
Automation framework development for
enhancing security functionalities of Oracle’s

planning and prediction application

Submitted By

Harsha Punjabi

16MCEI17

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2018

Automation framework development for
enhancing security functionalities of Oracle’s

planning and prediction application

Major Project

Submitted in fulfillment of the requirements

for the degree of

Master of Technology in Computer Science & Engineering

(Information & Network Security)

Submitted By

Harsha Punjabi

(16MCEI17)

Guided By

Prof. Pooja Shah

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2018

Certificate

This is to certify that the major project entitled ”Automation framework develop-

ment for enhancing security functionalities of Oracle’s planning and prediction

application” submitted by Harsha Punjabi (Roll No: 16MCEI17), towards the ful-

fillment of the requirements for the award of degree of Master of Technology in Computer

Science and Engineering(Information & Network Security) of Nirma University, Ahmed-

abad, is the record of work carried out by her under my supervision and guidance. In my

opinion, the submitted work has reached a level required for being accepted for exami-

nation. The results embodied in this project, to the best of my knowledge, haven’t been

submitted to any other university or institution for award of any degree or diploma.

Prof. Pooja Shah Dr. Sharada Valiveti

Guide & Assistant Professor, Coordinator M.Tech - CE (INS),

CE Department, CE Department,

Institute of Technology, Institute of Technology,

Nirma University, Ahmedabad. Nirma University, Ahmedabad

Dr. Sanjay Garg Dr. Alka Mahajan

Professor & Head, Director,

CE Department, Institute of Technology,

Institute of Technology, Nirma University,

Nirma University, Ahmedabad. Ahmedabad.

iii

Statement of Originality
———————————————————————————————————————

I, Harsha Punjabi, 16MCEI17, give undertaking that the Major Project entitled

” Automation framework development for enhancing security functionalities

of Oracle’s planning and prediction application” submitted by me, towards the

fulfillment of the requirements for the degree of Master of Technology in Computer

Science & Engineering(Information & Network Security) of Institute of Technology,

Nirma University, Ahmedabad, contains no material that has been awarded for any de-

gree or diploma in any university or school in any territory to the best of my knowledge.

It is the original work carried out by me and I give assurance that no attempt of pla-

giarism has been made.It contains no material that is previously published or written,

except where reference has been made. I understand that in the event of any similarity

found subsequently with any published work or any dissertation work elsewhere; it will

result in severe disciplinary action.

———————–

Signature of Student

Date:

Place:

Endorsed by

Prof .Pooja Shah

(Signature of Guide)

iv

Acknowledgements

It gives me immense pleasure in expressing thanks and profound gratitude to Prof. Pooja

Shah, Assistant Professor, Computer Engineering Department, Institute of Technology,

Nirma University, Ahmedabad for her valuable guidance and continual encouragement

throughout this work. The appreciation and continual support she has imparted has

been a great motivation to me in reaching a higher goal. Her guidance has triggered and

nourished my intellectual maturity that I will benefit from, for a long time to come.

It gives me an immense pleasure to thank Dr. Sanjay Garg, Hon’ble Head of Com-

puter Engineering Department, Institute of Technology, Nirma University, Ahmedabad

for his kind support and providing basic infrastructure and healthy research environment.

A special thank you is expressed wholeheartedly to Dr. Alka Mahajan, Hon’ble Director,

Institute of Technology, Nirma University, Ahmedabad for the unmentionable motivation

she has extended throughout course of this work.

I would also thank the Institution, all faculty members of Computer Engineering Depart-

ment, Nirma University, Ahmedabad for their special attention and suggestions towards

the project work.

- Harsha Punjabi

16MCEI17

v

Abstract

It is important in software industry to deliver the right product at the right time to

customer with all the quality checks and also maintaining the security posture of the

application is one of the greatest priorities. Manual testing becomes difficult and time

consuming, if one tries various input combinations. Moreover, it is costly to manually an-

alyze all results. This project is motivated by the drawbacks of manual regression testing

and how to overcome those drawbacks using automated tools for ensuring maintaining

the overall security of the software.

The Project ”Automation framework development for enhancing security functionalities

of Oracle’s planning and prediction application” includes work on the OSSA automation

and other automation for the Retail Predictive Application Server (RPAS) web client as

well as server. Also, development of Automation Libraries used frequently in different

applications will be done using Perl scripting language & Synergy automation tool during

this project.

