, during

compilation only the portion of the Testbench that is applicable to individual module

functionality is complied. The Testbench is updated as and when required based on test

case requirement and updation in the RTL. One important thing is that it is possible that

for verifying particular functionality, register is not present in the RTL. In such cases,

software accessible registers are made in the reserved space of the addresses. These are

then written in the Testbench as per the change in the signal and can then be accessed for

verification.

5.3 Prioritization of Features
This is an important task as the aim of completing the verification at proper deadline is

also equally important. Below are few points which are taken care of while verification.

 The first important task is to verify that the RTL and VE are stable and ensure that

both of them works fine in co-ordination with each other. This will ensure that

there is no major issue in the VE or Testbench or RTL, because of which the

test case might fail. Normally, this takes some time. This test is called harness

test. It can be thought of a top level test.

 Now, some harness test cases are written to verify that the RTL is stable for the

major functionality. In this test cases, interest is to verify only the that RTL

 gets configure according to the top level configuration. No internal generation

 of any signal is looked upon.

Chapter 5 Local Move Link Subsystem Verification - 44 -

 Now, starts the verification of the inner functionality of the module. The level

 of granularity is quite low. But here the functionality checked is sorted out as

 per the importance. The first aim is that all functionality is to be verified. Then,

 depending on time and requirement, the granularity is reduced.

 Other important point affecting the test cases is the fixing of bugs. Due to delay in

fixing of some bugs, it is possible to start with test cases which are of some lesser

priority.

5.4 Grouping of the Test Cases
As per the complexity of the feature and its implementation in the module, the

number of test cases can vary. Hence, as already shown earlier, few test cases group

together to and fall into some common category which shares common tasks and require

same type of debugging. The grouping of test cases is done with many considerations.

Functionality falling into same category requires similar type of verification approach.

e.g. Any particular block related functionality is responsible for generating many

different combinations of configuration based on occurrence of events. Verification of

such interrupts generation requires generation of that type of event. All of them require

similar type of top level configuration and hence should be grouped into common

category.

5.5 Environment Settings

While starting to use the environment for the first time, it is required to make a working

folder where all the environment components, various modules’ Test Bench and Test

Cases will reside as per specific path. It is required to Check Out the environment from

the Clear Tool.

The second requirement is to set the module onto which we are working. This will

indicate the module to be verified. For LMvL Interface, we just have to enter into

directory of module. This will use all the LMvL specific code from the Verification

Chapter 5 Local Move Link Subsystem Verification - 45 -

Environment. It is possible to have multiple such directories as the project progresses. All

test cases in specific directory will execute in the environment it sees within its project

directory. The only requirement for this is to set the variable project accordingly. It is just

required to enter into project directory name at the command line and the directory

required to be worked with. Code Build and Code Compile will be done within the

directory only.

5.6 Transactor
The test cases use the API calls to command the Transactor to do a transaction. The

Transactors transforms a command from the test cases into stimuli of signal values and

these stimuli are sent to the DUT. For a given stimulus the response from the DUT is

processed in the Transactor and the status or the data is send back to the test case.

5.7 Developing and Debugging Test cases
As verification progresses test cases are developed for the features lying into common

category. For LMvL Interface block test case strategy for features mentioned into

previous sections are as under.

Procedural Algorithm to make sure LMvL Interface block functional correctness

when enabling channel in bypass (not holding token) and enabling other channels

in Holding Token. The token holding is depending on the pack modes. [Appendix A]

 To make sure that correct functionality of LMvL Interface block by enabling and

disabling the holding token.

 Set the pack mode for enable and disable the selected channels for data transfer.

 Set the channel to a holding token state with the help of LMvL Interface State

Machine. So the bypass path will disconnect and connecting the L2 packet burst

controller to the LMvL outputs.

Chapter 5 Local Move Link Subsystem Verification - 46 -

 The State Machine will stay in this mode until the L2 packet burst allows to

release the token. When the L2 packet burst controller has no data to send the

hold signal will be low. And token is released.

 Now the token is passed to the next channel and if that channel is not enable than

it should pass the token by releasing it to the next channel.

 The same procedure will continue for all pack mode configuration.

PASS/FAIL CRITERIA

If the disable channel grab the token than the data will not passed and it will release the

token as soon as it gets (i.e. bypass).

For bug analysis debug the test case with the help of Simvision or try to read the simlog

file. The bug from the Simvision can be seen from below two Figure 5.7.1 and Figure

5.7.2.

Chapter 5 Local Move Link Subsystem Verification - 47 -

Figure 5.7.1: Waveform for Bug Identification

Figure 5.7.2: Waveform after Bug Resolved

Chapter 5 Local Move Link Subsystem Verification - 48 -

Branch: pause
Feature:

The i/p LMvL pause Serdes input signal is always routed on the o/p LMvL pause Serdes
output signal.

NOTE: The dagger i/o latency of the pause signal is no more than 15 LMvL clk cycles

Measure the Pause latency time by counting no. of LMVL clk cycles between negative

edge of i/p pause signal and negative edge of o/p pause signal. Measure the period of

BUS Available signal. It should be asserted high for 1 DB clk cycle.

Procedural Algorithm:

 Configure the LMVL SERDES x'actor to send the token to LMVL RTL. Measure

the Pause latency time by counting no. of LMVL clk cycles between negative

edge of i/p pause signal and negative edge of o/p pause signal.

 Send a burst to the LMVL SERDES x'actor where it drives the i/p LMvL pause

signal for few i/p LMvL clk cycles. At the same time the i/p LMvL frame & i/p

LMvL bus available signals will be driven low.

 The LMVL SERDES x'actor returns the control back to testcase ASA the i/p

LMvL pause signal will be driven low.

 Now at each edge of o/p LMvL clk, read back the o/p LMvL pause signal value at

o/p of LMVL SERDES RTL and count the o/p LMvL clk edges till o/p LMvL

pause signal value goes low.

 Derive the no. of lmvl cycles from the count and compare it with expected lmvl

cycle values.

 => The derived latency count should be 15 lmvl clk cycles.

Chapter 5 Local Move Link Subsystem Verification - 49 -

Measure the period of BUS Available signal. It should be asserted

high for 1 DB clk cycle.

 As soon as LMVL SERDES x'actor finished the transmition of above burst, it

comes to default state where it asserts the i/p LMvL bus available to high for one

DB clk cycle.

 Since Dagger is not ready to send the data(it will be in pass-through mode), i/p

LMvL bus available serdes signal is routed to o/p LMvL bus available serdes o/p

signal.

 Now at each edge of o/p LMvL clk, read back the value of o/p LMvL bus

available signal. As soon as o/p LMvL bus available goes high, start counting the

o/p LMvL clk edges for which i/p LMvL bus available signal remains high.

 Compare the derived period, for which o/p LMvL bus available signal remains

high, with expected BUS Avail signal period.

 => The o/p LMvL bus available signal should be high for 1 DB clk cycle.

PASS/FAIL CRITERIA:

Test case will report error based on:

 1. Comparison of derived pause latency cycles with expected lmvl

 Cycles (15 LMvL cycles).

 2. Comparison of derived o/p LMvL bus available period with expected DB

 Cycles (1 DB cycle.)

As the verification progresses, issues arises. When any issue arises, first thing is to find

the source of issue. This is done by debugging using output generated by simulation. In

my project, as the simulation progresses, log files are created. They specify the complete

flow of simulation.

Chapter 5 Local Move Link Subsystem Verification - 50 -

The debugging is done as under.

1. Check the log file to check that whether simulation is completed or is left midway.

 Log file shows different messages ex. Error, Panic, Milestone, Debug etc. This will

 show the point of problem in terms of at processing of which stream, does the

 problem and from where does it arises, whether from testcase or from VE. The

 RTL can be viewed for this to some extend.

2. If the log file is not having any issue, then the next step is Waveform viewer,

 Simvision is used to see the transactions in the signals. Unwanted signals can be

 filtered out and important signals can be zoomed out to identify the problem.

