
RTL Design of SpaceWire Protocol and AMBA-
Interface with LEON Processor

By

CHINTAN PATEL
(07MEC020)

Department of Electronics & Communication Engineering
INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY OF SCIENCE & TECHNOLOGY,
AHMEDABAD 382481

RTL Design of SpaceWire Protocol and AMBA-
Interface with LEON Processor

Major Project Report

Submitted In Partial Fulfillment of the Requirement

For

MASTER OF TECHNOLOGY
IN

ELECTRONICS & COMMUNICATION ENGG.
(VLSI DESIGN)

By

Chintan Patel (07MEC020)

Guided By:

Prof. N.P.Gajjar

Department of Electronics & Communication Engineering
INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY OF SCIENCE & TECHNOLOGY,
AHMEDABAD 382481

 I

CERTIFICATE

This is to certify that the Major Project Report entitled “RTL Design of SpaceWire

Protocol & AMBA Interface with LEON Processor” submitted by Chintan Patel

(07MEC020) towards the partial fulfillment of the requirement for the Master of

Technology (Electronics & Communication Engineering) in the field of VLSI Design of

Institute of Technology, Nirma University of Science and Technology, Ahmedabad is the

record of the work carried our under our supervision and guidance. The work submitted

has in our opinion reached a level required for being accepted for examination. The

results embodied in this dissertation-project work to the best of our knowledge have not

been submitted to any other University or Institute for the award of any degree or

diploma.

 Date:

 Place: Ahmedabad

 Project Guide P.G Co-ordinator
 Prof. N. P. Gajjar Dr.N.M.Devashrayee
 Institute of Technology VLSI Design
 Nirma University, Institute of Technology
 Ahmedabad Nirma University,
 Ahmedabad

 HOD Director
 Prof. A. S. Ranade Dr. K Kotecha
 Dept. of EE Engineering Institute of Technology
 Institute of Technology Nirma University,
 Nirma University, Ahmedabad
 Ahmedabad

 II

ACKNOWLEDGEMENT

A fruitful effort in a new work needs a direction and guiding hands that shows the

way. It is proud privilege and pleasure to bring out indebt ness and warm gratitude to

respect Dr. N. M. Devashrayee, P.G. Co-coordinator, M.Tech VLSI Design, Nirma

University, Ahmedabad for their support during our project work.

We would like to express our profound gratitude to Prof N. P. Gajjar and all

other team members for outstanding support and time to time guidance during our project

work.

Finally we would like to thank Arunkumar, Umang Joshi for their continuous

support and constant encouragement during the project work. We would like to thank

each and everyone who directly or indirectly helped us in the accomplishment of the

project.

 Chintan Patel

 (07MEC020)

 III

ABSTRACT

 With the progressive increase in the use of FPGAs for prototyping the embedded

systems on a chip, the designing of IPs (Intellectual property) has also been increasing

which are used to enhance the features of the designs. To attach an IP with one of the

buses in the design, the designer has to create an interface for it. Some open source

processors available like LEON and buses like AMBA bus .

 This Project reports the designing of SpaceWire Protocol and AMBA interface

with LEON3 processor used as a platform for application specification SoC. The

European Space Agency (ESA) proposed the SpaceWire standards for reliable satellite

on-board networking at high speed upto hundreds of Mbits/sec. LEON Processor

supports radiation tolerant therefore used in most of the Space application. AMBA Bus is

used to interface the on chip peripheral with processor. This project report covers the

theory of the SpacWire Protocol, its simulation work, theory of LEON processor,

implementation of LEON3 core and AMBA AHB interface on Virtex 4 FPGA board and

testing of LEON3 based SoC design.

 1

List of Figures

Figure 2.1 LEON3 processor core block diagram ... 10
Figure 2.2 Grlib Library IPs ... 11
Figure 2.3 AHB - A conceptual view .. 11
Figure 2.4 AHB- Detailed View .. 12
Figure 2.5 APB - A conceptual view ... 13
Figure 2.6 APB- Detailed View ... 13
Figure 2.7 Leon Flow ... 14
Figure 3.1 LVDS Operation.. 18
Figure 3.2 Data-Strobe (DS) Encoding... 19
Figure 3.3 Data and Control Characters ... 20
Figure 3.4 Link Restart ... 22
Figure 3.5 Packet Format.. 22
Figure 3.6 SpaceWire Link Interface Block Diagram .. 24
Figure 3.7 State Diagram for SpaceWire Link Interface .. 26
Figure 3.8 Null Detection ... 30
Figure 4.1 SpaceWire in loopback mode.. 38
Figure 4.2 IP1 to IP2 data transfer .. 39
Figure 4.3 Data Transfer in duplex mode ... 40
Figure 5.1 LEON3 processor core block diagram .. 41
Figure 5.2 LEON3 based SoC .. 42
Figure 5.3 PROM/IO/SRAM/SDRAM Memory controller ... 46
Figure 5.4 Debug Support Unit and communication link... 47
Figure 6.1 Cygwin Process Wizard .. 53
Figure 6.2 GRLIB TOOL ... 53
Figure 6.3 GRLIB Avnet Virtex LX60 Design .. 54
Figure 6.4 GRMON result .. 54
Figure 6.5 Loading application on LEON system .. 61
Figure 6.6 HyperTerminal Result ... 62
Figure 7.1 AHB plug & play configuration layout .. 68
Figure 7.2 AHB slave interface .. 69
Figure 7.3 Read/Write Logic .. 70
Figure 7.4 AHBFIFO interface with LEON ... 72
Figure 7.5 AHBFIFO read/write result on hyperterminal .. 72

 2

List of Tables

Table 7.1 AHB signals…………………………………………………………………...69

 3

Abbreviation

GRLIB Gaisler Research Library

AMBA Advance Microcontroller Bus Controller

AHB Advance High Speed Bus

APB Advance Peripheral Bus

FPGA Field Programmable Gate Array

SoC System on Chip

SPARC Scalable Processor Architecture

IP Intellectual Property

LVDS Low Voltage Differential Signaling

ESA European Space Agency

FCT Flow Control Token

EOP End of Packet

EEP Error end of Packet

ESC Escape

 4

Contents

1 Introduction.. 6

2 Literature Survey... 9

 2.1. SpaceWire ... 9
 2.2. LEON3 Processor Core... 9
 2.3. GRLIB IP Library ... 10
 2.4 AMBA AHB/APB buses ... 11

 2.4.1 AMBA AHB on-chip bus ... 11
 2.4.2 AMBA APB on-chip bus .. 12

 2.5 LEON flow... 14
 2.6 Environment... 14

3 SpaceWire Protocol ... 16

 3.1 Introduction.. 16
 3.2 Scope... 16
 3.3 Description.. 17

 3.3.1 Physical Level... 17
 3.3.2 SIGNAL LEVEL .. 18
 3.3.3 Character Level... 20
 3.3.4 Exchange Level... 21
 3.3.5 PACKET LEVEL ... 22
 3.3.6 NETWORK LEVEL... 23

 3.4 ENCODER/DECODER BLOCK DIAGRAM (INFORMATIVE).................... 24
 3.4.1 Transmitter.. 24
 3.4.2 Receiver .. 25
 3.4.3 STATE MACHINE (NORMATIVE)... 26

 3.5 Definition of States ... 27
 3.6 LINK INITIALISATION (INFORMATIVE) .. 31

4 SpaceWire Protocol Simulation... 38

 4.1 Spacewire in loopback mode ... 38
 4.2 SpaceWire IP1 to IP2 data transfer.. 39
 4.3 SpaceWire IP1 to IP2 data transfer in duplex mode:... 40

 5 LEON3 Processor: An Embedded Core... 41

 5.1 Introduction.. 41
 5.2 Salient features of LEON are given below .. 42
 5.3 Compliance with SPARC .. 43

 5.3.1 SPARC System Components... 43
 5.4 Bus ... 44

 5.4.1 AHB .. 44
 5.4.2 APB... 45
 5.4.3 LEON’s AMBA Bus... 46

 5

 5.5 Memory.. 46
 5.5.1 External Memory access ... 46
 5.5.2 Cache sub-system.. 47

 5.6 Debug Support Uni .. 47
 5.6.1 DSU... 47
 5.6.2 Trace buffer... 48
 5.6.3 DSU Monitor .. 49

 5.7 Software Considerations .. 50

6 Implementation ... 52

 6.1 Introduction.. 52
 6.2 Overview.. 52
 6.3 Configuration ... 52
 6.4 LEON3 Processor Simulation.. 54
 6.5 LEON3 SoC design Testing... 59
 6.6 Implimentation on FPGA... 60

7 AMBA AHB BUS... 63

 7.1 Introduction.. 63
 7.2 AMBA AHB On chip bus.. 63

 7.2.1 AHB master interface .. 63
 7.2.2 AHB slave interface... 65
 7.2.3 AHB bus control .. 67
 7.2.4 AHB bus index control .. 67

 7.3 AHB plug & play configuration ... 67
 7.4 SpaceWire Interface with AMBA AHB Bus .. 69
 7.5 Interface signals .. 70
 7.6 Interface Read/write logic... 70
 7.7 Impimetation of AHB Interface on FPGA... 71

8 Conclusion and Future Scope ... 73
REFERENCES.. 74
Appendix-A.. 75
Appendix-B.. 77

 6

Chapter 1

Introduction

To meet the growing needs of computing power, communication speed and performance

requirements demanded by today’s applications, the trend to wards Systems on a Chip

(SoC) has arrived.These applications particularly in the domain of on board data handling

in Space application. SpaceWire Protocols has grown organically from the needs of on-

board processing applications. In principle a data-handling system developed for an

optical instrument, for example, can be used for a radar instrument by unplugging the

optical sensor and plugging in the radar one. Processing units, mass-memory units and

down-link telemetry systems developed for one mission can be readily used on another

mission, reducing the cost of development.

Motivation
ISRO Respond Project being done at Nirma Institute of Technology, Ahmedabad aims at

developing a Design and Development of LEON3 based SoC design As a part of the this

project, a design of SpaceWire Protocol and AMBA interface with LEON Processor is

required to Design. This forms the motivation of the project.

Objective
This main objective of the project is to developing a SpaceWire Protocol IP and AMBA

interface with LEON Processor customizable a platform for experimenting with

application specific SoCs.

Overall Approach
This section briefly presents the overall approach. It describes the elements that are

involved in the project and also the motive behind the choice of these elements.

SpaceWire Protocol
SpaceWire Protocol is a hi-directional, full-duplex, high-speed (2 to 200Mbits/s), serial

data communication link. It was derived from the IEEE- 1355 terrestrial standard and is

based on Low Voltage Differential Signaling (LVDS) physical layer resulting in a low-

power high-speed link suitable for space applications.

Chapter 1 Introduction

 7

 Purpose of SpaceWire

The purpose of the SpaceWire standard is:

� to facilitate the construction of high-performance on-board data handling

systems,

� to help reduce system integration costs,

� to promote compatibility between data handling equipment and subsystems,

� to encourage re-use of data handling equipment across several different missions.

 LEON
The LEON3 core is an open source VHDL implementation of 32-bit processor

conforming to the SPARC V8 architecture. LEON is chosen due to the following factors.

• Highly configurable

• Fully synthesizable over a variety of platforms

• VHDL code freely available under suitable license

• Reasonably good amount of documentation and active online help discussing the

 Problems and features of the processor

• SPARC compliant architecture which forms the base for number of successful

 Commercial architectures like the SUN-SPARC series of processors

LEON is designed for embedded applications with the following features on-chip Integer

Unit, Floating-point and Co-processor, Cache sub-system with separate instruction and

data caches, Debug support unit, flexible Memory interface and controller,Timers,

Watchdog, UARTs,Interrupt controller, Parallel I/O port, AMBA on-chip buses, Boot

loader and Watch point registers. LEON is explained in greater detail in Chapter 5.

AMBA AHB
The AMBA Advanced High-performance Bus (AHB) is a multi-master bus suitable to

interconnect units that are capable of high data rates, and variable latency.

Outline of the report
Chapter 3 explains the general issues that need to be addressed in designing a Spacewire

Protocol, which cover the SpaceWire Protocol Scope, description and design details

Chapter 4 explains the simulation result of the SpaceWire Protocol.

Chapter 1 Introduction

 8

Chapter 5 elucidates the architecture of LEON, its compliance with SPARC, bus,

external memory and cache sub-system, DSU, software considerations of LEON.

Chapter 6 gives the details of the implementation of the LEON3 core platform Gaisler

research grlib and board AVNET EVAL XC4VLX60 step by step approach taken to test

the LEON3 core using ‘c’application.

