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ABSTRACT 
 
 
 

              With the progressive increase in the use of FPGAs for prototyping the embedded 

systems on a chip, the designing of IPs (Intellectual property) has also been increasing 

which are used to enhance the features of the designs. To attach an IP with one of the 

buses in the design, the designer has to create an interface for it. Some open source   

processors available like LEON  and buses like AMBA bus . 

              This Project reports the designing of SpaceWire Protocol  and AMBA interface 

with LEON3 processor used as a platform for application specification SoC. The 

European Space Agency (ESA) proposed the SpaceWire standards for reliable satellite 

on-board networking at high speed upto hundreds of Mbits/sec. LEON Processor 

supports radiation tolerant therefore used in most of the Space application. AMBA Bus is 

used to interface the on chip peripheral with processor. This project report covers the 

theory of the SpacWire Protocol, its simulation work, theory of LEON processor, 

implementation of LEON3 core and AMBA AHB interface on Virtex 4 FPGA board and 

testing of LEON3 based SoC design.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 1

List of Figures 
 
Figure 2.1 LEON3 processor core block diagram ........................................................... 10 
Figure 2.2 Grlib Library IPs ............................................................................................. 11 
Figure 2.3 AHB - A conceptual view .............................................................................. 11 
Figure 2.4 AHB- Detailed View ...................................................................................... 12 
Figure 2.5 APB - A conceptual view ............................................................................... 13 
Figure 2.6 APB- Detailed View ....................................................................................... 13 
Figure 2.7 Leon Flow ....................................................................................................... 14 
Figure 3.1 LVDS Operation.............................................................................................. 18 
Figure 3.2 Data-Strobe (DS) Encoding............................................................................. 19 
Figure 3.3 Data and Control Characters ........................................................................... 20 
Figure 3.4 Link Restart ..................................................................................................... 22 
Figure 3.5 Packet Format.................................................................................................. 22 
Figure 3.6 SpaceWire Link Interface Block Diagram ...................................................... 24 
Figure 3.7 State Diagram for SpaceWire Link Interface .................................................. 26 
Figure 3.8 Null Detection ................................................................................................. 30 
Figure 4.1 SpaceWire in loopback mode.......................................................................... 38 
Figure 4.2 IP1 to IP2 data transfer .................................................................................... 39 
Figure 4.3 Data Transfer in duplex mode ......................................................................... 40 
Figure 5.1 LEON3 processor core block diagram ............................................................ 41 
Figure 5.2 LEON3 based SoC .......................................................................................... 42 
Figure 5.3 PROM/IO/SRAM/SDRAM Memory controller ............................................. 46 
Figure 5.4 Debug Support Unit and communication link................................................. 47 
Figure 6.1 Cygwin Process Wizard .................................................................................. 53 
Figure 6.2 GRLIB TOOL ................................................................................................. 53 
Figure 6.3 GRLIB Avnet Virtex LX60 Design ................................................................ 54 
Figure 6.4 GRMON result ................................................................................................ 54 
Figure 6.5 Loading application on LEON system ............................................................ 61 
Figure 6.6 HyperTerminal Result ..................................................................................... 62 
Figure 7.1 AHB   plug  & play configuration layout ........................................................ 68 
Figure 7.2 AHB slave interface ........................................................................................ 69 
Figure 7.3 Read/Write Logic ............................................................................................ 70 
Figure 7.4 AHBFIFO interface with LEON ..................................................................... 72 
Figure 7.5 AHBFIFO read/write result on hyperterminal ................................................ 72 
 
 
 
 
 
                           
 
 
 



 2

List of  Tables 
 
Table 7.1 AHB signals…………………………………………………………………...69 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 3

Abbreviation 
 
GRLIB    Gaisler Research Library 

AMBA    Advance Microcontroller Bus Controller 

AHB        Advance High Speed Bus 

APB        Advance Peripheral Bus 

FPGA      Field Programmable Gate Array 

SoC         System on Chip 

SPARC   Scalable Processor Architecture 

IP             Intellectual Property 

LVDS      Low Voltage Differential Signaling 

ESA         European Space Agency 

FCT         Flow Control Token 

EOP        End of Packet 

EEP        Error end of Packet 

ESC        Escape 

 
 
 
 
 
 
 
 
 
 
 
 
 



 4

Contents 
 
1 Introduction................................................................................................ 6 
 
2 Literature Survey....................................................................................... 9 

     2.1. SpaceWire ........................................................................................................... 9 
     2.2. LEON3 Processor Core....................................................................................... 9 
     2.3. GRLIB IP Library ............................................................................................. 10 
     2.4 AMBA AHB/APB buses ................................................................................... 11 

       2.4.1 AMBA AHB on-chip bus ......................................................................... 11 
       2.4.2 AMBA APB on-chip bus .......................................................................... 12 

     2.5 LEON flow......................................................................................................... 14 
     2.6 Environment....................................................................................................... 14 

 
3 SpaceWire Protocol ................................................................................. 16 

     3.1 Introduction........................................................................................................ 16 
     3.2 Scope................................................................................................................. 16 
     3.3 Description........................................................................................................ 17 

       3.3.1 Physical Level........................................................................................... 17 
       3.3.2 SIGNAL LEVEL ...................................................................................... 18 
       3.3.3 Character Level......................................................................................... 20 
       3.3.4 Exchange Level......................................................................................... 21 
       3.3.5 PACKET LEVEL ..................................................................................... 22 
       3.3.6 NETWORK LEVEL................................................................................. 23 

    3.4 ENCODER/DECODER BLOCK DIAGRAM (INFORMATIVE).................... 24 
       3.4.1 Transmitter................................................................................................ 24 
       3.4.2 Receiver .................................................................................................... 25 
       3.4.3 STATE MACHINE (NORMATIVE)....................................................... 26 

    3.5 Definition of States ............................................................................................. 27 
    3.6 LINK INITIALISATION (INFORMATIVE) .................................................... 31 

 
4  SpaceWire Protocol Simulation............................................................. 38 

   4.1 Spacewire in loopback mode ............................................................................... 38 
   4.2 SpaceWire IP1 to IP2 data transfer...................................................................... 39 
   4.3 SpaceWire IP1 to IP2 data transfer in duplex mode:........................................... 40 

 
 5  LEON3  Processor: An Embedded Core............................................. 41 

   5.1 Introduction.......................................................................................................... 41 
   5.2 Salient features of LEON are given below .......................................................... 42 
   5.3 Compliance with SPARC .................................................................................... 43 

      5.3.1 SPARC System Components..................................................................... 43 
   5.4 Bus ....................................................................................................................... 44 

     5.4.1 AHB ............................................................................................................ 44 
     5.4.2 APB............................................................................................................. 45 
     5.4.3 LEON’s AMBA Bus................................................................................... 46 



 5

   5.5 Memory................................................................................................................ 46 
     5.5.1 External Memory access ............................................................................. 46 
     5.5.2 Cache sub-system........................................................................................ 47 

   5.6 Debug Support Uni .............................................................................................. 47 
     5.6.1 DSU............................................................................................................. 47 
     5.6.2 Trace buffer................................................................................................. 48 
     5.6.3 DSU Monitor .............................................................................................. 49 

   5.7 Software Considerations ...................................................................................... 50 
 
6  Implementation ....................................................................................... 52 

   6.1 Introduction.......................................................................................................... 52 
   6.2 Overview.............................................................................................................. 52 
   6.3 Configuration ....................................................................................................... 52 
   6.4 LEON3 Processor Simulation.............................................................................. 54 
   6.5 LEON3 SoC design Testing................................................................................. 59 
   6.6 Implimentation on FPGA..................................................................................... 60 

 
7 AMBA AHB BUS..................................................................................... 63 

   7.1 Introduction.......................................................................................................... 63 
   7.2 AMBA AHB On chip bus.................................................................................... 63 

    7.2.1 AHB master interface .................................................................................. 63 
    7.2.2 AHB slave interface..................................................................................... 65 
    7.2.3 AHB bus control .......................................................................................... 67 
    7.2.4 AHB bus index control ................................................................................ 67 

  7.3 AHB plug & play configuration ........................................................................... 67 
  7.4 SpaceWire Interface with AMBA AHB Bus ........................................................ 69 
  7.5 Interface signals .................................................................................................... 70 
  7.6 Interface Read/write logic..................................................................................... 70 
  7.7  Impimetation of AHB Interface on FPGA........................................................... 71 

 
8 Conclusion and Future Scope ................................................................. 73 
REFERENCES............................................................................................ 74 
Appendix-A.................................................................................................. 75 
Appendix-B.................................................................................................. 77 
 
 
 
 
 
 
 



 

 6

Chapter 1 
 
Introduction 
 

To meet the growing needs of computing power, communication speed and performance 

requirements demanded by today’s applications, the trend to wards Systems on a Chip 

(SoC) has arrived.These applications particularly in the domain of on board data handling 

in Space application. SpaceWire Protocols has grown organically from the needs of on-

board processing applications. In principle a data-handling system developed for an 

optical instrument, for example, can be used for a radar instrument by unplugging the 

optical sensor and plugging in the radar one. Processing units, mass-memory units and 

down-link telemetry systems developed for one mission can be readily used on another 

mission, reducing the cost of development. 

Motivation 
ISRO Respond Project being done at Nirma Institute of Technology, Ahmedabad aims at 

developing a Design and Development of LEON3 based SoC design As a part of the this 

project, a design of SpaceWire Protocol and AMBA interface with LEON Processor is 

required to Design. This forms the motivation of the project. 

Objective 
This main objective of the project is to developing a SpaceWire Protocol IP and AMBA 

interface with LEON Processor customizable a platform for experimenting with 

application specific SoCs. 

Overall Approach 
This section briefly presents the overall approach. It describes the elements that are 

involved in the project and also the motive behind the choice of these elements. 

SpaceWire Protocol 
SpaceWire Protocol is a hi-directional, full-duplex, high-speed (2 to 200Mbits/s), serial 

data communication link. It was derived from the IEEE- 1355 terrestrial standard and is 

based on Low Voltage Differential Signaling (LVDS) physical layer resulting in a low-

power high-speed link suitable for space applications.  
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 Purpose of SpaceWire 
 
The purpose of the SpaceWire standard is: 

� to facilitate the construction of high-performance on-board   data handling   

systems, 

� to help reduce system integration costs, 

� to promote compatibility between data handling equipment  and subsystems, 

� to encourage re-use of data handling equipment across several different missions. 

 LEON 
The LEON3 core is an open source VHDL implementation of 32-bit processor 

conforming to the SPARC V8 architecture. LEON is chosen due to the following factors. 

•  Highly configurable 

•  Fully synthesizable over a variety of platforms 

•  VHDL code freely available under suitable license 

•  Reasonably good amount of documentation and active online help discussing the 

             Problems and features of the processor 

• SPARC compliant architecture which forms the base for number of successful 

            Commercial architectures like the SUN-SPARC series of processors 

LEON is designed for embedded applications with the following features on-chip  Integer 

Unit, Floating-point and Co-processor, Cache sub-system with separate instruction and 

data caches, Debug support unit, flexible Memory interface and controller,Timers, 

Watchdog, UARTs,Interrupt controller, Parallel I/O port, AMBA  on-chip buses, Boot 

loader and Watch point registers. LEON is explained in greater detail in Chapter 5. 

AMBA AHB 
The AMBA Advanced High-performance Bus (AHB) is a multi-master bus suitable to 

interconnect units that are capable of high data rates, and variable latency. 

Outline of the report 
Chapter 3 explains the general issues that need to be addressed in designing a Spacewire      

Protocol, which cover the SpaceWire Protocol Scope, description and design details 

Chapter 4 explains the simulation result of the SpaceWire Protocol. 
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Chapter 5 elucidates the architecture of LEON, its compliance with SPARC, bus, 

external memory and cache sub-system, DSU, software considerations of LEON. 

Chapter 6 gives the details of the implementation of the LEON3 core platform Gaisler 

research grlib and board AVNET EVAL XC4VLX60 step by step approach taken to test 

the LEON3 core using ‘c’application. 

Chapter 7 gives the AMBA AHB interface implementation 

Chapter 8 gives the Conclusion and Future work.   
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Chapter 2 
 
Literature Survey 
 
2.1. SpaceWire 
 
The SpaceWire protocol [6] was first developed by the European Space Agency (ESA) in 

the late 1990’s to provide a high-speed internal network for spacecraft. SpaceWire is 

intended as a common interface protocol designed to interface with not only spacecraft 

instruments and control systems, but also ground support and testing equipment. 

SpaceWire is a high performance serial bus, supporting data rates from 2Mbps to 

400Mbps. Based initially on IEEE 1355-1995, the electrical interface has been optimized 

for the rigors of spacecraft operations and adopted as standard ECSS-E-50-12A by ESA. 