vi

Contents

Certificate iii

Statement of Originality iv

Acknowledgements v

Abstract vi

List of Tables ix

List of Figures x

1 Introduction 1

2 Literature survey 2

3 RPAS 4
3.1 Introduction . 4
3.2 RPAS Platform Components . 4
3.3 RPAS Server . 5

3.3.1 RPAS Domain Daemon . 6
3.3.2 RPAS Features . 6

3.4 RPAS Client . 9
3.5 RPAS Configuration Tools . 9

4 OSSA 10
4.1 Software Security Assurance . 10

4.1.1 OSSA . 10
4.2 Security in RPAS . 12

5 System Implementation 13

6 Methodology 15
6.1 Test Case Design . 15
6.2 Test Data . 16

7 Server Side Automation 17
7.1 Perl Scripting . 17
7.2 Development of Automation Library . 19
7.3 Sample test cases . 20

vii

8 Client Side Automation 23
8.1 Synergy tool . 23

8.1.1 Synergy Test Suites . 23
8.1.2 Test Suite Creation . 25
8.1.3 Test Suite Configuration . 25
8.1.4 Suite Setup Keyword . 25
8.1.5 TestSuite Teardown . 26

8.2 Automation Library . 27
8.3 Sample test cases . 28

9 Wallet Creation Automation 31
9.1 Orapki Utility . 31

9.1.1 Authentication Process . 31
9.1.2 Wallets . 32
9.1.3 The createSSLWallets.sh script 32

10 Result and Analysis 34
10.1 Test Reports . 34
10.2 Server Side Reporting . 35
10.3 Client Side Reporting . 38

11 Conclusion 39

viii

List of Tables

10.1 Overall hours estimation for server side automation 36
10.2 Overall hours estimation for client side automation 38

ix

List of Figures

3.1 RPAS Patform Concepts . 5
3.2 Mutlidimensional cube . 6
3.3 RPAS Concepts . 8

4.1 OSSA phases . 11
4.2 Seurity tests . 11

5.1 System Implementation . 14

6.1 Test case subsections . 16
6.2 Dimension Hierarchy . 16

7.1 Test case automation flow . 18
7.2 Automation Flow . 19
7.3 ModuleRBT.pm . 20
7.4 Test case 1 . 20
7.5 Test case 2 . 21
7.6 Test case 3 . 21
7.7 Test case 4 . 22
7.8 Test case 5 . 22

8.1 Test automation flow . 24
8.2 Synergy Workspace . 25
8.3 Synergy Test Suites . 26
8.4 Synergy User defined keywords . 27
8.5 Test case folder structure . 28
8.6 Test case 1 . 29
8.7 Test case 2 . 29
8.8 Test case 3 . 30
8.9 Test case 4 . 30

9.1 Authentication Process . 32
9.2 The create wallet script . 33

10.1 Directory Structure of Automation Framework 35
10.2 After the Run . 35
10.3 HTML report file generated . 36
10.4 Generated log file . 37
10.5 Run results . 38

x

Chapter 1

Introduction

The biggest challenge to all software industry in today’s world is to maintain and im-

prove the efficiency,security and quality of the software product continuously as security

is an important property of any software. As on a large scale, organizations require their

data to be secured in the cloud as well as on premises, the concept of Software Security

Assurance is ever growing in it’s importance.

Test automation is one of the main solutions to improve the quality and assure the

security of software development process in many ways. Tests which are automated run

with a comparatively faster speed and much more easily because of the functional mod-

ules re usability feature within different tests.

If the software projects are not managed properly and do not follow a proper prede-

fined procedure, then there are high chances for the software to fail.The similar thing

applies to test automation.Testing engineers know that how important it is to follow a

specific flow to develop software automation framework in order to make a software work

according to predefined standards promised to customers.

By testing all the major security functionalities of a software, we can assure that the

security standards are met and in accordance.By testing we can find out the security

bugs and through patch we can have them gone thus retaining the overall security pos-

ture.Thus testing plays a major role in SSA.

1

Chapter 2

Literature survey

This chapter includes the survey done in order to understand the security fundamentals

and automation flow and it’s importance.The following points were drawn out of the

literature surveyed.

Agile development is a better and much flexible way to develop software applications.

Testing is the most integral and important part of any software development. Agile

method almost follows the same approach as the traditional software testing, but there

are certain differences in these to approaches.Quality has to be assured and infused dur-

ing the entire the entire product life cycle.To help deliver the product effectively and in a

time efficient manner, the selection of the automation testing tool plays a crucial role [11].

The increase in the importance of test automation in software engineering can be seen

by the increasing number of companies that have invested in various automation testing

tools. This huge money is invested in order to prevent the defects that comes up during

the product development process. A core and important activity for agile methodologies

is test automation and is the key for speeding up the process of quality assurance. All

the challenges & observations of a testing project team which is completely new to the

agile practices and also the test automation which can be done using open source testing

tools are described in detail.[2].

The current state of art in software security assurance is of a great topic of discus-

sion.The different variety of technologies used by the government,corporate industry and

2

academia to specify, acquire, produce, assess, and deploy a software that can be said to

be secure to an extent are discussed and described[4].