Chapter 7 gives the AMBA AHB interface implementation

Chapter 8 gives the Conclusion and Future work.

 9

Chapter 2

Literature Survey

2.1. SpaceWire

The SpaceWire protocol [6] was first developed by the European Space Agency (ESA) in

the late 1990’s to provide a high-speed internal network for spacecraft. SpaceWire is

intended as a common interface protocol designed to interface with not only spacecraft

instruments and control systems, but also ground support and testing equipment.

SpaceWire is a high performance serial bus, supporting data rates from 2Mbps to

400Mbps. Based initially on IEEE 1355-1995, the electrical interface has been optimized

for the rigors of spacecraft operations and adopted as standard ECSS-E-50-12A by ESA.

The intent of SpaceWire is to provide a unified, high performance data handling

infrastructure, designed to meet the needs of future space miss

2.2. LEON3 Processor Core

 LEON3 [4] is a 32-bit processor core conforming to the IEEE-1754 (SPARC

V8) architecture. It is designed for embedded applications, combining high performance

with low complexity and low power consumption. The LEON3 core has the following

main features:

• 7-stage pipeline with Harvard architecture,

• Separate instruction and data caches,

• Hardware multiplier and divider,

• On-chip debug support and multi-processor extensions.

Chapter 2 Literature Survey

 10

A block diagram of the LEON3 core can be seen below.

Figure 2.1 LEON3 processor core block diagram [4]

2.3. GRLIB IP Library

 GRLIB [2] is a collection of reusable IP cores, divided on multiple VHDL

libraries. Each library provides components from a particular vendor or a specific set of

shared functions or interfaces. Data structures and component declarations to be used in a

GRLIB-based design are exported through library specific VHDL packages.GRLIB is

based on the AMBA AHB and APB on-chip buses, which is used as the standard

interconnect interface. The implementation of the AHB/APB buses is compliant with the

AMBA-2.0 specification, with additional ‘sideband’ signals for automatic address

decoding, interrupt steering and device identification (a.k.a. plug play support). The AHB

and APB signals are grouped according to functionality into VHDL records, declared in

the GRLIB VHDL library. The GRLIB AMBA package source files are located in

lib/grlib/amba.All GRLIB cores use the same data structures to declare the AMBA

interfaces, and can then easily be connected together. An AHB bus controller and an

AHB/APB bridge are also available in the GRLIB library, and allow to assemble quickly

a full AHB/APB system. The figure 2.2 shows an example of a LEON3 system designed

with GRLIB.

Chapter 2 Literature Survey

 11

Figure 2.2 Grlib Library IPs [2]

2.4 AMBA AHB/APB buses

2.4.1 AMBA AHB on-chip bus

The AMBA Advanced High-performance Bus (AHB) [9] is a multi-master bus suitable to

interconnect units that are capable of high data rates, and variable latency. A conceptual

view is provided in the figure below. The attached units are divided into master and

slaves, and controlled by a global bus arbiter.

Figure 2.3 AHB - A conceptual view [2]

Chapter 2 Literature Survey

 12

Since the AHB bus is multiplexed (no tristate signals), a more correct view of the bus and

the attached units can be seen in figure 2.3. Each master drives a set of signals grouped

into a VHDL record called HMSTO.The output record of the current bus master is

selected by the bus multiplexers and sent to the input record (ahbsi) of all AHB slaves.

The output record (ahbso) of the active slave is selected by the bus multiplexer and

forwarded to all masters. A combined bus arbiter, address decoder and bus multiplexer

controls which master and slave are currently selected

Figure 2.4 AHB- Detailed View [2]

2.4.2 AMBA APB on-chip bus

The AMBA Advanced Peripheral Bus (APB) is a single-master bus suitable to

interconnect units of low complexity which require only low data rates. An APB bus is

interfaced with an AHB bus by means of a single AHB slave implementing the

AHB/APB Bridge. The AHB/APB Bridge is the only APB master on one specific APB

bus. More than one APB bus can be connected to one AHB bus, by means of multiple

AHB/APB bridges. A conceptual view is provided in figure 2.5.

Chapter 2 Literature Survey

 13

Figure 2.5 APB - A conceptual view [2]

 Since the APB bus is multiplexed (no tristate signals), a more correct view of

the bus and the attached units can be seen in figure 2.5.The access to the AHB slave input

(AHBI) is decoded and an access is made on APB bus. The APB master drives a set of

signals grouped into a VHDL record called APBI which is sent to all APB slaves. The

combined address decoder and bus multiplexer controls which slave is currently selected.

The output record (APBO) of the active APB slave is selected by the bus multiplexer and

forwarded to AHB slave output (AHBO).

Figure 2.6 APB- Detailed View [2]

Chapter 2 Literature Survey

 14

2.5 LEON flow

The following steps describe the flow for simulating and synthesizing a LEON based

design.

Figure 2.7 Leon Flow [10]

2.6 Environment

 The following software and hardware are required to proceed further:

 Software:

• Cygwin
 It provides a unix-like environment for windows PC which is required to
 Execute the commands of the Leon based tools.

• Tcl/Tk (8.4+)
 It is required to execute the tcl/tk scripts which open the GUI form of the

Chapter 2 Literature Survey

 15

 Leon based tools.

• Mentor ModelSim
 It is used to simulate the sample designs to check their functionality
 before they are synthesized.

• Grmon debugger
 It provides the debugging of the designs after they are downloaded into
 the board.

• GRTool
 It is combined tool of sparc compiler, mysys.It compiles C application
 and converts into executable files.

• Xilinx ISE 9.2i(lower versons may also work) or above
 To synthesize the designs and create their bit files.

Hardware:

• Windows-PC ,linux
• FPGA board (Avnet Virtex -4)
• Xilinx Parallel cable IV

 16

Chapter 3

SpaceWire Protocol

3.1 Introduction.

The SpaceWire Protocol addresses the handling of payload data on-board a spacecraft. It

is a standard for a high-speed data link, which is intended to meet the needs of future,

high-capability, remote sensing instruments and other space missions.SpaceWire

provides a unified high-speed data-handling infrastructure for connecting together

sensors, processing elements, mass-memory units, and downlink telemetry sub-systems.

The purpose of SpaceWire is

• To facilitate the construction of high-performance on-board data-handling

systems,

• To help reduce system integration costs,

• To promote compatibility between data-handling equipment and sub-systems,

• To encourage re-use of data-handling equipment across several different missions.

3.2 Scope.
The SpaceWire standard specifies the physical interconnection media and data

communication Protocols to enable data to be sent reliably at high-speed (between 2

Mbps and 100 Mbps or more) from one unit to another. SpaceWire links are full-duplex,

point-to-point, and serial data communication links. The scope of this standard is the

physical connectors and cables, electrical properties, and logical protocols that comprise

the SpaceWire data link. SpaceWire provides a means of sending packets of information

from a source node to a required destination node. SpaceWire does not specify the

contents of the packets of information.

The SpaceWire Protocol covers the following normative protocol levels

• Physical Level: Defines connectors and cables.

• Signal Level: Defines signal encoding, voltage levels, noise margins, EMC

specifications and data signaling rates.

Chapter 3 SpaceWire Protocol

 17

• Character Level: Defines the data and control characters used to manage the

flow of data across a link.

• Exchange Level: Defines the protocol for link initialization, flow control, link

error detection and link error recovery.

• Packet Level: Defines how data to be transmitted via a SpaceWire link is split up

into packets

• Network Level: Defines the structure of a SpaceWire network and the way in

which packets are transferred from a source node to a destination node across a

network. Defines how link errors and network level errors are handled.

3.3 Description.

SpaceWire is a full-duplex, bi-directional, serial, point-to-point data link. It encodes data

using two differential signal pairs in each direction. That is a total of eight signal wires,

four in each direction. The various Protocols levels explain below.

3.3.1 Physical Level

The physical level of the SpaceWire standard covers cables, connectors and EMC
specification.

� Cables

The SpaceWire cable comprises four twisted pair wires with a separate shield around

each twisted pair and an overall shield. To achieve a high data signaling rate with

SpaceWire over distances up to 10m the cable must have the following characteristics:-

• Low signal-signal skew between each signal in a differential pair and between

Data and Strobe pairs

• Low signal attenuation

• Low cross-talk

• Good EMC performance

• Connectors
The SpaceWire connector is required to have eight signal contacts plus a screen

termination Contact. A nine pin micro-miniature D-type is specified as the SpaceWire

connector. This type of connector is available qualified for space use.

Chapter 3 SpaceWire Protocol

 18

� EMC Specification

The EMC specifications for SpaceWire have been derived from the EMC specifications

for the Rosetta Radiated emission, electric and magnetic fields,

• Radiated susceptibility, electric and magnetic fields,

• Conducted emission,

• Signaling rate

• Fault isolation, and

3.3.2 SIGNAL LEVEL
The signal level part of the SpaceWire standard covers signal voltage levels, noise

margins and signal encoding.

Signal Level and Noise Margins

Low Voltage Differential Signaling or LVDS is specified as the signaling technique to be

used in SpaceWire. LVDS uses balanced signals to provide very high-speed

interconnection using a low voltage swing (350 mV typical). The balanced or differential

signaling provides adequate noise margin to enable low voltages to be used in practical

systems. Low voltage swing means low power consumption at high speed. LVDS is

appropriate for connections between boards in a unit, and unit to unit interconnections

over distances of 10m or more. A typical LVDS driver and receiver are shown in Figure

3.1 connected by cable with 100 ohm differential impedance.

Fig 3.1 LVDS Operation

Chapter 3 SpaceWire Protocol

 19

The LVDS driver uses current mode logic. A constant current source of around 3.5mA

provides the current that flows out of the driver, along the transmission medium, through

the 100-ohm termination resistance and back to the driver via the transmission medium.

Two pairs of transistor switches in the driver control the direction of the current flow

through the termination resistor. When the driver transistors marked “+” in Figure 3.1 are

turned on and those marked “-” are turned off, current flows as indicated by the arrows

on the diagram creating a positive voltage across the termination resistor. LVDS

receivers are specified to have high input impedance so that most of the current will flow

through the termination resistor to generate around ±350mV with the nominal 3.5mA

current source.

Data Encoding

SpaceWire uses Data-Strobe (DS) encoding. This is a coding scheme which encodes the

transmission clock with the data into data and strobe so that the clock can be recovered

by simply XORing the data and strobe lines together. The data values are transmitted

directly and the strobe signal changes state whenever the data remains constant from one

data bit interval to the next. This coding scheme is illustrated below in Figure 3.2.The

reason for using DS encoding is to improve the skew tolerance to almost 1-bit time,

compared to 0.5 bit time for simple data and clock encoding.

Figure 3.2 Data-Strobe (DS) Encoding

A SpaceWire link comprises two pairs of differential signals, one pair transmitting the D

and S signals in one direction and the other pair transmitting D and S in the opposite

direction. That is a total of eight wires for each bi-directional link.

Chapter 3 SpaceWire Protocol

 20

3.3.3 Character Level
There are two types of characters:-

• Data characters which hold an eight-bit data value transmitted least-

significant bit first. Each data character contains a parity-bit, a data-control

flag and the eight-bits of data. The parity-bit covers the previous eight-bits of

data, the current parity-bit and the current data-control flag. It is set to

produce odd parity so that the total number of 1’s in the field covered is an

odd number. The data control flag is set to zero to indicate that the current

character is a data character.

• Control characters which hold a two-bit control code. Each control character

is formed from a parity-bit, a data-control flag and the two-bit control code.

The data-control flag is set to one to indicate that the current character is a

control character. Parity coverage is similar to that for a data character. One

of the four possible control characters is the escape code (ESC). This can be

used to form longer control codes. One longer control code is specified which

is the NULL code. NULL is formed from ESC followed by the flow control

token (FCT). NULL is transmitted whenever a link is not sending data or

control tokens to keep the link active and to support link disconnect detection.

 The data and control characters are illustrated in Figure 3.3.

Figure 3.3 Data and Control Characters

Chapter 3 SpaceWire Protocol

 21

3.3.4 Exchange Level

The Exchange Level shows the following Processes.

Initialization: Following reset the link output is held in the reset state until it is

instructed to start and attempt to make a connection with the link interface at the other

end of the link. A connection is made following a handshake that ensures both ends of the

link are able to send and receive characters successfully. Each end of the link sends

NULLs, waits to receive a NULL, then sends FCTs and waits to receive an FCT. Since a

link interface cannot send FCTs until it has received a NULL, receipt of one or more

NULLs followed by receipt of an FCT means that the other end of the link has received

NULLs successfully and that full connection has been achieved.