The intent of SpaceWire is to provide a unified, high performance data handling 

infrastructure, designed to meet the needs of future space miss 

 

2.2. LEON3 Processor Core 
 
              LEON3 [4] is a 32-bit processor core conforming to the IEEE-1754 (SPARC 

V8) architecture. It is designed for embedded applications, combining high performance 

with low complexity and low power consumption. The LEON3 core has the following 

main features: 

•  7-stage pipeline with Harvard architecture, 

•  Separate instruction and data caches, 

•  Hardware multiplier and divider, 

•  On-chip debug support and multi-processor extensions. 
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A block diagram of the LEON3 core can be seen below. 
 

 
 

Figure 2.1 LEON3 processor core block diagram [4] 
 

2.3. GRLIB IP Library 
 
           GRLIB [2] is a collection of reusable IP cores, divided on multiple VHDL 

libraries. Each library provides components from a particular vendor or a specific set of 

shared functions or interfaces. Data structures and component declarations to be used in a 

GRLIB-based design are exported through library specific VHDL packages.GRLIB is 

based on the AMBA AHB and APB on-chip buses, which is used as the standard 

interconnect interface. The implementation of the AHB/APB buses is compliant with the 

AMBA-2.0 specification, with additional ‘sideband’ signals for automatic address 

decoding, interrupt steering and device identification (a.k.a. plug play support). The AHB 

and APB signals are grouped according to functionality into VHDL records, declared in 

the GRLIB VHDL library. The GRLIB AMBA package source files are located in 

lib/grlib/amba.All GRLIB cores use the same data structures to declare the AMBA 

interfaces, and can then easily be connected together. An AHB bus controller and an 

AHB/APB bridge are also available in the GRLIB library, and allow to assemble quickly 

a full AHB/APB system. The figure 2.2 shows an example of a LEON3 system designed 

with GRLIB. 
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Figure 2.2 Grlib Library IPs [2] 

 
2.4 AMBA AHB/APB buses 
 
2.4.1 AMBA AHB on-chip bus 
 
The AMBA Advanced High-performance Bus (AHB) [9] is a multi-master bus suitable to 

interconnect units that are capable of high data rates, and variable latency. A conceptual 

view is provided in the figure below. The attached units are divided into master and 

slaves, and controlled by a global bus arbiter. 

      
                                           

Figure 2.3 AHB - A conceptual view [2] 
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Since the AHB bus is multiplexed (no tristate signals), a more correct view of the bus and 

the attached units can be seen in figure 2.3. Each master drives a set of signals grouped 

into a VHDL record called HMSTO.The output record of the current bus master is 

selected by the bus multiplexers and sent to the input record (ahbsi) of all AHB slaves. 

The output record (ahbso) of the active slave is selected by the bus multiplexer and 

forwarded to all masters. A combined bus arbiter, address decoder and bus multiplexer 

controls which master and slave are currently selected 

                       

 
 

Figure 2.4 AHB- Detailed View [2] 
 
2.4.2 AMBA APB on-chip bus 
 
The AMBA Advanced Peripheral Bus (APB) is a single-master bus suitable to 

interconnect units of low complexity which require only low data rates. An APB bus is 

interfaced with an AHB bus by means of a single AHB slave implementing the 

AHB/APB Bridge. The AHB/APB Bridge is the only APB master on one specific APB 

bus. More than one APB bus can be connected to one AHB bus, by means of multiple 

AHB/APB bridges. A conceptual view is provided in figure 2.5. 
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Figure 2.5 APB - A conceptual view [2] 
 
          Since the APB bus is multiplexed (no tristate signals), a more correct view of 

the bus and the attached units can be seen in figure 2.5.The access to the AHB slave input 

(AHBI) is decoded and an access is made on APB bus. The APB master drives a set of 

signals grouped into a VHDL record called APBI which is sent to all APB slaves. The 

combined address decoder and bus multiplexer controls which slave is currently selected. 

The output record (APBO) of the active APB slave is selected by the bus multiplexer and 

forwarded to AHB slave output (AHBO). 

 
Figure 2.6 APB- Detailed View [2] 
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2.5 LEON flow 

 
The following steps describe the flow for simulating and synthesizing a LEON based 

design. 

 

 
 

Figure 2.7 Leon Flow [10] 

 
2.6 Environment 

 
                 The following software and hardware are required to proceed further: 
 
          Software: 
 

•  Cygwin 
           It provides a unix-like environment for windows PC which is required to 
           Execute the commands of the Leon based tools. 
 

•  Tcl/Tk (8.4+) 
          It is required to execute the tcl/tk scripts which open the GUI form of the 
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 Leon based tools. 
 

•  Mentor ModelSim 
          It is used to simulate the sample designs to check their functionality  
          before they are synthesized. 
 

•  Grmon debugger 
          It provides the debugging of the designs after they are downloaded into   
          the board. 
 

•  GRTool 
           It is combined tool of sparc compiler, mysys.It compiles C application      
           and  converts into executable files. 
            

•  Xilinx ISE 9.2i(lower versons may also work) or  above 
           To synthesize the designs and create their bit files. 
 
Hardware: 

• Windows-PC ,linux 
•  FPGA board (Avnet Virtex -4)  
•  Xilinx Parallel cable IV 
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Chapter 3 
 
SpaceWire Protocol 
 
3.1 Introduction. 
 
The SpaceWire Protocol addresses the handling of payload data on-board a spacecraft. It 

is a standard for a high-speed data link, which is intended to meet the needs of future, 

high-capability, remote sensing instruments and other space missions.SpaceWire 

provides a unified high-speed data-handling infrastructure for connecting together 

sensors, processing elements, mass-memory units, and downlink telemetry sub-systems. 

The purpose of SpaceWire is 
 

• To facilitate the construction of high-performance on-board data-handling 

systems, 

• To help reduce system integration costs, 

• To promote compatibility between data-handling equipment and sub-systems, 

• To encourage re-use of data-handling equipment across several different missions. 

3.2  Scope. 
The SpaceWire standard specifies the physical interconnection media and data 

communication Protocols to enable data to be sent reliably at high-speed (between 2 

Mbps and 100 Mbps or more) from one unit to another. SpaceWire links are full-duplex, 

point-to-point, and serial data communication links. The scope of this standard is the 

physical connectors and cables, electrical properties, and logical protocols that comprise 

the SpaceWire data link. SpaceWire provides a means of sending packets of information 

from a source node to a required destination node. SpaceWire does not specify the 

contents of the packets of information. 

The SpaceWire Protocol covers the following normative protocol levels 
 

• Physical Level: Defines connectors and cables. 

• Signal Level: Defines signal encoding, voltage levels, noise margins, EMC 

specifications and data signaling rates. 
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• Character Level: Defines the data and control characters used to manage the 

flow of data across a link. 

• Exchange Level: Defines the protocol for link initialization, flow control, link 

error detection and link error recovery. 

• Packet Level: Defines how data to be transmitted via a SpaceWire link is split up 

into packets 

• Network Level: Defines the structure of a SpaceWire network and the way in 

which packets are transferred from a source node to a destination node across a 

network. Defines how link errors and network level errors are handled. 

3.3  Description. 
  
SpaceWire is a full-duplex, bi-directional, serial, point-to-point data link. It encodes data 

using two differential signal pairs in each direction. That is a total of eight signal wires, 

four in each direction. The various Protocols levels explain below. 

3.3.1 Physical Level 
 
The physical level of the SpaceWire standard covers cables, connectors and EMC 
specification. 
 
� Cables 
 

The SpaceWire cable comprises four twisted pair wires with a separate shield around 

each twisted pair and an overall shield. To achieve a high data signaling rate with 

SpaceWire over distances up to 10m the cable must have the following characteristics:- 

• Low signal-signal skew between each signal in a differential pair and between 

Data and Strobe pairs 

• Low signal attenuation 

• Low cross-talk 

• Good EMC performance 

• Connectors 
The SpaceWire connector is required to have eight signal contacts plus a screen 

termination Contact. A nine pin micro-miniature D-type is specified as the SpaceWire 

connector. This type of connector is available qualified for space use. 
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� EMC Specification 

The EMC specifications for SpaceWire have been derived from the EMC specifications 

for the Rosetta Radiated emission, electric and magnetic fields, 

• Radiated susceptibility, electric and magnetic fields, 

• Conducted emission, 

• Signaling rate 

• Fault isolation, and 

3.3.2 SIGNAL LEVEL 
The signal level part of the SpaceWire standard covers signal voltage levels, noise 

margins and signal encoding. 

Signal Level and Noise Margins 

Low Voltage Differential Signaling or LVDS is specified as the signaling technique to be 

used in SpaceWire. LVDS uses balanced signals to provide very high-speed 

interconnection using a low voltage swing (350 mV typical). The balanced or differential 

signaling provides adequate noise margin to enable low voltages to be used in practical 

systems. Low voltage swing means low power consumption at high speed. LVDS is 

appropriate for connections between boards in a unit, and unit to unit interconnections 

over distances of 10m or more. A typical LVDS driver and receiver are shown in Figure 

3.1 connected by cable   with 100 ohm differential impedance. 

 

 

Fig 3.1 LVDS Operation 
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The LVDS driver uses current mode logic. A constant current source of around 3.5mA 

provides the current that flows out of the driver, along the transmission medium, through 

the 100-ohm termination resistance and back to the driver via the transmission medium. 

Two pairs of transistor switches in the driver control the direction of the current flow 

through the termination resistor. When the driver transistors marked “+” in Figure 3.1 are 

turned on and those marked “-” are turned off, current flows as indicated by the arrows 

on the diagram creating a positive voltage across the termination resistor. LVDS 

receivers are specified to have high input impedance so that most of the current will flow 

through the termination resistor to generate around ±350mV with the nominal 3.5mA 

current source. 

Data Encoding 
 
SpaceWire uses Data-Strobe (DS) encoding. This is a coding scheme which encodes the 

transmission clock with the data into data and strobe so that the clock can be recovered 

by simply XORing the data and strobe lines together. The data values are transmitted 

directly and the strobe signal changes state whenever the data remains constant from one 

data bit interval to the next. This coding scheme is illustrated below in Figure 3.2.The 

reason for using DS encoding is to improve the skew tolerance to almost 1-bit time, 

compared to 0.5 bit time for simple data and clock encoding. 

 

 
  

Figure 3.2 Data-Strobe (DS) Encoding 
 

A SpaceWire link comprises two pairs of differential signals, one pair transmitting the D 

and S signals in one direction and the other pair transmitting D and S in the opposite 

direction. That is a total of eight wires for each bi-directional link. 
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3.3.3 Character Level 
There are two types of characters:- 
 

• Data characters which hold an eight-bit data value transmitted least-

significant bit first. Each data character contains a parity-bit, a data-control 

flag and the eight-bits of data. The parity-bit covers the previous eight-bits of 

data, the current parity-bit and the current data-control flag. It is set to 

produce odd parity so that the total number of 1’s in the field covered is an 

odd number. The data control flag is set to zero to indicate that the current 

character is a data character. 

• Control characters which hold a two-bit control code. Each control character 

is formed from a parity-bit, a data-control flag and the two-bit control code. 

The data-control flag is set to one to indicate that the current character is a 

control character. Parity coverage is similar to that for a data character. One 

of the four possible control characters is the escape code (ESC). This can be 

used to form longer control codes. One longer control code is specified which 

is the NULL code. NULL is formed from ESC followed by the flow control 

token (FCT). NULL is transmitted whenever a link is not sending data or 

control tokens to keep the link active and to support link disconnect detection. 

 
  The data and control characters are illustrated in Figure 3.3. 

 

 

 

Figure 3.3 Data and Control Characters 
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3.3.4 Exchange Level 
 
The Exchange Level shows the following Processes. 
 
Initialization: Following reset the link output is held in the reset state until it is 

instructed to start and attempt to make a connection with the link interface at the other 

end of the link. A connection is made following a handshake that ensures both ends of the 

link are able to send and receive characters successfully. Each end of the link sends 

NULLs, waits to receive a NULL, then sends FCTs and waits to receive an FCT. Since a 

link interface cannot send FCTs until it has received a NULL, receipt of one or more 

NULLs followed by receipt of an FCT means that the other end of the link has received 

NULLs successfully and that full connection has been achieved. 

Flow Control: A transmitter is only allowed to transmit data characters if there is space 

in the host system receive buffer for them. The host system indicates that there is space 

for eight more data characters by requesting the link transmitter to send a flow control 

token (FCT). The FCT is received at the other end of the link (end B) enabling the 

transmitter at end B to send up to eight more FCTs. If there is more room in the host 

receive buffer then multiple FCTs may be sent, one for every eight spaces in the receive 

buffer. Correspondingly, if multiple FCTs are received then it means that there is a 

corresponding amount of space available in the receiver buffer e.g. four FCTs means that 

there is room for 32 data characters. 