Integrating the software security activities in an agile based Software Development Life

cycle is a big task. As previously the companies adapted a waterfall approach in which

security activities used to fit in well, it was a great challenge to fit in the agile methodol-

ogy also. This paper describes the changes required to be performed in an organization

who is moving from waterfall to agile methodologies.The importance of synchronizing the

security tests with the agile rhythm of sprints is described in depth in this paper[1].

3

Chapter 3

RPAS

3.1 Introduction

RPAS stands for Retail Predictive Application Server.It is a platform which can be con-

figured and is used for developing highly scalable planning and forecasting based solutions

with proven scalability. RPAS platform has the following capabilities[8]

• powerful multidimensional database

• online and batch processing

• slice and dice configurable UI

• calculation engine

• user security functions

• utility functions and other powerful functions

• can be deployed on a variety of hardware

3.2 RPAS Platform Components

The main RPAS Platform components are:

1. RPAS Server

RPAS server consists of two main components :

4

• RPAS Domain

• Domain Daemon

2. RPAS Client

3. Configuration Tools

RPAS Platform concepts has been depicted in the Figure 3.1.

Figure 3.1: RPAS Patform Concepts

3.3 RPAS Server

• Main Component of RPAS server are[9]:

1. RPAS Domain

2. RPAS Domain Daemon

• RPAS domain are the server side files and directories that houses data used by

RPAS database.

• RPAS domain uses Multi-dimensional database to store data used by RPAS.

• RPAS server also stores the ”Platform Code base” that provides a set of utilities

to interact with the domain.

5

3.3.1 RPAS Domain Daemon

RPAS domain daemon is a middle ware between RPAS client and domain. It can be

defined as follows:

• Process that enables communication channel between RPAS Client and RPAS do-

main

• It is a server side utility that will wait for request from Client on specific port

• After request is received,server process is started to which client connects to

3.3.2 RPAS Features

This section introduces to the following RPAS concepts[5]:

• Multidimensional data storage

• Dimensions

• Calculation Engine

• Measures

• Domains and Workbooks

Figure 3.2: Mutlidimensional cube

6

• Multidimensionality:-In RPAS, the storage and representation of data is in a multi-

dimensional framework.The data is represented as a multidimensional array,where

each of the values is contained in a cell which can be accessed through multiple

indexes.

Multidimensional database systems achieve performance levels above the relational

database systems are a complementary technology to entity relational systems.

Multidimensionality provides the following features:

– Easy determination of number of dimensions and positions

– Aggregating and spreading the data

– Increases the speed of data analysis and retrieval as it need not search indi-

vidual records

– Data can be sliced and diced easily

A Multidimensional cube has been depicted in the Figure 8.9.

• Calculation Engine:- Using calculation engine the following tasks could be done:

– Aggregation

– Spreading

– Expression Evaluation

A measure’s base intersection is combination of dimensions which defines the lowest

level at which data can be stored or held for the measure. Aggregation maintains

the values of measures above their base intersection.RPAS needs to change the

underlying data values at base intersection for the measure in order to preserve

the integrity of data so that when the meaures are again aggregated, they reflect

a changed value at aggregated level.For this spreading is used to change the values

at base intersection.

• Dimensions:-Dimensions can be defined as the qualities of an item where the item

can be a product, location, or time value.The components of a dimension actually

define the structure and roll up within the dimension.

Dimensions defines the relationship between the different levels of dimensions.The

7

dimensions that are set up at user business and used by the merchandising solutions

are reflected by these dimensions.

Many alternative dimensions are supported by the application which can provide

different roll ups and also help the user of the application to analyze the data from

a various perspectives.

Figure 3.3: RPAS Concepts

• Measures:- Measures are the values or the measurements that are recorded.Rule

sets are used to define the relationships between various measures in the applica-

tion. The base intersection of a measure defines or decides the dimensionality of a

measure.

Measure name configuration is possible and they are named through a predefined

convention.

• Domains and Workbooks:- RPAS stores teh data in a cache .This cache is:

– persistent

– multidimensional

– can handle huge volumes of data

The cache which is the central repository for data storage is called a domain. This

central repository includes the detailed definitions of the metadata for the all the

avaliable solutions & provides a single point of update.

Workbook is a personal data repository used by users.When user wants to access

an RPAS solution, the user interacts with that solution through a workbook.[6]

8

A workbook does not contain the whole data but instead contains a part of i.e a

subset of the metadata and data.The scope is restricted by the access rights given

to a user for that domain.

Workbooks can be built through a wizard process and are stored on the central

RPAS server.In a workbook the data will remain independent of the domain.

3.4 RPAS Client

RPAS Client can be defined as:

• RPAS Client allows user to access and manipulate data in the domain of RPAS

Server through a windows GUI

• RPAS Client allows user to build a personalized scaled down version of domain

using user-defined data limitations. These personalized copies offers various views

of data stored in the domain database.