Flow Control: A transmitter is only allowed to transmit data characters if there is space

in the host system receive buffer for them. The host system indicates that there is space

for eight more data characters by requesting the link transmitter to send a flow control

token (FCT). The FCT is received at the other end of the link (end B) enabling the

transmitter at end B to send up to eight more FCTs. If there is more room in the host

receive buffer then multiple FCTs may be sent, one for every eight spaces in the receive

buffer. Correspondingly, if multiple FCTs are received then it means that there is a

corresponding amount of space available in the receiver buffer e.g. four FCTs means that

there is room for 32 data characters.

Detection of Disconnect Errors: Link disconnection is detected when following

reception of a Data bit no new data bit is received within a link disconnect timeout

window (850 nsec). Once a Disconnection error has been detected the link attempts to

recover from the error (see in Figure 3.4).

Detection of Parity Errors: Parity errors occurring within a data or control character are

detected when the next character is sent, since the parity bit for a data or control token is

contained in the next character. Once a parity error has been detected the link will attempt

to recover from the error (see in Figure 3.4).

Link Error Recovery: Following an error or reset the link attempts to re-synchronise

and restart using an “exchange of silence” protocol (see Figure 3.4). The end of the link

that is either reset or that finds an error ceases transmission. This is detected at the other

Chapter 3 SpaceWire Protocol

 22

end of the link as a link disconnects and that end stops transmitting too. The first link

resets its input and output for 6.4 us to ensure that the other end will detect the

disconnect. The other end will also wait for 6.4 us after ceasing transmission. Each link

then waits a further 12.8 us before starting to transmit These periods of time are sufficient

to ensure that the receivers at both ends of the link are ready to receive characters before

either end starts transmission.The two ends of the link go through the NULL/FCT

handshake to re-establish a connection and ensure proper character synchronization.

Fig 3.4 Link Restart

3.3.5 PACKET LEVEL

The packet level protocol follows the packet level protocol defined in IEEE-1355. It

defines how data is encapsulated in packets for transfer from source to destination. The

format of a packet is illustrated in Figure 3.5.

Figure 3.5 Packet Format

Chapter 3 SpaceWire Protocol

 23

The “Destination Address” is a list of one or more data characters that represent the

destination identity. This list of data characters represents either the identity code of the

destination node or the path that the packet will take to get to the destination node. The

“Cargo” is the data to be transferred from source to destination.The “End of Packet

Marker” is used to indicate the end of a packet. Two ends of packet markers are defined.

• EOP Normal end_of_packet marker - indicates end of packet

• EEP Error End_of_packet marker - indicates that the packet has been

terminated prematurely due to a link error. Since there is no start of packet

marker, the first data character following an end_of_packet marker (either

EOP or EEP) is regarded as the start of the next packet.

3.3.6 NETWORK LEVEL

The network level defines what a SpaceWire network is, describes the components that

make up a SpaceWire network explains how packets are transferred across a SpaceWire

network and details the manner in which the SpaceWire network recovers from errors. A

SpaceWire network is made up of a number of SpaceWire nodes interconnected by

SpaceWire routing switches. SpaceWire nodes are the sources and destination of packets

and provide the interface to the application system(s). SpaceWire nodes may be directly

connected together using SpaceWire links or they may be interconnected via SpaceWire

routing switches using SpaceWire links to make the connection between node and routing

switch. A SpaceWire routing switch has several links interfaces which are connected

together inside the routing switch by a switch matrix which allows any link input to pass

the packets that it receives on to any link output for re-transmission.

Chapter 3 SpaceWire Protocol

 24

3.4 ENCODER/DECODER BLOCK DIAGRAM (INFORMATIVE)
An example block diagram of a SpaceWire Encoder/Decoder is illustrated in Figure 3.6
below.

Figure 3.6 SpaceWire Link Interface Block Diagram

3.4.1 Transmitter

The Transmitter is responsible for encoding data and transmitting it using the DS

encoding technique. It receives its data from the Transmit Host Interface. If there is no

data to transmit the Transmitter will send Nulls. The Transmitter is only allowed to send

data if the host system at the other end of the link (end B) has room in its host receive

buffer. This is indicated by the link interface at end B sending an FCT, indicating that it

is ready to accept other 8 data characters. The Transmitter is responsible for keeping

track of the FCTs received and the number of data characters sent to avoid input buffer

overflow at the other end of the link. To do this the Transmitter holds a credit count of

the number of characters it has been given permission to send. The transmitter is also

responsible for sending FCTs whenever the local Receiver has space for eight more data

characters.

Chapter 3 SpaceWire Protocol

 25

Transmit Clock
The Transmit Clock is responsible for producing the clock signals needed by the

transmitter. The Transmit-clock signals are typically derived from the local system clock

or from a special transmit clock circuit.

Transmit Host Interface

The Transmit Host Interface provides the interface between the Transmitter and the local

system source of data. The local system writes data into the Transmit Host Interface at

any time provided the host interface is ready to receive data.

3.4.2 Receiver

The Receiver is responsible for decoding the DS signals (Din and Sin) to produce a

sequence of data characters that are passed on to the host system via the Receive Host

Interface. It also receives NULLs, FCTs and other control characters (EOP, EEP).

NULLs represent an active link. They are flagged to the exchange-level state machine but

are ignored otherwise. When an FCT is received the Receiver must inform the

Transmitter so that it can update its credit count accordingly. All other control characters

received are flagged to the host system. The receiver will ignore any NChars, L-Chars,

parity errors or escape errors until the first NULL has been received. The disconnection

detection mechanism with the receiver will be enabled as soon as the first bit arrives (i.e.

first transition detected on D or S inputs to receiver).

 Receive Clock Recovery

The receive-clock is recovered by simply XORing the received data and strobe signals

together. The Receive Clock Recovery circuit provides all the clock signals needed by the

receiver.

 Receive Host Interface

The Receive Host Interface provides the interface between Receiver and the local host

system. As data is received by the Receiver it is written into the Receive Host Interface

and passed on to the local host system. The local host system is responsible for informing

the link interface whenever it is ready to receive eight more data characters from the

Receive Host Interface so that the Transmitter can send an FCT to the interface at the

other end of the link (see Fig 3.6).

Chapter 3 SpaceWire Protocol

 26

 Receive Buffer Data Management

The host system is responsible for data buffer management. This makes the SpaceWire

interface more versatile and eases partitioning of the error recovery mechanism across the

various levels of the SpaceWire standard. Several different types of host receiver

buffering may be implemented:-

• FIFO buffering – where the size of the FIFO buffer depends upon the particular

application.

• Memory buffering – where direct memory access (DMA) is used to transfer data

to host system memory. As soon as the DMA channel has been set up, several

FCTs can be requested immediately to allow the data to be transferred as fast as

possible.

• No buffering – where the host system is able to accept data at the highest rate that

the link interface can provide it. In this case several FCTs can be sent initially,

followed by one more every time eight normal characters are received.

3.4.3 STATE MACHINE (NORMATIVE)
The complete state transition diagram for the SpaceWire link interface is illustrated in

Figure 3.7 below.

RxErr = Disconnect Error OR Parity Error OR Escape Error (ESC not followed by FCT)
Note: Disconnect Error only enabled after first bit received.

Parity Error, Escape Error,, gotFCT, gotNChar only enabled after first Null received (i.e.
gotNull asserted).

Figure 3.7 State Diagram for SpaceWire Link Interface

Chapter 3 SpaceWire Protocol

 27

3.5 Definition of States
In this section the states represented in figure 3.7 are described.

ErrorReset

The ErrorReset state shall be entered after a system reset, after link operation has been

terminated for any reason or if there is an error during link initialisation. In the

ErrorReset state the Transmitter, Receiver,Transmit Host Interface and Receive Host

Interface shall all be reset. When the reset signal is de-asserted the ErrorReset state shall

be left unconditionally after a delay of 6.4 us (nominal) and the state machine shall move

to the ErrorWait state. Whenever the reset signal is asserted the state machine shall move

immediately to the ErrorReset state and remain there until the reset signal is deasserted.

ErrorWait

The ErrorWait state shall be entered only from the ErrorReset state.In the ErrorWait

state the Receiver shall be enabled and the Transmitter shall be held reset. This allows the

Receiver to start the disconnection detection mechanism (after registering a transition on

the D or S line) and to begin looking for the arrival of a NULL.If a NULL is received

then the gotNULL condition shall be set. This condition will be acted upon in the Started

state. The ErrorWait state shall be left unconditionally after a delay of 12.8 us (nominal)

and the state machine shall move to the Ready state.If, while in the ErrorWait state, a

disconnection error is detected, or if after the first NULL has been received, a parity error

or escape error occurs, or any character other than a NULL is received, then the state

machine shall move back to the ErrorReset state.The ErrorReset and ErrorWait state with

their 6.4 us and 12.8 us delays ensure that the receivers at both ends of a link are enabled

before either end begins transmission.

 Ready

The Ready state shall be entered only from the ErrorWait state.In the Ready state the link

interface isready to initialise as soon as it is allowed to do so.The Receiver shall be

enabled and the Transmittershall be held reset.If a NULL is received then the gotNULL

condition shall be set.This condition will be acted upon in the Started state.The state

machine shall wait in the Ready state until the [Link Enabled] guard becomes true and

then it shall move on into the Started state. If, while in the Ready state, a disconnection

error is detected, or if after the first NULL has been received, a parity error or escape

Chapter 3 SpaceWire Protocol

 28

error occurs, or any character other than a NULL is received, then the state machine shall

move to the ErrorReset state. In the Ready state the two receivers are enabled and the

state machine is waiting for the local host system to command the link to start.

Started

The Started state shall be entered from the Ready state when the link interface is enabled.

In the Started state the state machine begins making a connection with the link interface

at the other end of the link by sending NULLs. When the Started state is entered a 12.8 us

(nominal) timeout timer shall be started. In Started state the Receiver shall be enabled

and the Transmitter shall send NULLs.If a NULL is received then the gotNULL

condition shall be set.The state machine shall move to the Connecting state if the

gotNULL condition is set. The NULL that set the gotNULL condition may have been

received in the ErrorWait, Ready or Started states. In the Started state a least one NULL

must be requested to be sent from the transmitter before moving to the Connecting state.

If, while in the Started state, a disconnection error is detected, or if after the first NULL

has been received, a parity error or escape error occurs, or any other character other than

a NULL is received, then the state machine shall move to the Error Reset state.If the 12.8

us timeout timer expires (i.e. no NULL received since leaving the Error Reset state) then

the state machine shall move to the Error Reset state. In the Started state the attempt to

make a connection across the link is started. NULLs are transmitted and the receiver is

waiting to receive a NULL.

Connecting

The Connecting state shall be entered from the Started state after a NULL has been

received (gotNULL condition set). On entering the Connecting state a 12.8 us timeout

timer shall be started. In the Connecting state the Receiver shall be enabled and the

Transmitter shall be enabled to send FCTs and NULLs. If an FCT is received the state

machine shall move to the Run state. If a disconnect error, parity error or escape error is

detected, or if an N-Char is received while in the Connecting state then the state machine

shall move to the ErrorReset state. If the 12.8 us timeout occurs then the state machine

shall move to the ErrorReset state. The Connecting state is entered when the link

interface (end A) has received a NULL. It now has to wait for an FCT to be received

indicating that the other end of the link (end B) has also received a NULL. When the link

Chapter 3 SpaceWire Protocol

 29

interface has received a NULL and an FCT it means that communication is established in

both directions. If an FCT fails to arrive within 12.8 us then something is wrong with the

link connection so the link interface is reset once more (ErrorReset state) and connection

is attempted once again.

 Run

The Run state shall be entered from the Connecting state. In the Run state the Receiver is

enabled and the Transmitter is enabled to send N-Chars, FCTs and NULLs. If the link

interface is disabled, or if a disconnect error, parity error, escape error, credit error or

empty packet error is detected , while in the Run state then the state machine shall move

to the Error Reset state. The Run state is the state for normal operation. Link connection

has been made. L-Chars and N-Chars can flow freely in both directions across the link.

The link remains in the Run state until an error occurs or until the link is disabled.

Definition of Transitions

Reset

Reset represents power on reset, other hardware reset or software commanded reset.

After T us

After 6.4 us or after 12.8 us represents a delay of the specified time measured from when

the current state is entered. The actual time intervals are nominal delays (see Fig 3.7).

[Link Enabled]

[Link Enabled] is a condition that must be met for the transition to occur (i.e. a guard).