The final conclusion to be made is that whether the problem is because of VE,

TestBench, Testcase or RTL. Once it is confirmed that the problem is because of RTL,

bug is reported.

5.8 Bugs Reporting
As the verification progresses, issues arises. This is a good sign of progress. If no issue

arises, that means that something is wrong in the Testbench or VE. So, when any issue

arises, first thing is to find the source of issue. This is done by debugging using output

generated by simulation. Once it is confirmed that the source of issue is somewhere in the

RTL and not in the VE, Testbench or Test case, a bug is filed for it. Brief description is

given so that any one can understand the issue. The test case and the logs generated are

sent to the designer who is assigned the bug.

5.9 Looping Structure
As the bug get resolved, designer checks in the updated RTL. This RTL is to be checked

out and the test case is run on it. The results are again analyzed if the test case fails. The

bug id remains same but its status changes. Designer again locates problem in the RTL

and this process continues in a loop till finally the test cases passes. It is many times

Chapter 5 Local Move Link Subsystem Verification - 51 -

required to update the VE or Testbench to make the test fail pass. Again, designer can

add new registers or some extra hardware as a part of DFV for the purpose to aid the

verification. Once Testcase behavior comes out as per expectations and all open issues

are resolved test case is reviewed by designer or other verification experts to make sure

test case able to reach to targeted corner of RTL, only after completion of review test

case status is considered as closed.

5.11 Regression
As and when bugs get fixed and the RTL gets updated, it is required to do regression for

all previously passing test cases with the new updated RTL. It is to verify that in the task

of fixing one bug, some other bug has not aroused. Hence, a list file is prepared and all

test cases undergo regression. At the end of the verification process, once again all test

cases are regressed to get the final picture and mark that the process is completed.

Regression uses scripts for executing all the test cases. The script contains all the required

commands for the compilation and simulation of the test cases. Hence, at the end of

regression, it provides results for all the test cases. Regression lasts for many hours

depending on number of test cases.

5.11 Coverage
Once all the issues are fixed and all identified test cases passes, coverage tool is used to

get the coverage of the code in terms of blocks, expressions and other metrics for all the

test cases. Finally, accumulated result for all the test cases gives the picture of the code

which is not covered by existing test cases. Hence, this output serves as an input to the

identification of new test cases.

Incisive from cadence is used as coverage tool. Coverage for the RTL will be the

accumulation of coverage due to all these test cases. RTL consists of many modules.

Hence, the coverage tool will show the coverage in graphical manner. For Block

Chapter 5 Local Move Link Subsystem Verification - 52 -

Coverage, tool extracts modules from RTL and shows the result for them. For expression

Coverage, tool extracts expressions from RTL modules and shows the result for them.

5.12 Documentation
The project ends with documenting all the work done. This will serve as reference for

future and also it is to be submitted to the client to show the final status of the verification

process in terms of various metrics of coverage. Major documents prepared are as under:

1. Documenting the Verification Environment: In this document, complete Verification

Environment developed is explained with respect to each block. The VE is generic and

can be reused again with updated design.

2. Test Plan: The Test Plan is prepared at the start of the project which serves as

specification for the verification task. Test Plan is updated as and when new features

are added to the design and the new test cases are identified because of this and

feedback from coverage.

3. Bug Report: This document specifies all the bugs filed during the complete verification

process with brief description of the issue, date of filing, test cases affected and its final

status.

Chapter 6 Functional Coverage Analysis - 53 -

Chapter 6

Functional Coverage Analysis

6.1 Functional Coverage[12]

Functional coverage in HDL designs is a relatively new concept. Functional coverage

focuses on functional aspects of a design and provides a functional view of

verification completeness. Functional Coverage helps you in identifying uncovered

functions of the design. Functional coverage offers a very good insight on how the

verification goals set by a test plan are being met. Functional coverage is performed

on user-specified functional coverage points. These coverage points can be specified

either in PSL or SystemVerilog. The user-defined functional coverage points specify

scenarios, error cases, corner cases, and protocols to be covered as well as specify

analysis to be done on values of a variable. Functional coverage ensures that the

functionality of the design is tested thoroughly.

Functional coverage can be further classified as:

Control-oriented functional coverage: Control-oriented functional coverage is

userdefined and easier to interpret. It is an extension of assertion-based verification

and this type of coverage requires more user input/work but identifies interesting

functions directly. In Incisive Comprehensive Coverage, control-oriented functional

coverage points are specified using PSL (Property Specification Language) assert and

cover statements or SVA (SystemVerilog Assertions) assert and cover directive. The

coverage to be measured is either directly specified using the PSL/SVA statements or

is interpreted from them.

Data-oriented functional coverage: Data-oriented functional coverage offers simple

coverage metrics, which are relatively easy to measure and interpret. They include

coverage of variable values, binning, specification of sampling, and cross products. It

can also be used for user-specified state and transition coverage, although FSM

coverage is better addressed via automatic extraction of FSMs and automatic state

and transition coverage on extracted FSMs. Data-oriented functional coverage helps

Chapter 6 Functional Coverage Analysis - 54 -

in identifying untested data values/subranges. In Incisive Comprehensive Coverage,

data-oriented functional coverage is specified using SystemVerilog constructs.

6.2 Incisive Comprehensive Coverage Report Tool (ICCR)
The Incisive Comprehensive Coverage reporting component ICCR is used to generate

reports and analyze the coverage data. You can generate and print reports in batch

mode with the ICCR while you can generate and analyze the reports in the GUI mode

through the ICCR GUI. The reporting tool uses the Functional Coverage data

accumulated during simulation to generate textual and graphical reports. This

reported data can be used to evaluate the quality of the test stimuli and to detect areas

that require more testing.

Generating reports is the final step in the Functional Coverage analysis process. You

can generate reports after loading the functional coverage data generated during one

or more simulation runs. In report generation and analysis, the count denotes the

number of times coverage point is covered during a simulation run. The report

generation tool ICCR can generate reports in the various formats.

ICCR is mainly used to analyze the functional coverage analysis. The LMvL packet is

taking the data of failed vector array coming from DigCap which is Stored at DDR.

The data array or packet is analyzed here with the help of ICCR. The Data Oriented

Functional coverage summary report of that packet is shown on GUI below.

As shown in the Figure 6.2.1 the Data Oriented functional coverage result for the

packet is about 98 %.

Chapter 6 Functional Coverage Analysis - 55 -

Figure 6.2.1: ICC coverage Totals[12].

The detailed covered bins and covergroup report on GUI is shown in the Figure 6.2.2.

where the red dot indicates the missed bin and the source cover code is given at the

bottom of the results. The red color text corresponds to the yellow highlighted text in

the GUI.

The covermodule of the packet, detailed report of the coverage is shown in the

APPENDIX B.

The TCL commands for generating the coverage results in ICCR are shown below.

load_test test_name

report_summary -module module_name

report_detail -module -both module_name

Chapter 6 Functional Coverage Analysis - 56 -

Figure 6.2.2: ICC Functional Coverage Results on GUI.

6.3 vManager – ICC Integration[13]

A verification environment generates huge amounts of data on a daily basis, in the

form of logs, and waveform and coverage databases. The typical user of the

verification environment creates additional data in the form of source files, makefiles,

and scripts. Organizing and abstracting all of this data into useful, relevant

information for each member of the project team is one of the significant

contributions Enterprise Manager makes to the verification process.

