
Information Security Criticality Testing and
Remediation

Submitted By

Rajvi Contractor

16MCEI24

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2018

Information Security Criticality Testing and
Remediation

Major Project

Submitted in fulfillment of the requirements

for the degree of

Master of Technology in Computer Science & Engineering

(Information & Network Security)

Submitted By

Rajvi Contractor

(16MCEI24)

Guided By

Asst. Prof. Sapan H Mankad

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2018

Certificate

This is to certify that the Major Project entitled ”Information Security Criticality

Testing and Remediation” submitted by Rajvi Contractor (Roll No: 16MCEI24),

towards the fulfillment of the requirements for the award of degree of Master of Tech-

nology in Computer Science & Engineering (Information & Network Security) of Nirma

University, Ahmedabad, is the record of work carried out by her under my supervision

and guidance. In my opinion, the submitted work has reached a level required for being

accepted for examination. The results embodied in this major project part-I and part-II,

to the best of my knowledge, havent been submitted to any other university or institution

for award of any degree or diploma.

Prof. Sapan H Mankad Dr. Sharada Valiveti

Guide & Assistant Professor, Coordinator M.Tech - INS,

IT Department, CE Department

Institute of Technology, Institute of Technology,

Nirma University, Ahmedabad Nirma University, Ahmedabad

Dr. Sanjay Garg Dr. Alka Mahajan

Professor and Head, Director,

CE Department, Institute of Technology,

Institute of Technology, Nirma University, Ahmedabad

Nirma University, Ahmedabad.

iii

Statement of Originality
———————————————————————————————————————

I, Rajvi Contractor, 16MCEI24, give undertaking that the Major Project entitled

”Information security Criticality Testing and Remediation” submitted by me,

towards the fulfillment of the requirements for the degree of Master of Technology in In-

formation & Network Security of Institute of Technology, Nirma University, Ahmed-

abad, contains no material that has been awarded for any degree or diploma in any

university or school in any territory to the best of my knowledge. It is the original work

carried out by me and I give assurance that no attempt of plagiarism has been made.It

contains no material that is previously published or written, except where reference has

been made. I understand that in the event of any similarity found subsequently with any

published work or any dissertation work elsewhere; it will result in severe disciplinary

action.

——————-

Signature of Student

Date: 18 May, 2018

Place: Ahmedabad

Endorsed by

Asst. Prof. Sapan H Mankad

(Signature of Guide)

iv

Acknowledgements

It gives me immense pleasure in expressing thanks and profound gratitude to Prof.

Sapan H Mankad, Assistant Professor, Information Technology Department, Institute

of Technology, Nirma University, Ahmedabad for his valuable guidance and continual

encouragement throughout this work. The appreciation and continual support he has

imparted has been a great motivation to me in reaching a higher goal. His guidance has

triggered and nourished my intellectual maturity that I will benefit from, for a long time

to come.

It gives me an immense pleasure to thank Dr. Sanjay Garg, Hon’ble Head of Com-

puter Science and Engineering Department, Institute of Technology, Nirma University,

Ahmedabad for his kind support and providing basic infrastructure and healthy research

environment.

A special thank you is expressed wholeheartedly to Dr Alka Mahajan, Hon’ble

Director, Institute of Technology, Nirma University, Ahmedabad for the unmentionable

motivation she has extended throughout course of this work.

I would also thank the Institution, all faculty members of Computer Engineering

Department, Nirma University, Ahmedabad for their special attention and suggestions

towards the project work.

- Rajvi Contractor

16MCEI24

v

Abstract

Application security has turned into an essential piece of Information security, it is

never again discretionary.Now a days organizations have welcome building up their own

application, so as the information related with the application expands, security has

turned into the significant worry for application security.The Application Security helps

you secure applications throughout the development and maintenance of the code.Securing

Applications helps you to secure the code from vulnerabilities. Now a days, attacker per-

form Heart-bleed, SQL injection, Cross site scripting, Cross Site Request Forgery, and

many other attacks on the application, which causes a loss of sensitive data of that appli-

cation.For protecting this kind of sensitive information source code review should be done.

Source code review is a process to identify and remove security risks of the applications

which contains sensitive information related to company. When developer develops an

application, who don’t have knowledge of how to code securely then this will create a big

security hole for the application and attacker can take advantage of this security weak-

ness. Some of the attacks are considers false negatives which your system cannot Identify.

These are the most dangerous attacks nowadays. This can result in to big damage to

the company and its reputation.So the idea is to develop the system which will help the

AppSec team to for reducing their daily manual work and protect the application from

the attackers. So I am developing the web Portal for the Application security team which

will reduce the manual work for the Bug Bounty program, where external researcher can

report the vulnerabilities which they have found during their research work.

vi

Abbreviations

SAST Static Application Security Testing

DAST Dynamic Application Security Testing

XSS Cross Site Scripting

OWASP Open Web Application Security Project
——————————————————————————————————————

–

vii

Contents

Certificate iii

Statement of Originality iv

Acknowledgements v

Abstract vi

Abbreviations vii

1 Introduction 1
1.1 Application Security . 1

1.1.1 Identification Categories . 2
1.2 Identity and Access Management . 3

1.2.1 Authentication And Authorization 3
1.3 Motivation . 4
1.4 Objective . 5
1.5 Scope of Work . 5
1.6 Tools and Technology . 6