A user will access the domain via the RPAS Client. When in the domain, a user will

access a workbook wizard specific to the workbook template they want to build. After the

user makes their selections, RPAS will build the workbook. The building of a workbook

includes building the structure of the workbook, loaded the current data from the domain,

running the calculations for non-loaded measures and data is aggregated to meet the needs

of the view in the workbook. After the workbook is built, it is available to a user to make

updates and changes. A user is required to save the workbook in order for it to be used

later. When saving a workbook, the changes are still isolated to the individual workspace

(i.e. workbook). In order for other users to see the updates and for new workbooks to

contain that updated data, the workbook must be committed back to the domain.

3.5 RPAS Configuration Tools

RPAS Configuration tools can be defined as :

• Provides a flexible mean to build and configure RPAS based applications with

customer specific parameters

• Provides a user-friendly,streamlined interface to utilize RPAS functionality

9

Chapter 4

OSSA

4.1 Software Security Assurance

”Software Security Assurance (SSA) is the process of ensuring that software is designed to

operate at a level of security that is consistent with the potential harm that could result

from the loss, inaccuracy, alteration, unavailability, or misuse of the data and resources

that it uses, controls, and protects”.[12]

The whole process of SSA first starts by requirement identification and then classifying

the information which is to be used by the software.

Security testing mainly focuses on finding out software weaknesses or vulnerabilities and

recognizing the various unexpected or unidentified situations because of which the soft-

ware could fail in such a way that will violate the security conformance.[4]

4.1.1 OSSA

Oracle Software Security Assurance (OSSA) is the procedure that Oracle follows for

incorporating security into every phase of the product development life cycle. i.e the

design, build, testing, and maintenance phases of it’s products. Oracle aims to ensure that

the products are meeting their security requirements which is satisfactory for customers.

The phases process that is followed by Oracle and the various phases in which security

is incorporated is shown in the figure 4.1.

Functional security testing is a type of testing which mainly focuses on testing the

sofware’s security functionalities.Functional security testing are executed by the product’s

Quality assurance team along with normal product testing cycle. During this testing

phase, Quality Assurance engineers verify conformance of implemented security features

10

Figure 4.1: OSSA phases

to what had been previously agreed upon in the functional specifications during the

checklist reviews process.

The following figure 4.2 shows what all tests are done in a software to assure it’s overall

security.

Figure 4.2: Seurity tests

11

4.2 Security in RPAS

The following are the security areas in RPAS:

• Operating System Level Security:- This includes security considerations regarding

operating system file permissions, account creation, and folder permissions.

• User and Group Management:- This includes granting rights to a group and to a

user that belongs to a particular group.Also whether a user needs to inherited the

default group rights has to be specified.

• Managing user accounts:- Includes User Account Lockouts,Password history, Pass-

word expiration.

• Authorization:- Includes Workbook Security,Measure Level Security,Position Level

Security

• Setting Proper Resource Limits:- Includes Workbook Template Limits Views,Max

Domain Session Limit View,Max User Session Limit View,Dimension Modification

Rights View

• Auditing:- The RPAS LOG LEVEL environment variable establishes the minimum

logging level used by the RPAS server.

• Managing Sensitive Data:- Sensitive data like passwords must not be revealed in

any form and should always be protected.

• Domain Daemon IP Filtering and Redundancy:- RPAS supports the concept of

blocking some IP addresses in a multi-homed server from being used by the Domain

Daemon, thereby limiting the security exposure to external attacks.

• Secure Socket Layer:- SSL is a protocol for securing the network connectionsa and

is used by the applocation for providing communication that is secure between the

Client and server processes.

• Configuration Security:- All admin tasks are predefined in xml files and put under

the config folder of the domain with AdminTasks.xml as the suffix of the file names.

These files should be protected by changing their UNIX file permissions to read-only

to only the RPAS UNIX administration account.

12

Chapter 5

System Implementation

This sections describes the overall architecture of the system and give an insight to the

OJET UI that the product uses.

RPASCE is a configurable cloud-engineered platform with a proven scalability for devel-

oping multidimensional forecasting and planning-based solutions with an enhanced user

experience.

The RPASCE Client is the web-based client for the RPASCE platform developed using

the latest Oracle JavaScript Extension Toolkit (Oracle JET). It delivers an enhanced user

experience for the RPASCE platform.The flow diagram of the system is shown in figure

5.1.

RPASCE Concepts[3]:

• RPASCE : It is a platform providing foundation for running solutions used for retail

planning. These solutions are provided with common interface containing wizards,

templates, workbooks and batch processes.

• RPASCE Solution : This is an application which run on top of RPASCE and it

provides solutions for various retail problems such financial planning or forecasting

demand.

• RPASCE Domain : A collection of server side directories containing directories and

procedure to execute a specific RPASCE solution.

Users access an RPASCE solution through the RPASCE client,a web-based client.