Chapter 6 Functional Coverage Analysis - 57 -

Incisive Manager is a verification process automation tool that facilitates everyday

tasks of verification. Incisive Manager makes it easier for the verification manager to

track project status by:

 Enabling metric-based tracking of project status from verification plan to

closure

 Generating charts of coverage and failure data

 Generating HTML-based summary reports

Incisive Manager also facilitates the tasks of the verification engineer by enabling the

verification project team to:

 Find and fix bugs at a faster rate

 Identify and fill holes in verification at a faster rate

 Manage multiple sessions with large numbers of parallel test runs

Incisive Comprehensive Coverage (ICC) is the coverage tool delivered as part of the

Incisive platform and offers coverage features to perform code coverage, control

coverage (PSL/SVA coverage), data coverage (SystemVerilog covergroups), FSM

coverage, and toggle coverage. The ICC - Incisive Manager integrated solution helps

you perform verification process automation using Incisive Manager to manage the

verification runs. You can perform ICC runs and failure analysis through Incisive

Manager. You can automatically generate coverage model and vPlan from an ICC

run. The integrated solution also allows analysis and reporting of ICC coverage data

from Incisive Manager.

Below are the necessary steps for the VM-ICC Integration.

Step 1

set path = (<INSTALL_DIR>/tools/bin $path)

Where the <INSTALL_DIR> is the directory of the source of the incisive compiler.

Step 2

setenv LD_LIBRARY_PATH

<INSTALL_DIR>/tools/lib:${LD_LIBRARY_PATH}

Chapter 6 Functional Coverage Analysis - 58 -

where the LD_LIBRARY_PATH is the load library path. Ensure that vManager &

Specman are installed.

Step 3

setenv SPECMAN_PATH <INSTALL_DIR>/tools/vmgr

where the SPECMAN_PATH is the path of the installes vManager.

Step 4

setenv WORKAREA `pwd`

Set the WORKAREA to your current directory.

Step 5

“load <Dir>/cdn_icc_top.e”

From vManager Console load the "cdn_icc_top.e" file to enable interface of ICC and

VM.

Step 6

“load setup”

From vManager Console write the below mentioned command

OR

After enabling the integration from Incisive Enterprise Manager click "setup".

Step 7

From Incisive Enterprise Manager go to file menu and click on "Start Session"

to load your file vsif file "my_session.vsif".

Step 8

From Incisive Enterprise Manager click on "refresh" to get get the pass or fail status.

By performing above steps the vManager shows the status of the processes about run.

The window shows the pass, fail, run and wait status in the GUI as shown in the

Figure 6.3.1 below. There is another window of the vManager for the prompt

command execution as shown in the Figure 6.3.2.

Chapter 6 Functional Coverage Analysis - 59 -

Figure 6.3.1: vManager Output File Status[13]

Figure 6.3.2: vManager Console[13]

6.4 Analyzing the Coverage

Step 1

Write the "reload" command in vManager Console to reload the icc_cdn_top.e file for

enabling the integration.

OR

 From Incisive Enterprise Manager click on "reload"

Chapter 6 Functional Coverage Analysis - 60 -

Step 2

Load the coverage model file generated for the DUT during simulation run by

executing the following command at the console in the EManager Console window.

“load ./vm_auto/mic_cov_model.e;”

Where vm_auto is the automatic generated coverage directory which contains the

cover model file, vsof file and verification plan file.

OR

Load the file automatic generated Cover Model file from vm_auto dir in your top

WORKAREA.

Step 3

Do the "setup" in Incisive Enterprise Manager window.

Step 4

Load the automatic generated “vsof” file by selecting "Read Session" from the File

menu in the Incisive Enterprise Manager window.

Step 5

Click on "vplan" on Incisive Enterprise Manager window.

Step 6

To load the automatic generated “vPlan”, select Read vPlan from the File menu in the

Verification Plan Tree window.

Chapter 6 Functional Coverage Analysis - 61 -

Figure 6.4.1: VM Coverage Analysis Results in VPLAN window.

Chapter 7 Languages, S/W & EDA Tools - 62 -

Chapter 7

Languages, S/W & EDA Tools

7.1 Platform for Verification
The Platform for Verification is provided by languages. These languages are for coding

designs, writing scripts to command processes, etc. The languages used are explained

here in detailed.

7.1.1 C/C++ [7]

This is the most popular language used since long time. Its flexibility is responsible for its

wide use. Most languages have evolved from C/C++ and inherit its features. C++ was the

result of dynamic growth of software technology. It gave rise to object oriented approach.

Because of this strong feature, C/C++ is always present somewhere in any project. The

idea behind VE is to make it generic and applicable to all phases of verification. It is to

be made such that it can be updated later to make reusable with such other chip. Hence,

C++ was selected as the base for VE.

7.1.2 SystemC & Verilog

SystemC is Hardware Description Language, whose rapidly growing use is because of its

compatibility with C/C++. It is also popular for randomization so. SystemC is used to

support SCV Randomization for coverage requirements as well as to fill the gap between

C++ and Verilog for the project. Verilog is the most popular Hardware Description

Language used for Chip Design. Its growth has being like a revolution. Verilog supports

designing at many levels of Abstraction importantly Behavioral, RTL and Gate level. It

supports any level of hierarchy in the design. It is the most preferred language for

verification. Popular language System Verilog has developed from fusion of features of

Verilog and C.

Basic features of Verilog are as under:

1. Verilog HDL is a general purpose HDL that is easy to learn and easy to use. It is

 similar in syntax to the C language.

2 Verilog HDL allows different levels of abstraction to be mixed in the same model.

 Thus, a designer can define a hardware model in terms of switches, gates, RTL or

Chapter 7 Languages, S/W & EDA Tools - 63 -

 behavioral code.

3. Verilog HDL is supported by most popular logic synthesis.

4. All fabrication vendors provide Verilog HDL libraries for postlogic synthesis

Simulation. Thus, designing a chip in Verilog allows the widest choice of vendors.

7.1.3 Perl

PERL stands for Practical Extraction and Report Language. Perl is a dynamic

programming language created by Larry Wall and first released in 1987. Perl borrows

features from a variety of other languages including C, shell scripting (sh), AWK, sed

and Lisp. The overall structure of Perl derives broadly from C. Perl is procedural in

nature, with variables, expressions, assignment statements, brace-delimited code blocks,

control structures, and subroutines.

Perl also takes features from shell programming. It is used as a CGI (Common Gateway

Interface) language, a programming language for Unix, linux or for Windows. Perl has

many and varied applications, compounded by the availability of many standard and

third-party modules. Perl is often used as a glue language, tying together systems and

interfaces that were not specifically designed to interoperate, and for "data managing",

converting or processing large amounts of data for tasks like creating reports. In fact,

these strengths are intimately linked. The combination makes perl a popular all-purpose

tool for system administrators, particularly as short programs can be entered and run on a

single command line.

7.1.4 Makefile
“make” is a utility for automatically building large applications. Files specifying

instructions for make are called Makefiles. make is most commonly used in C/C++

projects, but in principle it can be used with almost any compiled language.

The basic tool for building an application from source code is the compiler. make is a

separate, higher-level utility which tells the compiler which source code files to process.

It tracks which ones have changed since the last time the project was built and invokes

the compiler on only the components that depend on those files. Although in principle

http://en.wikipedia.org/wiki/Dynamic_programming_language
http://en.wikipedia.org/wiki/Dynamic_programming_language
http://en.wikipedia.org/wiki/Larry_Wall
http://en.wikipedia.org/wiki/1987
http://en.wikipedia.org/wiki/C_programming_language
http://en.wikipedia.org/wiki/Unix_shell
http://en.wikipedia.org/wiki/Bourne_shell
http://en.wikipedia.org/wiki/AWK_programming_language
http://en.wikipedia.org/wiki/Sed
http://en.wikipedia.org/wiki/Lisp_programming_language
http://en.wikipedia.org/wiki/Perl#_note-perltimeline
http://en.wikipedia.org/wiki/Perl#_note-perltimeline
http://en.wikipedia.org/wiki/Variable
http://en.wikipedia.org/wiki/Expression_(programming)
http://en.wikipedia.org/wiki/Assignment_statement
http://en.wikipedia.org/wiki/Bracket
http://en.wikipedia.org/wiki/Code_block
http://en.wikipedia.org/wiki/Control_structure
http://en.wikipedia.org/wiki/Subroutine
http://en.wikipedia.org/wiki/Glue_language
http://en.wikipedia.org/wiki/System_administrator
http://en.wikipedia.org/wiki/Utility_software
http://en.wikipedia.org/wiki/Build_Automation
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Compiled_language
http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Computer_file

Chapter 7 Languages, S/W & EDA Tools - 64 -

one could always just write a simple shell script to recompile everything at every build, in

large projects this would consume a prohibitive amount of time. Thus, a makefile can be

seen as a kind of advanced shell script which tracks dependencies instead of following a

fixed sequence of steps.