Detection of Disconnect Errors: Link disconnection is detected when following 

reception of a Data bit no new data bit is received within a link disconnect timeout 

window (850 nsec). Once a Disconnection error has been detected the link attempts to 

recover from the error (see in Figure 3.4). 

Detection of Parity Errors: Parity errors occurring within a data or control character are 

detected when the next character is sent, since the parity bit for a data or control token is 

contained in the next character. Once a parity error has been detected the link will attempt 

to recover from the error (see in Figure 3.4). 

Link Error Recovery: Following an error or reset the link attempts to re-synchronise 

and restart using an “exchange of silence” protocol (see Figure 3.4). The end of the link 

that is either reset or that finds an error ceases transmission. This is detected at the other 
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end of the link as a link disconnects and that end stops transmitting too. The first link 

resets its input and output for 6.4 us to ensure that the other end will detect the 

disconnect. The other end will also wait for 6.4 us after ceasing transmission. Each link 

then waits a further 12.8 us before starting to transmit These periods of time are sufficient 

to ensure that the receivers at both ends of the link are ready to receive characters before 

either end starts transmission.The two ends of the link go through the NULL/FCT 

handshake to re-establish a connection and ensure proper character synchronization. 

 

Fig 3.4 Link Restart 

3.3.5 PACKET LEVEL 
 
The packet level protocol follows the packet level protocol defined in IEEE-1355. It 

defines how data is encapsulated in packets for transfer from source to destination. The 

format of a packet is illustrated in Figure 3.5. 

 
 

Figure 3.5 Packet Format 
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The “Destination Address” is a list of one or more data characters that represent the 

destination identity. This list of data characters represents either the identity code of the 

destination node or the path that the packet will take to get to the destination node. The 

“Cargo” is the data to be transferred from source to destination.The “End of Packet 

Marker” is used to indicate the end of a packet. Two ends of packet markers are defined. 

• EOP Normal end_of_packet marker - indicates end of packet 

• EEP Error End_of_packet marker - indicates that the packet has been 

terminated prematurely due to a link error. Since there is no start of packet 

marker, the first data character following an end_of_packet marker (either 

EOP or EEP) is regarded as the start of the next packet. 

 
3.3.6 NETWORK LEVEL 
 
The network level defines what a SpaceWire network is, describes the components that 

make up a SpaceWire network explains how packets are transferred across a SpaceWire 

network and details the manner in which the SpaceWire network recovers from errors. A 

SpaceWire network is made up of a number of SpaceWire nodes interconnected by 

SpaceWire routing switches. SpaceWire nodes are the sources and destination of packets 

and provide the interface to the application system(s). SpaceWire nodes may be directly 

connected together using SpaceWire links or they may be interconnected via SpaceWire 

routing switches using SpaceWire links to make the connection between node and routing 

switch. A SpaceWire routing switch has several links interfaces which are connected 

together inside the routing switch by a switch matrix which allows any link input to pass 

the packets that it receives on to any link output for re-transmission. 
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3.4 ENCODER/DECODER BLOCK DIAGRAM (INFORMATIVE) 
An example block diagram of a SpaceWire Encoder/Decoder is illustrated in Figure 3.6 
below. 
 
 

 
 

Figure 3.6 SpaceWire Link Interface Block Diagram 
 
3.4.1 Transmitter 
 
The Transmitter is responsible for encoding data and transmitting it using the DS 

encoding technique. It receives its data from the Transmit Host Interface. If there is no 

data to transmit the Transmitter will send Nulls. The Transmitter is only allowed to send 

data if the host system at the other end of the link (end B) has room in its host receive 

buffer. This is indicated by the link interface at end B sending an FCT, indicating that it 

is ready to accept other 8 data characters. The Transmitter is responsible for keeping 

track of the FCTs received and the number of data characters sent to avoid input buffer 

overflow at the other end of the link. To do this the Transmitter holds a credit count of 

the number of characters it has been given permission to send. The transmitter is also 

responsible for sending FCTs whenever the local Receiver has space for eight more data 

characters. 
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Transmit Clock 
The Transmit Clock is responsible for producing the clock signals needed by the 

transmitter. The Transmit-clock signals are typically derived from the local system clock 

or from a special transmit clock circuit. 

Transmit Host Interface 
 
The Transmit Host Interface provides the interface between the Transmitter and the local 

system source of data. The local system writes data into the Transmit Host Interface at 

any time provided the host interface is ready to receive data. 
 

3.4.2 Receiver 
 
The Receiver is responsible for decoding the DS signals (Din and Sin) to produce a 

sequence of data characters that are passed on to the host system via the Receive Host 

Interface. It also receives NULLs, FCTs and other control characters (EOP, EEP). 

NULLs represent an active link. They are flagged to the exchange-level state machine but 

are ignored otherwise. When an FCT is received the Receiver must inform the 

Transmitter so that it can update its credit count accordingly. All other control characters 

received are flagged to the host system. The receiver will ignore any NChars, L-Chars, 

parity errors or escape errors until the first NULL has been received. The disconnection 

detection mechanism with the receiver will be enabled as soon as the first bit arrives (i.e. 

first transition detected on D or S inputs to receiver). 

 Receive Clock Recovery 

The receive-clock is recovered by simply XORing the received data and strobe signals 

together. The Receive Clock Recovery circuit provides all the clock signals needed by the 

receiver. 

 Receive Host Interface 

The Receive Host Interface provides the interface between Receiver and the local host 

system. As data is received by the Receiver it is written into the Receive Host Interface 

and passed on to the local host system. The local host system is responsible for informing 

the link interface whenever it is ready to receive eight more data characters from the 

Receive Host Interface so that the Transmitter can send an FCT to the interface at the 

other end of the link (see Fig 3.6). 
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 Receive Buffer Data Management 

The host system is responsible for data buffer management. This makes the SpaceWire 

interface more versatile and eases partitioning of the error recovery mechanism across the 

various levels of the SpaceWire standard. Several different types of host receiver 

buffering may be implemented:- 

• FIFO buffering – where the size of the FIFO buffer depends upon the particular 

application. 

• Memory buffering – where direct memory access (DMA) is used to transfer data 

to host system memory. As soon as the DMA channel has been set up, several 

FCTs can be requested immediately to allow the data to be transferred as fast as 

possible. 

• No buffering – where the host system is able to accept data at the highest rate that 

the link interface can provide it. In this case several FCTs can be sent initially, 

followed by one  more every time eight normal characters are received. 

3.4.3 STATE MACHINE (NORMATIVE) 
The complete state transition diagram for the SpaceWire link interface is illustrated in 

Figure 3.7 below.  

 
 

RxErr = Disconnect Error OR Parity Error OR Escape Error (ESC not followed by FCT) 
Note: Disconnect Error only enabled after first bit received. 

Parity Error, Escape Error,, gotFCT, gotNChar only enabled after first Null received (i.e. 
gotNull asserted). 

 

Figure 3.7 State Diagram for SpaceWire Link Interface 
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3.5 Definition of States 
In this section the states represented in figure 3.7 are described. 

ErrorReset 

The ErrorReset state shall be entered after a system reset, after link operation has been 

terminated for any reason or if there is an error during link initialisation. In the 

ErrorReset state the Transmitter, Receiver,Transmit Host Interface and Receive Host 

Interface shall all be reset. When the reset signal is de-asserted the ErrorReset state shall 

be left unconditionally after a delay of 6.4 us (nominal) and the state machine shall move 

to the ErrorWait state. Whenever the reset signal is asserted the state machine shall move 

immediately to the ErrorReset state and remain there until the reset signal is deasserted. 

ErrorWait 

The ErrorWait state shall be entered only from the ErrorReset state.In the ErrorWait 

state the Receiver shall be enabled and the Transmitter shall be held reset. This allows the 

Receiver to start the disconnection detection mechanism (after registering a transition on 

the D or S line) and to begin looking for the arrival of a NULL.If a NULL is received 

then the gotNULL condition shall be set. This condition will be acted upon in the Started 

state. The ErrorWait state shall be left unconditionally after a delay of 12.8 us (nominal) 

and the state machine shall move to the Ready state.If, while in the ErrorWait state, a 

disconnection error is detected, or if after the first NULL has been received, a parity error 

or escape error occurs, or any character other than a NULL is received, then the state 

machine shall move back to the ErrorReset state.The ErrorReset and ErrorWait state with 

their 6.4 us and 12.8 us delays ensure that the receivers at both ends of a link are enabled 

before either end begins transmission. 

 Ready 

The Ready state shall be entered only from the ErrorWait state.In the Ready state the link 

interface isready to initialise as soon as it is allowed to do so.The Receiver shall be 

enabled and the Transmittershall be held reset.If a NULL is received then the gotNULL 

condition shall be set.This condition will be acted upon in the Started state.The state 

machine shall wait in the Ready state until the [Link Enabled] guard becomes true and 

then it shall move on into the Started state. If, while in the Ready state, a disconnection 

error is detected, or if after the first NULL has been received, a parity error or escape 
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error occurs, or any character other than a NULL is received, then the state machine shall 

move to the ErrorReset state. In the Ready state the two receivers are enabled and the 

state machine is waiting for the local host system to command the link to start. 

Started 

The Started state shall be entered from the Ready state when the link interface is enabled. 

In the Started state the state machine begins making a connection with the link interface 

at the other end of the link by sending NULLs. When the Started state is entered a 12.8 us 

(nominal) timeout timer shall be started. In Started state the Receiver shall be enabled 

and the Transmitter shall send NULLs.If a NULL is received then the gotNULL 

condition shall be set.The state machine shall move to the Connecting state if the 

gotNULL condition is set. The NULL that set the gotNULL condition may have been 

received in the ErrorWait, Ready or Started states. In the Started state a least one NULL 

must be requested to be sent from the transmitter before moving to the Connecting state. 

If, while in the Started state, a disconnection error is detected, or if after the first NULL 

has been received, a parity error or escape error occurs, or any other character other than 

a NULL is received, then the state machine shall move to the Error Reset state.If the 12.8 

us timeout timer expires (i.e. no NULL received since leaving the Error Reset state) then 

the state machine shall move to the Error Reset state. In the Started state the attempt to 

make a connection across the link is started. NULLs are transmitted and the receiver is 

waiting to receive a NULL. 

Connecting 

The Connecting state shall be entered from the Started state after a NULL has been 

received (gotNULL condition set). On entering the Connecting state a 12.8 us timeout 

timer shall be started. In the Connecting state the Receiver shall be enabled and the 

Transmitter shall be enabled to send FCTs and NULLs. If an FCT is received the state 

machine shall move to the Run state. If a disconnect error, parity error or escape error is 

detected, or if an N-Char is received while in the Connecting state then the state machine 

shall move to the ErrorReset state. If the 12.8 us timeout occurs then the state machine 

shall move to the ErrorReset state. The Connecting state is entered when the link 

interface (end A) has received a NULL. It now has to wait for an FCT to be received 

indicating that the other end of the link (end B) has also received a NULL. When the link 
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interface has received a NULL and an FCT it means that communication is established in 

both directions. If an FCT fails to arrive within 12.8 us then something is wrong with the 

link connection so the link interface is reset once more (ErrorReset state) and connection 

is attempted once again. 

 Run 

The Run state shall be entered from the Connecting state. In the Run state the Receiver is 

enabled and the Transmitter is enabled to send N-Chars, FCTs and NULLs. If the link 

interface is disabled, or if a disconnect error, parity error, escape error, credit error or 

empty packet error is detected , while in the Run state then the state machine shall move 

to the Error Reset state. The Run state is the state for normal operation. Link connection 

has been made. L-Chars and N-Chars can flow freely in both directions across the link. 

The link remains in the Run state until an error occurs or until the link is disabled. 

Definition of Transitions 

Reset 

Reset represents power on reset, other hardware reset or software commanded reset. 

After T us 

After 6.4 us or after 12.8 us represents a delay of the specified time measured from when 

the current state is entered. The actual time intervals are nominal delays (see Fig 3.7). 

[Link Enabled] 

[Link Enabled] is a condition that must be met for the transition to occur (i.e. a guard). 

[Link Enabled] can be set true by software or hardware (see section 3.7). 

gotNull 

gotNull means that a NULL has been received. NULL detection is enabled whenever the 

Receiver is enabled. Any sequence of bits encountered prior to the first NULL being 

received shall be ignored. NULL detection shall include the parity bit within the NULL 

i.e. the parity bit that covers the ESC character within the NULL control code. The 

second parity bit associated with the NULL, that covers the FCT character shall not be 

included in the NULL detection. Hence the NULL shall be detected and gotNull asserted, 

when the 1110100 sequence of bits is received as illustrated in figure 3.8. If a parity error 

occurs with the first parity bit (for the ESC character) then the NULL will not be 

detected. If a parity error occurs with the second parity bit, then this error will be picked 
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up immediately since parity error detection is enabled within the receiver after a NULL 

has been received. 