List of Figures 1

2 Literature Survey 7
2.1 Code Review . 7
2.2 Common vulnerabilities during Code Review 8

2.2.1 SQL Injection . 9
2.2.2 Broken Authentication and Session Management 10
2.2.3 Cross Site Scripting (XSS) . 10

2.3 Problem with existing tool . 11
2.3.1 Advantages . 11
2.3.2 Disadvantages . 11

3 SAST And DAST 12
3.1 What is SAST(Static Application Security Testing)? 12
3.2 How does it work? . 13
3.3 What are the benefits? . 14
3.4 What is DAST (Dynamic Application Security Testing)? 15
3.5 What are the benefits? . 15
3.6 Modeling Web Applications Vulnerabilities 16

viii

4 System Implementation 18
4.1 Requirement . 18
4.2 Existing Tools . 18
4.3 Solution . 19

5 Working of the system 20
5.1 Implementation . 20

5.1.1 The Code Review Process . 20
5.1.2 Review Summary . 20
5.1.3 finding Summary . 21
5.1.4 Error Findings . 22

5.2 System Modules . 23
5.2.1 First Module . 24
5.2.2 Second Module . 26
5.2.3 Third Module . 29
5.2.4 Fourth Module . 32

6 Secure Coding Practices 34

7 Remediation 43

8 Conclusion 45

Bibliography 46

ix

List of Figures

1.1 Application Security Testing Methodology 2
1.2 Test Statistics . 3
1.3 Identity Management . 4

2.1 Code Review Process . 7
2.2 OWASP Top 10 . 9
2.3 SQLInjection Vulnerability . 9
2.4 SQLInjection Vector Input . 9
2.5 Cross Site Scripting attack . 10

3.1 SAST Process . 12
3.2 SAST Process . 13
3.3 DAST Process . 16
3.4 Application Vulnerabilities Modeling . 17

5.1 Criticality Level . 21
5.2 Findings by Category . 22
5.3 Security Testing dash board . 22
5.4 User Entry . 24
5.5 User Entry . 25
5.6 Thank You for Vulnerability reporting 25
5.7 Thank You for Vulnerability reporting 26
5.8 List of Vulnerabilities reported by the External security researcher 27
5.9 Internal security team will validate the bug and add some data 27
5.10 Internal security team validate the bug and pass it to higher level team . 28
5.11 Appreciation mail to the external security researcher 28
5.12 Review completed and Navigate to other page to review more Bugs . . . 29
5.13 List of only valid Vulnerabilities comes from internal security researcher . 30
5.14 Higher level team have rights to do any changes on the data 30
5.15 Higher level security team further validate the bug 31
5.16 Auto-generated mail sent to the App Owner 31
5.17 Review completed and Navigate to other page to review more Bugs . . . 32
5.18 Once Higher level security team mark the bug as invalid it will not reflect

on this page . 32
5.19 Fetching data from the Restful Web APIs to get the details about App

Owner . 33

6.1 Secure coding Practices Checklist . 35

7.1 Vulnerability Remediation Process . 43

x

Chapter 1

Introduction

1.1 Application Security

Application security has turned into an essential piece of Information security, it is never

again discretionary.Now a days organizations have welcome building up their own appli-

cation, so as the information related with the application expands, security has turned

into the significant worry for application security.The Application Security helps you se-

cure applications throughout the development and maintenance of the code.It helps to

secure the code from vulnerabilities.

Security of an application is becoming important concern as more and more appli-

cations are uploading on the network.Now a days, attacker perform Heart-bleed, SQL

injection, Cross site scripting, Cross Site Request Forgery, and many other attacks on the

application, which causes a loss of sensitive data of that application. So while developing

an application it is mandatory to ensure that it is not vulnerable to any kind of web based

attacks. Now a days, organizations have started developing their own applications which

contains sensitive data [1]. For protecting this kind of sensitive information source code

review should be done. Source code review is a process to identify and remove security

risks of the applications which contains sensitive information related to company. When

developer develops an application, who don’t have knowledge of how to code securely then

this will create a big security hole for the application and attacker can taker advantage

of this security weakness.

For the code review process there are multiple ways, SAST and DAST are one of

them. SAST (Static Application Security Testing),which is also known as white-box

1

testing methodology where application is tested from inside to outside by reviewing the

source code which may shows that whether there is presence of security vulnerability

or not.DAST (Dynamic Application Security Testing),which is also known as black-box

security testing methodology where an application is tested from the outside to inside by

reviewing an application while it is in it’s running state and try to perform some attacks

as attacker perform [2]. As shown in fig.1 there are various stages of web application

security testing methodology like information gathering, planning analysis, Vulnerability

Detection, Penetration Testing And Reporting.

Figure 1.1: Application Security Testing Methodology

1.1.1 Identification Categories

When application goes through various process of code review, there are some tools and

also manually vulnerabilities are found. When tool raise an alert for the vulnerability

there are chances that actually vulnerability is not present. Here are some of those

scenarios.

• True Positive: Which means Condition is detected actually when condition is

present. Basically it will classify intrusion in the system as an intrusion.

• True Negative: This means it does not detect the condition when the condition

is absent. So it will correctly classify the normal data as an normal.

• False Positives: Which means Condition is detected actually when condition is

absent. Basically it will incorrectly classify normal data as intrusion in the system.

2

Figure 1.2: Test Statistics

• False Negatives: This means it does not detect the condition when the condition

is present. So it will incorrectly classify the intrusion as an normal[3].

1.2 Identity and Access Management

It empowers the correct people to get to the correct assets at the correct circumstances

and for the correct reasons.Organizations keep on adding service for both inside clients

and their customers.Numerous services may need identity management to provides such

services to their clients.Identity alliance involves at least one frameworks that unify client

get to and enable clients to sign in view of authenticating against one of the framework

partaking in that federation. The SAML (Security Assertion Markup Language) is a

globally accepted XML based language for getting security by protecting integrity and

authentication of SAML assertions.

1.2.1 Authentication And Authorization

Authentication: Server uses authentication to check that who is using their services,etc.

In that user have to show it’s identity to server or client. It does not specifies which type

of tasks a user can perform or which kind of files a user can see.Authentication only

specifies and check who is the person or system accessing service provided by them. List

of possible issues related to authentication

• Disclosing sensitive information

• No user lock down policy in place

3

• Authentication Bypass

• Single Sign on can be abused

Figure 1.3: Identity Management

Authorization: It is a process by which server checks whether client has any kind of

permission to use resources or not and he can access some files or not. So in other words

it is a function which specifies who have access rights to which resources and that is

related to information security. Here are some possible weak area in application for the

authorization.