Today, programmers increasingly rely on Integrated Development Environments and

language-specific compiler features to manage the build process for them instead of

manually specifying dependencies in makefiles. However, make remains widely used,

especially in Unix-based platforms. The makefile just contains a list of file dependencies

and commands needed to satisfy them.

7.2 OS: RED HAT LINUX
Linux was originally created by Linus Torvalds during his graduate studies at the

University of Helsinki in Finland. Linus wrote Linux as a small PC-based

implementation of UNIX. During the summer of 1991 Linus made Linux public on the

Internet. In September of that same year, version 0.01 was released. A month later,

version 0.02 was released, with version 0.03 following several weeks later. In December,

Linux was numbered at 0.10, and by the end of the month, virtual memory (disk paging)

was added. Within a year, Linux had a thousand more features and was well on its way to

becoming a self-compiling, usable operating system.

Linus made the source code freely available and encouraged other programmers to

develop it further. They did, and Linux continues to be developed today by a worldwide

team, led by Linus, over the Internet. It supports a wide range of Softwares and

Hardwares. Again, it is a secure system and hence is preferred the most when networking

is involved in the project. e.g offshore projects. . The Operating System installed in the

work station is i386 -RedHat Linux v3.0. All the EDA Tools and the applications to be

used through the project are supported by this OS. The secure networking to be used for

working at the work station at US, is thoroughly supported by this OS. All the work

stations are installed with this OS.

http://en.wikipedia.org/wiki/Shell_script
http://en.wikipedia.org/wiki/Coupling_(computer_science)
http://en.wikipedia.org/wiki/Integrated_Development_Environment
http://en.wikipedia.org/wiki/Unix

Chapter 7 Languages, S/W & EDA Tools - 65 -

7.3 Supporting Applications
For any project, along with the main languages and software, some supporting software

applications are required to manage the project. Some commonly used for verification are

discussed under.

7.3.1 S/W: ClearQuest[6]

ClearQuest a database for bugs. It lets people report bugs and assigns these bugs to the

appropriate developers. Developers can use ClearQuest to keep a to-do list as well as to

prioritize, schedule and track dependencies. In verification, all the issues and bugs are

filed in ClearQuest for the developer. Each bug can be issued a priority based on urgency

for its resolve. Each bug can have interred dependencies. Each bug is assigned a unique

id. Any authorized person can login into the ClearQuest and view and update or add some

comments the status for any bug. Each bug is composed of many fields. Few of them are

mentioned below:

Bug ID, Reported By, Date Found, Root Cause

This shows unique id of Bug, Registered Reporter Name, Date and time relevant

information, Root cause shows reason of bug in terms of VE, RTL coding.

Status, Investigator, Date Last Modified

This field is used to show status of a bug(open, resolved), Investigator who will

work on fixing of bug, last modification date.

Severity, Project, Bug Type, Testcase

This field targets to show severity of bug ex. urgent, Platform and Project belongs

to bug, Testcase name where bug is to be noticed.

Description Log, Resolution Log, Verification Log

Log of description shows expectation of bug reporter and misbehavior noticed by bug

reporter, Log of Resolution shows summary of resolution actions taken by bug

investigator. After fixing bug by investigator, summary of verification done by bug

reporter.

Chapter 7 Languages, S/W & EDA Tools - 66 -

Dependency

If a bug can't be fixed until another bug is fixed, that's a dependency. For any bug, you

can list the bugs it depends on and bugs that depend on it. ClearQuest can display a

dependency graphs which shows which the bugs it depends on and are dependent on it.

Attachment

Adding an attachment to a bug can be very useful. Test cases, screen shots and editor log

can help pinpoint the bug and help the developer reproduce it. If you fix a bug, attach

the patch to the bug. This is the preferred way to keep track of patches since it makes it

easier for others to find and test.

7.3.2 ClearCase[6]

 The ClearCase implements SCM (Software Configuration Management). Its main

features or we can say advantages are 1) Version Control: version all types of files and

directories. 2) Build Management: ensure integrity of all software elements, accurately

reproduce every release. 3) Workspace Management: work in parallel with other

developers. 4) Process Control: record and report actions, history and milestones. Its

version control system keeps track of all work and all changes in a set of files, typically

the implementation of a software project, and allows several (potentially widely

separated) developers to collaborate. All the source files are managed in a common

platform called as a VOB (Versioned Object Base) [Ref-5].

VOB plays duties like server for one or more projects. ClearCase uses client-server

architecture: a server stores the current version(s) of the project and its history, and

clients connect to the server in order to check-out a complete copy of the project, work on

this copy and then later check-in their changes. Typically, client and server connect over

a LAN or over the Internet, but client and server may both run on the same machine if

ClearCase has the task of keeping track of the version history of a project with only local

developers. The VOB normally runs on Windows XP, Windows 2000, Unix including

Red Hat Linux.

http://en.wikipedia.org/wiki/Revision_control
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Project
http://en.wikipedia.org/wiki/Collaboration
http://en.wikipedia.org/wiki/Client-server
http://en.wikipedia.org/wiki/Local_area_network
http://en.wikipedia.org/wiki/Internet

Chapter 7 Languages, S/W & EDA Tools - 67 -

Several developers may work on the same project concurrently, each one editing files

within his own working copy of the project, and sending (or checking in) his

modifications to the server. To avoid the possibility of people stepping on each other's

toes, the VOB will only accept changes made to the most recent version of a file.

Developers are therefore expected to keep their working copy up-to-date by incorporating

other people's changes on a regular basis. If the check-in operation succeeds, then the

version numbers of all files involved automatically increment, and the VOB writes a

user-supplied description line, the date and the author's name to its log files. ClearCase

can also run external, user-specified log processing scripts following each commit. These

scripts are installed by an entry in ClearCase's log info file, which can trigger email

notification, or convert the log data into a web-based format. Clients can also compare

different versions of files, request a complete history of changes, or check-out a historical

snapshot of the project as of a given date or as of a revision number. Clients can also use

the "gvp uwa –v -merge" command in order to bring their local copies up-to-date with the

newest version on the server. This eliminates the need for repeated downloading of the

whole project. ClearCase can also maintain different "branches" of a project. For

instance, a released version of the software project may form one branch, used for bug

fixes, while a version under current development, with major changes and new features,

forms a separate branch.

Few terms related to ClearCase are discussed below:

Main Branch: basically means the code and all its various versions in the repository.

Main Branch consists of the main trunk which contains all the main code files, and

sometimes may be branch for each separate releasable product.

Release Branch: Branch designated for holding official releases of a product. It

facilitates moving and tracking changes among releases. Reduce complexity and length

of version tree.

Developer Branch: Branch designated for individual development, facilitates to track

individual activity.

http://en.wikipedia.org/wiki/Version
http://en.wikipedia.org/wiki/Data_logging

Chapter 7 Languages, S/W & EDA Tools - 68 -

Working copy: Your local copy of the source code. You don't work on the server code

directly, instead you work on the working copy and changes are merged together.

Few useful Commands guideline related to ClearCase are discussed below:

prune

Mark your private files as removed. This means that you are updated with latest

repository, your local checkin files are no more available.

merge

Keep you in cope with latest release available at repository, but checkout files are kept

unchanged.

mkelem:

Insert a new file into VOB. Will be visible in the repository only after a checkin and a

gather command is issued.

checkout

Checks out the source files defined by modules. Note that multiple checkouts can be

made in different directories, this can be very confusing.

checkin

Checks in the source files defined by modules to your local workspace, will not be visible

in the repository Note that multiple checkins can be made in different directories, this can

be very confusing.

gather

Commit your changes into the the repository.

diff

Check difference with your private files against the repository.