 

 

Fig 3.8 Null Detection 
gotFCT 

gotFCT means that an FCT has been received. FCTs are only valid when received in the 

Connecting and Run states. If received in any other state they represent an error. 

gotNChar 

gotNChar means that an N-Char has been received.An N-Char received when the 

exchange-level state machine is not in the Run state is an error. 

[Link Disabled] 

[Link Disabled] is a condition set by external hardware or software in order to disable 

and stop the link interface. 

 RxErr 

RxErr or Receiver Error is shorthand for Disconnect Error, Parity Error or Escape Error. 

 Disconnect Error 

Disconnect Error is an error condition asserted when the length of time since the last 

transition on the D or S lines was longer ago than 850 ns nominal. The disconnect 

detection mechanism is activated after leaving the ErrorReset state as soon as the first 

edge is detected on the D or S line. 

Parity Error 

The parity error event occurs if a parity error is detected. Parity detection is enabled 

whenever the receiver is enabled after the first NULL has been received. 
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Escape Error 

The escape error event occurs if an ESC character is followed by any character other than 

an FCT (ESC followed by FCT is a NULL. Escape error detection is enabled whenever 

the receiver is enabled after the first NULL has been received. 

Character Sequence Error 

Any characters received before a NULL has been received are ignored. Once a NULL 

has been received an FCT received before a NULL has been sent indicates an error (i.e. 

FCT received in ErrorWait, Ready or Started state). An N-Char should only be received 

after both a NULL and an FCT have been received otherwise an error has occurred (i.e. 

N-Char can only be received in the Runstate).Note: In the state diagram of figure 3-7, the 

invalid gotFCT or gotNChar events are shown explicitly, rather than as a general 

character sequence error event. 

Credit Error 

Credit error occurs if data is received when the host system is not expecting any more 

data, i.e. when all the N-Chars expected, according to the requested “8 more” N-Chars 

and subsequent transmitted FCTs, have been received. A credit error ought never to occur 

and indicates that some undetected error has occurred on the link affecting the transfer of 

FCTs. 

Empty Packet Error 

Empty packets are not permitted (see section 8). If the next N-Char received after an EOP 

or EEP is another EOP or EEP then an empty packet error has occurred. An empty packet 

error ought never to occur and indicated that some undetected error has occurred on the 

link producing a spurious EOP or EEP. 
 

3.6 LINK INITIALISATION (INFORMATIVE) 
This section explains how the state diagram given in section 3.4 handles link 

initialization, going from the reset of one end of a link through to the link operating 

normally sending data in both directions. The basic state diagram with the receiver error 

conditions removed is illustrated in Figure 3.8 .After a link interface (one end of a link) 

has been reset, it enters the ErrorReset state where the transmitter and receiver are reset. 

The transmitter reset is a controlled reset, resulting first in the transmitter stopping 
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transmission followed by resetting of the strobe signal and then the data signal. This 

sequence avoids the simultaneous transition of both data and strobe signals. The link 

interface will remain in the ErrorReset state for approximately 6.4 us nd then move to the 

ErrorWait state. In the ErrorWait state the transmitter remains disabled, but the receiver 

is enabled so that it can begin searching for NULLs. The link interface remains in the 

ErrorWait state for 12.8 us and then moves into the Ready state.The 6.4 us from 

ErrorReset to ErrorWait and the 12.8 us delay from ErrorWait to Ready make sure that 

the receivers at both ends of a link are ready to receive characters before either end starts 

transmission. The link interface may be enabled in many possible ways, for example, by 

software command, automatically when the receiver detects a NULL, or the link may be 

permanently enabled. When a link interface is enabled the [Link Enabled] condition 

becomes true. The link interface will move from the Ready state to the Started state as 

soon as the link is enabled. In the Started state the link interface instructs the transmitter 

to start sending NULLs. It will remain in this state until the receiver detects that a NULL 

has been received over the link or until a connection timeout has expired. The connection 

timeout is set to a nominal 12.8 us since this period has to be generated for the 

ErrorReset state timeout. If a NULL is received then the link interface will move tothe 

Connecting state. If no NULL is received within 12.8 us it will move to the ErrorReset 

state. In the latter case the link interface will go through the reset sequence (ErrorReset, 

ErrorWait, Ready) and attempt to make a connection again a short time later. In the 

Connecting state the link interface will send some FCTs (and NULLs) and will wait for 

an FCT to be received. If an FCT is received the link interface will move on to the Run 

state. If an FCT has not been received within 12.8 us then link connection has not been 

made properly, so the link interface moves back to the ErrorReset state. The link 

interface will then go through the reset sequence (ErrorReset, ErrorWait, Ready) and 

attempt to make a connection again a short time later. When the link enters the Run state 

it starts normal operation, sending and receiving data and control characters. It remains in 

the Run state until the link is disabled. The link interface then moves through the reset 

sequence (ErrorReset, ErrorWait, Ready) and stays in the ready state until the link is 

enabled once more. A link can only send FCTs once it has received a NULL. So, when a 

link has received an FCT it knows that the link is connected in both directions.NULL 
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correlation in the ErrorWait, Ready and Started states ensures proper character 

synchronization. The NULL/FCT handshake sequence ensures that the link is connected 

in both directions before normal link operation begins.The time taken from a link being 

enabled in the Starting state to normal operation in the Run state can be as little as the 

time taken to transfer two NULLs and an FCT. End A is enabled and sends a NULL. End 

B is autostart enabled when it receives the NULL from end A and sends a NULL 

followed by an FCT. End A receives the NULL from end B and sends an FCT.Both ends 

receive FCTs and move to the Run state. At a link data signaling rate of 10 Mbps this 

could take just 2 us. 

NORMAL OPERATION (INFORMATIVE) 

In normal operation both ends of the link are in the Run state and will be sending and 

receiving NChars, FCTs and NULLs. Consider a host system with buffer space sufficient 

to hold 16 normal-characters. This host system at one end of a link (end A) will indicate 

that it is ready to receive normal-characters by twice flagging that it has room for 8 more 

characters to the link interface.The link interface will send two FCTs to the other end of 

the link (end B) which will increment its credit count accordingly (from zero to 16). The 

link interface at end B indicates to its host system that it is ready to transmit data 

(normal-characters) when the host system at end B has data to transfer, it will pass it to 

the link interface, which will send it across the link to end A.As each character is 

transmitted by the link interface (end B) it will decrement its credit count until it reaches 

zero, at which point the link interface (end B) will indicate to its host system that it is not 

ready to transfer any more data.The data received at end A will be passed on to its host 

system which will place it in its 16 character buffer. As the host system uses the data out 

of this buffer it makes space for more data to be received. As soon as there is space for 

another 8 more characters it flags this to the link interface, which will then send out 

another FCT informing end B that 8 more normal characters may be sent. 

ERROR DETECTION (NORMATIVE) 

There are six forms of receiver error that can be detected and acted upon at the exchange 

level –disconnect errors, parity errors, escape errors, credit errors, character sequence 

errors and empty packet errors. Whenever one of these errors occurs both characters 

synchronisation and flow-control status cease to be valid. Both ends of the link must be 
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reset and re-initialized to recover character synchronisation and flow control status. An 

error can occur in the transmitter if it is given an invalid character to transmit. In this 

event the transmitter shall ignore the invalid character, cease N-Char transmission and 

report the error to the network level. 

 Disconnect Error 
An operational link interface sends normal-characters, FCTs or NULLs continuously, 

thus the data and/or strobe signals are always changing. The receiver shall detect a 

disconnection when the time interval from the last transition on either the data or strobe 

signal exceeds the disconnect-detection time. The disconnect-detection time shall be 850 

nsec nominal. Before being able to detect a disconnect error the receiver must have 

received at least one bit. A disconnect error can either be caused when one end of the link 

is disabled or when the link is physically disconnected (intentionally or unintentionally). 

If a physical disconnection is the cause of the disconnect error then both ends of the link 

will try repeatedly to make a connection until the link is reconnected or until the link 

interfaces are disabled. If a disconnect error is detected then the link interface shall 

follow the exchange of silence error recovery procedure. If the disconnect error occurs in 

the Run state then the disconnect error shall be flagged up to the network level as a link 

error. 

Parity Error 
When a parity bit is received it shall be checked. If a parity error occurs after the first 

NULL has been received, then the link interface shall follow the error recovery 

procedure. If the parity error occurs in the Run state then the parity error shall be flagged 

up to the network level as a link error. 

Escape Error 
An ESC character shall only be used to form the NULL (ESC followed by FCT, see Fig. 

3.8). If a ESC character is received followed by any character other than an FCT then the 

link interface shall follow the error recovery procedure. If the escape error occurs in the 

Run state then the escape error shall be flagged up to the network level as a link error. 

 

 



Chapter 3 SpaceWire Protocol 

 35

Credit Error 
In the Run state if a normal character is received when the host system is not expecting 

any N-Chars then a credit error has occurred.A credit error may be caused if an error 

occurs undetected by the parity bit (e.g. two bits in error) which results in one or more 

spurious FCTs. In the event of a credit error the link interface shall follow the error 

recovery procedure described .If the credit error occurs in the Run state then the credit 

error shall be flagged up to the network level as a link error. 

Character Sequence Error 
During initialization it is possible for a link interface to receive FCTs or normal-

characters when they are not expected. Any unexpected characters are caught by the 

exchange-level state machine resulting the link being reset and re-initialized (see figure 

3.8). A character sequence error shall not be flagged up to the network level as a link 

error because it can only occur during link initialization. 

Empty Packet Error 
An EOP or EEP followed immediately by another EOP or EEP represents an empty 

packet, which is not permitted. In the Run state, if the next N-Char received after an EOP 

or EEP has been received is another EOP or EEP, then there has been an error on the link. 

If the empty packet error occurs in the Run state then the empty packet error shall be 

flagged up to the network level as a link error. 

 Exchange of Silence Error Recovery Procedure 
When one end of the link (end A) is disabled or detects an error, it will cease 

transmission. This will cause a disconnect error at the other end of the link (end B). End 

B will then cease transmission resulting in a disconnect error at end A. This procedure is 

known as an “exchange of silence”.Both ends of the link will cycle through the reset 

sequence (ErrorReset, ErrorWait, Ready) ending up in the Ready state ready to begin 

operation once enabled. If both ends are enabled then they will move to the Started state 

and re-initialise. If one end (end A) is disabled and the other end (end B) is enabled then 

end B will move from the Ready state to the Started state and will send NULLs for 12.8 

us. Since end A is disabled it cannot respond. End A will, however, have started its 

disconnect timer and will also have registered that a NULL has been received. When end 
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B completes the 12.8 us timeout it will move to the ErrorReset state and disconnect (stop 

its output). End A is able to detect the disconnection so will also move to the ErrorReset 

state. Both ends will once again move through the reset sequence. This series of events 

will continue until either end A is enabled or end B is disabled. 

Link Error 

During initialization, receiver errors (disconnect error, parity error, escape sequence 

error, character sequence error, credit error and empty packet error) are likely to occur 

and are part of the natural initialization sequence. These errors shall not be reported to the 

network level when they occur during link initialization (ErrorReady, ErrorWait, Ready, 

Started and Connecting states). Once a link connection has been established (Run state) 

then a receiver error represents a failure of the link connection and must be reported to 

the network level so that appropriate action for error recovery and/or reporting can be 

taken. A link error is reported to the network level whenever any of the following errors 

occur while a link interface is in the Run state: disconnect error, parity error, escape 

sequence error, credit error, empty packet error. Note the exclusion of character sequence 

error from this list. A character sequence error is only possible during initialisation. 

 EXCEPTION CONDITIONS (INFORMATIVE) 
Several exception conditions have been identified where things, for one reason or 

another, do not follow the usual sequence of events. These exceptions are considered in 

this section. 
 Disconnect error while waiting to start 
“Waiting to start” means that a link interface is in either the ErrorReset, ErrorWait, 

Ready or possibly the Started state. For a disconnect error to be detected while waiting to 

start, the other end of the link (end B say) must have sent at least one bit, so that the 

disconnect detect mechanism at end A can be activated. End B must have then given up 

waiting for end A to send a NULL and moved to the ErrorReset state and stopped its 

transmitter – thus causing the disconnect. An alternative possibility is that the link 

became physically disconnected. The following tables illustrate the various sequences of 

events starting from when end B has just moved to the ErrorReset state. If a physical 

disconnection has occurred then both ends of the link will continue to try to make a 
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connection, cy0+cling around the reset sequence, until they are disabled or until the 

connection is reestablished. 