13

Figure 5.1: System Implementation

14

Chapter 6

Methodology

This sections describes the methodology used to design the Testing Framework for the

RPAS Platform.[10]

6.1 Test Case Design

Test cases are designed using Oracle Test Manager (OTM). It contain the following sub

sections for each test case:

• Details

• Description

• Test Steps

• Details: The details give all the auxiliary information for the test case. It

• Description: The description part explains the overview of the test case under

consideration. The description part includes the purpose of the test, pre-requisite

for the tests, overview of the steps, impacted tables in all the applications involved

in the test case .

• Test Steps: The design steps consists of the Step number, the description of the

steps and the expected outcome when each step is executed.

The following figure 6.1 shows the sub sections of a test case

15

Figure 6.1: Test case subsections

6.2 Test Data

Test data is the data which has been specifically identified for use in tests, typically of

a computer program. Some data may be used in a confirmatory way, typically to verify

that a given set of input to a given function produces some expected result.[13]

Figure 6.2: Dimension Hierarchy

Test data can be produced by the legacy team by using help of a program or function

that aids the tester to produce the test data. The data can be stored for re-use or also be

forgotten if not needed. This data used is created in Retail Predictive Application Server

includes the data for product,calender and location hierarchies as shown in figure 6.2.

16

Chapter 7

Server Side Automation

Server side automation involves automating the security functionalities on the server side

i.e back end. This is done using automated scripts written in Perl.The entire flow of this

server side automation is described in a flow Design that explains the way in which the

testing strategy proceeds. Requirements and ER are checked for duplication, if there is

no duplication then a test case is written and is tested manually as well as automated.

Depending on its execution, the defect is passed or failed. Flow Design changes based on

the needs of the organization. Figure 7.1 shows the sample flow design.

The flow of the whole Test Automation Framework is depicted in the Figure 7.2. The

attribues.ini file contains all the required environment variables. The library contains the

moduleRBT.pm which has all the commonly used modules. The main driver script uses

this attributes.ini file and library.

An individual script contains the test cases for a particular functionality. Each testcase

is depicted by a function, which uses the library modules. Each individual script is called

by the main Driver script. On the basis of the run status, the pass or error logs are

generated. The logs are managed by a reporting mechanism.

7.1 Perl Scripting

PERL SCRIPTING is for major automation of functionalities. This mainly include Perl

command and also the shell scripting.

• Efficient because scripts are reusable and easy to understand and execute.

• As this does not require any tool it can be run at the back end and also saves time.

17

Figure 7.1: Test case automation flow

• Results are usually displayed on the screen and the log files are created for each

test case.

• In case of test case fails error log will be generated and it has detailed information

of command which has failed and the reason for the failure.

All the test case are combined into one single script which calls all the functionalities,

that script file is known as testDriver.pl and common functions will be saved in separate

file known as ModuleRBT.pm which contains all the common functions used in the script.

18

Figure 7.2: Automation Flow

7.2 Development of Automation Library

Automation libraries consists of various scripts functions dealing with the several func-

tionality of the application which is used frequently.

Automation Libraries includes the functions which we can be used in automating all the

applications of RPAS Platform These functions are made only for common functionality

of different applications and utilities.

For EG : sub Login(). Login needs to be done for each and every application domain so

we have created the function of “Login”.So we can reuse the same.We need to just add

a Login function with the required arguments(username,password,port and domain) to

login into any domain.

The perl module which contains all these developed functions is ModuleRBT.pm and

is shown in the following figure

19

Figure 7.3: ModuleRBT.pm

7.3 Sample test cases

The following section shows the sample test cases which are run to assure that the software

complies to the defined security standards.

Figure 7.4: Test case 1

20

Figure 7.5: Test case 2

Figure 7.6: Test case 3

21

Figure 7.7: Test case 4

Figure 7.8: Test case 5

22

Chapter 8

Client Side Automation

Client side automation is the UI automation which involves automating the security

functionalities on the client side i.e front end. This is done using an Oracle internal

automation tool called Synergy.

The entire flow of UI automation is described in a flow design that explains the way in

which the testing strategy proceeds. Firstly the feaibility of the test is decided. If the

automation of those set of tests is feasible then keywords are designed accordingly which

can be used in the scripts to enhance re usability.Once the tests are automated, they are

run all together to analyze the results. Figure 8.1 shows the sample flow design.

8.1 Synergy tool

Synergy is the software tool which is used to automate the Test-scripts. Synergy is

developed using the Languages like JAVA, JAVASCRIPT and PYTHON.