Chapter 7 Languages, S/W & EDA Tools - 69 -

remove

Remove the file from ClearCase revision control. This command moves the repository

file permanently from VOB so no way to recover it.

7.4 EDA TOOLS
EDA Tools plays very important role in this industry. For every task to be accomplished,

these EDA Tools tend to reduce the time required and performs the task accurately.

Developments of EDA Tools are at the target of every vendor as its demand is increasing

tremendously. They have revolutionized every process in the development of any design.

In the following topics, I will be discussing the Major EDA Tools use by me for the

project. All design tools are by the company Cadence.

7.4.1 Compilation & Simulation[11]

Tool: Affirma NCsim v 06.11-s002

Company: Cadence

For the C++ compilation, freeware g++ compiler from GCC is used. This is free

software. It is available with Linux Operating System. The NC-Verilog Simulator

delivers high-performance, high-capacity Verilog simulation with transaction/signal

viewing and integrated coverage analysis. It is fully compatible with the Incisive

functional verification platform, so design teams can easily upgrade to the Incisive

Unified Simulator and Incisive XLD team Verification, with native support for Verilog,

VHDL, SystemC Verification Library, PSL/Sugar assertions, and Acceleration-on-

Demand. Verilog IEEE 1364-1995 and a majority of IEEE 1364-2001 extensions,

SystemVerilog (IEEE-1800). It compiles directly to host processor machine code for

maximum performance.

The NC-Verilog Simulator provides the industry’s premier simulation performance for

Verilog designs using the unique native-compiled architecture of the Incisive Unified

Simulator. It produces efficient native machine code directly from Verilog for high-speed

execution. Linked list scheduling of the resulting data structures pre-processes signal

actions and maximizes the effectiveness of modern caching algorithms available in

Chapter 7 Languages, S/W & EDA Tools - 70 -

today’s computing platforms. The NC-Verilog performance profiler identifies

bottlenecks. Designers find areas of high activity by viewing how each module

contributes to overall performance. Minor changes can greatly improve simulation

performance by identifying the areas that consume the most simulation time. NC-Verilog

64-bit capacity simulates designs larger than 100 million gates.

The unified NC-Verilog simulation and debug environment makes it easy to manage

multiple simulation runs and analyze the design and testbench. Its transaction/waveform

viewer and schematic tracer quickly trace design behavior back to the source. The NC-

Verilog source viewer lets designers examine their design, set complex breakpoints to

control simulation execution, and access results in both interactive and post processing

debug modes. The NC-Verilog Simulator provides access to a wide variety of coverage

metrics to help determine how well tests have exercised the design. These include block

coverage, path coverage, expression coverage, state variable coverage, state transition

coverage, state sequence coverage, and toggle coverage. Integrated coverage analysis and

display tools speed the process of determining which additional tests will need to be

developed.

7.4.2 Waveform Viewer[11]

Tool: Simvision v 06.11-s003

Company: Cadence

The SimVision analysis environment is a unified graphical debugging environment for

Verilog-XL, NC-Verilog, NC-VHDL, and NC-Sim. You can run SimVision in either of

the following modes:

Simulation mode

In simulation mode, you view “live” simulation data. That is, you analyze the data while

the simulation is running. You can control the simulation by setting breakpoints and

stepping through the design.

SimVision provides several tools to help you track the progress of the simulation:

 Source code window

 Navigator window

Chapter 7 Languages, S/W & EDA Tools - 71 -

 Watch window

 Signal Flow Browser

 Cycle window

 Schematic window

 Waveform window

Many of these windows are linked, so that when you select an object in one window, it is

selected in the other windows as well.

Post-Processing Environment (PPE) Mode

In PPE mode, you analyze simulation data after simulation has completed. You have

access to all of the SimVision tools, except for the simulator. As in simulation mode, all

of these windows are linked, so that when you select an object in one window, it is

selected in the other windows as well.

7.4.3 Code Coverage[11]

Tool: Incisive v 06.11-s002

Company: Cadence

Code Coverage is an important metric for Verification Engineers to measure their effort.

It gives the view of the scenarios created by the test cases to verify the RTL. The

remaining can then be again generated by the Verification engineers.

Incisive by Cadence is a powerful Code Coverage Tool that gives coverage in many

metrics as desired by verification engineer. It can provide the graphical view of scenarios

created. Desired metrics can be selected as required. It has the capability of extracting

FSM from RTL design. It supports code, path, expression, fsm (state, transition and

sequence), toggle, variables and gate coverage. Such different metrics of Coverage acts

as a feedback loop to improve the input stimulus.

APPENDIX A

TESTCASE

Testcase for LMvL Interface Holding Token State.

Testcase Name: cmem_lmvl_siggen_basic.cc

/*!

TEST ID: cmem_lmvl_siggen_basic

STATUS: CLOSED

REVIEWED: TESTPLAN

SCHEDULE: 07/10/07

ASSIGNED TO: parmarg

REVIEWED BY: panej

OPEN ISSUES:

TEST STRATEGY: The strategy is to release the token as soon as a channel has no data

to send to the LMvL output

REFERENCE DOCS: LMvL_fis

TEST ASSUMPTIONS:

VERIFICATION AIDS: LmvlSerdesTran

RANDOMIZATIONS: BlockSize [16’h0000 – 16’hffff]

PROCEDURE:

 - Set up Pattern Generator

 - Enable loopback path from drv to rcv tg.

 - Initialise cmem.

 - Create the Data Set by Randomization .

 - LMvL configuration Setting

 - Select Pack Mode for LMvL

 - Set the Capture Count Limit

 - Call API to invoke the desired scenario and Transactor

 - Start Test to Run

PASS/FAIL CRITERIA: The LmvlSerdesTran will report failures on channel which is in

 Holding_Token State. Even there is no data is available

 Channel Holding the Token instead of release.

*/

#include "dartTestCommon.h"

#include "apiLmvl.h"

#include "apiCmnSetup.h"

#include "apiCmem.h"

#include "apiLmvlSerDes.h"

// NOTE : Run test with command line option "-define LMVL_SERDES_XACTOR"

// NOTE : To enable a_tempe_lmvl_wait_for_dat, run test with command line option "-

//SetWaitForDat"

//

//Main

extern "C" int cmem_lmvl_siggen_basic(void) {

 Tai::SetArg("wavesOn","on");

 TT_READ(A_CM_BUSY);

 apiSteering.selectAllPatgen(); // Setup

apiCmnSetup.setLpbk(); // Enable loopback path from drv

 // to rcv tg.

 TT_WRITE(A_TEMPE_CMEM_INIT,

M_TEMPE_CMEM_INIT_DART_DB_ONLY); // issue init_dart_cmem to db

 // create the data set for db ddr write

 //

 // create random write data array

 u_int32 blockSize = 1024;

 u_int32 wrdata[blockSize];

 for(u_int32 i=0; i<blockSize; i++){

 wrdata[i] = Random.getInRange(0, 0xffff);

 }

 apiLmvlT::RawDdrDatT rawData;

 rawData.datCnt = blockSize;

 rawData.datPtr = wrdata;

 //

 // create lmvl/cmem config

 //

 apiLmvlT::ConfigT config;

 config.mssnMode = apiSteeringT::CM_HSM_MSSN_MDE_DTL_SE;

 config.packMode = B_TG_CMEM_DATA_PCK_SITE_0;

 config.mvMode = apiLmvlT::MV_HIM;

 config.startAddr = Random.getInRange(0,(0x3fff-blockSize)) & 0xfff8;

 config.captSize = blockSize / 16 ; // (Blocks of 16 bit data) / 16 = segments available.