• Insecure Session tokens

• Authorization mechanism is weak

• Bypass the single place authorization

• Bypass the role-based weakness and exploitation

1.3 Motivation

When developers develop an application sometimes he has not taken care of secure cod-

ing practices. So there are many vulnerabilities in the applications which needs to be

fixed before it goes for the users to use it. If such things is not taken care then outside

threat will always be their because many application may contain sensitive data related

to it’s organization or their user which is not supposed to be exposed.For example, if

developer have not used parameterized query for the SQL statements than there will

always threat of attacks like SQL injection. There some other kind of attacks like Cross

Site Scripting(XSS),Heart-bleed,XML signature wrapping attacks,Zero days, Broken au-

thentication,etc can be possible. And when application goes through the tools for code

4

review some times even tools can’t detect some of those vulnerabilities.So there should

be some proper system which can detect most of the vulnerabilities in the application, re-

duce manual task of the AppSec team, and also able to do pen-testing on the application

before it goes live.

1.4 Objective

The objective of the project is to design a system that will reduce the huge manual work

of AppSec team for application code review. By developing this kind of system it will be

easy for the team to go through the code and find vulnerabilities. This system will reduce

the rate of false negatives up to certain extent and also reduce some known attacks. And

also it will automate the Application security portal, which also allows the external user

to report the suspicious behaviour of an application. Which will add the values for the

organization because as the number of attacks/vulnerabilities decreases value/reputation

of that organization increases gradually.

1.5 Scope of Work

For the code review process every application needs to be register in the Application

Security Portal. In review process there are four steps: 1. Register: where the owner of

the application have to register their application on the AppSec portal. 2. Plan: where

they need to answer some of the questions for the security start process. 3. Scan: where

all the review process has to be done, one report is generated and 4. Remediate: where the

security vulnerabilities get solved and the app owner is notified if their application have

any vulnerabilities. To reduce some manual work which appsec team is doing currently,we

are developing one more portal for Appsec where users can report vulnerabilities in the

applications which they are using related to our organization. This portal is developed

using Visual Studio 2017 and we are planning to automate this portal using selenium

framework. [4]

5

1.6 Tools and Technology

• Visual Studio 2017 - Provides Integrated development environment, which allows

you to develop web sites, web services, mobile apps, etc.

• NetSparker - Web application security Scanner.

• Selenium - Software testing framework for web application.

• Windows Services

6

Chapter 2

Literature Survey

2.1 Code Review

Main task is to review the applications and provide the security stars.App security is like

if your code has not maintain the proper standards or some basic rules etc,then there

are chances of attacks on that app.So code scan review is important.Coding standard

should be maintain if it is not then there vulnerabilities or open issues.Review process

has divided into three parts: Static, Dynamic and Manual.Following image shows

the process for the source code review:

Figure 2.1: Code Review Process

Code scan review process is divided into three steps. Register, Plan and scan.After

all this done AppSec team will start remediation process.[5]

• Register: This is the initial step for Code Review process. In this step Owner of

7

the application has to register his app with the AppSec Portal. That AppOwner

has to follow certain steps and after that they are provided with unique AppId.

• Plan: In this step, AppOwner have to answer some questions related to their

application. These questions are related to the some of the security concerns which

an AppOwner should answer.Each and evry application which is registered with

the AppSec portal have to have PKI certificate only after that, an application can

be registered with the portal. The answers are recorded and it is transfer to the

reviewer for the review along with the for the review.

• Scan: This step means after doing all this stuff by AppOwner the code of the

application will be given to the Intel Standard Tool for code scan process. This

code is provided by the ApOwner only. This scan can be done manually and also

by the tool. If some of the language is not supported by the tool then AppSec team

have to manually review that application for the vulnerability check.After doing this

one report is generated which includes detailed description about vulnerabilities.

Then AppSec team will review this After scan one report has been generated by

the tool with the detailed description about the vulnerabilities.Using this report

remediation process is done. [6]

2.2 Common vulnerabilities during Code Review

As per the OWASP top 10 standards their are list of vulnerabilities which is very common

in the application. And those vulnerabilities needs to be taken care for the security

purpose.Attackers may use different paths through the application which will results in to

harm the company.According to OWASP top 10 Application is exposed means vulnerable

to attacker when:

• The data which is supplied by the user is not validated properly,if that data is not

filtered and sanitized properly.

• Non-parameterized queries are used.

• Coding is not done as per the secure coding standards.

8

Figure 2.2: OWASP Top 10

2.2.1 SQL Injection

SQL Injection is a vulnerability which is described as one of the most serious vulnerabil-

ities. If there is SQL Injection Vulnerability in the web application then it may allow an

outsider means attacker to get into the application and allows the attacker to get com-

plete access to the database of the application. This database contains some sensitive

information related to organization.

SQL Injection occurs when an attacker tries to change the effect of it by simply

giving the SQL keywords inside the query.This injection can be done in multiple ways

like Injection using cookies,user inputs,server variables. Here is one example of this

attack.Let’s say there is one web application which have command:

Figure 2.3: SQLInjection Vulnerability

Figure 2.4: SQLInjection Vector Input

Here In fig. 2.3 user is modifying passwords by,first he or shes checks that current

9

password is known and then will change the passwords if the previous check is success-

ful.Then the query string is sent to the database. SQLInjection is all about compromising

your database with the help of these kinds of Injection Vectors. Because ”–” is the SQL

Injection vector in fig. 2.4, everything which is after that vector is considered as comment

in the database.

2.2.2 Broken Authentication and Session Management

The commonness of broken authentication is across the board because of the plan and

usage of most personality and access controls. All the stateful applications have Session

management and its s very important for authentication. There are many automated

tools which is used by the attackers to catch the broken authentication with the help of

list of passwords and attacks like dictionary attacks. There are some things which shold

be taken care like secure channel should be used to transport cookies, if it is possible

then all traffic should be conducted over the HTTPS, password should be complex and

strong.