Synergy provides UNIFIED AUTOMATION PLATFORM that provides :

• Easy and fast way of adding new automation plug-ins for new technologies

• Common test execution and recording architecture across all automation plug-ins

• Common automation integrated development environment (IDE) across all automa-

tion plug-ins

8.1.1 Synergy Test Suites

A Test Suite is a collection of tests that validate whether a software program exhibit a

specific behaviour and any supporting constructs/information necessary for the execution

23

Figure 8.1: Test automation flow

of contained tests Synergy Test Suite contain a following component :

• Test Cases

• Folders

• User Keywords

• Resources Links

• Global Variables

• Configuration Settings

24

Figure 8.2: Synergy Workspace

8.1.2 Test Suite Creation

A test suite is created by selecting the Automation→Test Suite wizard accessible from

the New button in the Synergy main toolbar or under File→New.

Once you have selected the new Test Suite wizard, you will be prompted for a test suite

name and location.

8.1.3 Test Suite Configuration

Each test suite has configuration information associated with it. The configuration in-

formation may be accessed by double clicking on the Configuration of your test suite in

the Workspace tab.

Under the Execution Settings section, you can configure test suite setup and teardown

keywords.

8.1.4 Suite Setup Keyword

A test suite setup keyword can be used to perform any operations that may be needed

before the execution of tests such as environment setup, database connection setup, data

25

Figure 8.3: Synergy Test Suites

aggregation, etc.

Following are important points regarding suite setup:-

• A test suite setup keyword runs only once when the test suite is executed, before

any tests contained in the test suite have run.

• If a test suite has a suite setup, the setup is executed before any of the test cases.

• If the suite setup passes, test execution continues as normal.

• If the suite setup fails, none of the test cases are executed.

• Suite setups are often used for setting up the test environment.

• Since tests are not run if the suite setup fails, suite setups are extremely useful

to verify that the environment is in a state in which the tests can be executed

successfully.

8.1.5 TestSuite Teardown

A test suite teardown keyword can be used to perform any cleanup or error recovery

operations that may be needed after the execution of tests has completed. A test suite

teardown keyword runs only once when the test suite has finished executing regardless

of whether the tests contained in the test suite have run successfully.

26

If the testsuite includes Suite Teardown at the end,whatever steps are mentioned in Tear-

down are executed at the end of the Testsuite regardless of the success or failure of the

test cases.

If the suite teardown fails, all tests in the suite are marked failed afterwards. Suite tear-

downs are commonly used for cleaning up the test environment after execution.

To ensure all teardown tasks are performed, all the keywords used in the teardown are

executed even if some of them fail

8.2 Automation Library

Automation libraries contain the lowest-level keywords, often called library keywords,

which actually interact with the AUT(Application Under Test).

All test cases always make the use of keywords from some library, often through higher-

Figure 8.4: Synergy User defined keywords

level user keywords. Before any keyword provided by Synergy can be used in your test

cases, you must explicitly import the library that provides that keyword into your test

suite configuration.

Automation libraries can be imported by clicking on the Import library button which will

27

then present you with an import wizard associated with that library. For most libraries,

you can simply click Finish in the wizard in order to import the library. For some libraries,

however, you may have to provide additional parameters (such as database connection

information, for example) on various import wizard screens.

A few of the various keywords used in the existing system are shown in figure ??.

8.3 Sample test cases

The following section shows the sample OSSA UI test cases which are run to assure that

the UI complies to the defined security standards.

Figure 8.5: Test case folder structure

28

Figure 8.6: Test case 1

Figure 8.7: Test case 2

29

Figure 8.8: Test case 3

Figure 8.9: Test case 4

30

Chapter 9

Wallet Creation Automation

This chapter will explain the work that has been done to automate the tedious wallet

creation process using the orapki utility to reduce the manual effort and save time to a

much greater extent.

9.1 Orapki Utility

The orapki utility is basically used to manage public key infrastructure (PKI) elements

which include wallets and certificate revocation lists. It is provided on the command line

so that the incorporation of the tasks it performs can be done into scripts. By finding a

way to incorporate the PKI elements and their management into a script makes automa-

tion of the tasks of maintaining a PKI much easier.

9.1.1 Authentication Process

The procedure that is followed in an Oracle environment for authentication is described

as follows[7]:

1. The Oracle database server is sent a connection request by the client.

2. A handshake is performed by the Secure Sockets Layer. During this handshake,

the server authenticates itself to the client and then the client and server mutually

decides upon which cipher suite they will be using.

3. After the handshake is completed successfully, the user requests a database access.

31

4. User gets authenticated by the Oracle database server. The authentication server

uses a non-SSL authentication method like Kerberos or RADIUS.

5. Once the authentication server’s validation is performed, the Oracle database server

will grant access as well as authorization to the user, and after then only the user

can securely access the database by using SSL.

Figure 9.1: Authentication Process

9.1.2 Wallets

A wallet is a container that stores authentication and signing credentials, including pri-

vate keys, certificates, and trusted certificates SSL needs [].

