
Identification Of Validation Collaterals Using
Architecture Specification

Submitted By

Jagruti Jamba

16MCEC05

DEPARTMENT OF COMPUTER ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2018

Identification Of Validation Collaterals Using
Architecture Specification

Major Project

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology in Computer Science and Engineering

Submitted By

Jagruti Jamba

(16MCEC05)

Guided By

Prof. Rupal Kapdi

DEPARTMENT OF COMPUTER ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2018

Certificate

This is to certify that the major project entitled ”Identification Of Validation Collat-

erals Using Architecture Specification” submitted by Jagruti Jamba (16MCEC05),

towards the partial fulfillment of the requirements for the award of degree of Master of

Technology in Computer Science and Engineering (Specialization in title case, if appli-

cable) of Nirma University, Ahmedabad, is the record of work carried out by her under

my supervision and guidance. In my opinion, the submitted work has reached a level

required for being accepted for examination. The results embodied in this major project

part-I, to the best of my knowledge, haven’t been submitted to any other university or

institution for award of any degree or diploma.

Prof. Rupal Kapdi Dr. Priyanka Sharma

Guide & Assistant Professor, Professor,

CE / IT Department, Coordinator M.Tech - CSE (Specialization)

Institute of Technology, Institute of Technology,

Nirma University, Ahmedabad. Nirma University, Ahmedabad

Dr. Sanjay Garg Dr. Alka Mahajan

Professor and Head, Director,

CE Department, Institute of Technology,

Institute of Technology, Nirma University, Ahmedabad

Nirma University, Ahmedabad.

iii

Statement of Originality
———————————————————————————————————————

I, Jagruti Jamba, 16MCEC05, give undertaking that the Major Project entitled

”Identification Of Validation Collaterals in Architecture Specification” sub-

mitted by me, towards the partial fulfillment of the requirements for the degree of Master

of Technology in Computer Science & Engineering of Institute of Technology, Nirma

University, Ahmedabad, contains no material that has been awarded for any degree or

diploma in any university or school in any territory to the best of my knowledge. It is

the original work carried out by me and I give assurance that no attempt of plagiarism

has been made.It contains no material that is previously published or written, except

where reference has been made. I understand that in the event of any similarity found

subsequently with any published work or any dissertation work elsewhere; it will result

in severe disciplinary action.

———————–

Signature of Student

Date:

Place:

Endorsed by

Prof. Rupal Kapdi

(Signature of Guide)

iv

Acknowledgements

It gives me immense pleasure in expressing thanks and profound gratitude to Prof.

Rupal Kapdi, Associate Professor, Computer Engineering Department, Institute of

Technology, Nirma University, Ahmedabad for his valuable guidance and continual en-

couragement throughout this work. The appreciation and continual support she has

imparted has been a great motivation to me in reaching a higher goal. Her guidance has

triggered and nourished my intellectual maturity that I will benefit from, for a long time

to come.

It gives me an immense pleasure to thank Dr. Sanjay Garg, Hon’ble Head of Com-

puter Engineering Department, Institute of Technology, Nirma University, Ahmedabad

for his kind support and providing basic infrastructure and healthy research environment.

A special thank you is expressed wholeheartedly to Dr. Alka Mahajan, Hon’ble

Director, Institute of Technology, Nirma University, Ahmedabad for the unmentionable

motivation he has extended throughout course of this work.

I would also thank the Institution, all faculty members of Computer Engineering

Department, Nirma University, Ahmedabad for their special attention and suggestions

towards the project work.

- Jagruti Jamba

16MCEC05

v

Abstract

Enhancements in technology, to some extent, have empowered the progress of multi-

million gate designs from very large printed circuit sheets to small-sized processor chip.

With the consistently expanding complexities and contracting geometries, the difficulties

with processor configuration have developed significantly. The expanded complexities

of processors have provoked the need of increase in design, functional and performance

verification efforts to meet the client and time-to-market demands. Thus, the traditional

verification techniques no longer satisfy the needs of verifying complex architecture as

a whole. Hence, it is necessary to upgrade the techniques for effectively carrying out

the verification so that it can cover all the corner cases and analyse them if the given

architecture design or instruction set behaves as per the expectations.

AVS is widely used test suite for carrying out verification of the ARM architecture. The

grounds of verification or the parameters serve as the basis for carrying out any verification

or validation. This report will be describing the steps to be performed prior to the

verification process and also the motivation behind it. It also describes the verification

technique that is conducted in ARM.

vi

Abbreviations

A32 ARM Instruction Set

AVS Architecture Validation Suites

DPLL Davis-Putnam-Logemann-Loveland Procedure

ELR Exception Link Register

FP Floating Point

ISS Instruction Set Simulator

PC Program Counter

PE Processing Element

PSTATE Program State

RISC Reduced Instruction Set Computer

SAT Satisfiability

SIMD Single Instruction Multiple Data

SMT Satisfiability Modulo Theroies

SP Stack Pointer

T32 Thumb Instruction Set
——————————————————————————————————————

–

vii

Contents

Certificate iii

Statement of Originality iv

Acknowledgements v

Abstract vi

Abbreviations vii

List of Figures x

1 Introduction 1
1.1 Motivation . 1
1.2 Objective . 1
1.3 Thesis Organization . 2

2 ARM Architecture 3
2.1 ARMv8A Architecture . 3
2.2 Execution States . 4
2.3 ARM Instruction Sets . 5

3 Scalable Vector Extension 6
3.1 Introduction . 6
3.2 SVE Architectural State . 8
3.3 Scalable Vector Length . 9
3.4 Horizontal Operations . 9
3.5 Predication . 9
3.6 Floating Point . 10
3.7 SVE verus NEON . 10

3.7.1 NEON Instructions . 10
3.7.2 How does SVE differ from Neon? 11

4 Arm Architecture Verification 12
4.1 What is Architecture Verification? . 12
4.2 What is a Validation Collateral? . 13
4.3 Importance Of Validation Collaterals For Verification Engineer 13

viii

5 Literature Survey 14
5.1 Verification Techniques . 14
5.2 Coverage Driven Validation . 16
5.3 Model Checking Based Test Generation 18
5.4 Test Generation Using Model Checking 20
5.5 Deterministic And Random Instruction Sequence Simulation 21