[Link Enabled] can be set true by software or hardware (see section 3.7).

gotNull

gotNull means that a NULL has been received. NULL detection is enabled whenever the

Receiver is enabled. Any sequence of bits encountered prior to the first NULL being

received shall be ignored. NULL detection shall include the parity bit within the NULL

i.e. the parity bit that covers the ESC character within the NULL control code. The

second parity bit associated with the NULL, that covers the FCT character shall not be

included in the NULL detection. Hence the NULL shall be detected and gotNull asserted,

when the 1110100 sequence of bits is received as illustrated in figure 3.8. If a parity error

occurs with the first parity bit (for the ESC character) then the NULL will not be

detected. If a parity error occurs with the second parity bit, then this error will be picked

Chapter 3 SpaceWire Protocol

 30

up immediately since parity error detection is enabled within the receiver after a NULL

has been received.

Fig 3.8 Null Detection
gotFCT

gotFCT means that an FCT has been received. FCTs are only valid when received in the

Connecting and Run states. If received in any other state they represent an error.

gotNChar

gotNChar means that an N-Char has been received.An N-Char received when the

exchange-level state machine is not in the Run state is an error.

[Link Disabled]

[Link Disabled] is a condition set by external hardware or software in order to disable

and stop the link interface.

 RxErr

RxErr or Receiver Error is shorthand for Disconnect Error, Parity Error or Escape Error.

 Disconnect Error

Disconnect Error is an error condition asserted when the length of time since the last

transition on the D or S lines was longer ago than 850 ns nominal. The disconnect

detection mechanism is activated after leaving the ErrorReset state as soon as the first

edge is detected on the D or S line.

Parity Error

The parity error event occurs if a parity error is detected. Parity detection is enabled

whenever the receiver is enabled after the first NULL has been received.

Chapter 3 SpaceWire Protocol

 31

Escape Error

The escape error event occurs if an ESC character is followed by any character other than

an FCT (ESC followed by FCT is a NULL. Escape error detection is enabled whenever

the receiver is enabled after the first NULL has been received.

Character Sequence Error

Any characters received before a NULL has been received are ignored. Once a NULL

has been received an FCT received before a NULL has been sent indicates an error (i.e.

FCT received in ErrorWait, Ready or Started state). An N-Char should only be received

after both a NULL and an FCT have been received otherwise an error has occurred (i.e.

N-Char can only be received in the Runstate).Note: In the state diagram of figure 3-7, the

invalid gotFCT or gotNChar events are shown explicitly, rather than as a general

character sequence error event.

Credit Error

Credit error occurs if data is received when the host system is not expecting any more

data, i.e. when all the N-Chars expected, according to the requested “8 more” N-Chars

and subsequent transmitted FCTs, have been received. A credit error ought never to occur

and indicates that some undetected error has occurred on the link affecting the transfer of

FCTs.

Empty Packet Error

Empty packets are not permitted (see section 8). If the next N-Char received after an EOP

or EEP is another EOP or EEP then an empty packet error has occurred. An empty packet

error ought never to occur and indicated that some undetected error has occurred on the

link producing a spurious EOP or EEP.

3.6 LINK INITIALISATION (INFORMATIVE)
This section explains how the state diagram given in section 3.4 handles link

initialization, going from the reset of one end of a link through to the link operating

normally sending data in both directions. The basic state diagram with the receiver error

conditions removed is illustrated in Figure 3.8 .After a link interface (one end of a link)

has been reset, it enters the ErrorReset state where the transmitter and receiver are reset.

The transmitter reset is a controlled reset, resulting first in the transmitter stopping

Chapter 3 SpaceWire Protocol

 32

transmission followed by resetting of the strobe signal and then the data signal. This

sequence avoids the simultaneous transition of both data and strobe signals. The link

interface will remain in the ErrorReset state for approximately 6.4 us nd then move to the

ErrorWait state. In the ErrorWait state the transmitter remains disabled, but the receiver

is enabled so that it can begin searching for NULLs. The link interface remains in the

ErrorWait state for 12.8 us and then moves into the Ready state.The 6.4 us from

ErrorReset to ErrorWait and the 12.8 us delay from ErrorWait to Ready make sure that

the receivers at both ends of a link are ready to receive characters before either end starts

transmission. The link interface may be enabled in many possible ways, for example, by

software command, automatically when the receiver detects a NULL, or the link may be

permanently enabled. When a link interface is enabled the [Link Enabled] condition

becomes true. The link interface will move from the Ready state to the Started state as

soon as the link is enabled. In the Started state the link interface instructs the transmitter

to start sending NULLs. It will remain in this state until the receiver detects that a NULL

has been received over the link or until a connection timeout has expired. The connection

timeout is set to a nominal 12.8 us since this period has to be generated for the

ErrorReset state timeout. If a NULL is received then the link interface will move tothe

Connecting state. If no NULL is received within 12.8 us it will move to the ErrorReset

state. In the latter case the link interface will go through the reset sequence (ErrorReset,

ErrorWait, Ready) and attempt to make a connection again a short time later. In the

Connecting state the link interface will send some FCTs (and NULLs) and will wait for

an FCT to be received. If an FCT is received the link interface will move on to the Run

state. If an FCT has not been received within 12.8 us then link connection has not been

made properly, so the link interface moves back to the ErrorReset state. The link

interface will then go through the reset sequence (ErrorReset, ErrorWait, Ready) and

attempt to make a connection again a short time later. When the link enters the Run state

it starts normal operation, sending and receiving data and control characters. It remains in

the Run state until the link is disabled. The link interface then moves through the reset

sequence (ErrorReset, ErrorWait, Ready) and stays in the ready state until the link is

enabled once more. A link can only send FCTs once it has received a NULL. So, when a

link has received an FCT it knows that the link is connected in both directions.NULL

Chapter 3 SpaceWire Protocol

 33

correlation in the ErrorWait, Ready and Started states ensures proper character

synchronization. The NULL/FCT handshake sequence ensures that the link is connected

in both directions before normal link operation begins.The time taken from a link being

enabled in the Starting state to normal operation in the Run state can be as little as the

time taken to transfer two NULLs and an FCT. End A is enabled and sends a NULL. End

B is autostart enabled when it receives the NULL from end A and sends a NULL

followed by an FCT. End A receives the NULL from end B and sends an FCT.Both ends

receive FCTs and move to the Run state. At a link data signaling rate of 10 Mbps this

could take just 2 us.

NORMAL OPERATION (INFORMATIVE)

In normal operation both ends of the link are in the Run state and will be sending and

receiving NChars, FCTs and NULLs. Consider a host system with buffer space sufficient

to hold 16 normal-characters. This host system at one end of a link (end A) will indicate

that it is ready to receive normal-characters by twice flagging that it has room for 8 more

characters to the link interface.The link interface will send two FCTs to the other end of

the link (end B) which will increment its credit count accordingly (from zero to 16). The

link interface at end B indicates to its host system that it is ready to transmit data

(normal-characters) when the host system at end B has data to transfer, it will pass it to

the link interface, which will send it across the link to end A.As each character is

transmitted by the link interface (end B) it will decrement its credit count until it reaches

zero, at which point the link interface (end B) will indicate to its host system that it is not

ready to transfer any more data.The data received at end A will be passed on to its host

system which will place it in its 16 character buffer. As the host system uses the data out

of this buffer it makes space for more data to be received. As soon as there is space for

another 8 more characters it flags this to the link interface, which will then send out

another FCT informing end B that 8 more normal characters may be sent.

ERROR DETECTION (NORMATIVE)

There are six forms of receiver error that can be detected and acted upon at the exchange

level –disconnect errors, parity errors, escape errors, credit errors, character sequence

errors and empty packet errors. Whenever one of these errors occurs both characters

synchronisation and flow-control status cease to be valid. Both ends of the link must be

Chapter 3 SpaceWire Protocol

 34

reset and re-initialized to recover character synchronisation and flow control status. An

error can occur in the transmitter if it is given an invalid character to transmit. In this

event the transmitter shall ignore the invalid character, cease N-Char transmission and

report the error to the network level.

 Disconnect Error
An operational link interface sends normal-characters, FCTs or NULLs continuously,

thus the data and/or strobe signals are always changing. The receiver shall detect a

disconnection when the time interval from the last transition on either the data or strobe

signal exceeds the disconnect-detection time. The disconnect-detection time shall be 850

nsec nominal. Before being able to detect a disconnect error the receiver must have

received at least one bit. A disconnect error can either be caused when one end of the link

is disabled or when the link is physically disconnected (intentionally or unintentionally).

If a physical disconnection is the cause of the disconnect error then both ends of the link

will try repeatedly to make a connection until the link is reconnected or until the link

interfaces are disabled. If a disconnect error is detected then the link interface shall

follow the exchange of silence error recovery procedure. If the disconnect error occurs in

the Run state then the disconnect error shall be flagged up to the network level as a link

error.

Parity Error
When a parity bit is received it shall be checked. If a parity error occurs after the first

NULL has been received, then the link interface shall follow the error recovery

procedure. If the parity error occurs in the Run state then the parity error shall be flagged

up to the network level as a link error.

Escape Error
An ESC character shall only be used to form the NULL (ESC followed by FCT, see Fig.

3.8). If a ESC character is received followed by any character other than an FCT then the

link interface shall follow the error recovery procedure. If the escape error occurs in the

Run state then the escape error shall be flagged up to the network level as a link error.

Chapter 3 SpaceWire Protocol

 35

Credit Error
In the Run state if a normal character is received when the host system is not expecting

any N-Chars then a credit error has occurred.A credit error may be caused if an error

occurs undetected by the parity bit (e.g. two bits in error) which results in one or more

spurious FCTs. In the event of a credit error the link interface shall follow the error

recovery procedure described .If the credit error occurs in the Run state then the credit

error shall be flagged up to the network level as a link error.

Character Sequence Error
During initialization it is possible for a link interface to receive FCTs or normal-

characters when they are not expected. Any unexpected characters are caught by the

exchange-level state machine resulting the link being reset and re-initialized (see figure

3.8). A character sequence error shall not be flagged up to the network level as a link

error because it can only occur during link initialization.

Empty Packet Error
An EOP or EEP followed immediately by another EOP or EEP represents an empty

packet, which is not permitted. In the Run state, if the next N-Char received after an EOP

or EEP has been received is another EOP or EEP, then there has been an error on the link.

If the empty packet error occurs in the Run state then the empty packet error shall be

flagged up to the network level as a link error.

 Exchange of Silence Error Recovery Procedure
When one end of the link (end A) is disabled or detects an error, it will cease

transmission. This will cause a disconnect error at the other end of the link (end B). End

B will then cease transmission resulting in a disconnect error at end A. This procedure is

known as an “exchange of silence”.Both ends of the link will cycle through the reset

sequence (ErrorReset, ErrorWait, Ready) ending up in the Ready state ready to begin

operation once enabled. If both ends are enabled then they will move to the Started state

and re-initialise. If one end (end A) is disabled and the other end (end B) is enabled then

end B will move from the Ready state to the Started state and will send NULLs for 12.8

us. Since end A is disabled it cannot respond. End A will, however, have started its

disconnect timer and will also have registered that a NULL has been received. When end

Chapter 3 SpaceWire Protocol

 36

B completes the 12.8 us timeout it will move to the ErrorReset state and disconnect (stop

its output). End A is able to detect the disconnection so will also move to the ErrorReset

state. Both ends will once again move through the reset sequence. This series of events

will continue until either end A is enabled or end B is disabled.

Link Error

During initialization, receiver errors (disconnect error, parity error, escape sequence

error, character sequence error, credit error and empty packet error) are likely to occur

and are part of the natural initialization sequence. These errors shall not be reported to the

network level when they occur during link initialization (ErrorReady, ErrorWait, Ready,

Started and Connecting states). Once a link connection has been established (Run state)

then a receiver error represents a failure of the link connection and must be reported to

the network level so that appropriate action for error recovery and/or reporting can be

taken. A link error is reported to the network level whenever any of the following errors

occur while a link interface is in the Run state: disconnect error, parity error, escape

sequence error, credit error, empty packet error. Note the exclusion of character sequence

error from this list. A character sequence error is only possible during initialisation.