 config.lastWdSize = 0;

 config.reset = M_TEMPE_CMEM_INIT_ALL;

 config.wrapEn = false;

 config.lmvlConfig.lvl3_pay_size = 0x10;

 config.lmvlConfig.move_en = 0xFF;

 config.lmvlConfig.siggen_bus_en = 0x3FFFF;

 if(Tai::IsPresent("SetWaitForDat")){

 config.lmvlConfig.wait_for_dat = 0x1;

 }

 //

 // start test

 //

 TT_WRITE(A_TEMPE_LMVL_SIG_CAPT_CNT_LIMIT, 0xFFFF);

 apiLmvl.testScenario(config,

 apiLmvlT::WR_DDR,

 rawData,

 true, // lmvl transactor monitoring data

 true); // lmvl client check siggen

 TT_READ(A_CM_BUSY);

 TT_READ(A_CM_BUSY);

 TT_READ(A_CM_BUSY);

 TT_READ(A_CM_BUSY);

 TT_READ(A_CM_BUSY);

 Tai::SetArg("wavesOn","off");

 return 0;

}

APPENDIX B

Functional Cover Module

///
//
// THIS COVER GROUP IS FOR ADDRESS FIELD OF THE PACKET.
//
//

covergroup ADDRESS_COVER_GROUP @ (trDdrScenario_o.start_coverage);

 option.comment = " THIS COVERGROUP IS FOR ROW, COLUMN AND BANK
ADDRESS.";

 BANK_ADDRESS_CP : coverpoint trDdrScenario_o.bankAddress {

 bins Bank_Addr_Start = { 0};
 bins Bank_Addr_Mid = { 4};
 bins Bank_Addr_End = { 7};
 bins Bank_Addr_Any = { [0:7]};

 }

 CROSS_BANK_ADDRESS_CP : cross
BANK_ADDRESS_CP,trDdrScenario_o.clntType;

 COLUMN_ADDRESS_CP : coverpoint trDdrScenario_o.columnAddress {

 bins Column_Addr_Eight = { 11'b00000001000};
 //SPECIAL PETTERN BINS
 bins Column_Addr_W1 = { 11'b00000000001, 11'b00000000010,

 11'b00000000100, 11'b00000001000,
 11'b00000010000, 11'b00000100000,

 11'b00001000000, 11'b00010000000,
 11'b00100000000, 11'b01000000000,
 11'b10000000000};

 bins Column_Addr_W0 = { 11'b11111111110, 11'b11111111101,

 11'b11111111011, 11'b11111110111,
 11'b11111101111, 11'b11111011111,

 11'b11101111111, 11'b11101111111,
 11'b11011111111, 11'b10111111111,
 11'b01111111111};

 //SPECIAL PATTERN ADDRESS BIN
 bins Column_Addr_Invert = { 11'b10101010101,11'b01010101010};
 wildcard bins Column_Mid_bit = { 11'b11111?00000,11'b00000?11111};

 //ADDRESS VALUE BIN
 bins Column_Addr_Bit04 = { [8:15]};
 bins Column_Addr_Bit05 = { [16:31]};
 bins Column_Addr_Bit06 = { [32:63]};
 bins Column_Addr_Bit07 = { [64:127]};
 bins Column_Addr_Bit08 = { [128:255]};
 bins Column_Addr_Bit09 = { [256:511]};
 bins Column_Addr_Bit10 = { [512:1023]};
 bins Column_Addr_Bit11 = { [1023:2047]};
 bins Column_Addr_Any = { [0:2047]};
 bins Column_Addr_End = { 2047};
 illegal_bins Column_Addr_Ignore = { [0:7]}; //LAST 3 BITS ARE HARDCODED
 //0 SO IGNORE THE VALUES FROM 0 TO 7
 }

 CROSS_COLUMN_ADDRESS_CP : cross COLUMN_ADDRESS_CP,
trDdrScenario_o.clntType;

 RAW_ADDRESS_CP : coverpoint trDdrScenario_o.rowAddress {

 bins Raw_Addr_Start = { 16'b0000000000000000};
 // SPECIAL ADDRESS PETTERN BIN
 bins Raw_Addr_W1 = { 16'b0000000000000001, 16'b0000000000000010,

 16'b0000000000000100, 16'b0000000000001000,
 16'b0000000000010000, 16'b0000000000100000,

 16'b0000000001000000, 16'b0000000010000000,
 16'b0000000100000000, 16'b0000001000000000,

 16'b0000010000000000, 16'b0000100000000000,
 16'b0001000000000000, 16'b0010000000000000,
 16'b0100000000000000, 16'b1000000000000000};

 // SPECIAL ADDRESS PETTERN BIN
 bins Raw_Addr_W0 = { 16'b1111111111111110, 16'b1111111111111101,

 16'b1111111111111011, 16'b1111111111110111,
 16'b1111111111101111, 16'b1111111111011111,
 16'b1111111110111111, 16'b1111111101111111,
 16'b1111111011111111, 16'b1111110111111111,

 16'b1111101111111111, 16'b1111011111111111,
 16'b1110111111111111, 16'b1101111111111111,

 16'b1011111111111111, 16'b0111111111111111};
 bins Raw_Addr_Invert = { 16'b1010101010101010, 16'b0101010101010101,

 16'b1111111100000000, 16'b0000000011111111};

 // ADDRESS VALUE BIN
 //bins Raw_Addr_Bit03 = { [0:8]};
 bins Raw_Addr_Bit04 = { [0:15]};
 bins Raw_Addr_Bit05 = { [16:31]};
 bins Raw_Addr_Bit06 = { [32:63]};
 bins Raw_Addr_Bit07 = { [64:127]};
 bins Raw_Addr_Bit08 = { [128:255]};
 bins Raw_Addr_Bit09 = { [256:511]};
 bins Raw_Addr_Bit10 = { [512:1023]};
 bins Raw_Addr_Bit11 = { [1023:2047]};
 bins Raw_Addr_Bit12 = { [2048:4095]};
 bins Raw_Addr_Bit13 = { [4096:8191]};
 bins Raw_Addr_Bit14 = { [8192:16383]};
 bins Raw_Addr_Bit15 = { [16384:32767]};
 bins Raw_Addr_Bit16 = { [32768:65535]};

 }
 CROSS_RAW_ADDRESS_CP : cross RAW_ADDRESS_CP,
trDdrScenario_o.clntType;

endgroup
ADDRESS_COVER_GROUP Address = new(); //TAKING THE INSTANCE OF
ADDRESS_COVER_GROUP

///
//
// THIS COVERGROUP IS FOR HANDSHAKING AND CONTROL SIGNALS.
//
//

covergroup REQUEST_COVER_GROUP @ (trDdrScenario_o.start_coverage);

 option.comment = " THIS COVERGROUP IS FOR REQUEST AND GRANT.";

///
//
// REQUEST COVER POINTS FOR DDR2 GROUP ALL CLIENTS(read =0 ,wr = 1)
//
//

 O_REQ_DDR2_PIN_VM_CP : coverpoint trDdrScenario_o.RdWrReq
iff(trDdrScenario_o.clntType == DDR2_PIN_VM){
 bins O_REQ_DDR2_PIN_VM_RD = { 0};
 bins O_REQ_DDR2_PIN_VM_RD_TRAN = (0=>0);
 ignore_bins O_REQ_DDR2_PIN_VM_WR_IGN = { 1};
 }

 O_REQ_DDR2_PIN_CMEM_CP : coverpoint trDdrScenario_o.RdWrReq
iff(trDdrScenario_o.clntType == DDR2_PIN_CMEM){
 bins O_REQ_DDR2_PIN_CMEM_WR = { 1};
 bins O_REQ_DDR2_PIN_CMEM_WR_TRAN = (1=>1);
 ignore_bins O_REQ_DDR2_PIN_CMEM_RD_IGN = { 0};
 }