5.5.1 Deterministic simulation . 21
5.5.2 Random Instruction Simulation 22

6 Architecture Validation Suite 23
6.1 AVK (Architecture Validation Kit) . 24
6.2 The Verification Flow . 24

6.2.1 Gathering up the Validation Collaterals 25
6.2.2 Stacking up the Validation Collaterals into a Scenario Document . 25

7 An approach for gathering Interesting Data-Sets (Step-2 Of the Verifi-
cation Flow) 27
7.1 What are interesting datasets? . 27
7.2 An Approach for collecting such datasets 27

7.2.1 Symbolic Execution . 27
7.2.2 Constraint Solvers - Satisfiability Modulo Theories 28
7.2.3 SMT Solving Approach . 29
7.2.4 Symbolic-execution based analysis 30
7.2.5 The flow for gathering interesting datasets using the above 30

8 Conclusion And Future Scope 31
8.1 Conclusion . 31
8.2 Future Scope . 31

Bibliography 32

ix

List of Figures

3.1 SVE Registers [2] . 8
3.2 SVE predicate organization [2] . 8
3.3 Different Data Types supported By Different Architecture Versions[6] . . 11
3.4 SVE versus NEON [6] . 11

5.1 Simulation-based validation [4] . 15
5.2 Coverage-Driven Verification Methodology [3] 18
5.3 Test generation by Design Decompositions [3] 19
5.4 Test generation through Model Checking [3] 20

6.1 The Verification Flow . 25
6.2 Writing up the scenarios in Scenario document 26

7.1 A sample Code [8] . 28
7.2 Collecting Interesting Data-Sets . 30

x

Chapter 1

Introduction

1.1 Motivation

The major issues with the processor are 1. scalability and 2. The complicated ISA

(Instruction Set Architecture) with increased number of instructions to perform different

kinds of computations. This in turn leads to complicated Verification Process which

requires effective verification techniques and also the organized data-set to be fed into

the various verification tools. AVS is one of the tools used at ARM for verification of ARM

Architecture. We need to verify if ARM cores of same architecture version are software

compatible with each other. Cores from Architecture licensees are s/w compatible with

all other cores (ARM and others) of the same Architecture version. AVS is one such tool

we have been using to meet our requirements. But there are some steps that need to

be performed before actually carrying out the verification process as verification process

itself requires some set of data (dependency data set) on which it can rely for carrying

out verification as a whole.

1.2 Objective

1. Dependency set identification

• Identify the architectural states that affect the outcome (set of dependencies) of a

particular feature For eg. traps.

• This could be used as a query mechanism by architects to check if the pseudocode

actually meets the architectural intent.

1

• Reviewers to easily gauge the quality of testing.

• Test-writers to identify vector sets to feed into test-generation aspects.

2. Checkpoint set identification

• Identify the architectural states(direct and indirect) to be checkpointed for efficient

feature validation which could feed into different tools performing verification (can

be either determininstic or random instruction simulation).

• Identification of pseudo states is the challenge.

3. Interesting data set Collection: that can feed into verification tools.

Cover the corner scenarios and the ones which are prone to be misinterpreted.

1.3 Thesis Organization

• Chapter 2 gives the Introduction to ARM Arhictecture.

• Chapter 3 describes the Scalable Vector Extension and how it differs from the

NEON.

• Chapter 4 is the literature survey describing various verification techniques that are

used in ARM.

• Chapter 5 describes the various approaches for conducting the verification process.

• Chapter 6 describes the overall flow of the verification process and my contribution

in the beginning steps.

• Chapter 7 describes the approach followed for collecting interesting datasets

• Chapter 8 is all about the conclusion and the future scope.

2

Chapter 2

ARM Architecture

2.1 ARMv8A Architecture

ARM Architecture is a RISC architecture which defines the behaviour of an abstract

object which can be referred to as PE. A PE is basically the smallest unit of the

architecture.[1]

The features of ARM architecture include the load/store operations performed on

registers to access the data rather than directly accessing the memory for the same.

It also has very simple addressing modes wherein the all the addresses of load/store

are determined from the instruction fields and registers contents only. The architecture

defines the interaction of the PE with memory, including caches, and includes a memory

translation system. It also describes how multiple PEs interact with each other and with

other observers in a system. The ARM architecture supports implementations across a

wide range of performance points. Implementation size, performance, and very low power

consumption are key attributes of the ARM architecture.[1]

The ARMv8 architecture supports:

• A 64-bit Execution state, AArch64.

• A 32-bit Execution state, AArch32, that is compatible with previous versions of the

ARM architecture.

Both Execution states support SIMD and floating-point instructions:

3

AArch32 state provides:

• SIMD instructions in the base instruction sets that operate on the 32-bit general-

purpose registers.

• Advanced SIMD instructions that operate on registers in the SIMD and floating-

point register (SIMDFP register) file.

• Floating-point instructions that operate on registers in the SIMD FP register file.

AArch64 state provides:

• Advanced SIMD instructions that operate on registers in the SIMD and floating-

point register (SIMD FP register) file.

• Floating-point instructions that operate on registers in the SIMD FP register file.

2.2 Execution States

The Execution State defines the execution environment of a Processing Element which

includes the size of the registers and the instructions.

The Execution states are:

AArch64 The 64-bit Execution state. This Execution state:

• Provides 31 64-bit general-purpose registers, of which X30 is used as the procedure

link register.

• Provides a 64-bit program counter (PC), stack pointers (SPs), and exception link

registers(ELRs).

• Provides 32 128-bit registers for SIMD vector and scalar floating-point support.

• Provides a single instruction set, A64.

• Defines the ARMv8 Exception model, with up to four Exception levels, EL0 - EL3,

that provide an execution privilege hierarchy.

• Provides support for 64-bit virtual addressing.