2.2.3 Cross Site Scripting (XSS)

Figure 2.5: Cross Site Scripting attack

This type of attack uses scripting codes in the web application in which those codes

10

are added in to the output of that application then it will be sent directly to the user’s

browser who is accessing that web application.It happens when progressively created site

pages show input that isn’t appropriately approved.This permits an attacker to implant

pernicious JavaScript code into the produced page and execute the content on the machine

of any client that perspectives that site. There are three types of XSS:Reflected XSS,

Stored XSS and DOM XSS.

2.3 Problem with existing tool

The tool which is used for code review is capable of searching most of the vulnerabilities.

But there are some cases where tool is not able to identify some of the attacks. And also

some languages are not supported by the existing tool[7]. So there are chances of attacks

like identity theft, Zero days, Heart bled, etc. So for all this things manual review is

needed.

2.3.1 Advantages

• Find weaknesses at the exact location in the code.

• If automated tools are used then it is relatively fast.

• Used only by the trained developer who can fully understand the code written.

2.3.2 Disadvantages

• If manually conducted then it is time consuming.

• Tool do not support all the programming languages.

• Produce False Positives and False Negatives.

• tool is only good as the rules which are statically defined to find vulnerabilities.

11

Chapter 3

SAST And DAST

Figure 3.1: SAST Process

3.1 What is SAST(Static Application Security Test-

ing)?

Application security have been raised exponentially due to increasing huge amount of

cybercrime and some malicious activities which made each and every organization to

think over their sensitive data which is under their applications. SAST stands for Static

Application Security Testing. We can also refereed to as ’White-Box’ testing. This is the

static security analysis method that can statically scan the source code and look for the

vulnerabilities. There is no need to compile the code. SAST should be the mandatory

12

requirements for the organizations because are are large amount of attacks which is taking

place at application layer. [8]

3.2 How does it work?

Figure 3.2: SAST Process

Solutions which comes of out SAST process are directly integrated to the development

environment which allows the developers to check their code continuously.By doing this

process vulnerabilities in the source code can be easily avoided. For now our main focus

is on SAST code scanning. Specific tool is used for SAST process which takes the data

which is source code uploaded by the app owner and scan the whole code line by line,

after scanning it will generate one report which shows the list of possible vulnerabilities

in the code. This report includes all the information about code which is vulnerable for

that application.

Then Security experts will help the developer to fix the issues and again the whole

process take plan unless and until all the source code of the application is fully secure.

13

There some cases where security experts have to do manual scanning for finding bug’s in

the application’s source code also.

There are three different types of vulnerabilities level generated using the tool which

we call it as Criticality. On the basis of criticality there are three levels, which are High,

Medium and low.

• High: This is the first type of criticality. High criticality means that action should

be taken fast to resolve this type of serious issues. High means that bug needs to

be solved first as it has high security alert.

• Medium: This is the second level bug that needs to be fixed after high criticality

bugs are resolved. This type of bugs have lesser security risks compare to high

criticality.

• Low: This vulnerability does not really required to be solved as this has nothing

to do with the attacks. Its warning kind of thing if developer wants to solve it then

they can solve or request team to solve it but its not necessary as such.

3.3 What are the benefits?

• This process is able to find out vulnerability at the proper location of the source

code.

• If automated tools are being used then this process is much faster.

• Before the application is being deployed this process is able to expose vulnerabilities

in the source code with the help of some tools.

• This tools are checking the source code and some times binaries line by line also

and after doing that they are able to find the flaws and show the results to the

security expert, which will help the developer to use some secure coding practices

and make their application secure.

• By detecting the security issues at very early stages of release of that application,

high criticality issues can be easily resolved.

14

3.4 What is DAST (Dynamic Application Security

Testing)?

DAST performs the analysis test on the applications which are in their running state.This

type of security testing is very help full when applications are live and security experts

wants to check whether there are any security loopholes or not. It is also famous as Black

Box Testing just because it does not uses the flaw of SAST testing flaw like viewing the

source code of the application, what is does is, this process uses the same flaw which

attacker uses with the aim of get into the applications by finding security bridges. This

requires tools to perform analysis.There many tools available in the market for DAST

process but it depends on the organization which tool they should use according to their

needs.

DAST is always in search for different types of security issues like i/o validation

problem, which can result in to XSS attack or SQLi. Basically this process gives the full

picture of security loopholes in the respective application[9]. DAST misses the mark once

more because of its inherited attributes, which empower it to begin working simply after

the build is finished.DAST tools also offers the risk analysis facility during the remediation

period which means developers have no idea about the exact location of vulnerability.

DAST tools can easily find exploitable vulnerabilities compare to SAST.

3.5 What are the benefits?

• DAST analysis is able to track data in the real time and security index is capable

of all websites.

• DAST can able to find vulnerabilities which SAST can’t find.

• It provide support for almost all the languages like PHP, .NET, JAVA, etc so that

it can run all the test cases.

• Analysis can track data in real time and security index is capable of all your web-

sites.

• Fix all issues more rapidly with definite remediation data.

15

Figure 3.3: DAST Process

• False negatives can be eliminated as threat research team is focusing on different

new bugs and this will be helpful for the remediation process.

• With the unlimited licence access Threat security team is always there to answer

user’s queries and help user to solve the vulnerabilities in can he is not able to solve

it.

3.6 Modeling Web Applications Vulnerabilities

The essential goals of data security frameworks are to ensure privacy, trustworthiness,

and accessibility. From our examples it is obvious that compromising trustworthiness can

also cause compromise in privacy and accessibility[10]. The following figure states that

how this three main categories can compromise.

Because of this unauthorized data are used to construct authorized output without

any secure coding practices or sanitation. There is a clear need for some mechanism that

16

Figure 3.4: Application Vulnerabilities Modeling

specifies very good secure coding practices.