 O_REQ_DDR2_PIN_VM_DBUS_CP : coverpoint trDdrScenario_o.RdWrReq
iff(trDdrScenario_o.clntType == DDR2_PIN_VM_DBUS){
 bins O_REQ_DDR2_PIN_VM_DBUS_RD = { 0};
 bins O_REQ_DDR2_PIN_VM_DBUS_WR = { 1};
 bins O_REQ_DDR2_PIN_VM_DBUS_RD_TRAN = (0=>0);
 }

 O_REQ_DDR2_CMEM_DBUS_CP : coverpoint trDdrScenario_o.RdWrReq
iff(trDdrScenario_o.clntType == DDR2_CMEM_DBUS){
 bins O_REQ_DDR2_CMEM_DBUS_RD = { 0};
 bins O_REQ_DDR2_CMEM_DBUS_WR = { 1};
 bins O_REQ_DDR2_CMEM_DBUS_RD_TRAN = (0=>0);
 }

 O_REQ_DDR2_MPG_DOWNLOAD_CP : coverpoint trDdrScenario_o.RdWrReq
iff(trDdrScenario_o.clntType == DDR2_MPG_DOWNLOAD){
 bins O_REQ_DDR2_MPG_DOWNLOAD_RD = { 0};
 bins O_REQ_DDR2_MPG_DOWNLOAD_RD_TRAN = (0=>0);
 ignore_bins O_REQ_DDR2_MPG_DOWNLOAD_WR_IGN = { 1};
 }

 O_REQ_DDR2_PIN_MOVELINK_CP : coverpoint trDdrScenario_o.RdWrReq
iff(trDdrScenario_o.clntType == DDR2_PIN_MOVELINK){
 bins O_REQ_DDR2_PIN_MOVELINK_RD = { 0};
 bins O_REQ_DDR2_PIN_MOVELINK_RD_TRAN = (0=>0);
 ignore_bins O_REQ_DDR2_PIN_MOVELINK_WR_IGN = { 1};
 }

///
//
// REQUEST COVER POINTS FOR DDR6 GROUP FOR ALL CLIENTS
//
//

 O_REQ_DDR6_PIN_VM_CP : coverpoint trDdrScenario_o.RdWrReq
iff(trDdrScenario_o.clntType == DDR6_PIN_VM){
 bins O_REQ_DDR6_PIN_VM_RD = { 0};
 bins O_REQ_DDR6_PIN_VM_RD_TRAN = (0=>0);

 ignore_bins O_REQ_DDR6_PIN_VM_WR_IGN = { 1};
 }

 O_REQ_DDR6_CENTRAL_CMEM_CP : coverpoint trDdrScenario_o.RdWrReq
iff(trDdrScenario_o.clntType == DDR6_CENTRAL_CMEM){
 bins O_REQ_DDR6_CENTRAL_CMEM_WR = { 1};
 bins O_REQ_DDR6_CENTRAL_CMEM_WR_TRAN = (0=>0);
 ignore_bins O_REQ_DDR6_CENTRAL_CMEM_RD_IGN = { 0};
 }

 O_REQ_DDR6_PIN_VM_DBUS_CP : coverpoint trDdrScenario_o.RdWrReq
iff(trDdrScenario_o.clntType == DDR6_PIN_VM_DBUS){
 bins O_REQ_DDR6_PIN_VM_DBUS_RD = { 0};
 bins O_REQ_DDR6_PIN_VM_DBUS_WR = { 1};
 bins O_REQ_DDR6_PIN_VM_DBUS_RD_TRAN = (0=>0);
 }

 O_REQ_DDR6_CENTRAL_CMEM_DBUS_CP: coverpoint
trDdrScenario_o.RdWrReq iff(trDdrScenario_o.clntType ==
DDR6_CENTRAL_CMEM_DBUS){
 bins O_REQ_DDR6_CENTRAL_CMEM_DBUS_RD = { 0};
 bins O_REQ_DDR6_CENTRAL_CMEM_DBUS_WR = { 1};
 bins O_REQ_DDR6_CENTRAL_CMEM_DBUS_RD_TRAN = (0=>0);
 }

 O_REQ_DDR6_TG_DOWNLOAD_CP : coverpoint trDdrScenario_o.RdWrReq
iff(trDdrScenario_o.clntType == DDR6_TG_DOWNLOAD){
 bins O_REQ_DDR6_TG_DOWNLOAD_RD = { 0};
 bins O_REQ_DDR6_TG_DOWNLOAD_RD_TRAN = (0=>0);
 ignore_bins O_REQ_DDR6_TG_DOWNLOAD_WR_IGN = { 1};
 }

 O_REQ_DDR6_CENTRAL_MOVELINK_CP : coverpoint
trDdrScenario_o.RdWrReq iff(trDdrScenario_o.clntType ==
DDR6_CENTRAL_MOVELINK){
 bins O_REQ_DDR6_CENTRAL_MOVELINK_RD = { 0};
 bins O_REQ_DDR6_CENTRAL_MOVELINK_RD_TRAN = (0=>0);
 ignore_bins O_REQ_DDR6_CENTRAL_MOVELINK_WR_IGN = { 1};
 }

///
//
// IPD COVER POINTS FOR DDR2 GROUP
//
///

 IPD_CP : coverpoint IPD {
 IPD_DDR2_PIN_VM_CP : coverpoint trDdrScenario_o.IPD
iff(trDdrScenario_o.clntType == DDR2_PIN_VM){
 bins IPD_DDR2_PIN_VM_ZERO = { 0};
 bins IPD_DDR2_PIN_VM_ONE = { 1};
 bins IPD_DDR2_PIN_VM_FOUR = { 2,3,4};
 bins IPD_DDR2_PIN_VM_FIVE = { 5};
 ignore_bins IPD_DDR2_PIN_VM_IGN = { [51:$]};
 //IGNORE THE INVALID VALUE OF IPD (AFTER 50)
 }

 IPD_DDR2_PIN_CMEM_CP : coverpoint trDdrScenario_o.IPD
iff(trDdrScenario_o.clntType == DDR2_PIN_CMEM){
 bins IPD_DDR2_PIN_CMEM_ZERO = { 0};
 bins IPD_DDR2_PIN_CMEM_ONE = { 4};
 bins IPD_DDR2_PIN_CMEM_FOUR = { 1,2,3,5};
 ignore_bins IPD_DDR2_PIN_CMEM_IGN = { [51:$]}; //IGNORE THE
INVALID VALUE OF IPD (AFTER 50)
 }
 IPD_DDR2_PIN_VM_DBUS_CP : coverpoint trDdrScenario_o.IPD
iff(trDdrScenario_o.clntType == DDR2_PIN_VM_DBUS){
 bins IPD_DDR2_PIN_VM_DBUS_ZERO = { 0};
 bins IPD_DDR2_PIN_VM_DBUS_ONE = { 1};
 bins IPD_DDR2_PIN_VM_DBUS_FOUR = { 2,3,4,5};
 ignore_bins IPD_DDR2_PIN_VM_DBUS_IGN = { [51:$]}; //IGNORE THE
INVALID VALUE OF IPD (AFTER 50)
 }
 IPD_DDR2_CMEM_DBUS_CP : coverpoint trDdrScenario_o.IPD
iff(trDdrScenario_o.clntType == DDR2_CMEM_DBUS){
 bins IPD_DDR2_CMEM_DBUS_ZERO = { 0};
 bins IPD_DDR2_CMEM_DBUS_ONE = { 1,3};
 bins IPD_DDR2_CMEM_DBUS_FOUR = { 2,5,4};
 ignore_bins IPD_DDR2_CMEM_DBUS_IGN = { [51:$]};
//IGNORE THE INVALID VALUE OF IPD (AFTER 50)
 }
 IPD_DDR2_MPG_DOWNLOAD_CP : coverpoint trDdrScenario_o.IPD
iff(trDdrScenario_o.clntType == DDR2_MPG_DOWNLOAD){
 bins IPD_DDR2_MPG_DOWNLOAD_ZERO = { 0};
 bins IPD_DDR2_MPG_DOWNLOAD_ONE = { 1};
 bins IPD_DDR2_MPG_DOWNLOAD_FOUR = { 2,3,4,5};
 ignore_bins IPD_DDR2_MPG_DOWNLOAD_IGN = { [51:$]};
//IGNORE THE INVALID VALUE OF IPD (AFTER 50)
 }
 IPD_DDR2_PIN_MOVELINK_CP : coverpoint trDdrScenario_o.IPD
iff(trDdrScenario_o.clntType == DDR2_PIN_MOVELINK){
 bins IPD_DDR2_PIN_MOVELINK_ZERO = { 0};

 bins IPD_DDR2_PIN_MOVELINK_ONE = { 1,4};
 bins IPD_DDR2_PIN_MOVELINK_FIVE = { 2,3,5};
 ignore_bins IPD_DDR2_PIN_MOVELINK_IGN = { [51:$]};
//IGNORE THE INVALID VALUE OF IPD (AFTER 50) gaurang
 }