 Link connected in one direction but not in the other 
A link may be connected in one direction and not in the other while a link is in the 

process of being plugged in (contact bounce time may be significantly larger than tens of 

us) or if there is a break in the link cable. In this case the sequence of events listed in the 

table below will be followed. Consider for convenience that both links are in the started 

state and that end A is connected to end B, but end B is not connected to end A. 
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Chapter 4 

SpaceWire Protocol Simulation  
  
SpaceWire protocol composed of various components .The components is as below 
 
TX : transmitter. 
RX : receptor. 
TX fifo : first in first out buffer for the transmission. 
RX fifo: first in first out buffer for the reception. 
Two domain clock : interface the signal between different clock. 
Time-id buffer : buffer for the time id seeded. 
FSM: state machine manage IP. 
 
During simulation, I have applied various tests and got result described below  
4.1 SpaceWire in loop back mode  
In this mode transmitter txd and receiver rxd shorted. The simulation result is in Figure 
4.1. 
 

 
                                                        

Figure-4.1 SpaceWire in loop back mode 

Txd and Rxd 
shorted  
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4.2 SpaceWire IP1 to IP2 data transfer 
 
I have taken two SpaceWire protocols says IP1 and IP2.The Transmitter of IP1 sends 
data  to SpaceWire Link and this data receives at the receiver of the IP2.The simulation 
result is in Figure 4.2. 
 

 
 
 

Figure-4.2 IP1 to IP2 data transfer 
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4.3 SpaceWire IP1 to IP2 data transfer in duplex mode: 
In duplex mode IP1 send data {10,20,30,40,50} to IP2 and IP2 send data 
{50,40,30,20,10} to IP1. 
 

 
 

Figure 4.3 Data Transfer in duplex mode 
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Chapter 5 
 
LEON3 Processor: An Embedded Core 
 
 
5.1 Introduction 
 
LEON3 is a 32-bit processor core conforming to the IEEE-1754 (SPARC V8) 

architecture. It is designed for embedded applications, combining high performance with 

low complexity and low power consumption. The LEON3 processor is a synthesizable 

VHDL model. To enable the development of SoC devices using the LEON core, the full 

source code is freely available. LEON was initially developed by Jiri Gailser while 

working for the European Space Agency (ESA) and Gailser Research is now maintaining 

and further enhancing the model. 

           New modules can easily be added using the on-chip AMBA AHB/APB buses. The 

VHDL model is fully synthesizable with most synthesis tools and can be implemented 

On both FPGAs and Asics. Salient features of LEON are given below. A block diagram 

of the LEON3 core can be seen below: 

 
 

                         
 

          Fig 5.1 LEON3 processor core block diagram 
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5.2 Salient features of LEON are given below 
 

•  Integer Unit 

•  Floating-point and co-processor 

•  Cache sub-system with separate instruction and data caches 

•  Debug support unit 

•  Flexible Memory interface and controller 

•  Timers 

•  Watchdog 

•  UARTs 

•  Interrupt controller 

•  Parallel I/O port 

• AMBA  on-chip buses 

• Boot loader 

• Watch point registers 

 

     
 

                                  Fig 5.2   LEON3 based SoC 
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5.3 Compliance with SPARC 
 
The LEON IU (Integer Unit) implements the SPARC instructions as defined by the 

SPARC Architecture Manual. Scalable Processor Architecture is a CPU instruction set 

architecture (ISA), derived from a reduced instruction set computer (RISC) lineage. 

SPARC was designed as a target for optimizing compilers and easily pipelined hardware 

implementations. SPARC implementations provide exceptionally high execution rates 

and short time-to market development schedules.It is a model which specifies 

unambiguously the behavior observed by software on SPARC systems. Therefore, it does 

not necessarily describe the operation of the hardware in any actual implementation. Any 

implementation is not required to execute every instruction in hardware. An attempt to 

execute a SPARC instruction that is not implemented in hardware generates a trap.If the 

unimplemented instruction is non-privileged, then it must be possible to emulate it in 

software.If it is a privileged instruction, whether it is emulated by software is 

implementation-dependent. 

5.3.1 SPARC System Components 

The architecture allows for a spectrum of input/output (I/O), memory management unit 

(MMU), and cache system sub-architectures. SPARC assumes that these elements are 

Optimally defined by the specific requirements of particular systems. They are invisible 

to nearly all user application programs and the interfaces to them can be limited to 

localized modules in an associated operating system. 

Reference MMU 

The SPARC ISA does not mandate that a single MMU design be used for all system 

Implementations. Rather, designers are free to use the MMU that is most appropriate for 

their application or no MMU at all, if they wish. The memory bus in LEON provides a 

direct interface to PROM, memory mapped I/O devices, asynchronous static ram 

(SRAM) and synchronous dynamic ram (SDRAM). Chip-select decoding is done for two 

PROM banks, one I/O bank, five SRAM banks and two SDRAM banks. 

Supervisor Software 

SPARC does not assume all implementations must execute identical supervisor software. 
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Thus, certain supervisor-visible traits of an implementation can be tailored to the 

requirements of the system. For example, SPARC allows for implementations with 

different instruction concurrency and different exception trap hardware.  

Register File 

A large windowed register file — at any one instant, a program sees 8 global integers 

registers plus a 24 – register window into a larger register file. The Windowed registers 

can be described as a cache of procedure arguments, local values, and return addresses. A 

separate floating-point register file configurable by software into 32 single-precision (32-

bit), 16 double-precision (64-bit), 8 quad-precision registers (128-bit), or a mixture ther 

eof. LEON has 8 register windows by default and can be configurable. 

5.4 Bus 
 
The open standard from ARM, Advanced Microprocessor Bus Architecture (AMBA) [6] 

Was implemented within LEON. The AMBA specification defines an on-chip 

communications standard for designing high-performance embedded microcontrollers. 

Three distinct buses are defined within theAMBA specification: Advanced High-

performance Bus (AHB), Advanced System Bus (ASB), Advanced Peripheral Bus 

(APB). 

5.4.1 AHB 
 
AHB is intended to address the requirements of high-performance synthesizable designs. 

It is a high-performance system bus that supports multiple bus masters and provides high-

bandwidth operation. AMBA AHB implements the features required for high-

performance, high clock frequency systems including  burst transfers, split transactions, 

single-cycle bus master handover, single-clock edge operation, wider data bus 

configurations (64/128 bits). An AMBA AHB design may contain one or more bus 

masters, typically a system would contain at least the processor and test interface. The 

external memory interface, APB bridge and any internal memory are the most common 

AHB slaves. Any other peripheral in the system could also be included as an AHB slave. 

However, low bandwidth peripherals typically reside on the APB. A typical AMBA AHB 

system design contains the following components: 

AHB master A bus master is able to initiate read and write operations by providing 



Chapter 5 LEON3 Processor: An Embedded Core   

 45

An address and control information. Only one bus master is allowed to actively use the 

bus at any one time. 

AHB slave A bus slave responds to a read or writes operation within a given address 

space range. The bus slave signals back to the active master the success, failure or 

waiting of the data transfer. 

AHB arbiter The bus arbiter ensures that only one bus master at a time is allowed to 

initiate data transfers. Even though the arbitration protocol is fixed, any arbitration 

algorithm, such as highest priority or fair access can be implemented depending on the 

application requirements. 

AHB decoder The AHB decoder is used to decode the address of each transfer and 

Provide a select signal for the slave that is involved in the transfer. A single centralized 

decoder is required in all AHB implementations. 

5.4.2 APB 

The Advanced Peripheral Bus (APB) is part of the Advanced Microcontroller Bus 

Architecture (AMBA) hierarchy of buses and is optimized for minimal power 

consumption and reduced interface complexity. The AMBA APB is used to interface to 

any peripherals which are low-bandwidth and do not require the high performance of a 

Pipelined bus interface. 

APB Bridge The APB bridge is the only bus master on the AMBA APB. In addition, 

the APB bridge is also a slave on the higher-level system bus. The bridge unit converts 

system bus transfers into APB transfers and performs the following functions – latches 

the address and holds it valid throughout the transfer, decodes the address and generates a 

peripheral select (only one select signal can be active during a transfer), drives the data 

onto the APB for a write transfer, drives the APB data onto the system bus for a read 

transfer, generates a timing strobe for the transfer. APB slave APB slaves have a simple, 

yet flexible, interface description. The select signal, the address and the write signal can 

be combined to determine which register should be updated by the write operation. For 

read transfers the data can be driven on to the data bus when write signal is low and both 

select and enable are high. Address is used to determine which register should be read. 
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5.4.3 LEON’s AMBA Bus 

LEON implements AHB and APB bus. The processors sit as masters over the AHB bus. 

The memory controller, APB bridge, DSU and PCI initiator are the AHB slaves.APB 

bridge is the only master on the APB bus. The memory controller, AHB status register, 

cache controller, write protection register, configuration register, timers, UART1 and 

UART2, interrupt controller, I/O port, 2nd interrupt controller, DSU UART and PCI 

arbiter are the APB slaves. 

5.5 Memory 

The caches, register windows and on-chip registers are mapped to the Block RAM inside 

the FPGA  

5.5.1 External Memory access 

The memory bus provides a direct interface to PROM, memory mapped I/O devices, 

asynchronous static ram (SRAM) and synchronous dynamic ram (SDRAM). The external 

memory bus is controlled by a programmable memory controller. The controller acts as a 

slave on the AHB bus. The function of the memory controller is programmed through 

memory configuration registers 1, 2 & 3 (MCR1, MCR2 & MCR3) through the APB bus. 

The memory bus supports four types of devices: PROM, SRAM, SDRAM and local I/O.  

 

     

Fig 5.3 PROM/IO/SRAM/SDRAM Memory controller 
 
 

 



Chapter 5 LEON3 Processor: An Embedded Core   

 47

5.5.2 Cache sub-system 
The LEON processor implements a Harvard Architecture with separate instruction and 

data buses, connected to two independent cache controllers. The LEON instruction/data 

is a direct-mapped cache configurable to 1 – 64 kbyte. The instruction/data cache is 

divided into cache lines with 8 –32 bytes of data. Each line has a cache tag associated 

with it consisting of a tag field and one valid bit for each 4-byte sub-block. On an 

instruction/data cache miss to a cacheable location, the instruction/data is fetched and 

the corresponding tag and data line updated. 

5.6 Debug Support Unit 
 
5.6.1 DSU 
 

The (optional) debug support unit (DSU) allows non-intrusive debugging on target 

hardware. The DSU allows a user to insert instruction and data watch-points, and access 

to all on-chip registers from a remote debugger. A trace buffer is provided to trace the 

executed instruction flow and/ or AHB bus traffic. The DSU has no impact on 

performance and has low area complexity. Communication to an outside debugger (e.g. 

gdb) is done using a dedicated UART (RS232). 

 
 

Fig. 5.4: Debug Support Unit and communication link 
 

The debug support unit as shown in Fig 5.4 is used to control the trace buffer and the 

processor debug mode. The DSU is attached to the AHB bus as slave, occupying a 2- 

Mbyte address space. Through this address space, any AHB master can access the 
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processor registers and the contents of the trace buffer. The DSU control registers can be 

accessed at any time, while the processor registers and caches can only be accessed when 

the processor has entered debug mode. The trace buffer can be accessed only when 

tracing is disabled/completed. In debug mode, the processor pipeline is held and the 

processor is controlled by the DSU. Entering the debug mode can occur on the following 

events: 

•  executing a breakpoint instruction 

•  integer unit hardware breakpoint/watchpoint hit 

• rising edge of the external break signal (DSUBRE) 

•  setting the break-now (BN) bit in the DSU control register 

•  a trap that would cause the processor to enter error mode 

•  occurrence of any, or a selection of traps as defined in the DSU control register 

•  after a single-step operation 

•  DSU breakpoint hit 

The debug mode can only be entered when the debug support unit is enabled 

through an external pin (DSUEN). When the debug mode is entered, the following 

actions are taken: 

•  PC and nPC(next PC) are saved in temporary registers (accessible by the debug 

unit) 

•  an output signal (DSUACT) is asserted to indicate the debug state 

•  the timer unit is (optionally) stopped to freeze the LEON timers and watchdog 

The insruction that caused the processor to enter debug mode is not executed, and the 

processor state is kept unmodified. Execution is resumed by clearing the BN bit in the 

DSU control register or by de-asserting DSUEN. The timer unit will be re-enabled and 

execution will continue from the saved PC and nPC. Debug mode can also be entered 

after the processor has entered error mode, for instance when an applicationhas 

terminated and halted the processor. The error mode can be reset and the processor 

restarted at any address. 