17

Chapter 4

System Implementation

4.1 Requirement

While developing an application there are vast amount of issues related to security. For

securing application, it goes through various process of code review. At the time of

identifying the bug during the code review process some of the tools which are used for

that process can easily detect security bridges but this is not true every time. Some areas

in the application where tools doesn’t reach create major problem when application goes

live.So this types of bugs which tools are not able to find should be fixed as soon as

possible. For now we are creating and automating one portal where security researchers

report the bugs which they have discovered and then security experts will help the app

owners to fix the issues.

4.2 Existing Tools

For the application security code review process tools which are used for scanning the

source code are very useful. They are able to generate report after scanning the full

source code line by line. With the help of this report security experts resolve the bugs

and help the app owner to fix the issues and send them report. This tools are company

certified tool. This tools have all the capabilities of finding the vulnerability line by line.

And they can also generate the report as per the requirement. So this will be very helpful

for the security experts as well as the app owner to fix the issues in their application.

18

4.3 Solution

The solution for current challenges are have to be implemented. So we are developing

the portal for the application security team, where external researchers will report the

vulnerabilities which they have found during their research, with the full detail of him or

her and vulnerabilities. We are planning to provide them many other options like they

can also upload the files if they want to show where the exact problem in the application

is and how they have found the bug. After the external researchers have submitted all

the vulnerabilities on the portal, this all comes to the security expert team. They have

to decide and check whether all this vulnerabilities which external security researchers

have reported are valid or not. They also do penetration testing to find exact path for

the issues. After the vulnerabilities are marked as fix, security experts send an email to

the relevant app owner regarding this issues and help them to remediate this issues. For

the future work, planning to automate this process so there are less chances of attacks

and also planning to implement secure coding mechanism that we have used to create

the system to identify as much attacks as possible.

19

Chapter 5

Working of the system

5.1 Implementation

5.1.1 The Code Review Process

As discussed earlier the process of identifying vulnerabilities from the code review, and

with the help of report generated by the tool, security experts mark the bugs on the

basis of the bugs criticality. And as per the criticality that bug the marked as per the

risks levels like, High, Medium and Low.After all this process completed the report with

the valid issues is sent to the application owner, so that they can fix the issues. Security

researchers also helps the app owner to fix this issues. Developer can use this findings for

the improvement of his application by including some secure code mechanisms. To some

extent this process does not find each and every bugs for the particular application. So

there are some areas which still have some issues which my cause a big damage if they are

not taken care properly. Source code review is not a golden bullet but it is very strong

in the whole mitigation process.

5.1.2 Review Summary

When an application owner develops an application, code review is must before their

application goes live because developers may have not used the secure coding practices

while developing an application. So first thing they do is, upload the zip format of

the application code on the portal. This will directly come to the application security

experts. This come to security plan on the portal. where app owner have to answer some

questions related to their application and then SAST process starts.Application security

20

researchers review the report generated by the tools and take some actions on it. App

Owner has to solve all those issues that are there in the report. In case of anything that

App Owner is unable to understand, he can contact to the security team to make him

understand. Developer has to solve high category vulnerability first where ever it is in

the report. High category application is the big threat to the system. After done with

the high, medium one has to be solved.

So this process have main focus are like source code file upload in the zip format,SAST

process, tools review the application, report generated by the tool, manual review of the

application, helping the app owner to fix the issues.Each member of the application

security team assigned with application in the queue for the code review process.

5.1.3 finding Summary

Suppose I have reviewed one application and at the end of the review report have the

graphical representation which shows the criticality level, like High, Medium,Low. Which

shown in the following figure.

Figure 5.1: Criticality Level

As per the order of criticality issues which have high criticality need to be fixed first

after that medium and then low criticality issues have to be solved. High criticality issues

are the one which are very serious, if they are not taken care seriously then big damage

to the company can happen.

The following figure shows the sample security code review report. From this we can

come to know that which vulnerability is to be solved first. All the vulnerability names

are given and which vulnerability falls under which category are also given. Based on

that developer has to solve all those.

21

Figure 5.2: Findings by Category

5.1.4 Error Findings

From the report generated by the tool, which shows where the issues are in the source

code and that will help the application security experts to guide the developers and help

them to fix the issues in their application.Figure 6.3 is the of how the security dash board

looks like when the vulnerability detected and where it is, this is not the exact figure but

similar to this is generated. Other figure shows how different types of vulnerabilities.

Figure 5.3: Security Testing dash board

22

5.2 System Modules

There are basically three modules in the current system which I have developed. Based

on the requirements we have divided the modules into three parts. First module is for

the external security researcher where they can report the bugs which they have found

during their research work. Second module is for the internal team where they will get

the lost of bugs reported by the external security researcher. And the last module is for

sending an automated email to the respective App Owner of the application which is

having the bug, to notify that this issue needs to be fixed as soon as possible.

Here is the detail description of each modules. There are also screen shots of the

portal which is under development, where external researcher report vulnerabilities and

application security experts review that vulnerabilities, give update regarding this to

relevant application owner. Also planning to use some automation and source code

mechanisms, in the system which I’m developing.

The system flow is as follows:

• External Researcher Bug Reporting Page

• Thank You Message for External Researcher

• Application security Security Team Review Page

• Application Owner Details from API’s

• Automatic Email generation to App Owner for reporting bugs

Here is the diagram of the system flow.

23

Figure 5.4: User Entry

5.2.1 First Module

First module is for External security researcher. External security researcher finds the

vulnerability during their research work on the external application. Then they have to

report it to the organization’s security research team. Earlier this process was manual

where external security researcher have to send an mail to the org’s security mailbox.

But now they have to submit their findings on the portal which I have developed.

As shown in Fig. 5.5 and Fig. 5.6, External security researcher will fill up the form

like his/her basic details, which type of vulnerability he/she has found, provide the URL

of vulnerable page, Any extra comment they want to add or any recording/ proof of

concept they can attach. As per Fig. 5.7 external security researcher receives thank you

message and one navigation link that will redirect him to the same page on which they

have reported bugs, where then can report more bugs.