 EXCEPTION CONDITIONS (INFORMATIVE)
Several exception conditions have been identified where things, for one reason or

another, do not follow the usual sequence of events. These exceptions are considered in

this section.
 Disconnect error while waiting to start
“Waiting to start” means that a link interface is in either the ErrorReset, ErrorWait,

Ready or possibly the Started state. For a disconnect error to be detected while waiting to

start, the other end of the link (end B say) must have sent at least one bit, so that the

disconnect detect mechanism at end A can be activated. End B must have then given up

waiting for end A to send a NULL and moved to the ErrorReset state and stopped its

transmitter – thus causing the disconnect. An alternative possibility is that the link

became physically disconnected. The following tables illustrate the various sequences of

events starting from when end B has just moved to the ErrorReset state. If a physical

disconnection has occurred then both ends of the link will continue to try to make a

Chapter 3 SpaceWire Protocol

 37

connection, cy0+cling around the reset sequence, until they are disabled or until the

connection is reestablished.

 Link connected in one direction but not in the other
A link may be connected in one direction and not in the other while a link is in the

process of being plugged in (contact bounce time may be significantly larger than tens of

us) or if there is a break in the link cable. In this case the sequence of events listed in the

table below will be followed. Consider for convenience that both links are in the started

state and that end A is connected to end B, but end B is not connected to end A.

 38

Chapter 4

SpaceWire Protocol Simulation

SpaceWire protocol composed of various components .The components is as below

TX : transmitter.
RX : receptor.
TX fifo : first in first out buffer for the transmission.
RX fifo: first in first out buffer for the reception.
Two domain clock : interface the signal between different clock.
Time-id buffer : buffer for the time id seeded.
FSM: state machine manage IP.

During simulation, I have applied various tests and got result described below
4.1 SpaceWire in loop back mode
In this mode transmitter txd and receiver rxd shorted. The simulation result is in Figure
4.1.

Figure-4.1 SpaceWire in loop back mode

Txd and Rxd
shorted

Chapter 4 SpaceWire Protocol Simulation

 39

4.2 SpaceWire IP1 to IP2 data transfer

I have taken two SpaceWire protocols says IP1 and IP2.The Transmitter of IP1 sends
data to SpaceWire Link and this data receives at the receiver of the IP2.The simulation
result is in Figure 4.2.

Figure-4.2 IP1 to IP2 data transfer

Chapter 4 SpaceWire Protocol Simulation

 40

4.3 SpaceWire IP1 to IP2 data transfer in duplex mode:
In duplex mode IP1 send data {10,20,30,40,50} to IP2 and IP2 send data
{50,40,30,20,10} to IP1.

Figure 4.3 Data Transfer in duplex mode

 41

Chapter 5

LEON3 Processor: An Embedded Core

5.1 Introduction

LEON3 is a 32-bit processor core conforming to the IEEE-1754 (SPARC V8)

architecture. It is designed for embedded applications, combining high performance with

low complexity and low power consumption. The LEON3 processor is a synthesizable

VHDL model. To enable the development of SoC devices using the LEON core, the full

source code is freely available. LEON was initially developed by Jiri Gailser while

working for the European Space Agency (ESA) and Gailser Research is now maintaining

and further enhancing the model.

 New modules can easily be added using the on-chip AMBA AHB/APB buses. The

VHDL model is fully synthesizable with most synthesis tools and can be implemented

On both FPGAs and Asics. Salient features of LEON are given below. A block diagram

of the LEON3 core can be seen below:

 Fig 5.1 LEON3 processor core block diagram

Chapter 5 LEON3 Processor: An Embedded Core

 42

5.2 Salient features of LEON are given below

• Integer Unit

• Floating-point and co-processor

• Cache sub-system with separate instruction and data caches

• Debug support unit

• Flexible Memory interface and controller

• Timers

• Watchdog

• UARTs

• Interrupt controller

• Parallel I/O port

• AMBA on-chip buses

• Boot loader

• Watch point registers

 Fig 5.2 LEON3 based SoC

Chapter 5 LEON3 Processor: An Embedded Core

 43

5.3 Compliance with SPARC

The LEON IU (Integer Unit) implements the SPARC instructions as defined by the

SPARC Architecture Manual. Scalable Processor Architecture is a CPU instruction set

architecture (ISA), derived from a reduced instruction set computer (RISC) lineage.

SPARC was designed as a target for optimizing compilers and easily pipelined hardware

implementations. SPARC implementations provide exceptionally high execution rates

and short time-to market development schedules.It is a model which specifies

unambiguously the behavior observed by software on SPARC systems. Therefore, it does

not necessarily describe the operation of the hardware in any actual implementation. Any

implementation is not required to execute every instruction in hardware. An attempt to

execute a SPARC instruction that is not implemented in hardware generates a trap.If the

unimplemented instruction is non-privileged, then it must be possible to emulate it in

software.If it is a privileged instruction, whether it is emulated by software is

implementation-dependent.

5.3.1 SPARC System Components

The architecture allows for a spectrum of input/output (I/O), memory management unit

(MMU), and cache system sub-architectures. SPARC assumes that these elements are

Optimally defined by the specific requirements of particular systems. They are invisible

to nearly all user application programs and the interfaces to them can be limited to

localized modules in an associated operating system.

Reference MMU

The SPARC ISA does not mandate that a single MMU design be used for all system

Implementations. Rather, designers are free to use the MMU that is most appropriate for

their application or no MMU at all, if they wish. The memory bus in LEON provides a

direct interface to PROM, memory mapped I/O devices, asynchronous static ram

(SRAM) and synchronous dynamic ram (SDRAM). Chip-select decoding is done for two

PROM banks, one I/O bank, five SRAM banks and two SDRAM banks.

Supervisor Software

SPARC does not assume all implementations must execute identical supervisor software.

Chapter 5 LEON3 Processor: An Embedded Core

 44

Thus, certain supervisor-visible traits of an implementation can be tailored to the

requirements of the system. For example, SPARC allows for implementations with

different instruction concurrency and different exception trap hardware.

Register File

A large windowed register file — at any one instant, a program sees 8 global integers

registers plus a 24 – register window into a larger register file. The Windowed registers

can be described as a cache of procedure arguments, local values, and return addresses. A

separate floating-point register file configurable by software into 32 single-precision (32-

bit), 16 double-precision (64-bit), 8 quad-precision registers (128-bit), or a mixture ther

eof. LEON has 8 register windows by default and can be configurable.

5.4 Bus

The open standard from ARM, Advanced Microprocessor Bus Architecture (AMBA) [6]

Was implemented within LEON. The AMBA specification defines an on-chip

communications standard for designing high-performance embedded microcontrollers.

Three distinct buses are defined within theAMBA specification: Advanced High-

performance Bus (AHB), Advanced System Bus (ASB), Advanced Peripheral Bus

(APB).

5.4.1 AHB

AHB is intended to address the requirements of high-performance synthesizable designs.

It is a high-performance system bus that supports multiple bus masters and provides high-

bandwidth operation. AMBA AHB implements the features required for high-

performance, high clock frequency systems including burst transfers, split transactions,

single-cycle bus master handover, single-clock edge operation, wider data bus

configurations (64/128 bits). An AMBA AHB design may contain one or more bus

masters, typically a system would contain at least the processor and test interface. The

external memory interface, APB bridge and any internal memory are the most common

AHB slaves. Any other peripheral in the system could also be included as an AHB slave.

However, low bandwidth peripherals typically reside on the APB. A typical AMBA AHB

system design contains the following components:

AHB master A bus master is able to initiate read and write operations by providing

Chapter 5 LEON3 Processor: An Embedded Core

 45

An address and control information. Only one bus master is allowed to actively use the

bus at any one time.

AHB slave A bus slave responds to a read or writes operation within a given address

space range. The bus slave signals back to the active master the success, failure or

waiting of the data transfer.

AHB arbiter The bus arbiter ensures that only one bus master at a time is allowed to

initiate data transfers. Even though the arbitration protocol is fixed, any arbitration

algorithm, such as highest priority or fair access can be implemented depending on the

application requirements.

AHB decoder The AHB decoder is used to decode the address of each transfer and

Provide a select signal for the slave that is involved in the transfer. A single centralized

decoder is required in all AHB implementations.

5.4.2 APB

The Advanced Peripheral Bus (APB) is part of the Advanced Microcontroller Bus

Architecture (AMBA) hierarchy of buses and is optimized for minimal power

consumption and reduced interface complexity. The AMBA APB is used to interface to

any peripherals which are low-bandwidth and do not require the high performance of a

Pipelined bus interface.

APB Bridge The APB bridge is the only bus master on the AMBA APB. In addition,

the APB bridge is also a slave on the higher-level system bus. The bridge unit converts

system bus transfers into APB transfers and performs the following functions – latches

the address and holds it valid throughout the transfer, decodes the address and generates a

peripheral select (only one select signal can be active during a transfer), drives the data

onto the APB for a write transfer, drives the APB data onto the system bus for a read

transfer, generates a timing strobe for the transfer. APB slave APB slaves have a simple,

yet flexible, interface description. The select signal, the address and the write signal can

be combined to determine which register should be updated by the write operation. For

read transfers the data can be driven on to the data bus when write signal is low and both

select and enable are high. Address is used to determine which register should be read.

Chapter 5 LEON3 Processor: An Embedded Core

 46

5.4.3 LEON’s AMBA Bus

LEON implements AHB and APB bus. The processors sit as masters over the AHB bus.

The memory controller, APB bridge, DSU and PCI initiator are the AHB slaves.APB

bridge is the only master on the APB bus. The memory controller, AHB status register,

cache controller, write protection register, configuration register, timers, UART1 and

UART2, interrupt controller, I/O port, 2nd interrupt controller, DSU UART and PCI

arbiter are the APB slaves.

5.5 Memory

The caches, register windows and on-chip registers are mapped to the Block RAM inside

the FPGA

5.5.1 External Memory access

The memory bus provides a direct interface to PROM, memory mapped I/O devices,

asynchronous static ram (SRAM) and synchronous dynamic ram (SDRAM). The external

memory bus is controlled by a programmable memory controller. The controller acts as a

slave on the AHB bus. The function of the memory controller is programmed through

memory configuration registers 1, 2 & 3 (MCR1, MCR2 & MCR3) through the APB bus.

The memory bus supports four types of devices: PROM, SRAM, SDRAM and local I/O.

Fig 5.3 PROM/IO/SRAM/SDRAM Memory controller

Chapter 5 LEON3 Processor: An Embedded Core

 47

5.5.2 Cache sub-system
The LEON processor implements a Harvard Architecture with separate instruction and

data buses, connected to two independent cache controllers. The LEON instruction/data

is a direct-mapped cache configurable to 1 – 64 kbyte. The instruction/data cache is

divided into cache lines with 8 –32 bytes of data. Each line has a cache tag associated

with it consisting of a tag field and one valid bit for each 4-byte sub-block. On an

instruction/data cache miss to a cacheable location, the instruction/data is fetched and

the corresponding tag and data line updated.

5.6 Debug Support Unit

5.6.1 DSU

The (optional) debug support unit (DSU) allows non-intrusive debugging on target

hardware. The DSU allows a user to insert instruction and data watch-points, and access

to all on-chip registers from a remote debugger. A trace buffer is provided to trace the

executed instruction flow and/ or AHB bus traffic. The DSU has no impact on

performance and has low area complexity. Communication to an outside debugger (e.g.

gdb) is done using a dedicated UART (RS232).

Fig. 5.4: Debug Support Unit and communication link

The debug support unit as shown in Fig 5.4 is used to control the trace buffer and the

processor debug mode. The DSU is attached to the AHB bus as slave, occupying a 2-

Mbyte address space. Through this address space, any AHB master can access the

Chapter 5 LEON3 Processor: An Embedded Core

 48

processor registers and the contents of the trace buffer. The DSU control registers can be

accessed at any time, while the processor registers and caches can only be accessed when

the processor has entered debug mode. The trace buffer can be accessed only when

tracing is disabled/completed. In debug mode, the processor pipeline is held and the

processor is controlled by the DSU. Entering the debug mode can occur on the following

events:

• executing a breakpoint instruction

• integer unit hardware breakpoint/watchpoint hit

• rising edge of the external break signal (DSUBRE)

• setting the break-now (BN) bit in the DSU control register

• a trap that would cause the processor to enter error mode

• occurrence of any, or a selection of traps as defined in the DSU control register

• after a single-step operation

• DSU breakpoint hit

The debug mode can only be entered when the debug support unit is enabled

through an external pin (DSUEN). When the debug mode is entered, the following

actions are taken:

• PC and nPC(next PC) are saved in temporary registers (accessible by the debug

unit)

• an output signal (DSUACT) is asserted to indicate the debug state

• the timer unit is (optionally) stopped to freeze the LEON timers and watchdog

The insruction that caused the processor to enter debug mode is not executed, and the

processor state is kept unmodified. Execution is resumed by clearing the BN bit in the

DSU control register or by de-asserting DSUEN. The timer unit will be re-enabled and

execution will continue from the saved PC and nPC. Debug mode can also be entered

after the processor has entered error mode, for instance when an applicationhas

terminated and halted the processor. The error mode can be reset and the processor

restarted at any address.