4

• Defines a number of Process state (PSTATE) elements that hold PE state. The

A64 instruction set includes instructions that operate directly on various PSTATE

elements.[1]

• Names each System register using a suffix that indicates the lowest Exception level

at which the register can be accessed.

AArch32 The 32-bit Execution state. This Execution state:

• Provides 13 32-bit general-purpose registers, and a 32-bit PC, SP, and link register

(LR). The LR is used as both an ELR and a procedure link register. Some of these

registers have multiple banked instances for use in different PE modes.

• Provides 32 64-bit registers for Advanced SIMD vector and scalar floating-point

support.

• Provides two instruction sets, A32 and T32.

• Supports the ARMv7-A exception model, based on PE modes, and maps this onto

the ARMv8 Exception model,that is based on the Exception levels.

• Provides support for 32-bit virtual addressing.

2.3 ARM Instruction Sets

In ARMv8 the possible instruction sets depend on the Execution state:

AArch64 - AArch64 state supports only a single instruction set, called A64. This is a

fixed-length instruction set that uses 32-bit instruction encodings.

AArch32 - AArch32 state supports the following instruction sets:

• A32 This is a fixed-length instruction set that uses 32-bit instruction encodings.

• T32 This is a variable-length instruction set that uses both 16-bit and 32-bit in-

struction encodings.

5

Chapter 3

Scalable Vector Extension

3.1 Introduction

Design expansions are regularly to some degree moderate when they are first presented

and are then extended as their potential turns out to be better comprehended and tran-

sistor spending plans increment.

A few objectives guided the plan of the design. In the first place was the need to

broaden the vector processing ability related with the ARM AArch64 execution state

to better address the register necessities in areas for example, superior figuring (HPC),

information investigation, PC vision and machine learning.

Second was the desire to introduce an extension that can scale across multiple imple-

mentations, both now and into the future, allowing Architecture designers to choose the

vector length most suitable for their power, performance and area targets. The engineer-

ing ought to abstain from forcing a product improvement cost as the vector length changes

and where conceivable lessen it by enhancing the range of compiler auto-vectorization ad-

vancements.

It permits implementations to pick a vector register length between 128 and 2048

bits. It supports a vector length rationalist programming model which enables code to

run and scale consequently over all vector lengths without recompilation. At long last, it

presents a few imaginative highlights that start to conquer a portion of the conventional

6

boundaries to auto-vectorization.

These augmentations productively target media and picture processing workloads,

which regularly process organized information utilizing very much adapted DSP calcula-

tions. Nonetheless, as our accomplices keep on deploying ARMv8-An into new markets we

have seen an expanding interest for more radical changes to the ARM SIMD engineering,

including the presentation of surely understood advancements, for example, gather-load

and scatter-store, per-lane predication and longer vectors.

However, this brings up the issue, what should that vector length be? The decision

from over a time of research into vector preparing, and taking motivation from more

traditional vector structures, is that there is no single length vector length.

Thus, SVE leaves the vector length as an optional decision (from 128 to 2048 bits,

in increases of 128 bits). Vitally the programming model modifies progressively to the

accessible vector length, with no need to recompile abnormal state dialects or to modify

hand-coded SVE get together or compiler intrinsics. At an high level, the key SVE

highlights empowering enhanced auto-vectorization support are:

• Scalable vector length - expanding parallelism while permitting usage decision.

• Rich addressing modes - support for the access of non-linear data.

• Per-lane predication - permitting vectorization of loops containing complex control

stream.

• Predicate-driven loop control reduces vectorization overhead with respect to scalar

code.

• A rich arrangement of flat operations applicable to more sorts of reducible loop-

carried conditions.

• Vector partitioning and programming oversaw speculation empowering vectoriza-

tion of loops with information subordinate ways out.

• Scalarized intra-vector sub-loops allowing vectorization of loops with more intricate

loop conveyed conditions.

7

3.2 SVE Architectural State

Figure 3.1: SVE Registers [2]

SVE presents new design state, appeared in Fig.2.1. This state gives thirty-two new

adaptable vector registers (Z0 Z31). Their width is usage subordinate inside the pre-

viously mentioned territory. The new registers broaden the thirty-two 128-piece wide

Advanced SIMD registers (V0 V31) to give adaptable holders to 64-, 32-, 16-, and 8-bit

information components. Nearby the versatile vector registers, are sixteen scalable pred-

icate registers (P0 P15) and a unique reason first-faulting register (FFR).

Figure 3.2: SVE predicate organization [2]

8

3.3 Scalable Vector Length

Within a fixed 32-bit encoding space, it isn’t suitable to make an alternate direction set

each time an alternate vector width is requested. SVE drastically leaves from this ap-

proach in being vector length skeptic, permitting every execution to pick a vector length

that is any various of 128 bits in the vicinity of 128 and 2048 bits (the current design

upper constrain). Not having a settled vector length enables SVE to address different

markets with executions focusing on distinctive execution control territory enhancement

focuses.

This novel part of SVE empowers programming to scale various vector lengths with-

out the requirement for extra direction encodings, recompilation or programming porting

exertion. SVE gives the capacities to programming to be vector length rationalist us-

ing vector partitioning while likewise supporting more traditional SIMD coding styles

requiring settled length, different of-N or energy of-two sub-vectors.

3.4 Horizontal Operations

Another issue for conventional SIMD preparing is the nearness of conditions over various

circle cycles. Much of the time, these conditions can be settled utilizing a straightforward

even decrease operation. Not at all like ordinary SIMD directions, even operations are an

exceptional class of directions that work over the components of the same vector enlist.

SVE has a rich arrangement of even operations counting both sensible, whole number

and floating point decreases as well as strictly-ordered reduction for floating-point.

3.5 Predication

Predicates are presented by an ordinary ”if change” pass that replaces if-proclamations

predicates and after that uses the proper predicate on each operation commanded by the

control of the condition. This approach is reached out to deal with restrictive fans un-

aware of what’s going on, by embeddings a ’brk’ direction that produces a vector parcel

where just those paths before the circle leave condition are dynamic.