24

Figure 5.5: User Entry

Figure 5.6: Thank You for Vulnerability reporting

25

Figure 5.7: Thank You for Vulnerability reporting

5.2.2 Second Module

The second is for Internal security team which are us. Earlier we received bugs reported by

external security researcher through email, but now I have created a portal for the internal

security team where they can see list of bugs reported by external security researchers as

shown in Fig. 5.8 . Here Internal security team can select the vulnerability which he/she

want to review as per the vulnerability name.

After selecting the vulnerability they will be redirected t the next page where they can

see the web form containing the data of vulnerability they have selected. This data we are

fetching it from the database. Here there are some more fields like IAP number, infosec

comments, bug is valid or not this all things are filled by Internal security team. And

basis on the vulnerability, it’s criticality will be decided and according to the criticality

we have specified the number of day to close the issue. After filling the data reviewer

will validate the issue, means reproduce it. If the issue is valid then reviewer will click

on accept button otherwise reviewer will click on the reject button to ignore the issue

because it’s not valid or that issue will be already resolved.

Now if the accept button is clicked then list of only valid issues will go to the higher

level internal researcher team. And also there is one auto-generated mail which is send

to the respective external security researcher for appreciating their efforts which is shown

in Fig. 5.9 and Fig. 5.10 . Now as shown in Fig. 5.11 they will be redirected to the page

where their review is done and one link is given through which they can navigate to the

26

page where they get list of vulnerabilities to review more. This is where internal security

team work is done and issue is pass it to Higher level team to take actions on it.

Figure 5.8: List of Vulnerabilities reported by the External security researcher

Figure 5.9: Internal security team will validate the bug and add some data

27

Figure 5.10: Internal security team validate the bug and pass it to higher level team

Figure 5.11: Appreciation mail to the external security researcher

28

Figure 5.12: Review completed and Navigate to other page to review more Bugs

5.2.3 Third Module

In the third module all the vulnerabilities validated by the internal security team comes

under higher level security team as Shown in Fig. 5.13. Now higher level security team

will choose one of the vulnerabilities and it will fetch all the data according bugs selected.

Now As the data shown in Fig. 5.14 and Fig. 5.15 can be changed by the higher level

security team. Suppose they have found that the vulnerability is not SQL Injection but

it’s a Cross site scripting (XSS) then they have rights to change this fields.

After the vulnerability is validated second time by the higher level security team then

they will click on the accept button. At that time automated mail will be generated to

the App Owner of the respective vulnerability as shown in Fig. 16. Now as shown in Fig.

5. 18 higher level security team can be navigated to review more bugs, but they can see

only the bugs which are valid as shown in Fig.5.18.

29

Figure 5.13: List of only valid Vulnerabilities comes from internal security researcher

Figure 5.14: Higher level team have rights to do any changes on the data

30

Figure 5.15: Higher level security team further validate the bug

Figure 5.16: Auto-generated mail sent to the App Owner

31

Figure 5.17: Review completed and Navigate to other page to review more Bugs

Figure 5.18: Once Higher level security team mark the bug as invalid it will not reflect
on this page

5.2.4 Fourth Module

In this module I have used API service to fetch the App Owner’s details from the restful

APIs. This data is used to send an automated email to respective App Owners to

32

notify them that this are the list of vulnerabilities external researcher have found in your

application. All the details provided by the App Owner is fetched from the database.

As shown in Fig. 5.19 all the data can be fetch using c from the restful web APIs.

Now the counter emails are generated and send to the app owner as per the criticality of

the vulnerability. This is the batch job which runs twice in a week to all the app owners

who’s application have vulnerability.

Figure 5.19: Fetching data from the Restful Web APIs to get the details about App
Owner

33

Chapter 6

Secure Coding Practices

As per the estimation of Gartner through 2020, 99/100 vulnerabilities which are exploited

by the attacker are the ones which Security and the IT professionals already knows about

it from last one year. Most of the organizations are facing hacks and security breaches

which covers security bugs which security researchers are already aware about it. Before

any application goes live it should go through the secure coding life cycle, so that there

are very minimal chances of an attack like SQL injection, encryption exploit, XSS, etc..

can be reduced. There are certain ways to avoid such attacks which are listed below, this

are nothing but some secure coding practices which any development team can adopt

to make their application secure before it is externalized. Some basic understanding of

security guidelines are required while building an secure application/software.

The main goal of securing the software is to maintain CIA which are Confidentiality,

Integrity and Availability of data and information stored in the application.There are

some security controls which needs to be implemented while developing any application.

Now a days attackers are getting into application layer which is very dangerous. The

listed techniques can be adopted to mitigate critical vulnerabilities in the application to

prevent attacks.

Before mitigating the risks we need to understand what is Risk? Risk is nothing but

the factor which causes a threat to the business, which leads to a big loss of reputation,

money, etc. There are two different approaches from the development team side and

attacker side, that how the application can be hacked. In most of the cases Development

team’s point of view of developing an application is what is the current requirement

and what can done to full those requirements.While attacker’s view to the application

34

is to exploit it in such way that they can use that application to get important data,

to harm organization’s reputation or for personal use. So listed guidelines are designed

for identifying the issue and how to mitigate from the issue to keep your application as

well as organization secure. Here are some Secure coding practices suggested by OWASP

which are listed below.

Figure 6.1: Secure coding Practices Checklist

So listed guidelines are designed for identifying the issue and how to mitigate from the

issue to keep your application as well as organization secure. Here are some Secure coding

35

practices suggested by OWASP which are listed below. Here is the detailed description

of each of the Secure coding best practices.