5.6.2 Trace buffer
The trace buffer consists of a circular buffer that stores executed instructions or AHB

data transfers. A 30-bit counter is also provided and stored in the trace as time tag. The

Chapter 5 LEON3 Processor: An Embedded Core

 49

trace buffer operation is controlled through the DSU control register and the Trace buffer

control register. When the processor enters debug mode, tracing is suspended. The size of

the trace buffer is by default 128 words (2 Kbytes), but can be configured to any size

through the VHDL model configuration record.

5.6.3 DSU Monitor
DSUMON is a debug monitor for the LEON processor debug support unit. It

includes the following functions:

� Read/write access to all LEON registers and memory

� Built-in dis-assembler and trace buffer management

� Downloading and execution of LEON applications

� Breakpoint and watchpoint management

� Remote connection to GNU debugger (gdb)

� Auto-probing and initialization of LEON peripherals and memory settings

DSUMON can operate in two modes: stand-alone and attached to gdb. In standalone

mode, LEON applications can be loaded and debugged using a command line interface.

A number of commands are available to examine data, insert breakpoints and advance

execution. When attached to gdb, DSUMON acts as a remote gdb target, and applications

are loaded and debugged through gdb (or a gdb front-end such as ddd). The LEON DSU

uses a dedicated UART to communicate with an outside monitor. The UART uses

automatic baud-rate detection. To successfully attach DSUMON, first a serial cable

between the target board and the host system is attached. Then it is powered on and the

target board is reset, and finally the DSUMON software is started bythe user. The

DSUEN signal on the LEON processor has to be asserted for the DSU tooperate. The

DSUEN can be hardwired to ’1’ before synthesis(DSU always enabled)or can be set

through a switch(DSU can be optionally enabled if needed).When DSUMON first

connects to the target, a check is made to see if the system has been initialized with

respect to memory, UART and timer settings. If no initialization has been made (debug

mode entered directly after reset), the system first has to be initialized before any

application can run. This is performed automatically by probing for available memory

banks, and detecting the system frequency.

Chapter 5 LEON3 Processor: An Embedded Core

 50

5.7 Software Considerations
LECCS(LEON/ERC32 Cross Compilation System) is a GNU-based free C/C++

cross-compilation system for both ERC32 and LEON processors. The following

componentsare included –

• GNU C/C++ compiler

• Linker, assembler, archiver etc

• Standalone C-library

• RTEMS real-time kernel

• Boot-prom utility

• GNU debugger with Tk front-end

• graphical user interface for gdb

• Remote target monitor

• DSU monitor

LECCS allows cross-compilation of single or multi-threaded C and C++ applications for

both LEON and ERC32. Using the gdb debugger, it is possible to perform sourcelevel

symbolic debugging, either on a simulator or using real target hardware. GaislerResearch

also provides TSIM, a high-performance LEON simulator which seamlessly can be

attached to gdb and emulate a LEON system at more than 10 MIPS.RTEMS (Real-Time

Executive for Multiprocessor Systems) , is a real-time executive (kernel) ported to the

LEON architecture. As of now, it is the only OS that is ported over the LEON. It has also

been ported to the following processor families – Intel i80386 and above, Intel i80960,

Motorola MC68xxx, Motorola MC683xx, MIPS PowerPC, SPARC, Hewlett Packard

PA-RISC, Hitachi SH, AMD A29K. It provides a high performance environment for

embedded applications including the following features:

• multitasking capabilities

• homogeneous and heterogeneous multiprocessor systems

• event-driven, priority-based, preemptive scheduling

• optional rate monotonic scheduling

• intertask communication and synchronization

Chapter 5 LEON3 Processor: An Embedded Core

 51

• priority inheritance

• responsive interrupt management

• dynamic memory allocation

• high level of user configurability

 52

Chapter 6

Implementation

6.1 Introduction
This chapter will guide how to implement a leon3 based SoC design, and how to

download and run software on the target system.

6.2 Overview
Implementing a leon3 system is typically done using one of the template designs on the

GRLIB designs directory. Configuration of the design is done using xconfig.

• Simulation of design and test bench

• Synthesis and place route

The template design is leon3-avnet-eval-xc4vlx60, and is based on three files:

� config.vhd: a VHDL package containing design configuration parameters.

Automatically generated by the xconfig GUI tool.

� leon3mp.vhd : contains the top level entity and instantiates all on-chip IP cores. It

uses config.vhd to con-figure the instantiated IP cores.

� Testbench.vhd: test bench with external memory, emulating the leon3-avnet-eval-

xc4vlx60 board.

Each core in the template design is configurable using VHDL generics. The value of

these generics is assigned from the constants declared in config.vhd, created with the

xconfig GUI tool.

6.3 Configuration

Change directory to designs/ leon3-avnet-eval-xc4vlx60, and issue the command ‘make

xconfig’ in a bash shell (Linux) or cygwin shell (windows). This will launch the xconfig

GUI tool that can be used to modify the leon3 template design. When the configuration is

saved and xconfig is exited, the config. is automatically updated with the selected

configuration.

Chapter 6 Implementation

 53

Commands to be applied For LEON-3 configuration in CgWin:

1) First run Cgwin software and select the design according to our FPGA board. .

2) Give the following Command in Cgwin to prepare a script and for configuration

window:

1. make scripts

2. make xgrlib

Figure 6.1Cygwin Process Wizard

Figure 6.2 GRLIB TOOL

Chapter 6 Implementation

 54

3) Now in the configuration window the options for various tools for Synthesis,

Simulation and Post & Route are provided. So choose a suitable one.

• Simulation

- Modelsim

• Sinthesis

- Xilinx ISE

• Post & Route

- Xilinx ISE

4). After selecting various tools select ‘Xconfig’ for various parameters configuration for

LEON-3 processor as shown in fig.

Figure 6.3 GRLIB Avnet Virtex LX60 Design

6.4 LEON3 Processor Simulation

The template design can be simulated in a test bench that emulates the prototype board.

The test Bench includes external PROM and SDRAM which are pre-loaded with a test

program.The test program will execute on the LEON3 processor, and test various

functionality in the design.The test program will print diagnostics on the simulator

Chapter 6 Implementation

 55

console during the execution. The following command should be give to compile and

simulate the template design and testbench:

make vsim

vsim testbench

A typical simulation log can be seen below.

$ vsim testbench

VSIM 1> run -a

leon3-avnet-eval-xc4vlx60 Demonstration design

GRLIB Version 1.0.15, build 2183

Target technology: spartan3, memory library: spartan3

ahbctrl: AHB arbiter/multiplexer rev 1

ahbctrl: Common I/O area disabled

ahbctrl: AHB masters: 4, AHB slaves: 8

ahbctrl: Configuration area at 0xfffff000, 4 kbyte

ahbctrl: mst0: Gaisler Research Leon3 SPARC V8 Processor

ahbctrl: mst1: Gaisler Research JTAG Debug Link

ahbctrl: mst2: Gaisler Research SpaceWire Serial Link

ahbctrl: mst3: Gaisler Research SpaceWire Serial Link

ahbctrl: slv0: European Space Agency Leon2 Memory Controller

ahbctrl: memory at 0x00000000, size 512 Mbyte, cacheable, prefetch

ahbctrl: memory at 0x20000000, size 512 Mbyte

ahbctrl: memory at 0x40000000, size 1024 Mbyte, cacheable, prefetch

ahbctrl: slv1: Gaisler Research AHB/APB Bridge

ahbctrl: memory at 0x80000000, size 1 Mbyte

ahbctrl: slv2: Gaisler Research Leon3 Debug Support Unit

ahbctrl: memory at 0x90000000, size 256 Mbyte

apbctrl: APB Bridge at 0x80000000 rev 1

apbctrl: slv0: European Space Agency Leon2 Memory Controller

apbctrl: I/O ports at 0x80000000, size 256 byte

apbctrl: slv1: Gaisler Research Generic UART

apbctrl: I/O ports at 0x80000100, size 256 byte

Chapter 6 Implementation

 56

apbctrl: slv2: Gaisler Research Multi-processor Interrupt Ctrl.

apbctrl: I/O ports at 0x80000200, size 256 byte

apbctrl: slv3: Gaisler Research Modular Timer Unit

apbctrl: I/O ports at 0x80000300, size 256 byte

apbctrl: slv8: Gaisler Research General Purpose I/O port

apbctrl: I/O ports at 0x80000800, size 256 byte

apbctrl: slv12: Gaisler Research SpaceWire Serial Link

apbctrl: I/O ports at 0x80000c00, size 256 byte

apbctrl: slv13: Gaisler Research SpaceWire Serial Link

apbctrl: I/O ports at 0x80000d00, size 256 byte

grspw13: Spacewire link rev 0, AHB fifos 2x64 bytes, rx fifo 16 bytes, irq 11

grspw12: Spacewire link rev 0, AHB fifos 2x64 bytes, rx fifo 16 bytes, irq 10

grgpio8: 18-bit GPIO Unit rev 0

gptimer3: GR Timer Unit rev 0, 8-bit scaler, 2 32-bit timers, irq 8 10

irqmp: Multi-processor Interrupt Controller rev 3, #cpu 1

apbuart1: Generic UART rev 1, fifo 1, irq 2

ahbjtag AHB Debug JTAG rev 0

dsu3_2: LEON3 Debug support unit + AHB Trace Buffer, 2 kbytes

leon3_0: LEON3 SPARC V8 processor rev 0

leon3_0: icache 1*8 kbyte, dcache 1*4 kbyte

clkgen_spartan3e: spartan3/e sdram/pci clock generator, version 1

clkgen_spartan3e: Frequency 50000 KHz, DCM divisor 4/5

**** GRLIB system test starting ****

Leon3 SPARC V8 Processor

CPU#0 register file

CPU#0 multiplier

CPU#0 radix-2 divider

CPU#0 floating-point unit

CPU#0 cache system

Multi-processor Interrupt Ctrl.

Generic UART

Chapter 6 Implementation

 57

Modular Timer Unit

timer 1

timer 2

chain mode

Test passed, halting with IU error mode

** Failure: *** IU in error mode, simulation halted ***

Time: 1104788 ns Iteration: 0 Process: /testbench/iuerr File: testbench.vhd

stopped at testbench.vhd line 338

VSIM 2>

The test program executed by the test bench consists of two parts, a simple prom boot

loader(prom.S) and the test program itself (systest.c). Both parts can be re-compiled

using the ‘make soft’ command. This requires that the BCC tool-chain is installed on the

host computer. Note that the simulation is terminated by generating a VHDL failure,

which is the only way of stopping the simulation from inside the model. An error

message is then printed:

Test passed, halting with IU error mode

** Failure: *** IU in error mode, simulation halted ***

Time: 1104788 ns Iteration: 0 Process: /testbench/iuerr File: testbench.vhd

Stopped at testbench.vhd line 338

This error can be neglected.

Synthesis and place route

The template design can be synthesized with either Synplify-8.9 or ISE-9.2. Synthesis

can be done in batch or interactively.

To use ISE interactively, use:

make ise-map

or

make scripts

ise leon3mp.npl

To perform place&route for a netlist generated with XST

Chapter 6 Implementation

 58

make ise

The final programming file will be called ‘leon3mp.bit’.

Synthesis Reports of leon3-avnet-eval-xc4vlx60 board are as below are as below.

===

HDL Synthesis Report

Macro Statistics

RAMs : 3

 16x32-bit dual-port RAM : 1

 8x30-bit dual-port RAM : 2

ROMs : 7

 16x3-bit ROM : 2

 4x64-bit ROM : 2

Multipliers : 1

 33x33-bit multiplier : 1

Adders/Subtractors : 108

 10-bit subtractor : 1

 11-bit adder : 6

 11-bit subtractor : 2

 12-bit subtractor : 3

 15-bit subtractor : 1

 16-bit adder : 4

 18-bit adder : 3

 Timing Summary:

Speed Grade: -4

 Minimum period: 17.814ns (Maximum Frequency: 56.134MHz)

 Minimum input arrival time before clock: 2.061ns

 Maximum output required time after clock: 10.027ns

 Maximum combinational path delay: No path found

Process "Synthesize" completed successfully

Chapter 6 Implementation

 59

6.5 LEON3 SoC design Testing

After Implementation we need to test LEON3 Core by some Soft program. The ‘C’code

compilation can be done using gcc compiler. By using command - make soft, generate

two files prom.srec and sdram.srac .This two file have been executed by the test bench

and give result on the Modelsim console. The ‘C’ program and result are shown below.