9

3.6 Floating Point

Floating point is a test for compiler vectorization because vectorizing a lessening circle

will change the request of floating point operations which may give an alternate outcome

from the first scalar code. Software engineers at that point need to pick whether they

need reliable outcomes by crippling vectorization or whether they can endure some variety

to accomplish better execution. Vector length skepticism presents more variety because

an alternate vector length could cause an alternate requesting and, in this manner, an

alternate outcome. SVE mitigates this by giving ’fadda’ that enables a compiler to

vectorize those situations where the exact request of drifting point increases is basic to

rightness.

3.7 SVE verus NEON

Throughout the years, extensive research has gone into deciding how best to extricate

more information level parallelism from universally useful programming dialects, for ex-

ample, C, C++ and Fortran. This has brought about the consideration of vectorization

highlights, for example, scatter - store and gather load, per-lanepredication, and obviously

longer vectors.

A key decision to make is the most fitting vector length, where many elements may

impact the choice:

Current usage innovation and related power, execution and region tradeoffs.

The particular application program attributes.

The market, which is HPC today; in the same manner as general patterns in PC

design development, a developing requirement for longer vectors is normal in different

markets later on.

3.7.1 NEON Instructions

The NEON technology is a packed SIMD architecture. NEON registers are considered

as vectors of elements of the same data type. Multiple data types are supported by the

technology. The following table describes data types as supported by the architecture

version.[6]

The NEON instructions perform the same operations in all lanes of the vectors. The

10

Figure 3.3: Different Data Types supported By Different Architecture
Versions[6]

number of operations performed depends on the data types. NEON instructions al-

low up to: 16x8-bit, 8x16-bit, 4x32-bit, 2x64-bit integer operations 8x16-bit*, 4x32-bit,

2x64-bit** floating-point operations The implementation on NEON technology can also

support issue of multiple instructions in parallel.

*Only in Armv8.2-A

**Only in Armv8-A/R [6]

3.7.2 How does SVE differ from Neon?

SVE is just an optional extension to NEON instructions which does not replace NEON,

but provides the ability to vectorise the HPC workloads.

Figure 3.4: SVE versus NEON [6]

11

Chapter 4

Arm Architecture Verification

4.1 What is Architecture Verification?

Functional verification of microprocessors is one of the most complex and expensive

tasks in the current system-on-chip design methodology. Simulation using functional

test vectors is the most widely used form of processor verification.[3] A major chal-

lenge in simulation-based verification is how to reduce the overall verification time and

resources.[3]

Traditionally, billions of irregular and coordinated tests are utilized amid reenact-

ment. Compared to random tests, directed tests can lessen general approval exertion

fundamentally since shorter tests can get a similar scope objective. Nonetheless, there is

an absence of computerized systems for directed test age focusing on small scale struc-

tural outline mistakes.

Verification is the way toward guaranteeing that the purpose of a plan is protected

in its execution. Functional Verification can uncover practical rationale blunders in the

equipment outlines which are depicted in behavioral model, enlist exchange level model,

door level model, or switch level model. Useful mistakes are presented because of different

elements including imprudent coding, error of the detail, microarchitectural plan unpre-

dictability, corner cases. In the event that any utilitarian bug is found in a chip officially

manufactured, the mistake should be revised and the changed adaptation of the outline

should be manufactured once more, which is extremely costly. In the most noticeably

12

awful case, bug settling after conveyance to clients will involve an expensive substitution

and also re-creation costs.

In present day system-on-chip outlines, formal verification is one of the major bot-

tlenecks because of the consolidated impacts of expanding outline unpredictability and

diminishing time-to-advertise. Outline many-sided quality of current processors is ex-

panding at a disturbing rate to adapt up to the required execution change for progres-

sively perplexing applications in the areas of correspondence, sight and sound, systems

administration and amusement. To suit such speedier calculation necessities, the present

processors utilize numerous muddled small scale building highlights, for example, pro-

found pipelines, dynamic booking, out-of-arrange and superscalar execution, and dynamic

theory.

4.2 What is a Validation Collateral?

Verification of an Architecture can be performed on some ground parameters or data

which serve as the base of verification process. Thus, Validation collaterals can be defined

as the specifications or ground parameters or some data which can helpfully determine

certain architecture states that are prone to easy misinterpretations. A validation collat-

eral can be anything for example. a dependency data set, a checkpoint data set, some

scenario sets or the data sets of interests.

4.3 Importance Of Validation Collaterals For Verifi-

cation Engineer

Once a verification engineer has enough dataset to carry out the verification, the pro-

cedure can be continued very easily, since every verification process reqiures data of

instructions in which each istruction can have certain corner cases, some psuedo states

which can be misinterpretated, and some expected outcomes under certain scenarios.

Thus, It is necessary to find out these relevant datasets as verification process cannot

work actually without input dataset.

13

Chapter 5

Literature Survey

5.1 Verification Techniques

Existing processor verification methods are comprehensively arranged into formal pro-

cedures and reenactment based strategies The exchange off between formal procedures

and reenactment based strategies is their ability and fulfillment in check. Formal con-

firmation methods give the culmination of check errand by demonstrating scientifically

the rightness of a plan. Be that as it may, they experience issues in managing the vast

plans because of the state space blast issue. Hypothesis demonstrating model checking

SAT unraveling representative reproduction furthermore, equality checking are regularly

utilized for formal confirmation of processor outlines.

Simulation based approval finds outline mistakes utilizing test vectors comprising of

input jolts and expected yields. In spite of the fact that recreation based techniques

can deal with complex processor outlines, they can’t accomplish the fulfillment of check.

For instance, for microchip check, all conceivable information direction successions are

required keeping in mind the end goal to affirm the accuracy of a given chip outline. In

any case, it is difficult to produce and mimic them in a sensible time. In this manner, for-

mal strategies are more material to the confirmation of the little and basic parts, though

simulation based strategies are more invaluable in approval of a predefined plan by giving

a check.