5.6.2 Trace buffer 
The trace buffer consists of a circular buffer that stores executed instructions or AHB 

data transfers. A 30-bit counter is also provided and stored in the trace as time tag. The 
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trace buffer operation is controlled through the DSU control register and the Trace buffer 

control register. When the processor enters debug mode, tracing is suspended. The size of 

the trace buffer is by default 128 words (2 Kbytes), but can be configured to any size 

through the VHDL model configuration record. 

5.6.3 DSU Monitor 
DSUMON is a debug monitor for the LEON processor debug support unit. It 

includes the following functions: 

� Read/write access to all LEON registers and memory 

�  Built-in dis-assembler and trace buffer management 

�  Downloading and execution of LEON applications 

�  Breakpoint and watchpoint management 

�  Remote connection to GNU debugger (gdb) 

�  Auto-probing and initialization of LEON peripherals and memory settings 

DSUMON can operate in two modes: stand-alone and attached to gdb. In standalone 

mode, LEON applications can be loaded and debugged using a command line interface. 

A number of commands are available to examine data, insert breakpoints and advance 

execution. When attached to gdb, DSUMON acts as a remote gdb target, and applications 

are loaded and debugged through gdb (or a gdb front-end such as ddd). The LEON DSU  

uses a dedicated UART to communicate with an outside monitor. The UART uses 

automatic baud-rate detection. To successfully attach DSUMON, first a serial cable 

between the target board and the host system is attached. Then it is powered on and the 

target board is reset, and finally the DSUMON software is started bythe user. The 

DSUEN signal on the LEON processor has to be asserted for the DSU tooperate. The 

DSUEN can be hardwired to ’1’ before synthesis(DSU always enabled)or can be set 

through a switch( DSU can be optionally enabled if needed).When DSUMON first 

connects to the target, a check is made to see if the system has been initialized with 

respect to memory, UART and timer settings. If no initialization has been made (debug 

mode entered directly after reset), the system first has to be initialized before any 

application can run. This is performed automatically by probing for available memory 

banks, and detecting the system frequency. 
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5.7 Software Considerations 
LECCS(LEON/ERC32 Cross Compilation System)  is a GNU-based free C/C++ 

cross-compilation system for both ERC32 and LEON processors. The following 

componentsare included – 

•  GNU C/C++ compiler 

•  Linker, assembler, archiver etc 

•  Standalone C-library 

•  RTEMS real-time kernel 

•  Boot-prom utility 

•  GNU debugger with Tk front-end 

•  graphical user interface for gdb 

•  Remote target monitor 

•  DSU monitor 

 

LECCS allows cross-compilation of single or multi-threaded C and C++ applications for 

both LEON and ERC32. Using the gdb debugger, it is possible to perform sourcelevel 

symbolic debugging, either on a simulator or using real target hardware. GaislerResearch 

also provides TSIM, a high-performance LEON simulator which seamlessly can be 

attached to gdb and emulate a LEON system at more than 10 MIPS.RTEMS (Real-Time 

Executive for Multiprocessor Systems) , is a real-time executive (kernel) ported to the 

LEON architecture. As of now, it is the only OS that is ported over the LEON. It has also 

been ported to the following processor families – Intel i80386 and above, Intel i80960, 

Motorola MC68xxx, Motorola MC683xx, MIPS PowerPC, SPARC, Hewlett Packard 

PA-RISC, Hitachi SH, AMD A29K. It provides a high performance environment for 

embedded applications including the following features: 

•  multitasking capabilities 

•  homogeneous and heterogeneous multiprocessor systems 

•  event-driven, priority-based, preemptive scheduling 

•  optional rate monotonic scheduling 

•  intertask communication and synchronization 
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•  priority inheritance 

•  responsive interrupt management 

•  dynamic memory allocation 

•  high level of user configurability 
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Chapter 6 
 
 
Implementation 
 
 

6.1 Introduction 
This chapter will guide how to implement a leon3 based SoC design, and how to 

download and run software on the target system.  

6.2 Overview 
Implementing a leon3 system is typically done using one of the template designs on the 

GRLIB designs directory. Configuration of the design is done using xconfig. 

•  Simulation of design and test bench 

•  Synthesis and place route 

The template design is leon3-avnet-eval-xc4vlx60, and is based on three files: 

� config.vhd: a VHDL package containing design configuration parameters. 

Automatically generated by the xconfig GUI tool. 

� leon3mp.vhd : contains the top level entity and instantiates all on-chip IP cores. It 

uses config.vhd to con-figure the instantiated IP cores. 

� Testbench.vhd: test bench with external memory, emulating the leon3-avnet-eval-

xc4vlx60 board. 

Each core in the template design is configurable using VHDL generics. The value of 

these generics is assigned from the constants declared in config.vhd, created with the 

xconfig GUI tool. 

6.3 Configuration 
 
Change directory to designs/ leon3-avnet-eval-xc4vlx60, and issue the command ‘make 

xconfig’ in a bash shell (Linux) or cygwin shell (windows). This will launch the xconfig 

GUI tool that can be used to modify the leon3 template design. When the configuration is 

saved and xconfig is exited, the config. is automatically updated with the selected 

configuration. 
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Commands to be applied For LEON-3 configuration in CgWin: 
 
1) First run Cgwin software and select the design according to our FPGA board.       .  

2) Give the following Command in Cgwin to prepare a script and for configuration 

window: 

1. make scripts 

2. make xgrlib 

 

 
 
     

Figure 6.1Cygwin Process Wizard 
  

 

 
 
 

 

                                                              

Figure 6.2 GRLIB TOOL 
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3) Now in the configuration window the options for various tools for Synthesis, 

Simulation and Post & Route are provided. So choose a suitable one. 

• Simulation 

- Modelsim 

• Sinthesis 

- Xilinx ISE 

• Post & Route 

- Xilinx ISE 

4). After selecting various tools select ‘Xconfig’ for various parameters configuration for 

LEON-3 processor as shown in fig.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.3 GRLIB Avnet Virtex LX60 Design 
 
6.4 LEON3 Processor Simulation 
 
The template design can be simulated in a test bench that emulates the prototype board. 

The test Bench includes external PROM and SDRAM which are pre-loaded with a test 

program.The test program will execute on the LEON3 processor, and test various 

functionality in the design.The test program will print diagnostics on the simulator 
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console during the execution. The following command should be give to compile and 

simulate the template design and testbench: 

make vsim 

vsim testbench 

A typical simulation log can be seen below. 

$ vsim testbench 

VSIM 1> run -a 

# leon3-avnet-eval-xc4vlx60 Demonstration design 

# GRLIB Version 1.0.15, build 2183 

# Target technology: spartan3, memory library: spartan3 

# ahbctrl: AHB arbiter/multiplexer rev 1 

# ahbctrl: Common I/O area disabled 

# ahbctrl: AHB masters: 4, AHB slaves: 8 

# ahbctrl: Configuration area at 0xfffff000, 4 kbyte 

# ahbctrl: mst0: Gaisler Research Leon3 SPARC V8 Processor 

# ahbctrl: mst1: Gaisler Research JTAG Debug Link 

# ahbctrl: mst2: Gaisler Research SpaceWire Serial Link 

# ahbctrl: mst3: Gaisler Research SpaceWire Serial Link 

# ahbctrl: slv0: European Space Agency Leon2 Memory Controller 

# ahbctrl: memory at 0x00000000, size 512 Mbyte, cacheable, prefetch 

# ahbctrl: memory at 0x20000000, size 512 Mbyte 

# ahbctrl: memory at 0x40000000, size 1024 Mbyte, cacheable, prefetch 

# ahbctrl: slv1: Gaisler Research AHB/APB Bridge 

# ahbctrl: memory at 0x80000000, size 1 Mbyte 

# ahbctrl: slv2: Gaisler Research Leon3 Debug Support Unit 

# ahbctrl: memory at 0x90000000, size 256 Mbyte 

# apbctrl: APB Bridge at 0x80000000 rev 1 

# apbctrl: slv0: European Space Agency Leon2 Memory Controller 

# apbctrl: I/O ports at 0x80000000, size 256 byte 

# apbctrl: slv1: Gaisler Research Generic UART 

# apbctrl: I/O ports at 0x80000100, size 256 byte 
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# apbctrl: slv2: Gaisler Research Multi-processor Interrupt Ctrl. 

# apbctrl: I/O ports at 0x80000200, size 256 byte 

# apbctrl: slv3: Gaisler Research Modular Timer Unit 

# apbctrl: I/O ports at 0x80000300, size 256 byte 

# apbctrl: slv8: Gaisler Research General Purpose I/O port 

# apbctrl: I/O ports at 0x80000800, size 256 byte 

# apbctrl: slv12: Gaisler Research SpaceWire Serial Link 

# apbctrl: I/O ports at 0x80000c00, size 256 byte 

# apbctrl: slv13: Gaisler Research SpaceWire Serial Link 

# apbctrl: I/O ports at 0x80000d00, size 256 byte 

# grspw13: Spacewire link rev 0, AHB fifos 2x64 bytes, rx fifo 16 bytes, irq 11 

# grspw12: Spacewire link rev 0, AHB fifos 2x64 bytes, rx fifo 16 bytes, irq 10 

# grgpio8: 18-bit GPIO Unit rev 0 

# gptimer3: GR Timer Unit rev 0, 8-bit scaler, 2 32-bit timers, irq 8 10 

# irqmp: Multi-processor Interrupt Controller rev 3, #cpu 1 

# apbuart1: Generic UART rev 1, fifo 1, irq 2 

# ahbjtag AHB Debug JTAG rev 0 

# dsu3_2: LEON3 Debug support unit + AHB Trace Buffer, 2 kbytes 

# leon3_0: LEON3 SPARC V8 processor rev 0 

# leon3_0: icache 1*8 kbyte, dcache 1*4 kbyte 

# clkgen_spartan3e: spartan3/e sdram/pci clock generator, version 1 

# clkgen_spartan3e: Frequency 50000 KHz, DCM divisor 4/5 

# **** GRLIB system test starting **** 

# Leon3 SPARC V8 Processor 

# CPU#0 register file 

# CPU#0 multiplier 

# CPU#0 radix-2 divider 

# CPU#0 floating-point unit 

# CPU#0 cache system 

# Multi-processor Interrupt Ctrl. 

# Generic UART 
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# Modular Timer Unit 

# timer 1 

# timer 2 

# chain mode 

# Test passed, halting with IU error mode 

# ** Failure: *** IU in error mode, simulation halted *** 

# Time: 1104788 ns Iteration: 0 Process: /testbench/iuerr File: testbench.vhd 

# stopped at testbench.vhd line 338 

VSIM 2> 

The test program executed by the test bench consists of two parts, a simple prom boot 

loader(prom.S) and the test program itself (systest.c). Both parts can be re-compiled 

using the ‘make soft’ command. This requires that the BCC tool-chain is installed on the 

host computer. Note that the simulation is terminated by generating a VHDL failure, 

which is the only way of stopping the simulation from inside the model. An error 

message is then printed: 

# Test passed, halting with IU error mode 

# ** Failure: *** IU in error mode, simulation halted *** 

# Time: 1104788 ns Iteration: 0 Process: /testbench/iuerr File: testbench.vhd 

# Stopped at testbench.vhd line 338 

This error can be neglected. 
 
Synthesis and place route 
 
The template design can be synthesized with either Synplify-8.9 or ISE-9.2. Synthesis 

can be done in batch or interactively.  

To use ISE interactively, use: 

make ise-map 

or 

make scripts 

ise leon3mp.npl 

To perform place&route for a netlist generated with XST 
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make ise 

The final programming file will be called ‘leon3mp.bit’.  

Synthesis Reports of  leon3-avnet-eval-xc4vlx60 board are as below are as below. 

=============================================================== 

HDL Synthesis Report 

Macro Statistics 

# RAMs                                                 : 3 

 16x32-bit dual-port RAM                     : 1 

 8x30-bit dual-port RAM                       : 2 

# ROMs                                                        : 7 

 16x3-bit ROM                                             : 2 

 4x64-bit ROM                                             : 2 

# Multipliers                                                 : 1 

 33x33-bit multiplier                                  : 1 

# Adders/Subtractors                                  : 108 

 10-bit subtractor                                        : 1 

 11-bit adder                                               : 6 

 11-bit subtractor                                        : 2 

 12-bit subtractor                                        : 3 

 15-bit subtractor                                        : 1 

 16-bit adder                                               : 4 

 18-bit adder                                               : 3 

 Timing Summary: 

Speed Grade: -4 

   Minimum period: 17.814ns (Maximum Frequency: 56.134MHz) 

   Minimum input arrival time before clock: 2.061ns 

   Maximum output required time after clock: 10.027ns 

   Maximum combinational path delay: No path found 

Process "Synthesize" completed successfully 
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6.5   LEON3 SoC design Testing 
 
After Implementation we need to test LEON3 Core by some Soft program. The ‘C’code 

compilation can be done using gcc compiler. By using command - make soft, generate 

two files prom.srec and sdram.srac .This two file have been executed by the test bench 

and give result on the Modelsim console. The ‘C’ program and result are shown below. 
 