Oracle Wallet Manager is used by the security administrators to manage security cre-

dentials on the server. It is used by the wallet owners to manage security credentials on

clients. The Oracle Wallet Manager is used to do the following:

• Generate a public-private key pair and create a certificate request

• Store a user certificate that matches with the private key

• Configure trusted certificates

9.1.3 The createSSLWallets.sh script

The createSSLWallets.sh script is a script that automates the entire wallet creation and

management process. It is an interactive script that prompts for user inputs. The fol-

lowing is the list of input it asks for:

• The directory paths :

This is the location where we want the wallets to get created. Under this directory,

a directory named ”rpaswallets” gets created which will store all wallets under itself.

To make sure that some old stale wallets do not mix up with the new wallets, the

32

Figure 9.2: The create wallet script

script checks whether the wallets directory is already existing or not. If yes, then

user should first remove that directory and then proceed. If no input is given wallets

get created in the current working directory by default.

• Organization name :

The user is asked to enter an organization name that is used as part of the DN

(Distinguished Name) of the certificate identities.

• Passwords for root wallet, server wallet, & client wallet :

Passwords entered are validated twice and also blank passwords are rejected.

• Output :

The output of the scripts are the steps that are performed in order to create the

wallets and certificates. A total of 17 steps is performed along with the orapki

command line for each step with password masked out is displayed. Also any error

message from orapki utility is also displayed and if error is encountered the scripts

terminates immediately. After the script gets executed successfully, the locations

of the root wallet, server wallet, and client wallet are displayed.

33

Chapter 10

Result and Analysis

This chapter will include the results/output of various configurations, function libraries

and modules. The significance of the results/outputs will also be discussed along with

the deviation from the actual results. .

10.1 Test Reports

Test reports effectively communicate our findings and conclusions to the application’s

stakeholders. Test Report is often generated to make the stakeholders aware of the

findings. Test reporting involves the analysis of the information available to support con-

clusions, recommendations, and decisions about how to guide the project forward.

Test Reports are generated on the overall testing effort, which is generated on a weekly

basis and as well as at the end of executing each test script. Weekly test status reports

give the customer, an insight into the Total Number of Test Cases written, the number

of test cases that were automated, the number of test cases that were manually executed

and it accounts the failures along with the percentage of automation. Figure 4.2 shows

the test status report.

Test Report generated after the execution of each test script contains detailed analysis

of each step in the test script. The status of each step in the test script is explicitly

explained. It also gives the reason for its failure, if any. The report gives the name of

the step that is executed, the duration of execution, its time stamp, the time taken for

response, the result of execution whether it fails or not and its summary. The summary

section gives a detailed description of the data used for execution of each particular step,

comments and warnings, if present are displayed. Failures are also reported.

34

10.2 Server Side Reporting

The main testDriver.pl script is run from the back-end server using “perl testDriver.pl

linux attribues.ini” command from the location where the file exists.After the run the

output for every testcase is generated. This maybe pass or fail result.

Figure 10.1: Directory Structure of Automation Framework

Figure 10.2: After the Run

All the test cases are written in a particular directory structure which is shown in

Figure 10.1 .This directory structure includes the following:

35

Figure 10.3: HTML report file generated

Table 10.1: Overall hours estimation for server side automation

Reported On 2017
Total available tests 1269
Execution time with automation 70.9
Execution time without automation 793

• Test Result:- This contains the detail.html file

• Scripts:- This contain perl scripts for each test suite.

• Results:- Contains all the log files

• Lib:- Contains the Module.pm module and other library files

• Data:- This folder contains the output and input files.

• Domain:- Contains the domain files on which scripts are run

• Config and data files

• testDriver.pl:- Wrapper scripts to run all tests together

• attributes.ini:- It is the initialization file that contains all the variable and it’s value

which are going to be remain constant during execution.

36

Figure 10.4: Generated log file

Input files contain the expected outcome of a particular test which is matched against

the actual output which is recorded in the output folder.

After the tests are run, the output as shown in Figure 10.2 gives the status of a test i.e

whether it has passed or failed and also the total number tests run, the number of tests

failed and number of tests that passed.Also the execution time is shown in the output.

Also a HTML file is generated which is shown in Figure 10.3 has a list of tests, their

status and link to their log files.These log files get a testname.log extension if test passed

and testname.err.log extension when test gets failed.The log files looks as shown in figure

10.4.

Table 10.1 depicts the clear picture of the hours saved with the help of the test automa-

tion framework used.The time taken in manually testing the functionalities and time

taken after automating them has a vast difference.Thus a lot of time is saved in automat-

ing these functionalities.

37

10.3 Client Side Reporting

In synergy, the reporting and logging is quite simpler as compared to server side report-

ing. In depth logs are generated on run time while executing the tests. The time taken

to run the entire test suite, number of tests passed/failed, the time taken to execute each

step in a test everything is listed in the run results. The figure 10.5 shows a sample run

result to show what all information is listed while running the tests.