The essential technique in simulation based processor approval comprises of creating

14

Figure 5.1: Simulation-based validation [4]

test programs, recreating a given processor plan with the test programs, contrasting the

created yields with the normal outcomes, and adjusting plan mistakes if the simulation

yields are unique in relation to the normal outcomes. A noteworthy test in processor

approval is the manner by which to decrease the general approval time and assets. Since

the test age and recreation for all information test programs is not feasible, a technique

for choosing powerful tests is required to accomplish high certainty of the processor plan.

In expansion, test age procedures must have the capacity to oblige complex processor

outlines and additionally deliver tests in sensible time.

There are three sorts of test age methods: irregular, compelled arbitrary, also, co-

ordinated. In the current modern practice , arbitrary and compelled irregular test age

methods at engineering (ISA) level are most broadly utilized on the grounds that test

projects can be delivered naturally and plan mistakes can be revealed ahead of schedule

in the configuration cycle. Be that as it may, countless are required to accomplish high

certainty of the outline rightness, and corner cases are barely noticeable. Moreover, build-

ing test age procedures experience issues in actuating small scale building target ancient

rarities and pipeline functionalities since it isn’t conceivable to create data with respect

15

to pipeline communications or timing points of interest utilizing input ISA particular.

Compared to the arbitrary or compelled irregular tests, the coordinated tests can

diminish general approval exertion essentially since shorter tests can get the same prac-

tical scope objective. Notwithstanding, there is an absence of robotized strategies for

coordinated test age focusing on miniaturized scale engineering deficiencies. Accordingly,

coordinated tests are regularly manually written by specialists. Because of manual ad-

vancement, it is infeasible to create all guided tests to accomplish extensive scope and this

procedure is tedious and blunder inclined. Hence, there is a requirement for mechanized

coordinated test age methods in light of miniaturized scale structural practical scope.

Test age utilizing formal techniques has been effectively utilized because of its ability of

programmed test age. Be that as it may, the customary test age procedures are inadmis-

sible for substantial plans because of the state blast issue. To address these difficulties,

my examination gives computerized test age methods utilizing disintegration of processor

plan and property to make the formal strategies material practically speaking.

5.2 Coverage Driven Validation

A principle downside in simulation based approval is that a confirmation of the accuracy

of the plan requires comprehensive reproduction which is conceivable just for little plans.

At the end of the day, a specific level of certainty can be accomplished by recreating the

configuration utilizing a huge volume of tests. Be that as it may, there is an absence

of good measurements to evaluate his level of certainty and to qualify a test set. Sub-

sequently, it is difficult to answer the question, ”At the point when is check done?” ,

because of trouble in measuring check advance furthermore, test viability.

A conventional stream of scope driven approval starts by characterizing scope met-

ric, taken after by test age .A scope metric gives an approach to perceive what has not

been confirmed and what tests ought to be included. Numerous scope measurements

have been proposed for various sorts of plan blunders (e.g., control stream, information

stream) and at diverse outline deliberation levels (e.g., behavioral, RTL, entryway level).

In scope driven test age, tests are made to enact an objective scope point and it can

viably diminish the quantity of tests contrasted with the arbitrary test age. Through

16

reenactment, the scope is broken down by looking at whether target functionalities have

been secured or on the other hand not. In the event that scope gaps are found, extra tests

are created to practice them. In the event that higher level of certainty is required, the

scope metric can be enhanced or utilization of extra scope measures can be made possible.

Verification architects can change the extension or profundity of scope amid the ap-

proval process. For instance, they can begin from basic scope measurements in the early

check stage and utilize more perplexing scope measurements later on. In any case, existing

scope measurements try not to have an immediate association with the outline usefulness,

a scope metric is required in light of the usefulness of the outline. This paper gives an

extensive practical scope metric by characterizing a useful blame model for pipelined pro-

cessors. Albeit coordinated tests require a littler test set contrasted with arbitrary tests

for the same utilitarian scope objective, the quantity of tests can in any case be amazingly

substantial.In this manner, there is a requirement for useful test compaction procedures.

My examination gives a useful test compaction strategy to lessen the coordinated test set.

The figure shows the overall procedure of the Coverage-Driven Architecture Verifi-

cation Methodology. The initial step is to make a processor show and an functional

fault model from the processor engineering particular. Next, it produces a rundown of

all conceivable useful flaws in view of the blame model and the processor display under

approval. Test compaction is performed before test age by disposing of the excess issues

for the given plan imperatives. One of the rest of the shortcomings is chosen for test age.

A test program for this blame is delivered consequently by formal onfirmation techniques,

e.g., model checking.The fault then gets removed from the fault list.

Funnctional test verification is performed after this stream of test age. It is imperative

to take note of that two stages of compaction procedures are connected prior and then

afterward test age. This report makes three noteworthy commitments: I) improvement of

effective fault models also, a scope metric for pipeline cooperation functionalities, ii) fault

test age procedures utilizing formal strategies for current complex processor outlines, and

iii) functional test verification.

17

Figure 5.2: Coverage-Driven Verification Methodology [3]

A pipeline connection fault model is characterised utilizing both diagram and FSM-

based demonstrating of pipelined processors. The blame model is utilized to characterize a

useful scope. The practical scope is utilized to gauge the approval advance by announcing

the shortcomings that are secured by a given arrangement of test programs.

5.3 Model Checking Based Test Generation

A noteworthy bottleneck in processor approval is the absence of computerized instruments

and methods for coordinated test age. Show checking-based test age has been presented

as a promising methodology for pipelined processor approval because of its capacity

of programmed test age. Nonetheless, conventional methodologies are unsatisfactory

for extensive outlines because of the state blast issue in display checking. A proposed

18

effective test age method utilizing both plan and property disintegrations to empower

display checking-based test age for complex outlines.

Figure 5.3: Test generation by Design Decompo-
sitions [3]

Processor model can be created from the engineering particular or can be produced

by the architects. The properties can be produced from the particular in view of a useful

scope, for example, diagram scope or pipeline communication scope. Extra properties

can be included based intriguing situations utilizing joined pipeline arrange principles

and corner cases. For proficient test age, the properties and the processor demonstra-

tion are disintegrated. Show checker and SAT solver are utilized to create incomplete

counterexamples for he apportioned modules and decayed properties. These incomplete

counterexamples are incorporated to develop the last test program.