LEON3 Core Integer Unit Testing 
LEON core Integer unit has been tested by applying factorial program. 

‘C ’code: 

#include<stdio.h> 

void main () 

{    report_start ();     

      Printf ("factorial test started\n");    

      int i,n=5,ans=1; 

      for(i=n;i>0;i--) 

      { 

          ans=ans*i; 

      } 

      Printf ("Factorial of 5 is: %d", ans); 

      Printf ("\factorial test completed\n"); 

 reported ();    
} 

Result on ModelSim Transcript:  

# **** GRLIB system test starting **** 

# Factorial test started 

# Factorial of 5 is: 120 

# Factorial test completed 

LEON3 Core GPIO Port Testing 
#include<stdio.h> 
void main() 
{ 
   report_start(); 
 
   int *data = (int *) 0x80000800; 
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   int *output = (int *) 0x80000804; 
   int *direction= (int *) 0x8000808; 
  
   *data=10; 
  
   *output= *data * 20; 
 
    printf("\nvalue of Data Resister:%d",*data); 
 
    printf("\naddress of Data Resister:%x",data); 
 
    printf("\nresult in Output Resister:%d",*output); 
 
    printf("\naddress in Output Resister:%x\n",output); 
 
  //  printf("address of Output resister:%x",output); 
 
   *direction=~0; 
 
    report_end(); 
} 
Result on ModelSim Transcript: 
**** GRLIB system test starting **** 
#  
# value of Data Resister:10 
#  
# address of Data Resister:80000800 
#  
# result in Output Resister:200 
#  
# address in Output Resister:80000804 
 
 

6.6 Implementation on FPGA 
 
For Implementation of LEON-3  Core on FPGA , create bit file by Xilinx ISE 9.2i tool. 

This Bit file of LEON-3 Core is also available at www.gaisler.com. After generation of 

the Bit File implement on FPGA board using ’Xilinx IMPACT’ software. 

Steps for Implementing test application for LEON core 
1). To apply tests for LEON-3 core.  Apply following command 

 make soft 

2). After applying the above command sram.srec, sdram.srec files will be generated. 

3). To load this Executable file on board software named ‘GRMON’ is required. 

4). Now load this application on FPGA board, apply following command 

 ./grmon-eval.exe –xilusb 
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As we apply above command ‘GRMON’ will be connected with our FPGA board and it 

will show the connection as well as the information about LEON-3 system which can be 

seen in the figure 6.4. 

 
 
 
 
 
 
 
 

 
Fig. 6.4 GRMON result 

 
5). To see the detail of LEON system apply command “info sys” on consol of ‘GRMON’ 

     To load the application, apply the following command in GRMON window 

     load systest.exe 

      

 

 

 

 

 

 

 

 

Fig. 6.5 Loading application on LEON system 
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6). To check the result of  application connect the serial cable RS232 with the UART of 

board and serial COM port of computer and Open HyperTerminal window. Boud rate  set 

to 38400 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.6  HyperTerminal Result 
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Chapter 7 
 
AMBA AHB BUS 
 
 
7.1 Introduction 

       
      GRLIB is based on the AMBA AHB and APB on-chip buses, which is used as the 

standard interconnect interface. The implementation of the AHB/APB buses is compliant 

with the AMBA-2.0 specification, with additional ‘sideband’ signals for automatic 

address decoding, interrupt steering and device identification (a.k.a. plug &play support). 

The AHB and APB signals are grouped according to functionality into VHDL records, 

declared in the GRLIB VHDL library. The GRLIB AMBA package source files are 

located in lib/grlib/amba. All GRLIB cores use the same data structures to declare the 

AMBA interfaces, and can then easily be connected together. An AHB bus controller and 

an AHB/APB bridge are also available in the GRLIB library, and allow to assemble 

quickly a full AHB/APB system. The following sections will describe how the AMBA 

buses are implemented and how to develop a SOC design using GRLIB. 

 
7.2 AMBA AHB On chip bus 
 
7.2.1 AHB master interface 
 
 The AHB master inputs and outputs are defined as VHDL record types, and are exported 

through the TYPES package in the GRLIB AMBA library: 

-- AHB master inputs 

type ahb_mst_in_type is record 

hgrant : std_logic_vector(0 to NAHBMST-1); -- bus grant 

hready : std_ulogic; -- transfer done 

hresp : std_logic_vector(1 downto 0); -- response type 

hrdata : std_logic_vector(31 downto 0); -- read data bus 

hcache : std_ulogic; -- cacheable 

hirq : std_logic_vector(NAHBIRQ-1 downto 0); -- interrupt result bus 
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end record; 

-- AHB master outputs 

type ahb_mst_out_type is record 

hbusreq : std_ulogic; -- bus request 

hlock : std_ulogic; -- lock request 

htrans : std_logic_vector(1 downto 0); -- transfer type 

haddr : std_logic_vector(31 downto 0); -- address bus (byte) 

hwrite : std_ulogic; -- read/write 

hsize : std_logic_vector(2 downto 0); -- transfer size 

hburst : std_logic_vector(2 downto 0); -- burst type 

hprot : std_logic_vector(3 downto 0); -- protection control 

hwdata : std_logic_vector(31 downto 0); -- write data bus 

hirq : std_logic_vector(NAHBIRQ-1 downto 0);-- interrupt bus 

hconfig : ahb_config_type; -- memory access reg. 

hindex : integer range 0 to NAHBMST-1; -- diagnostic use only 

end record; 

The elements in the record types correspond to the AHB master signals as defined in the 

AMBA 2.0 specification, with the addition of four sideband signals: HCACHE, HIRQ, 

HCONFIG and HINDEX. A typical AHB master in GRLIB has the following definition: 

library grlib; 

use grlib.amba.all; 

library ieee; 

use ieee.std_logic.all; 

entity ahbmaster is 

generic ( 

hindex : integer := 0); -- master bus index 

port ( 

reset : in std_ulogic; 

clk : in std_ulogic; 

hmsti : in ahb_mst_in_type; -- AHB master inputs 

hmsto : out ahb_mst_out_type -- AHB master outputs 



Chapter 7 AMBA AHB BUS 

 65

); 

end entity; 

The input record (HMSTI) is routed to all masters, and includes the bus grant signals for 

all masters in the vector HMSTI.HGRANT. An AHB master must therefore use a generic 

that specifies which HGRANT element to use. This generic is of type integer, and 

typically called HINDEX (see example above). 
 

7.2.2 AHB slave interface 
 
Similar to the AHB master interface, the inputs and outputs of AHB slaves are defined as 

two VHDL records types: 

-- AHB slave inputs 

type ahb_slv_in_type is record 

hsel : std_logic_vector(0 to NAHBSLV-1); -- slave select 

haddr : std_logic_vector(31 downto 0); -- address bus (byte) 

hwrite : std_ulogic; -- read/write 

htrans : std_logic_vector(1 downto 0); -- transfer type 

hsize : std_logic_vector(2 downto 0); -- transfer size 

hburst : std_logic_vector(2 downto 0); -- burst type 

hwdata : std_logic_vector(31 downto 0); -- write data bus 

hprot : std_logic_vector(3 downto 0); -- protection control 

hready : std_ulogic; -- transfer done 

hmaster : std_logic_vector(3 downto 0); -- current master 

hmastlock : std_ulogic; -- locked access 

hbsel : std_logic_vector(0 to NAHBCFG-1); -- bank select 

hcache : std_ulogic; -- cacheable 

hirq : std_logic_vector(NAHBIRQ-1 downto 0); -- interrupt result bus 

end record; 

-- AHB slave outputs 

type ahb_slv_out_type is record 

hready : std_ulogic; -- transfer done 

hresp : std_logic_vector(1 downto 0); -- response type 
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hrdata : std_logic_vector(31 downto 0); -- read data bus 

hsplit : std_logic_vector(15 downto 0); -- split completion 

hcache : std_ulogic; -- cacheable 

hirq : std_logic_vector(NAHBIRQ-1 downto 0); -- interrupt bus 

hconfig : ahb_config_type; -- memory access reg. 

hindex : integer range 0 to NAHBSLV-1; -- diagnostic use only 

end record; 

The elements in the record types correspond to the AHB slaves signals as defined in the 

AMBA 2.0 specification, with the addition of five sideband signals: HBSEL, HCACHE, 

HIRQ, HCONFIG and HINDEX. A typical AHB slave in GRLIB has the following 

definition: 

library grlib; 

use grlib.amba.all; 

library ieee; 

use ieee.std_logic.all; 

entity ahbslave is 

generic ( 

hindex : integer := 0); -- slave bus index 

port ( 

reset : in std_ulogic; 

clk : in std_ulogic; 

hslvi : in ahb_slv_in_type; -- AHB slave inputs 

hslvo : out ahb_slv_out_type -- AHB slave outputs 

); 

end entity; 

The input record (ahbsi) is routed to all slaves, and include the select signals for all slaves 

in the vector ahbsi.hsel. An AHB slave must therefore use a generic that specifies which 

hsel element to use. This generic is of type integer, and typically called HINDEX (see 

example above). 
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7.2.3 AHB bus control 
 

GRLIB AMBA package provides a combined AHB bus arbiter (ahbctrl), address decoder 

and bus multiplexer. It receives the ahbmo and ahbso records from the AHB units, and 

generates ahbmi and ahbsi as indicated in figure 2.4. The bus arbitration function will 

generate which of the ahbmi.hgrant elements will be driven to indicate the next bus 

master. The address decoding function will drive one of the ahbsi.hsel elements to 

indicate the selected slave. The bus multiplexer function will select which master will 

drive the ahbsi signal, and which slave will drive the ahbmo signal. 

 
7.2.4 AHB bus index control 
 
The AHB master and slave output records contain the sideband signal HINDEX. This 

signal is used to verify that the master or slave is driving the correct element of the 

ahbso/ahbmo buses. The generic HINDEX that is used to select the appropriate hgrant 

and hsel is driven back on ahbmo.hindex and ahbso.hindex. The AHB controller then 

checks that the value of the received HINDEX is equal to the bus index. An error is 

issued during simulation if a mismatch is detected. 

 
7.3 AHB plug & play configuration 
 
The GRLIB implementation of the AHB bus includes a mechanism to provide plug&play 

support. The plug&play support consists of three parts: identification of attached units 

(masters and slaves), address mapping of slaves, and interrupt routing. The plug&play 

information for each AHB unit consists of a configuration record containing eight 32-bit 

words. The first word is called the identi- fication register and contains information on 

the device type and interrupt routing. The last four words are called bank address 

registers, and contain address mapping information for AHB slaves. The remaining three 

words are currently not assigned and could be used to provide core-specific configuration 

information. 
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 Fig.7.1 AHB   plug  & play configuration layout 

 
The plug&play information for all attached AHB units appear as a read-only table 

mapped on affixed address of the AHB, typically at 0xFFFFF000. The configuration 

records of the AHB masters appear in 0xFFFFF000 - 0xFFFFF800, while the 

configuration records for the slaves appear in 0xFFFFF800 - 0xFFFFFFFC. Since each 

record is 8 words (32 bytes), the table has space for 64 masters and 64 slaves. A 

plug&play operating system (or any other application) can scan the con- figuration table 

and automatically detect which units are present on the AHB bus, how they are 

configured, and where they are located (slaves). The configuration record from each 

AHB unit is sent to the AHB bus controller via the HCONFIG signal. The bus controller 

creates the configuration table automatically, and creates a read-only memory area at the 

desired address (default 0xFFFFF000). Since the configuration information is fixed, it 

can be efficiently implemented as a small ROM or with relatively few gates. A debug 

module (ahbreport) in the WORK.DEBUG package can be used to print the configuration 

table to the console during simulation, which is useful for debugging. A typical example 

is provided below: 
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7.4 SpaceWire Interface with AMBA AHB Bus 

 

 
Fig. 7.2 AHB slave interface 

 
AMBA AHB interface with SpaceWire Protocol having two types of interface. 

• Direct 

• Indirect 

In direct interface, signals interfaced directly to the AMBA AHB signals. In indirect 

interface data transfer controlled through FSM. Interface module composed by AHB TX 

FIFO, AHB Rx FIFO and AMBA signals. 

The Tx Data AHB FIFO block is a FIFO containing the data to be transmitted  

The Rx Data FIFO block is a FIFO containing the data to be the host memory. 