1. Input Validation

• Trusted entities like Server’s must have all kinds of Data Validations

• If the Validation fails there should be input rejection also

• Data range should be validated

• Data length should be validated

• When redirection is happening data must be validated to check there is no

malicious content

• Also it is good to check the header request and response having on ASCII

values

• Apply white listing for validation

• List out which are the trusted and untrusted data source and apply proper

validation according to that

• All the data coming from client side must be validated before it will go for

further processing

• Use proper encoding schema for inputs which application is taking

2. Output Encoding

• All the encoding must be performed on the trusted entities only

• Find out standard and the routine which is already tested for the outbound

encoding

• All the characters should be encoded properly though they seems to be safe

• Sensitization should be done on all the outputs of the data which is untrusted

for database queries.

• For the OS commands all the untrusted output of the data must be sanitized

properly

• HTML entity encoding can also be used for better security

36

3. Authentication and Password Management

• Authentication should be applied for all the pages except the pages which are

not externally visible

• Trusted system must have all the authentication controls

• Trusted systems like server’s must be provided with Password hashing

• For transferring auth. credentials us HTTP POST method only

• It is feasible to transfer only non-temporary passwords on the secure channel

• There should be proper policies for the password length and characters

• There should be some secure level of controls while resetting or changing pass-

words

• There should be a policy for disabling the account if the user have attempt to

logging more then the threshold

• Before storing any password on the trusted system, it should be hashed prop-

erly

• There should be time stamp give for the password resetting process, after

certain time link for the password reset should get expired

• The password which is temporary should be enforced to change while using it

next time

• User should get any notification via email or message that his/her’s password

is being resetting

• Avoid using same password for different accounts

• Make sure you are not marking remember me while entering the password

• If user is doing some critical task make sure they are re-authenticated first

4. Session Management

• Session id must be created on the trust worthy servers only

• All the pages which are under protection of authentication must have logout

feature

37

• Every time when re-authentication happens there should be generation of new

session id

• While transmitting cookies through TLS/SSL connection make sure secure

attribute is set

• Use proper access controls for server so that it will provide protection for server

side session data which is accesses by unauthorized user

• There should be different session prior to login and after the login is successful

• Session id’s should not be displayed directly or indirectly in the URL or any

error message

5. Access Control

• It security information is not access by the application then deny all the re-

quested access

• Any request comes first there should be authorization check to be done

• Provide resources to authorized users only

• Users who are authorized should be provided access for the protected URLs,

rest should not

• Grant access for the application data and confidential data to only authorized

users only

• Particular services should be provided to the specific authorized user only

• Protected features and functions should be assign to the users who are unau-

thorized only

• Applications which have logic flows must be compliant with the business rules

• Provide a time frame in which users or devices can perform specific number of

transactions only

6. Cryptographic Practices

• Protect the valuable and sensitive information from unauthorized users

• It cryptographic modules fails, it should fail very securely

• Make use of the cryptographic algorithms to protect the data in the application

38

• Cryptographic algorithms should be kept on the secure servers only

• When your application is using random numbers or creating random num-

bers for provideing more security, it should use cryptographic random number

generation algorithms only

• Make sure that cryptographic keys must be managed as per the security poli-

cies and rules

7. Error Handling and Logging

• Make sure that when error message displays it is not containing any sensitive

information which may lead to security threat

• To prevent of showing any debugging information or stack trace related infor-

mation make use of error handlers

• Create an error message that will display every time when error occurs

• When any error occurs the allocated memory should be free properly

• Only trusted system should have all the sensitive logging controls

• Ensure all the logs are secure properly because it have all the important log

event related information

• Each and every input validations functionality should be logged properly

• Maintain a data for all the authentications which is being done

• Make sure all the failed authentication details should also be stored properly

• Create an entry of all the attempts which is being made to connect with invalid

or the tokens which are expired

• All the exception created in the system must be logged properly

• Any attempt made to the TLS/SSL connection which is failed must be logged

properly

• Sever sided code should be protected in a way that user is not able to download

• It is not advisable to store any passwords or cryptographic keys on the client

side in clear text

• All the sensitive information must be encrypted properly

39

8. Communication Security

• While transmitting the sensitive information on the channel it should be en-

crypted

• There should be a valid domain name for the TLS certificates

• If TLS connections fails then it should not go in to any insecure connection

• Do proper utilization of all the TLC connection for all the external systems

• There should be proper encoding for the characters for all the connections

9. System Configuration

• All the servers, system components and related frameworks are working on

updated versions

• Not a single directory should be visible to the unauthorized users

• There should be least privileges given for all the servers and it’s process

• If some files and features/functionality are not required then no need to store

it

• When any exceptions happens, and it fails then it should be failed securely

• Before the deployment step remove all those unnecessary display of files, codes

and comments

• When HTTP response comes it should not contain any unwanted information

in it

• HTTP Methods which are not required should be disable

• Production network and development environment should be isolated

10. Database Security

• Parameterized queries must be used

• Strongly typed has to be applied on variables

• For accessing the database make use of the credentials which are secure only

• While creating an application connection string should not be there as hard

coded

40

• The connection should always be closed as early as possible

• If certain features and functionality are not required then turn it off

• If vendor’s content is not necessary then remove that too

• Some accounts which are default is no longer required then disable them too

11. File Management

• Any dynamic function should not be provided with the data which is supplied

by the user directly

• If the file is being uploaded then there should be some mechanism for re-

authentication

• Only some types of files are allowed to be uploaded

• After the file is uploaded make sure that it is being validated by checking it’s

headers and extensions etc

• File should be stored on the web server or the relevant database

• File directories privileges should be turned off

• Client should not be provided with the full/absolute file path

• All the files and related data should be read-only

• After the file is uploaded scan it to check whether it have virus or malware

12. Memory Management

• For the data which is untrusted, there should be proper utilization done for

the input and output validation controls

• To prevent from buffer overflow make sure that buffer is as large as needed

• Also check that source and destination buffer size are equal

• When non executable stacks are available make use of that only

• Also check the boundaries of buffer if the function which is calling is in the

loop

• Don’t use the functions which are vulnerable and not known

• After the function is completed free the memory which is allocated

41

13. General Coding Practices

• Use the manage code which is already tested and approved

• OS should not be issued with the commands directly

• The variables which are shared and some resources must be protected from

unwanted access

• To make sure the that the interpreted code is secure make use of check-sums

or hashes

• The functions which are dynamically executed should not be passed with data

supplied by the user

• Do not allow the user to create a new code or do any alteration for the existing

code

• Make use of safe updating, if automatic updates are there then make use of

cryptographic signatures

42

Chapter 7

Remediation

After finding all the possible vulnerabilities in application, one report related to all this

vulnerabilities is generated. With the help of this report this loopholes needs to be taken

care otherwise attacker will take advantage of all this weakness in the application and

perform some unethical steps which may lead to exploitation of sensitive information.