The proposed technique makes three essential commitments: I) it builds up a tech-

nique for deteriorating a fleeting rationale property into different properties, ii) it intro-

duces a calculation for combining the counterexamples created by disintegrated proper-

ties, and iii) it builds up an incorporated system to help both plan and design disinte-

grations for proficient test age of pipelined processors.

Model checking is a formal technique for confirming limited state simultaneous frame-

works by demonstrating scientifically that a framework display fulfills a given particular.

19

The model is regularly gotten from an equipment or programming plan and the determina-

tion is ordinarily portrayed as fleeting rationale properties. Display checking additionally

gives a computerized method for check contrasted with other confirmation strategies, for

example, hypothesis demonstrating. Due to the capacity of finding even unpretentious

plan blunders, show checking method has been effectively connected to numerous genuine

framework plans and it has turned into a basic piece of modern configuration cycle. The

confirmation system of model checking comprises of formal displaying of a plan, making

formal properties, and demonstrating or invalidating by investigating the whole calcula-

tion space of the model thoroughly.

5.4 Test Generation Using Model Checking

Test generation using model checking is one of the most promising directed test generation

approaches due to its capability of automatically producing a counterexample.[3]

Figure 5.4: Test generation through Model
Checking [3]

A processor model is described in a transient specification dialect and a desired be-

haviour is communicated as worldly rationale property. A model checker comprehensively

seeks every single reachable condition of the model to check if the property holds (check

) or not (misrepresentation), which is called unbounded model checking.[3] On the

off chance that the model checker finds any reachable express that does not fulfill the

property, it creates a counterexample.[3] This falsification can be adequately misused for

test age. Rather than a coveted property, its nullified adaptation is connected to the

model checker to create a counterexample. The counterexample contains a grouping of

directions from an underlying state to a state where the negated form of the property fails.

Specification driven test age utilizing model checking has indicated promising comes

20

about. It can produce test programs at early plan organize with no low-level usage

learning. Figure demonstrates a determination driven test program age situation. A

fashioner begins by indicating the processor engineering in an Engineering Description

Language (ADL) that is utilized to catch both the structure and the conduct of the

processor. A processor demonstrate is created from the ADL determination. Different

properties (wanted practices) are created from the abnormal state microarchitectural

processor determination. A model checker acknowledges the properties and the model

of the processor to deliver test programs that are utilized for approval of the processor

outline.

5.5 Deterministic And Random Instruction Sequence

Simulation

It’s clear to most intellectual property (IP) creators and users today that functional

verification is one of the biggest problems facing the industry. As design complexity

increases, the verification effort often over shadows the design effort. It becomes harder

to detect obscure architecture functional errors and still provide the highest possible

verification coverage. Most will agree that there is no single methodology or tool that

solves what many are dubbing the ”verification crisis”. Thus an approach of multiple

methodologies is required to tackle the problem from as many angles as possible. This is

the approach that has been adopted at ARM , a mix of deterministic simulation, random

stimulus generation, and automatic testbench generation with Verisity’s (Mountain View,

CA) Specman Elite.[7]

5.5.1 Deterministic simulation

The mainstay methodology that has been used since the early days of the first ARM

Architecture design is deterministic simulation. This is a common and well understood

methodology that offers a number of advantages, although it’s limited by the amount of

effort required to generate test cases and the performance of simulation tools. At ARM,

test cases are developed as self-checking assembler sequences.These code sequences are

then replayed on a simple simulation testbench consisting of the ARM CPU, a simple

memory model, and some simple memory-mapped peripherals. The tests fall into two

categories, AVS (Architecture Validation Suites) and DVS (Device Validation Suites).

21

All the AVS class tests check architectural functionality such as the instruction set ar-

chitecture (32-bit and 16-bit Thumb), the exception model, and the debug architecture.

The DVS tests focus on the behavior of specific cores and check corner cases arising from

the particular implementation. An advantage of this type of testcase is that tests are self-

contained and portable from ISS (Instruction Set Simulator) environments to Verilog or

VHDL testbench environments, or to FPGA prototypes and eventually to silicon. Thus,

the customers and the verification engineer can verify the functional equivalence of all

these design views. These suites of tests are effectively the ARM architecture compliance

suites.[7]

5.5.2 Random Instruction Simulation

Random stimulus generation is widely recognized as an effective approach for verifying

corner cases that are hard to anticipate. It was found that, while most of design bugs are

flushed out by the deterministic approach, random instruction sequences are also highly

effective in hitting obscure cases, often finding bugs that may lay undetected for years in

real-life applications. An internal tool generates targeted random code sequences known

as RIS. With RIS, the self-checking tests are pre-generated using an ISS as the reference

design.

Random Instruction Sequence (RIS) tools are broadly utilized over the methodology

for architecture check and approval. These apparatuses are frequently used to discover

verification bugs in moderately stable yet not yet develop RTL outline. RIS apparatuses

are extremely successful in producing test situations that are difficult to imagine. Be that

as it may, regularly totally irregular direction groupings are of little test an incentive for

uncovering corner cases in the outline, particularly if the bug includes a grouping of

occasions occurring in a restricted planning window. Macros can help improve the test

nature of the produced guideline successions by giving controlled irregularity around

a particular succession of directions focusing on a particular territory in the processor

design.[7]

22

Chapter 6

Architecture Validation Suite

The architecture defines a common set of behaviours that software (such as OS Kernels)

can rely on.

The objective of the AVS is to check adherence to that architecture definition so that:

1. ARM cores of same architecture version are software compatible with each other.

2. Cores from Architecture licensees are s/w compatible with all other cores (ARM and

others) of the same Architecture version.

The Architecture Validation Suite (AVS) can be defined as : ”A set of examples of

the invariant behaviours that are provided by the ARM Architecture Specification, so

that implementers can verify if these behaviours have been interpreted correctly.”