Figure 10.5: Run results

Table 10.2 depicts the clear picture of the hours saved with the help of the test

automation framework used.The time taken in manually testing the functionalities and

time taken after automating them has a vast difference.

Table 10.2: Overall hours estimation for client side automation

Reported On 2017
Total available tests 1748
Execution time with automation 79.9
Execution time without automation 694

38

Chapter 11

Conclusion

Software testing is evaluating a software application to test the deflection between a given

input and an expected outcome. Through testing, the quality of the product is assured

and also ensures that all the functionalities are behaving as expected or not.

Manual software testing is done by carefully analyzing and going through application

screens in front of computers for various input combinations. Also the outcomes are

compared with the expected behavior and recording their observations.

By automating we have good reporting & debugging options that allow the user to pin-

point and fix failures quickly.Also we can ensure that all the security functionalities are

working in an expected way or not.By automating the test cases, they can be executed

repeatedly with little or no manual effort. This saves a lot of time and also these scripts

can be reused again and again for different versions of the software.The portability fea-

ture of Perl also adds up to the advantage of automating the tests.

Thus test automation is the most efficient way to enhance the effectiveness and cov-

erage of the software testing.Also we can ensure that all the application’s functionality

are working in an expected manner.

39

Bibliography

[1] Jesús Chóliz, Julián Vilas, and José Moreira. Independent security testing on agile

software development: a case study in a software company. In Availability, Reliability

and Security (ARES), 2015 10th International Conference on, pages 522–531. IEEE,

2015.

[2] Eliane Figueiredo Collins et al. Software test automation practices in agile de-

velopment environment: An industry experience report. In Proceedings of the 7th

International Workshop on Automation of Software Test, pages 57–63. IEEE Press,

2012.

[3] Barrett Gaines. Oracle® retail predictive application server administration guide

for the classic client–volume 1, release 13.2. 2010.

[4] Karen M Goertzel, Theodore Winograd, Holly L McKinley, Lyndon J Oh, Michael

Colon, Thomas McGibbon, Elaine Fedchak, and Robert Vienneau. Software security

assurance: A state-of-art report (sar). Technical report, INFORMATION ASSUR-

ANCE TECHNOLOGY ANALYSIS CENTER (IATAC) HERNDON VA, 2007.

[5] Bernadette Goodman. Oracle® retail predictive application server administration

guide, release 13.0. 2. 2008.

[6] Bernadette Goodman. Oracle® retail predictive application server administration

guide for the classic client–volume 1, release 13.2. 2010.

[7] Sumit Jeloka, Lakshmi Kethana Kalyanasundaram, Andrew Koyfman, Nina Lewis

Van Le, Stella Li, Janaki Narasinghanallur, Vikram Pesati, Andy Philips, Richard

Smith, Deborah Steiner, et al. Oracle database advanced security administrator’s

guide 10g release 2 (10.2) b14268-02.

40

[8] E Michael Maximilien and Laurie Williams. Assessing test-driven development at

ibm. In Software Engineering, 2003. Proceedings. 25th International Conference on,

pages 564–569. IEEE, 2003.

[9] Śılvia Cristina dos Anjos Seabra Monteiro et al. Analysis of an oracle rpas planning

solution. 2008.

[10] Śılvia Cristina dos Anjos Seabra Monteiro et al. Analysis of an oracle rpas planning

solution. 2013.

[11] Frauke Paetsch, Armin Eberlein, and Frank Maurer. Requirements engineering and

agile software development. In Enabling Technologies: Infrastructure for Collabo-

rative Enterprises, 2003. WET ICE 2003. Proceedings. Twelfth IEEE International

Workshops on, pages 308–313. IEEE, 2003.

[12] Bruce Potter and Gary McGraw. Software security testing. IEEE Security & Privacy,

2(5):81–85, 2004.

[13] Hitesh Tahbildar and Bichitra Kalita. Automated software test data generation:

direction of research. International Journal of Computer Science and Engineering

Survey, 2(1):99–120, 2011.

41

	Certificate
	Statement of Originality
	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	Introduction
	Literature survey
	RPAS
	Introduction
	RPAS Platform Components
	RPAS Server
	RPAS Domain Daemon
	RPAS Features

	RPAS Client
	RPAS Configuration Tools

	OSSA
	Software Security Assurance
	OSSA

	Security in RPAS

	System Implementation
	Methodology
	Test Case Design
	Test Data

	Server Side Automation
	Perl Scripting
	Development of Automation Library
	Sample test cases

	Client Side Automation
	Synergy tool
	Synergy Test Suites
	Test Suite Creation
	Test Suite Configuration
	Suite Setup Keyword
	TestSuite Teardown

	Automation Library
	Sample test cases

	Wallet Creation Automation
	Orapki Utility
	Authentication Process
	Wallets
	The createSSLWallets.sh script

	Result and Analysis
	Test Reports
	Server Side Reporting
	Client Side Reporting

	Conclusion