LEON3 Core Integer Unit Testing
LEON core Integer unit has been tested by applying factorial program.

‘C ’code:

#include<stdio.h>

void main ()

{ report_start ();

 Printf ("factorial test started\n");

 int i,n=5,ans=1;

 for(i=n;i>0;i--)

 {

 ans=ans*i;

 }

 Printf ("Factorial of 5 is: %d", ans);

 Printf ("\factorial test completed\n");

 reported ();
}

Result on ModelSim Transcript:

**** GRLIB system test starting ****

Factorial test started

Factorial of 5 is: 120

Factorial test completed

LEON3 Core GPIO Port Testing
#include<stdio.h>
void main()
{
 report_start();

 int *data = (int *) 0x80000800;

Chapter 6 Implementation

 60

 int *output = (int *) 0x80000804;
 int *direction= (int *) 0x8000808;

 *data=10;

 *output= *data * 20;

 printf("\nvalue of Data Resister:%d",*data);

 printf("\naddress of Data Resister:%x",data);

 printf("\nresult in Output Resister:%d",*output);

 printf("\naddress in Output Resister:%x\n",output);

 // printf("address of Output resister:%x",output);

 *direction=~0;

 report_end();
}
Result on ModelSim Transcript:
**** GRLIB system test starting ****

value of Data Resister:10

address of Data Resister:80000800

result in Output Resister:200

address in Output Resister:80000804

6.6 Implementation on FPGA

For Implementation of LEON-3 Core on FPGA , create bit file by Xilinx ISE 9.2i tool.

This Bit file of LEON-3 Core is also available at www.gaisler.com. After generation of

the Bit File implement on FPGA board using ’Xilinx IMPACT’ software.

Steps for Implementing test application for LEON core
1). To apply tests for LEON-3 core. Apply following command

 make soft

2). After applying the above command sram.srec, sdram.srec files will be generated.

3). To load this Executable file on board software named ‘GRMON’ is required.

4). Now load this application on FPGA board, apply following command

 ./grmon-eval.exe –xilusb

Chapter 6 Implementation

 61

As we apply above command ‘GRMON’ will be connected with our FPGA board and it

will show the connection as well as the information about LEON-3 system which can be

seen in the figure 6.4.

Fig. 6.4 GRMON result

5). To see the detail of LEON system apply command “info sys” on consol of ‘GRMON’

 To load the application, apply the following command in GRMON window

 load systest.exe

Fig. 6.5 Loading application on LEON system

Chapter 6 Implementation

 62

6). To check the result of application connect the serial cable RS232 with the UART of

board and serial COM port of computer and Open HyperTerminal window. Boud rate set

to 38400 .

Fig. 6.6 HyperTerminal Result

 63

Chapter 7

AMBA AHB BUS

7.1 Introduction

 GRLIB is based on the AMBA AHB and APB on-chip buses, which is used as the

standard interconnect interface. The implementation of the AHB/APB buses is compliant

with the AMBA-2.0 specification, with additional ‘sideband’ signals for automatic

address decoding, interrupt steering and device identification (a.k.a. plug &play support).

The AHB and APB signals are grouped according to functionality into VHDL records,

declared in the GRLIB VHDL library. The GRLIB AMBA package source files are

located in lib/grlib/amba. All GRLIB cores use the same data structures to declare the

AMBA interfaces, and can then easily be connected together. An AHB bus controller and

an AHB/APB bridge are also available in the GRLIB library, and allow to assemble

quickly a full AHB/APB system. The following sections will describe how the AMBA

buses are implemented and how to develop a SOC design using GRLIB.

7.2 AMBA AHB On chip bus

7.2.1 AHB master interface

 The AHB master inputs and outputs are defined as VHDL record types, and are exported

through the TYPES package in the GRLIB AMBA library:

-- AHB master inputs

type ahb_mst_in_type is record

hgrant : std_logic_vector(0 to NAHBMST-1); -- bus grant

hready : std_ulogic; -- transfer done

hresp : std_logic_vector(1 downto 0); -- response type

hrdata : std_logic_vector(31 downto 0); -- read data bus

hcache : std_ulogic; -- cacheable

hirq : std_logic_vector(NAHBIRQ-1 downto 0); -- interrupt result bus

Chapter 7 AMBA AHB BUS

 64

end record;

-- AHB master outputs

type ahb_mst_out_type is record

hbusreq : std_ulogic; -- bus request

hlock : std_ulogic; -- lock request

htrans : std_logic_vector(1 downto 0); -- transfer type

haddr : std_logic_vector(31 downto 0); -- address bus (byte)

hwrite : std_ulogic; -- read/write

hsize : std_logic_vector(2 downto 0); -- transfer size

hburst : std_logic_vector(2 downto 0); -- burst type

hprot : std_logic_vector(3 downto 0); -- protection control

hwdata : std_logic_vector(31 downto 0); -- write data bus

hirq : std_logic_vector(NAHBIRQ-1 downto 0);-- interrupt bus

hconfig : ahb_config_type; -- memory access reg.

hindex : integer range 0 to NAHBMST-1; -- diagnostic use only

end record;

The elements in the record types correspond to the AHB master signals as defined in the

AMBA 2.0 specification, with the addition of four sideband signals: HCACHE, HIRQ,

HCONFIG and HINDEX. A typical AHB master in GRLIB has the following definition:

library grlib;

use grlib.amba.all;

library ieee;

use ieee.std_logic.all;

entity ahbmaster is

generic (

hindex : integer := 0); -- master bus index

port (

reset : in std_ulogic;

clk : in std_ulogic;

hmsti : in ahb_mst_in_type; -- AHB master inputs

hmsto : out ahb_mst_out_type -- AHB master outputs

Chapter 7 AMBA AHB BUS

 65

);

end entity;

The input record (HMSTI) is routed to all masters, and includes the bus grant signals for

all masters in the vector HMSTI.HGRANT. An AHB master must therefore use a generic

that specifies which HGRANT element to use. This generic is of type integer, and

typically called HINDEX (see example above).

7.2.2 AHB slave interface

Similar to the AHB master interface, the inputs and outputs of AHB slaves are defined as

two VHDL records types:

-- AHB slave inputs

type ahb_slv_in_type is record

hsel : std_logic_vector(0 to NAHBSLV-1); -- slave select

haddr : std_logic_vector(31 downto 0); -- address bus (byte)

hwrite : std_ulogic; -- read/write

htrans : std_logic_vector(1 downto 0); -- transfer type

hsize : std_logic_vector(2 downto 0); -- transfer size

hburst : std_logic_vector(2 downto 0); -- burst type

hwdata : std_logic_vector(31 downto 0); -- write data bus

hprot : std_logic_vector(3 downto 0); -- protection control

hready : std_ulogic; -- transfer done

hmaster : std_logic_vector(3 downto 0); -- current master

hmastlock : std_ulogic; -- locked access

hbsel : std_logic_vector(0 to NAHBCFG-1); -- bank select

hcache : std_ulogic; -- cacheable

hirq : std_logic_vector(NAHBIRQ-1 downto 0); -- interrupt result bus

end record;

-- AHB slave outputs

type ahb_slv_out_type is record

hready : std_ulogic; -- transfer done

hresp : std_logic_vector(1 downto 0); -- response type

Chapter 7 AMBA AHB BUS

 66

hrdata : std_logic_vector(31 downto 0); -- read data bus

hsplit : std_logic_vector(15 downto 0); -- split completion

hcache : std_ulogic; -- cacheable

hirq : std_logic_vector(NAHBIRQ-1 downto 0); -- interrupt bus

hconfig : ahb_config_type; -- memory access reg.

hindex : integer range 0 to NAHBSLV-1; -- diagnostic use only

end record;

The elements in the record types correspond to the AHB slaves signals as defined in the

AMBA 2.0 specification, with the addition of five sideband signals: HBSEL, HCACHE,

HIRQ, HCONFIG and HINDEX. A typical AHB slave in GRLIB has the following

definition:

library grlib;

use grlib.amba.all;

library ieee;

use ieee.std_logic.all;

entity ahbslave is

generic (

hindex : integer := 0); -- slave bus index

port (

reset : in std_ulogic;

clk : in std_ulogic;

hslvi : in ahb_slv_in_type; -- AHB slave inputs

hslvo : out ahb_slv_out_type -- AHB slave outputs

);

end entity;

The input record (ahbsi) is routed to all slaves, and include the select signals for all slaves

in the vector ahbsi.hsel. An AHB slave must therefore use a generic that specifies which

hsel element to use. This generic is of type integer, and typically called HINDEX (see

example above).

Chapter 7 AMBA AHB BUS

 67

7.2.3 AHB bus control

GRLIB AMBA package provides a combined AHB bus arbiter (ahbctrl), address decoder

and bus multiplexer. It receives the ahbmo and ahbso records from the AHB units, and

generates ahbmi and ahbsi as indicated in figure 2.4. The bus arbitration function will

generate which of the ahbmi.hgrant elements will be driven to indicate the next bus

master. The address decoding function will drive one of the ahbsi.hsel elements to

indicate the selected slave. The bus multiplexer function will select which master will

drive the ahbsi signal, and which slave will drive the ahbmo signal.

7.2.4 AHB bus index control

The AHB master and slave output records contain the sideband signal HINDEX. This

signal is used to verify that the master or slave is driving the correct element of the

ahbso/ahbmo buses. The generic HINDEX that is used to select the appropriate hgrant

and hsel is driven back on ahbmo.hindex and ahbso.hindex. The AHB controller then

checks that the value of the received HINDEX is equal to the bus index. An error is

issued during simulation if a mismatch is detected.

7.3 AHB plug & play configuration

The GRLIB implementation of the AHB bus includes a mechanism to provide plug&play

support. The plug&play support consists of three parts: identification of attached units

(masters and slaves), address mapping of slaves, and interrupt routing. The plug&play

information for each AHB unit consists of a configuration record containing eight 32-bit

words. The first word is called the identi- fication register and contains information on

the device type and interrupt routing. The last four words are called bank address

registers, and contain address mapping information for AHB slaves. The remaining three

words are currently not assigned and could be used to provide core-specific configuration

information.

Chapter 7 AMBA AHB BUS

 68

 Fig.7.1 AHB plug & play configuration layout

The plug&play information for all attached AHB units appear as a read-only table

mapped on affixed address of the AHB, typically at 0xFFFFF000. The configuration

records of the AHB masters appear in 0xFFFFF000 - 0xFFFFF800, while the

configuration records for the slaves appear in 0xFFFFF800 - 0xFFFFFFFC. Since each

record is 8 words (32 bytes), the table has space for 64 masters and 64 slaves. A

plug&play operating system (or any other application) can scan the con- figuration table

and automatically detect which units are present on the AHB bus, how they are

configured, and where they are located (slaves). The configuration record from each

AHB unit is sent to the AHB bus controller via the HCONFIG signal. The bus controller

creates the configuration table automatically, and creates a read-only memory area at the

desired address (default 0xFFFFF000). Since the configuration information is fixed, it

can be efficiently implemented as a small ROM or with relatively few gates. A debug

module (ahbreport) in the WORK.DEBUG package can be used to print the configuration

table to the console during simulation, which is useful for debugging. A typical example

is provided below:

Chapter 7 AMBA AHB BUS

 69

7.4 SpaceWire Interface with AMBA AHB Bus

Fig. 7.2 AHB slave interface

AMBA AHB interface with SpaceWire Protocol having two types of interface.

• Direct

• Indirect

In direct interface, signals interfaced directly to the AMBA AHB signals. In indirect

interface data transfer controlled through FSM. Interface module composed by AHB TX

FIFO, AHB Rx FIFO and AMBA signals.

The Tx Data AHB FIFO block is a FIFO containing the data to be transmitted

The Rx Data FIFO block is a FIFO containing the data to be the host memory.

The Tx AHB slave interface is used when the data transmission is in charge of the host.

Chapter 7 AMBA AHB BUS

 70

7.5 Interface signals

Signals I/O Description

ahb_slv_in. HSEL
ahb_slv_in.HWRITE
ahb_slv_in.HADDR(31-0)
ahb_slv_in.HTRANS(1-0)
ahb_slv_in.HWDATA(31-0)
ahb_slv_in.HREADY
ahb_slv_in.HSIZE(2-0)
ahb_slv_in.HBURST(2-0)
ahb_slv_in.HPROT(3-0)

 Input

AMBA AHB Slave Bus in for the

Tx host Interface

ahb_slv_out.HREADY
ahb_slv_out.HRESP(1-0)
ahb_slv_out.HRDATA(31-0)
ahb_slv_out.HSPLIT(15-0)

 Output

AMBA AHB Slave Bus out for the

host Interface

 Table 7.1 AHB signals

7.6 Interface Read/write logic

The interface module basically read and writes data from the host memory to the AHB

FIFO. The FSM for the read/write is in Figure 7.3.