Contractual requirement - ARM Compliant Cores must run and pass without modifi-

cation of AVS test source code.A check that the implementer has not misinterpreted the

architecture includes examples of areas of the architecture that are fundamental as well

as known pitfalls and common misinterpretations.

There is often confusion between architecture validation and verification. Verification

refers to the entire process of uncovering bugs in a design, with the ultimate goal of de-

livering the design to market as bug-free as possible. The scope of architecture validation

is limited to ensuring that the architecture has been correctly interpreted.

23

6.1 AVK (Architecture Validation Kit)

1. Features of AVK:

• Self checking ARM Assembler tests.

• Organised as suites aligning to architecture areas/features.

• Supporting code (headers/include/macro files.

2. Infrastructure and Environment of AVK:

• Build, run, reporting scripts.

• Reference VAL library for AArch32 and AArch64.

• Non-synthesizable System Verilog reference testbench.

• Configuration files for abstracting the implementation.

• Capability to configure different architectural choices in model and environment.

AVK is the Kit containing several test generation suites that are intended to generate

test cases for particular scenarios depicting a particular behaviour when the scenario is

to be verified.

6.2 The Verification Flow

The verification flow can be listed as follows:

1. Gathering up the Validation Collaterals

2. Stacking up the Validation Collaterals into a Scenario Document

3. Writing templates by reading the scenario document

4. Feeding the templates into the Test cases generator which contains various libraries

and support environment for writing the verification test cases.

5. The test cases are then fed into the AEM (Architecture Envelope Model i.e. a software

model of designed architecture) to get the results.

24

Figure 6.1: The Verification Flow

6.2.1 Gathering up the Validation Collaterals

Further breaking down the Step-1 procedure into following processes:

1. Specify the scenario into a tool for which the dataset has to be generated.

2. This tool performs symbolic execution and gives an intermediate output in the form

of constraints.

3. The output received in step-2 is further fed into the SMT (Satisfiability Modulo the-

ory) solver to give the actual scenarios in the form of register values. i.e. A reverse

engineering process to find out the dataset which can create a scenario of interest (given

as input to the tool).

4. Different scenario data or dependency dataset or checkpoint data thus gathers up to

form the Validation Collateral Set.

6.2.2 Stacking up the Validation Collaterals into a Scenario

Document

This process involves the following:

1. Input Sets:

• Input set can contain any of the data sets i.e Dependency Dataset, Scenario Dataset,

Checkpoint Dataset.

• User provided set of rules to add up certain constraints on the Input Dataset.

2. Intermediate Tooling: This part contains the tools which renders the input set and

converts into a Scenario document.

25

3. The output: The output contains the scenario document which further goes to

some another test-case generation tool.

Figure 6.2: Writing up the scenarios in Scenario document

26

Chapter 7

An approach for gathering

Interesting Data-Sets (Step-2 Of the

Verification Flow)

7.1 What are interesting datasets?

Interesting Datasets can be defined as the datasets which serve as the grounds for verifi-

cation. The datasets that cover the corner cases, critical cases of the test scenarios. Such

datasets should not be missed in verification methodologies. It becomes mandatory to

cover all the scenarios of a particular test through these datasets to make sure that the

architecture remains bug-free or with least possible number of bugs.

7.2 An Approach for collecting such datasets

7.2.1 Symbolic Execution

Symbolic execution is a means of analyzing a program to determine what inputs cause

each part of a program to execute. An interpreter follows the program, assuming sym-

bolic values for inputs rather than obtaining actual inputs as normal execution of the

program would, a case of abstract interpretation. It thus arrives at expressions in terms

of those symbols for expressions and variables in the program, and constraints in terms

of those symbols for the possible outcomes of each conditional branch.

27

Consider the program below, which reads in a value and fails if the input is 6.

Figure 7.1: A sample Code [8]

During a normal execution (”concrete” execution), the program would read a con-

crete input value (e.g., 5) and assign it to y. Execution would then proceed with the

multiplication and the conditional branch, which would evaluate to false and print OK.

During symbolic execution, the program reads a symbolic value (e.g.,) and assigns it

to y. The program would then proceed with the multiplication and assign Λ * 2 to z.

When reaching the if statement, it would evaluate Λ * 2 == 12. At this point of the

program, could take any value, and symbolic execution can therefore proceed along both

branches, by ”forking” two paths. Each path gets assigned a copy of the program state at

the branch instruction as well as a path constraint. In this example, the path constraint

is Λ * 2 == 12 for the then branch and Λ * 2 != 12 for the else branch. Both paths

can be symbolically executed independently. When paths terminate (e.g., as a result of

executing fail() or simply exiting), symbolic execution computes a concrete value for Λ

by solving the accumulated path constraints on each path. These concrete values can be

thought of as concrete test cases that can, e.g., help developers reproduce bugs. In this

example, the constraint solver would determine that in order to reach the fail() statement,

Λ would need to equal 6.

7.2.2 Constraint Solvers - Satisfiability Modulo Theories

The Satisfiability Modulo Theories (SMT) problem is a decision problem for logical formu-

las with respect to combinations of background theories expressed in classical first-order

logic with equality. Examples of theories typically used in computer science are the theory

of real numbers, the theory of integers, and the theories of various data structures such

28

as lists, arrays, bit vectors and so on. SMT can be thought of as a form of the constraint

satisfaction problem and thus a certain formalized approach to constraint programming.

