

Third International Conference on Nanomaterials: Synthesis, Characterization and Applications (ICN 2018)

Novel theranostic nanocarriers for brain tumor targeting.

Patel Vimal D*, Shah Jigar N. Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad-382481. Gujarat. email id: 16ftphdp44@nirmauni.ac.in

Fast progression and poor diagnosis of brain tumors are still an encounter major health problem, in spite of the use of invasive resection surgery, radiotherapy and chemotherapy in clinics. Growing of tumor in surrounding peripheral tissues creates continuous changing of vasculogenesis and tumor microenvironment could be effective target in brain tumor drug delivery. Targeted drug delivery system increases the drug accumulation in brain tumor and decreases the toxicity in surrounding normal brain tissues. In this review we highlight the latest research, opportunities and challenges for developing theranostic nanocarriers targeted strategies for brain tumor imaging using polymeric nanoparticles, liposomes, micelles, dendrimers, metallic quantum dots, carbon dots, graphene conjugated nano-vectors along with neuronal therapy and neurotoxicity studies and also review molecular trojan for brain delivery.

Brain tumor: Current status

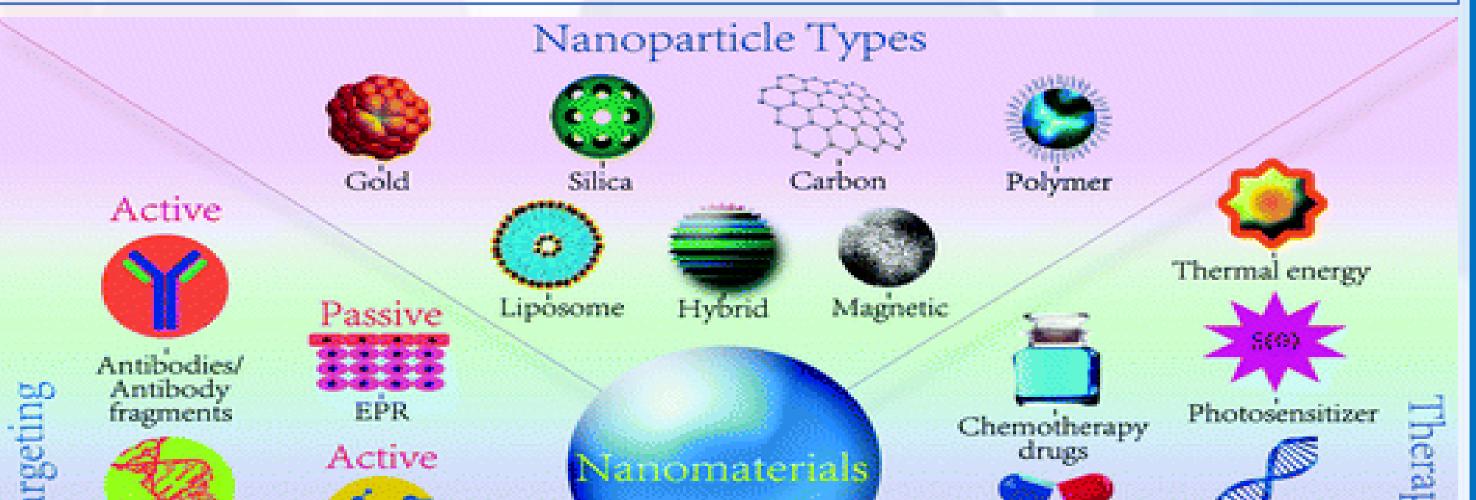
 \succ The brain cancer i.e., both malignant and non-malignant are reported with an $\mid \succ$ Non-toxic, biodegradable & biocompatible

Ideal properties of nanoparticles for brain drug delivery:

Particle diameter between 10-100 nm average incidence of 28.57 per 100,000 population.

- \succ They are the most common cancers among those ages from 0 to 19 years, with a mean annual age-average morbidity rate of 5.57 per 100,000 population.
- > 5-year survival rate of patients suffering from CNS cancers is only 33.3% and this rate is still diminishing, though, for most of other types of malignancies, it is increasing.
- \blacktriangleright The average duration of survival is even less and fall between 15 to 22 months.
- Gliomas represent 78% of all malignant brain tumors and in males between the

age of 20–39 years, are the most common cause of cancer-related death.