Fig. 7.3 Read/Write Logic

Hsel=0

Chapter 7 AMBA AHB BUS

 71

7.7 Impimetation of AHB Interface on FPGA

To test the AHB interface with LEON3 Processor, C code for reading and writing AHB

FIFO.

C programme to test AHB interface with LEON3 Processor.
#include<stdio.h>

 main() {

 report_start();

 volatile int *data = (volatile int*) 0xfff00700;

 *data=0x80;

 printf("\nNow value at memory location %x is %x",data,*data);

 data=data+1;

 *data=0x70;

 printf("\nNow value at memory location %x is %x",data,*data);

 data=data+1;

 *data=0x60;

 printf("\nNow value at memory location %x is %x",data,*data);

 data=data+1;

 *data=0x50;

 printf("\nNow value at memory location %x is %x",data,*data);

 data=data+1;

 *data=0x50;

 printf("\nNow value at memory location %x is %x",data,*data);

 data=data+1;

 *data=0x40;

 printf("\nNow value at memory location %x is %x",data,*data);

 data=data+1;

 *data=0x30;

 printf("\nNow value at memory location %x is %x",data,*data);

 data=data+1;

 *data=0x20;

Chapter 7 AMBA AHB BUS

 72

 printf("\nNow value at memory location %x is %x",data,*data);

 report_end()};

Fig 7.4 AHBFIFO interface with LEON

Fig 7.5 AHBFIFO read/write result on HyperTerminal

Chapter 8 Conclusion and Future Scope

 73

Chapter 8

Conclusion and Future Scope

Conclusion

The project work entitled as RTL Design of SpaceWire Protocol and AMBA Interface

with LEON3 Processor, during project work literature survey is carried out to

understand the SpaceWire Protocol, LEON3 Processor, GRLIBL IP library this has

provided conceptual understandings.I have implemented Open source LEON3 Processor

based SoC design and AMBA AHB interface with AHBFIFO on Avnet-virtex-4 FPGA

board. I have also done RTL design and simulation of SpaceWire Protocol.

Future Scope
Following work is to be carried out during remaining part of Project period.

� Interfacing SpaceWire Protocol with LEON3 Processor through AMBA AHB

Bus

� Plugging SpaceWire Protocol with LEON3 based SoC design.

 74

REFERENCES

[1] Sergio Sayonara, Luca Fanucci,” Radiation Tolerant SpaceWire Router for Satellite

On-Board Networking”.

[2] GRLIB IP Library User’s Manual, Version 1.0.19.

[3] A. Sai Pramod Kumar, thesis report “A Prototype and Validation Platform for LEON

based Multiprocessor SoCs” Department of Computer Science and Engineering, ITDelhi,

2002.

[4] Jiri Gaisler. The LEON-2 Processor User’s Manual, Version 2-1.0.4, 2002.

http://www.gaisler.com.

[5] Gaisler Research. TSIM Simulator User’s Manual, Version 1.0.11, 2001.

http://www.gaisler.com/tsim.html.

[6] ECSS-E-50-12A Standards, Space engineering

[7] S.M. Parkes et al, “SpaceWire – Links, Nodes, Routers and Networks”, European

Cooperation for Space Standardization, Standard No. ECSS-E50-12A, Issue1, January

2003.

[8] Chris McClements, Steve Parkes, Agustin Leon “The SpaceWire CODEC

International SpaceWire Seminar (ISWS 2003)”.

[9]AMBA 2.0 reference manual.

[10] Kritikal Solutions pvt Ltd,”Generic Embedded Design Kit”, May 2006

 75

Appendix-A

Installation of Tools

Grlib Installation

 Grlib can be downloaded from the gaisler research site having the following link
location

 http://www.gaisler.com/products/grlib/ grlib-gpl-1.0.19-b3188

GRLIB is distributed as a gzipped tar-file and can be installed in any location on the host
system:
 tar xzf grlib-gpl-<version>.tar.gz
 for example
 tar xzf grlib-gpl-1.0.19-b3188.tar

the above command will produce the directory grlib-gpl-1.0.19-b3188 .The distribution
of the glib directory has the following file hierarchy:

 Bin various scripts and tool support files
 Boards support files for FPGA prototyping boards
 Designs template designs
 Doc infra-structure documentation
 Grlib.html Grlib IP library html page
 Lib IP library
 Software VHDL libraries and documentation

 GRLIB uses the GNU ‘make’ utility to generate scripts and to compile and
synthesis designs. It must therefore be installed on a unix system or in a ‘unix-like’
environment. Tested hosts systems are Linux and Windows with Cygwin.

Grlib IP cores

GRLIB is organized around VHDL libraries, where each IP vendor is assigned a unique
library name. Each vendor is also assigned a unique subdirectory under grlib/lib in which
all vendor-specific source files and scripts are contained. The vendor-specific directory
can contain subdirectories, to allow for further partitioning between IP cores etc.

The basic directories delivered with GRLIB under grlib-gpl-1.0.19-b3188/lib are:

grlib packages with common data types and functions
gaisler Gaisler Research’s components and utilities

Appendix-A

 76

tech/* target technology libraries for gate level simulation
work components and packages in the VHDL work library

 Other vendor-specific directories are also delivered with GRLIB like contrib.,
esa , micron, open cores, techmap , cypress, gleichmann, open chip but are not necessary
for the understanding of the design concept. Libraries and IP cores are described in detail
in separate documentation.

GRMON Installation

GRMON can be downloaded from the gaisler research site having the following link
location

 ftp://gaisler.com/gaisler.com/grmon/grmon-eval-1.1.19.tar.gz

GRMON is currently available for three platforms: linux, windows and solaris. GRMON
can be installed anywhere on the host computer - for convenience the installation
directory should be added to the search path. For example to install the grmon in cygwin
environment use the following commands (in cygwin)

 a) to untar the file in /opt (can be any other directory) directory
 tar xzf grmon-eval-1.1.16.tar.gz
 b) to set the path of the grmon , append the following line in the.
 bashrc file in thehome directory

 export PATH=/opt/ grmon-eval-1.1.16/cygwin:$PATH

BCC Installation

BCC can be downloaded from the gaisler research site having the following Link
location

 ftp://gaisler.com/gaisler.com/bcc/bin/windows/sparc-elf-3.2.3-1.0.24-
 cygwin.tar.bz2

 BCC is provided as a bzipped tar-file. It should be unpacked in the /opt

 Directory of the host using the following commands:
a) mkdir /opt -- to make directory opt in / (if it is not present already)
b) cd /opt -- change directory to /opt
c) tar -xjf sparc-elf-3.2.3-1.0.24-cygwin.tar.bz2
d) After installation, add /opt/sparc-elf-3.2.3/bin (or /opt/sparc-elf-
 3.4.4/bin) to the PATH variable by appending the following line in
 the.bashrc file in the home directory .
 export PATH=/opt/sparc-elf-3.2.3/bin:$PATH

 77

Appendix-B

SpaceWire Component

The IP is composed of height component:

TX: transmitter.

RX: receptor.

TX fifo: first in first out buffer for the transmission.

RX fifo: first in first out buffer for the reception.

Two domain clock: interface the signal between different clock.

Time-id buffer: buffer for the time id seeded.

FSM: state machine manage IP.

Transmitter: tx.vhd

Component TX is

port (

 Reset_n: in std_logic;

 Tx_Clk: in std_logic;

 -- Main FSM interface

 State: in FSM_State;

 -- Tx Fifo interface

 Tx_FIFO_Din: in std_logic_vector (8 downto 0);

 Tx_FIFO_Rd_n: inout std_logic;

 Tx_FIFO_Empty_n: in std_logic;

 -- Credit

 Rx_FIFO_Credit_Rd_n: out std_logic; -- Read one

 more FCT from The FIFO

 Rx_FIFO_Credit_Empty_n: in std_logic; -- true when

 there is no more FCT in the FIFO

Appendix-B

 78

 Tx_Credit_Empty_n: in std_logic;

 -- Time code

 Send_Time_n: in std_logic;

 Time Code: in std_logic_vector (7 downto 0);

 time_id_sended_n: out std_logic;

 send_esc: in std_logic;

 send_eop_n: out std_logic;

 -- Link

 Dout: out std_logic;

 Sout: out std_logic

);
end component;

Receiver: Rx.vhd

Component Rx is

 Port (

 Reset_n : in std_logic;

 Clk : in std_logic;

 Rx_Clk : inout std_logic;

 -- Main FSM interface

 State : in FSM_State;

 -- Got out

 got_NULL_n : out std_logic;

 got_ESC_n : out std_logic;

 got_FCT_n : out std_logic;

 got_EOP_n : out std_logic;

 got_EEP_n : out std_logic;

 got_NChar_n :out std_logic;

 -- error

 Error_Par_n :out std_logic;-- Parity error

Appendix-B

 79

 Error_ESC_n :out std_logic;-- ESC followed by ESC,EOP

 Error_Dis_n : out std_logic; -- Disconnected

 -- Rx Fifo interface

 Rx_FIFO_D : out std_logic_vector(8 downto 0);

 Rx_FIFO_Wr_n : out std_logic;

 -- Time Code interface

 got_Time_n : out std_logic;

 -- Link

 Din : in std_logic;

 Sin : in std_logic

);

end Rx;

fsm: fsm.vhd

component fsm is

 port(

 Reset_n : in std_logic;

 Clk : in std_logic;

 State : out FSM_State;

 linkEnabled : in std_logic;

 -- input

 short_got_fct_n : in std_logic;

 short_got_null_n : in std_logic;

 short_got_NChar_n : in std_logic;

 short_got_Time_n : in std_logic;

 -- input error

 Rx_credit_error_n : in std_logic;

 Tx_credit_error_n : in std_logic;

 short_Error_Dis_n : in std_logic;

 short_Error_Par_n : in std_logic;

 short_Error_ESC_n : in std_logic;

Appendix-B

 80

 view_fsm : out std_logic_vector(3 downto 0)

);

end component;

Receiver fifo: rx_fifo.vhd

component Rx_Fifo is

 generic(

 WIDTH : integer; --:= 8;

 LENGTH : integer; --:= 128;

 MAX_CREDIT : integer --:= 7*8

);

 port(

 Reset_n : in std_logic;

 Clk : in std_logic;

 State : in FSM_State;

 -- Credit

 Credit_Rd_n : in std_logic; -- allow 8 writes in

 the fifo

 Credit_Empty_n : out std_logic; -- true when all

 the FIFOhas been allowed to be written

 credit_error_n : out std_logic;

 -- Data Input

 Din : in std_logic_vector(WIDTH-1 downto 0);

 Wr_n : in std_logic;

 Full_n : out std_logic;

 short_got_EOP_n : in std_logic;

 -- Data Output

 Dout : out std_logic_vector(WIDTH-1 downto 0);

 Rd_n : in std_logic;

 Empty_n : out std_logic;

 Credit : inout integer range 0 to MAX_CREDIT);

 end component;

Appendix-B

 81

Two domain clock:

component twodomainclock is

 generic(N_short_to_width : integer;

 use_short_to_width : integer;

 N_width_to_short : integer;

 use_width_to_short : integer;

 N_short_to_width_n : integer;

 use_short_to_width_n : integer;

 N_width_to_short_n : integer;

 use_width_to_short_n : integer

);

 port (

 Rst : in std_logic;

 Clk_speed : in std_logic;

 Clk_slow : in std_logic;

in_short_pulse : in std_logic_vector(N_short_to_width - 1

downto 0);

in_width_pulse : in std_logic_vector(N_width_to_short - 1

downto 0);

out_width_pulse : inout std_logic_vector(N_short_to_width -

1 downto0);

out_short_pulse : out std_logic_vector(N_width_to_short - 1

downto 0);

in_short_pulse_n : in

std_logic_vector(N_short_to_width_n - 1downto0);

in_width_pulse_n : in std_logic_vector(N_width_to_short_n -

1 downto0);

out_width_pulse_n :inout

std_logic_vector(N_short_to_width_n-1downto0);

out_short_pulse_n :out std_logic_vector(N_width_to_short_n-

1 downto 0));

end component;

	First Page.pdf
	Certificate.pdf
	report.pdf