An SMT instance is a formula in first-order logic, where some function and predicate

symbols have additional interpretations, and SMT is the problem of determining whether

such a formula is satisfiable. In other words, imagine an instance of the Boolean satisfia-

bility problem (SAT) in which some of the binary variables are replaced by predicates over

a suitable set of non-binary variables. A predicate is basically a binary-valued function of

non-binary variables. Example predicates include linear inequalities (e.g., 3 x + 2 y z ≥

4) or equalities involving uninterpreted terms and function symbols (e.g., f(f(u, v), v) =

f(u, v) where f is some unspecified function of two arguments.) These predicates are clas-

sified according to each respective theory assigned. For instance, linear inequalities over

real variables are evaluated using the rules of the theory of linear real arithmetic, whereas

predicates involving uninterpreted terms and function symbols are evaluated using the

rules of the theory of uninterpreted functions with equality (sometimes referred to as the

empty theory). Other theories include the theories of arrays and list structures (useful

for modeling and verifying computer programs), and the theory of bit vectors (useful in

modeling and verifying hardware designs). Subtheories are also possible: for example,

difference logic is a sub-theory of linear arithmetic in which each inequality is restricted

to have the form x y > c for variables and y and constant c. Most SMT solvers support

only quantifier free fragments of their logics.

7.2.3 SMT Solving Approach

Early attempts for solving SMT instances involved translating them to Boolean SAT

instances (e.g., a 32-bit integer variable would be encoded by 32 bit variables with appro-

priate weights and word-level operations such as ’plus’ would be replaced by lower-level

logic operations on the bits) and passing this formula to a Boolean SAT solver. This

approach, which is referred to as the eager approach, has its merits: by pre-processing

the SMT formula into an equivalent Boolean SAT formula we can use existing Boolean

SAT solvers ”as-is” and leverage their performance and capacity improvements over time.

On the other hand, the loss of the high-level semantics of the underlying theories means

that the Boolean SAT solver has to work a lot harder than necessary to discover ”ob-

29

vious” facts (such as x + y = y + x for integer addition.) This observation led to the

development of a number of SMT solvers that tightly integrate the Boolean reasoning

of a DPLL-style search with theory-specific solvers (T-solvers) that handle conjunctions

(ANDs) of predicates from a given theory. This approach is referred to as the lazy ap-

proach.

7.2.4 Symbolic-execution based analysis

An important application of SMT solvers is symbolic execution for analysis and testing

of programs (e.g., concolic testing), aimed particularly at finding security vulnerabili-

ties. Important actively-maintained tools in this category include SAGE from Microsoft

Research, KLEE, S2E, and Triton. SMT solvers that are particularly useful for symbolic-

execution applications include Z3, STP, Z3str2, and Boolector.

7.2.5 The flow for gathering interesting datasets using the above

Figure 7.2: Collecting Interesting Data-Sets

The above figure depicts the approach for collecting interesting data-sets using a

combination of Symbolic Execution and Constraint SMT Solver. It begins by passing

the queries to the symbolic execution engine, which gives the output in the form of

constraints by generating and analyzing the execution tree. Further these constraints are

passed on to the Constraint Solver, which solves the equations (constraints) and provides

the data-sets accordingly.

30

Chapter 8

Conclusion And Future Scope

8.1 Conclusion

AVK is widely used tool-kit (which contains various tools) for performing Functional

Architectural Verification. Certain updates can help us touch the corner cases with a

better hit rate. An automatically generated scenario document can minimize the human

efforts for manually writing the Validation dataset into the same. It can reduce humanly

mistakes which might be done while writing a huge amount of datasets into the scenario

document. Since, its necessary to have a scenario document generated with minimal

mistakes and in a proper order, an automated approach works better here.

8.2 Future Scope

• Contributed in the step of gathering interesting datasets to be further rendered in

the form of a Scenario Document.

• Contributed in the automating the generation the scenario document.

• Looking forward to contribute in generation of templates for test-cases by automat-

ing as them as much as possible and having them execute on the AEM (software

model of designed architecture).

31

Bibliography

[1] ARM Architecture Reference Manual (Beta) for ARMv8-A. Available:

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.

architec-ture.reference/index.html

[2] Stephens, Nigel, et al. ”The ARM Scalable Vector Extension.” IEEE Micro 37.2

(2017): 26-39.

[3] Koo, Heon-Mo. Coverage-driven Test Generation for Functional Validation of

Pipelined Processors. Diss. University of Florida, 2007.

[4] Reid, Alastair, et al. ”End-to-end verification of ARM processors with ISA-Formal.”

Proc. Computer Aided Verification (CAV).

[5] Prabhat Mishra and Nikil Dutt , Functional Coverage Driven Test Generation for

Validation of Pipelined Processors , Proceedings of the conference on Design, Au-

tomation, and Test in Europe Volume 2. 2005

[6] https://developer.arm.com/technologies/neon

[7] https://www.eetimes.com/document.asp?doc-id=1277271

[8] https://en.wikipedia.org/wiki/Symbolic_execution

[9] https://en.wikipedia.org/wiki/Satisfiability_modulo_theories#cite_

note-1

32

	Certificate
	Statement of Originality
	Acknowledgements
	Abstract
	Abbreviations
	List of Figures
	Introduction
	Motivation
	Objective
	Thesis Organization

	ARM Architecture
	ARMv8A Architecture
	Execution States
	ARM Instruction Sets

	Scalable Vector Extension
	Introduction
	SVE Architectural State
	Scalable Vector Length
	Horizontal Operations
	Predication
	Floating Point
	SVE verus NEON
	NEON Instructions
	How does SVE differ from Neon?

	Arm Architecture Verification
	What is Architecture Verification?
	What is a Validation Collateral?
	Importance Of Validation Collaterals For Verification Engineer

	Literature Survey
	Verification Techniques
	Coverage Driven Validation
	Model Checking Based Test Generation
	Test Generation Using Model Checking
	Deterministic And Random Instruction Sequence Simulation
	Deterministic simulation
	Random Instruction Simulation

	Architecture Validation Suite
	AVK (Architecture Validation Kit)
	The Verification Flow
	Gathering up the Validation Collaterals
	Stacking up the Validation Collaterals into a Scenario Document

	An approach for gathering Interesting Data-Sets (Step-2 Of the Verification Flow)
	What are interesting datasets?
	An Approach for collecting such datasets
	Symbolic Execution
	Constraint Solvers - Satisfiability Modulo Theories
	SMT Solving Approach
	Symbolic-execution based analysis
	The flow for gathering interesting datasets using the above

	Conclusion And Future Scope
	Conclusion
	Future Scope

	Bibliography