The Tx AHB slave interface is used when the data transmission is in charge of the host. 
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7.5 Interface signals 
 

Signals  I/O Description 

ahb_slv_in. HSEL 
ahb_slv_in.HWRITE 
ahb_slv_in.HADDR(31-0) 
ahb_slv_in.HTRANS(1-0) 
ahb_slv_in.HWDATA(31-0) 
ahb_slv_in.HREADY 
ahb_slv_in.HSIZE(2-0) 
ahb_slv_in.HBURST(2-0) 
ahb_slv_in.HPROT(3-0) 

 

 

 

     Input 

  

 

AMBA AHB Slave Bus in for the 

Tx host Interface 

ahb_slv_out.HREADY 
ahb_slv_out.HRESP(1-0) 
ahb_slv_out.HRDATA(31-0) 
ahb_slv_out.HSPLIT(15-0) 
 

 

 

   Output 

 

AMBA AHB Slave Bus out for the  

host Interface 

 
                                               Table 7.1 AHB signals 

 

7.6 Interface Read/write logic 
 
The interface module basically read and writes data from the host memory to the AHB 

FIFO. The FSM for the read/write is in Figure 7.3. 

 

                          

 
Fig. 7.3 Read/Write Logic 

Hsel=0
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7.7 Impimetation of AHB Interface on FPGA 
 
To test the AHB interface with LEON3 Processor, C code for reading  and writing AHB 

FIFO. 

C programme to test AHB interface with LEON3 Processor.               
#include<stdio.h> 

  main() { 

          report_start(); 

          volatile int *data = (volatile int*) 0xfff00700; 

          *data=0x80; 

          printf("\nNow value at memory location %x is %x",data,*data); 

          data=data+1; 

         *data=0x70; 

         printf("\nNow value at memory location %x is %x",data,*data); 

         data=data+1; 

         *data=0x60; 

         printf("\nNow value at memory location %x is %x",data,*data); 

         data=data+1; 

         *data=0x50; 

         printf("\nNow value at memory location %x is %x",data,*data); 

         data=data+1; 

         *data=0x50; 

         printf("\nNow value at memory location %x is %x",data,*data); 

         data=data+1; 

         *data=0x40; 

         printf("\nNow value at memory location %x is %x",data,*data); 

         data=data+1; 

         *data=0x30; 

         printf("\nNow value at memory location %x is %x",data,*data); 

         data=data+1; 

         *data=0x20; 
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         printf("\nNow value at memory location %x is %x",data,*data); 

         report_end()}; 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 7.4 AHBFIFO interface with LEON 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 7.5 AHBFIFO read/write result on HyperTerminal 
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Chapter 8 
 
Conclusion and Future Scope 
 
Conclusion 
 
The project work entitled as RTL Design of SpaceWire Protocol and AMBA Interface 

with LEON3 Processor, during project work literature survey is carried out to 

understand the SpaceWire Protocol, LEON3 Processor, GRLIBL IP library this has 

provided conceptual understandings.I have implemented Open source LEON3 Processor 

based SoC design and AMBA AHB interface with AHBFIFO on Avnet-virtex-4 FPGA 

board. I have also done RTL design and simulation of SpaceWire Protocol. 

 

Future Scope 
Following work is to be carried out during remaining part of Project period. 
 
� Interfacing SpaceWire Protocol with LEON3 Processor through AMBA AHB 

Bus 

� Plugging SpaceWire Protocol with LEON3 based SoC design. 
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Appendix-A 
 
 

Installation of Tools 
 
Grlib Installation 
 
        Grlib can be downloaded from the gaisler research site having the following link 
location 
 
            http://www.gaisler.com/products/grlib/ grlib-gpl-1.0.19-b3188 
 
GRLIB is distributed as a gzipped tar-file and can be installed in any location on the host 
system: 
              tar xzf grlib-gpl-<version>.tar.gz 
              for example 
              tar xzf grlib-gpl-1.0.19-b3188.tar 
 
the above command will produce the directory grlib-gpl-1.0.19-b3188 .The distribution 
of the glib directory has the following file hierarchy: 
                  
             Bin             various scripts and tool support files 
             Boards       support files for FPGA prototyping boards 
             Designs      template designs 
             Doc            infra-structure documentation 
             Grlib.html  Grlib IP library html page 
             Lib             IP library 
             Software    VHDL libraries and documentation 
 
          GRLIB uses the GNU ‘make’ utility to generate scripts and to compile and 
synthesis designs. It must therefore be installed on a unix system or in a ‘unix-like’ 
environment. Tested hosts systems are Linux and Windows with Cygwin.  
 
Grlib IP cores  
 
GRLIB is organized around VHDL libraries, where each IP vendor is assigned a unique 
library name. Each vendor is also assigned a unique subdirectory under grlib/lib in which 
all vendor-specific source files and scripts are contained. The vendor-specific directory 
can contain subdirectories, to allow for further partitioning between IP cores etc. 
 
The basic directories delivered with GRLIB under grlib-gpl-1.0.19-b3188/lib are: 
 

grlib     packages with common data types and functions 
gaisler Gaisler Research’s components and utilities 
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tech/*  target technology libraries for gate level simulation 
work   components and packages in the VHDL work library 

               Other vendor-specific directories are also delivered with GRLIB like contrib., 
esa , micron, open cores, techmap , cypress,  gleichmann, open chip but are not necessary  
for the understanding of the design concept. Libraries and IP cores are described in detail 
in separate documentation. 
 
GRMON Installation 
 
GRMON can be downloaded from the gaisler research site having the following link 
location 
 
      ftp://gaisler.com/gaisler.com/grmon/grmon-eval-1.1.19.tar.gz 
 
GRMON is currently available for three platforms: linux, windows and solaris. GRMON 
can be installed anywhere on the host computer - for convenience the installation 
directory should be added to the search path. For example to install the grmon in cygwin 
environment use the following commands (in cygwin) 
 
              a) to untar the file in /opt (can be any other directory) directory 
                  tar xzf grmon-eval-1.1.16.tar.gz 
              b) to set the path of the grmon , append the following line in the. 
                  bashrc file in thehome directory 
 
                 export PATH=/opt/ grmon-eval-1.1.16/cygwin:$PATH 
 
BCC Installation 
 
BCC can be downloaded from the gaisler research site having the following  Link 
location 

 
        ftp://gaisler.com/gaisler.com/bcc/bin/windows/sparc-elf-3.2.3-1.0.24- 
        cygwin.tar.bz2 
 
        BCC is provided as a bzipped tar-file. It should be unpacked in the /opt            

 Directory of the host using the following commands: 
a) mkdir /opt -- to make directory opt in / ( if it is not present already) 
b) cd /opt -- change directory to /opt 
c) tar -xjf sparc-elf-3.2.3-1.0.24-cygwin.tar.bz2 
d) After installation, add /opt/sparc-elf-3.2.3/bin (or /opt/sparc-elf-    
   3.4.4/bin) to the PATH variable by appending the following line in       
   the.bashrc file in the home directory . 
           export PATH=/opt/sparc-elf-3.2.3/bin:$PATH 
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Appendix-B 
 

SpaceWire Component 
 
The IP is composed of height component:  
 
TX: transmitter. 

RX: receptor. 

TX fifo: first in first out buffer for the transmission. 

RX fifo: first in first out buffer for the reception. 

Two domain clock: interface the signal between different clock. 

Time-id buffer: buffer for the time id seeded. 

FSM: state machine manage IP. 

 

Transmitter: tx.vhd 
 
Component TX is 

port ( 

 Reset_n: in std_logic; 

 Tx_Clk: in std_logic; 

 -- Main FSM interface 

 State: in FSM_State; 

 -- Tx Fifo interface 

 Tx_FIFO_Din: in std_logic_vector (8 downto 0); 

 Tx_FIFO_Rd_n: inout std_logic; 

 Tx_FIFO_Empty_n: in std_logic; 

 -- Credit  

 Rx_FIFO_Credit_Rd_n: out std_logic;    -- Read one  

                                more FCT from  The FIFO                 

 Rx_FIFO_Credit_Empty_n: in std_logic;  -- true when      

                       there is no  more FCT in the FIFO             
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 Tx_Credit_Empty_n: in std_logic; 

       -- Time code 

 Send_Time_n: in std_logic; 

 Time Code: in std_logic_vector (7 downto 0); 

 time_id_sended_n: out std_logic;  

 send_esc: in std_logic; 

 send_eop_n: out std_logic; 

 -- Link 

 Dout: out std_logic; 

 Sout: out std_logic 
 
); 
end component; 
 

Receiver: Rx.vhd 
 
Component Rx is 

   Port ( 

 

 Reset_n : in std_logic; 

 Clk : in std_logic; 

 Rx_Clk : inout std_logic; 

 -- Main FSM interface 

 State : in FSM_State; 

 -- Got out 

 got_NULL_n  : out std_logic; 

 got_ESC_n  : out std_logic; 

 got_FCT_n   : out std_logic; 

 got_EOP_n   : out std_logic; 

 got_EEP_n   : out std_logic;  

 got_NChar_n :out std_logic; 

 -- error 

 Error_Par_n :out std_logic;-- Parity error 
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     Error_ESC_n :out std_logic;-- ESC followed by ESC,EOP  

     Error_Dis_n : out std_logic; -- Disconnected 

 -- Rx Fifo interface 

 Rx_FIFO_D : out std_logic_vector(8 downto 0); 

 Rx_FIFO_Wr_n : out std_logic; 

 -- Time Code interface 

 got_Time_n  : out std_logic; 

 -- Link 

 Din : in std_logic; 

 Sin : in std_logic  

      ); 

 

end Rx; 

fsm: fsm.vhd 
 
component fsm is 

 port( 

  Reset_n : in std_logic; 

  Clk : in std_logic; 

  State : out FSM_State; 

  linkEnabled : in std_logic; 

  -- input 

  short_got_fct_n : in std_logic; 

  short_got_null_n : in std_logic; 

  short_got_NChar_n : in std_logic; 

  short_got_Time_n : in std_logic; 

  -- input error 

  Rx_credit_error_n : in std_logic; 

  Tx_credit_error_n : in std_logic; 

  short_Error_Dis_n : in std_logic; 

  short_Error_Par_n : in std_logic;   

  short_Error_ESC_n : in std_logic; 
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  view_fsm : out std_logic_vector(3 downto 0)   

 ); 

end component; 

Receiver fifo: rx_fifo.vhd  

component Rx_Fifo is 

 generic( 

  WIDTH : integer; --:= 8; 

  LENGTH : integer; --:= 128; 

  MAX_CREDIT : integer --:= 7*8  

         ); 

 port( 

  Reset_n : in std_logic; 

  Clk : in std_logic; 

  State : in FSM_State; 

  -- Credit 

  Credit_Rd_n : in std_logic;  -- allow 8 writes in  

                                           the  fifo                     

  Credit_Empty_n : out std_logic; -- true when all  

                     the FIFOhas been allowed to be written 

  credit_error_n : out std_logic; 

  -- Data Input 

  Din : in std_logic_vector(WIDTH-1 downto 0); 

  Wr_n : in std_logic; 

  Full_n : out std_logic; 

  short_got_EOP_n : in std_logic; 

  -- Data Output 

  Dout : out std_logic_vector(WIDTH-1 downto 0); 

  Rd_n : in std_logic; 

  Empty_n : out std_logic; 

  Credit : inout integer range 0 to MAX_CREDIT); 

 end component; 
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Two domain clock: 

component twodomainclock is 

 generic( N_short_to_width : integer; 

   use_short_to_width : integer; 

   N_width_to_short : integer; 

   use_width_to_short : integer; 

   N_short_to_width_n : integer; 

   use_short_to_width_n : integer; 

   N_width_to_short_n : integer; 

   use_width_to_short_n : integer 

   );  

 port ( 

 Rst : in std_logic; 

 Clk_speed : in std_logic; 

 Clk_slow : in std_logic; 

in_short_pulse : in std_logic_vector(N_short_to_width - 1 

downto 0); 

in_width_pulse : in std_logic_vector(N_width_to_short - 1 

downto 0); 

out_width_pulse : inout std_logic_vector(N_short_to_width - 

1 downto0); 

out_short_pulse : out std_logic_vector(N_width_to_short - 1 

downto 0); 

in_short_pulse_n : in 

std_logic_vector(N_short_to_width_n - 1downto0); 

in_width_pulse_n : in std_logic_vector(N_width_to_short_n - 

1 downto0); 

out_width_pulse_n :inout 

std_logic_vector(N_short_to_width_n-1downto0); 

out_short_pulse_n :out std_logic_vector(N_width_to_short_n-

1 downto 0) ); 

end component; 
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