So remediation process is very important after vulnerabilities are conformed. Security

expert will review all the listed possible vulnerabilities in detail.

Figure 7.1: Vulnerability Remediation Process

As shown in Fig. 7.1 there are basically three process in vulnerability remediation.

One is Vulnerability Assessment, second is Penetration testing, and last is Revise and

Implement security controls.

• Vulnerability Assessment: It is the initial step of searching, prioritizing and

reviewing the vulnerabilities in the application. This process have so many things

43

which is common with risk assessment. Which also includes finding vulnerabilities

and threats to each application.

• Penetration testing: It is the process of exploiting the possible vulnerabilities in

the application to check whether application is responding to some specific types of

malicious inputs or not. It also shows if the application is actually vulnerable then

what it can damage during the real time attack.

• Revise and Implement security controls: In this step AppSec security expert

revise all the step of the application which have vulnerabilities and try to cooperate

with developers to make development process secure means help the developers to

code securely.

To make sure this remediation plan is working efficiently the AppSec security experts

will work with the developers to guide them how to use secure coding during building

an application so that at the very basic level such kind of vulnerabilities can be avoided.

AppSec security experts also suggest following secure coding practices to the developers

for the secure development of any application.

• Input Validation should be done properly

• Prepared Statements should be used

• CSRF Tokens to be used

• HTML Encoding to be taken care

• Use escape sequence

• Password protection

• Technical message should not be displayed

44

Chapter 8

Conclusion

As the existing tools are not able to capture all the vulnerabilities during SAST process.

So some of the vulnerabilities needs to be taken care during the source code review.

For this manual code review needs to be done and this manual process is little bit time

consuming. So as per the Application Security standards if code review is done properly

also with the help of existing tools application can be prevented from the attackers.There

is always loophole into the system but AppSec team is making sure that we can provide

as much security as possible to your system. And to reduce this too much of manual

work I have developed a web portal where all the data is stored in the database, so that

it can be accessible in future also. In the development of this portal I have added some

additional features which are earlier on that in the manual system, this will increase the

potential of the system.

45

Bibliography

[1] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y. Kuo, “Securing web

application code by static analysis and runtime protection,” in Proceedings of the

13th international conference on World Wide Web, pp. 40–52, ACM, 2004.

[2] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A static analysis tool for detecting

web application vulnerabilities,” in Security and Privacy, 2006 IEEE Symposium

on, pp. 6–pp, IEEE, 2006.

[3] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y. Kuo, “Securing web

application code by static analysis and runtime protection,” in Proceedings of the

13th international conference on World Wide Web, pp. 40–52, ACM, 2004.

[4] A. D. Brucker and T. Deuster, “Static application security testing,” Nov. 4 2014.

US Patent 8,881,293.

[5] M. Bartel, J. Boyer, B. Fox, B. LaMacchia, and E. Simon, “Xml-signature syntax

and processing,” W3C recommendation, vol. 12, p. 2002, 2002.

[6] M. McIntosh and P. Austel, “Xml signature element wrapping attacks and counter-

measures,” in Proceedings of the 2005 workshop on Secure web services, pp. 20–27,

ACM, 2005.

[7] J. Somorovsky, “On the insecurity of xml security,” it-Information Technology,

vol. 56, no. 6, pp. 313–317, 2014.

[8] N. Antunes and M. Vieira, “Comparing the effectiveness of penetration testing and

static code analysis on the detection of sql injection vulnerabilities in web services,”

in Dependable Computing, 2009. PRDC’09. 15th IEEE Pacific Rim International

Symposium on, pp. 301–306, IEEE, 2009.

46

[9] M. Bruhn, M. Gettes, and A. West, “Identity and access management and security

in higher education,” EduCause Quarterly, vol. 26, no. 4, pp. 12–17, 2003.

[10] A. Petukhov and D. Kozlov, “Detecting security vulnerabilities in web applications

using dynamic analysis with penetration testing,” Computing Systems Lab, Depart-

ment of Computer Science, Moscow State University, 2008.

47

	Certificate
	Statement of Originality
	Acknowledgements
	Abstract
	Abbreviations
	List of Figures
	Introduction
	Application Security
	Identification Categories

	Identity and Access Management
	Authentication And Authorization

	Motivation
	Objective
	Scope of Work
	Tools and Technology

	Literature Survey
	Code Review
	Common vulnerabilities during Code Review
	SQL Injection
	Broken Authentication and Session Management
	Cross Site Scripting (XSS)

	Problem with existing tool
	Advantages
	Disadvantages

	SAST And DAST
	What is SAST(Static Application Security Testing)?
	How does it work?
	What are the benefits?
	What is DAST (Dynamic Application Security Testing)?
	What are the benefits?
	Modeling Web Applications Vulnerabilities

	System Implementation
	Requirement
	Existing Tools
	Solution

	Working of the system
	Implementation
	The Code Review Process
	Review Summary
	finding Summary
	Error Findings

	System Modules
	First Module
	Second Module
	Third Module
	Fourth Module

	Secure Coding Practices
	Remediation
	Conclusion
	Bibliography