Recent Advances In Nano-theranostic Nanocarrier For Brain Tumor Targeting:

Polymeric micelles	:			Active	Gold Silic		
Polymeric material	Drug delivery	Major Findings			Passive Liposome	Hybrid Magnetic	Thermal energy
c(RGDyK)-PEG-PLA micelles	· · · ·	Enhancing anti-glioblastoma paclitaxel. In vitro studies, increases cytot by 2.5 times.	effect of toxicity effect	fragments	EPR Active	momaterials	ntrollable Photosensitizer
TPGS micelle	Docetaxel	Increases cytotoxicity by 3 fold.			Peptides	dr	ug release
cRGD-(1,2-diamine cyclohexane)- platinum-II	Oxaliplatin	Increases tumor targeting capabil	lity of cRGD.	Small molecules	Fluoresce	ent dyes Magnetic materials	Other therapeutic agents
p-HA-PEG-DSPE Docetaxel micelles		In-vitro cytotoxicity against U87MG increases by 1.2 times Enhance anti-glioblastoma activity of			X-ray Gas-le ontrast agents parti	oaded Radiolabels O icles Imaging	ther st agents
Angionan 2 modified American		docetaxel. Better inhibit of orthopic U87MG human		Polymeric nanoparticles:PolymericDrug/Gene		Major Findings	
PE-PEG tander nano- n-B micelles		glioma. Uniquely combine brain tumor-targeting & cell-penetrating functions		material	delivery	major i manigs	
				PLGA + Poloxamer 188	Doxoribicin	Reduces brain tumor transcytosis without a	in rat model, increa
Metallic quantum dots (QDs):			RGD-grafted	Palcitaxel	Enhances tumor targeting efficiency to $\alpha_v \beta_i$ integrin, increases survival time		
Metal sourses Surface (Core/Shell) functionalization		Major Findings		PLGA with PCL- b-PEG ligand chain	o-PEG ligand Reduction in growth of transplanta		
[64Cu]Culns/Zns PEG-GSH		Active targeting to glioblastoma U87MG cell beared tumor mice		mPEG-PLA/PLGA		Enhancing drug permeability through transcytosis by altering BBB.	
	obetaine-	Active targeting to U87MG glioblastoma through cRGD conjugation, High ERP & Low RES		transcytosis peptidomimetic Abs			
	KRK peptide	Highlight tumor boundaries calle	ed "Guerilla".	cRGDyK-PEG-	Intracranial		ene delivery to U87N
CdSe/ZnS Transferrin		High labelling efficacy of QDs655-transferrin in U87MG human glioma cells.		PEI References:	gene	cells.	
Graphene quantur	n dots (GOE	(s):		1. Reddy GR et al. V	Vascular targeted na	noparticles for imaging a	nd treatment of brain tur
		Major Findings		Clin Cancer Res 2006;2(12):6677-6687.			
	delivery			2. Bhojani MS, Dort MV, Rehemulla A, Ross BD. Targeted imaging & therapy of brain cancer			
activity of		The conjugation enhanced Diactivity of DOX. Boost anti-cancer activity of Dox		 using theranostic nanoparticles. Mol Pharm 2010;76:1921-1929. Chen Y et al. Multifunctional nanoparticles for brain tumor diagnosis & therapy. Adv E Deliv Rev 2014;1:42-57. 			
CD-Asp (D-glucose, Transferrin L-Aspartic acid)		High selectivity & targeting ability toward orthotopic C6 glioma bearing mice		4. Viswanadh MK et al, Nanotheranostics: emerging strategies for early diagnosis & therapy of brain tumor. Nanotheranostics 2018;2:70-86.			
Folic acid PEGylated Angiopep-2 GQDs		Observed glioma imaging over high sensitivity over normal brain tissues		5. Wolfbeis OS et al. Chem Soc Rev 201		noparticles commonly used	l in fluorescence bioimag

- > Physical stability *in vivo* & *in vitro*
- > Avoidance of RES leads to prolonged blood circulation time
- \triangleright CNS targeted delivery via receptor-mediated transcytosis across brain capillary endothelial cells

 P_4

- Scalable & cost-effective manufacturing process
- > Amenable to small molecules, peptides, proteinsor nucleic acid
- degradation/alteration, > Formulation stability, minimal chemical protein denaturation