///
//
// IPD COVER POINTS FOR DDR6 GROUP
//
///

 IPD_DDR6_PIN_VM_CP : coverpoint trDdrScenario_o.IPD
iff(trDdrScenario_o.clntType == DDR6_PIN_VM){
 bins IPD_DDR6_PIN_VM_ZERO = { 0};
 bins IPD_DDR6_PIN_VM_ONE = { 1};
 bins IPD_DDR6_PIN_VM_FOUR = { 2,3,4,5};
 ignore_bins IPD_DDR6_PIN_VM_IGN = { [51:$]};
//IGNORE THE INVALID VALUE OF IPD (AFTER 50)
 }

 IPD_DDR6_CENTRAL_CMEM_CP : coverpoint trDdrScenario_o.IPD
iff(trDdrScenario_o.clntType == DDR6_CENTRAL_CMEM){
 bins IPD_DDR6_CENTRAL_CMEM_ZERO = { 0};
 bins IPD_DDR6_CENTRAL_CMEM_ONE = { 1};
 bins IPD_DDR6_CENTRAL_CMEM_FIVE = { 2,3,4,5};
 ignore_bins IPD_DDR6_CENTRAL_CMEM_IGN = { [51:$]};
//IGNORE THE INVALID VALUE OF IPD (AFTER 50)
 }
 IPD_DDR6_PIN_VM_DBUS_CP : coverpoint trDdrScenario_o.IPD
iff(trDdrScenario_o.clntType == DDR6_PIN_VM_DBUS){
 bins IPD_DDR6_PIN_VM_DBUS_ZERO = { 0};
 bins IPD_DDR6_PIN_VM_DBUS_TWO = { 1,2};
 bins IPD_DDR6_PIN_VM_DBUS_FIVE = { 3,4,5};
 ignore_bins IPD_DDR6_PIN_VM_DBUS_IGN = { [51:$]};
//IGNORE THE INVALID VALUE OF IPD (AFTER 50)
 }
 IPD_DDR6_CENTRAL_CMEM_DBUS_CP : coverpoint trDdrScenario_o.IPD
iff(trDdrScenario_o.clntType == DDR6_CENTRAL_CMEM_DBUS){
 bins IPD_DDR6_CENTRAL_CMEM_DBUS_ZERO = { 0};
 bins IPD_DDR6_CENTRAL_CMEM_DBUS_TWO = { 1,2};
 bins IPD_DDR6_CENTRAL_CMEM_DBUS_FIVE = { 3,4,5};
 ignore_bins IPD_DDR6_CENTRAL_CMEM_DBUS_IGN = { [51:$]};
//IGNORE THE INVALID VALUE OF IPD (AFTER 50)
 }

 IPD_DDR6_TG_DOWNLOAD_CP : coverpoint trDdrScenario_o.IPD
iff(trDdrScenario_o.clntType == DDR6_TG_DOWNLOAD){
 bins IPD_DDR6_TG_DOWNLOAD_ZERO = { 0};
 bins IPD_DDR6_TG_DOWNLOAD_ONE = { 1};
 ignore_bins IPD_DDR6_TG_DOWNLOAD_IGN = { [51:$]};
//IGNORE THE INVALID VALUE OF IPD (AFTER 50)
 }
 IPD_DDR6_CENTRAL_MOVELINK_CP : coverpoint trDdrScenario_o.IPD
iff(trDdrScenario_o.clntType == DDR6_CENTRAL_MOVELINK){
 bins IPD_DDR6_CENTRAL_MOVELINK_ZERO = { 0};
 bins IPD_DDR6_CENTRAL_MOVELINK_ONE = { 1};
 ignore_bins IPD_DDR6_CENTRAL_MOVELINK_IGN = { [51:$]};
//IGNORE THE INVALID VALUE OF IPD (AFTER 50)
 }

endgroup

REQUEST_COVER_GROUP Request = new(); //TAKING THE INSTANCE OF

 //REQUEST_COVER_GROUP

 - 72 -

ACRONYMS

ABBREVIATION

FULL NAME

GVP Gather Validate Publish
DUT Device Under Test
ENV Environment
BFM Bus Functional Model
MSB Most Significant Bit
LSB Least Significant Bit
PISO Parallel in Serial Out
SIPO Serial in Parallel Out
VC Verification Component
API Application Program Interface
SCIF System C Interface
TSTI T client Standard Transactor Interface
MPG Memory Pattern Generator
CMEM Capture memory
DigCap Digital Capture Instrument. .
DSSC Digital Signal Source/Capture
HRAM History Memory.
LFVM Large Fail Vector Memory.
LMvL Local Move Link.
MTC Memory Test Capture
SRM Sub Routine Memory (a.k.a. SVM)
SR Synchronous Reject.
STV Store This Vector.
SUT Signal Under Test
VM Vector Memory
ALU Algorithmic Logical Unit
ISL Instrument Synchronous Link
Patgen Pattern Generator
FSS Full System Specification
FIS Functional Interface Specification
FVM Fail Vector Memory
SR Synchronous Reject
CR Cumulative Reject
ADS Alternate Data Source
ATE Automatic Test Equipment

 - 73 -

REFERENCES

[1] EInfochips, Local Move Link Functional Interface Specifications Manual.

[2] EInfochips, Capture Memory Functional Interface Specifications Manual.

[3] EInfochips, Capture Memory Verification Environment Reference Manual.

[4] EInfochips, SCIF methodology Functional Interface Specifications Manual.

[5] EInfochips, Memory Pattern Generator Verification Environment Reference

Manual.

[6] IBM, SCM271 Essentials of ClearCase v7.0.

[7] Object Oriented Programming with C++, By E balagurusamy .second Edition.

[8] WRITING TESTBENCHES Functional Verification of HDL Models By Janick

Bergeron.

[9] Andrew Pizali, P. D. (2004), Functional Verification Coverage Measurement and

 Analysis, Kluwer Academic Publishers (Boston).

[10] Andreas Meyer, P. D.(2003), Principles of Functional Verification, Elsevier

Science(USA).

[11] Incisive v 06.11-s002 User Guide, Cadence

[12] ICCR v 06.11-s002 User Guide, Cadence

[13] VManager v 2.0 User Guide, Cadence

	FRONT_PAGE.pdf
	INDEX.pdf
	Embedded System Design Services
	Semiconductors

	chap1_gaurang_29apr.pdf
	chap2_gaurang_29apr.pdf
	chap3_gaurang_29apr.pdf
	chap4_gaurang_29apr.pdf
	4.3 DigCap interface and requirements
	4.4 Packet Assembly Controller
	4.4.3 L3 Segmentation State Machine
	4.4.4 L3 Header Mux
	
	4.5 Move Request Controller[1]
	4.6 PACKET BUFFER
	4.7 L2 Packet Burst Control [1]
	4.8 LMvL Interface Block

	
	4.9 LMvL FIFO & Bypass
	The C Side TestBench Section

	chap5_gaurang_29apr.pdf
	chap6_gaurang_29apr.pdf
	chap7_gaurang_29apr.pdf
	REFERENCES.pdf
	appendix.pdf

