
MULTIAGENT FRAMEWORK
FOR INTERACTIVE JOB MANAGEMENT

FOR GRID

BY

SNEHA MEHTA

07MCE009

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

AHMEDABAD-382481

May 2009

MULTIAGENT FRAMEWORK
FOR INTERACTIVE JOB MANAGEMENT

FOR GRID

Major Project

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology in Computer Science and Engineering

by

SNEHA MEHTA

07MCE009

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

AHMEDABAD-382481

May 2009

Certificate

This is to certify that the Major Project entitled ”MultiAgent Framework for Interac-

tive Job Management for Grid” submitted by Mehta Sneha L (07MCE009), towards

the partial fulfillment of the requirements for the degree of Master of Technology

in Computer Science and Engineering of Nirma University of Science and Technol-

ogy, Ahmedabad is the record of work carried out by her under my supervision and

guidance. In my opinion, the submitted work has reached a level required for being

accepted for examination. The results embodied in this major project, to the best

of my knowledge, haven’t been submitted to any other university or institution for

award of any degree or diploma.

Prof. Madhuri Bhavsar Prof. D. J. Patel

Guide, Associate Professor, Professor and Head,

Department Computer Engineering, Department of Computer Engineering,

Institute of Technology, Institute of Technology,

Nirma University, Ahmedabad Nirma University, Ahmedabad

Dr K Kotecha

Director,

Institute of Technology,

Nirma University, Ahmedabad

iv

Abstract

Modern science and technology are collaborating with each other to achieve the goals,

performance and greater impact all over the globe. These collaborations are multi-

institutional, multi-disciplinary and geographically distributed environments. A com-

putational Grid is a hardware and software infrastructure that provides dependable,

consistent, pervasive and inexpensive access to high end computational capabilities.

Intelligent MultiAgent approaches are well-suited for many types of services. In-

telligent cooperative agents enable the system to autonomously adapt to users com-

putation needs as well as dynamically changing computing resource environments.

The application domains addressed by Grid technologies need to be extended to

include graphical, interactive sessions.Propose interactive grids - next generation grids

addressing the needs of graphical, interactive sessions. Interactive Grids permit end-

users to access and control a remote resource eg. remote workstation in the Grid for

graphical, interactive use. Such an interactive session on a remote workstation can

be used for many applications.

The motive of this project is to elaborate the effectiveness of Grid computing by

Interactive Agent based Job management.This special issue brings together fields of

grid computing and multiagent technology together with providing interactivity to

present their work on the applications of agent-based techniques and approaches in

managing and allocating resources in grid computing environment.

The various phases of the project carried out are configuration of Grid, Generation

of Super Computing power by connecting the number of nodes to the grid,Configuration

of heterogeneous grid environment Agent implementation and finally agent based in-

teractive job management through grid services.

v

Acknowledgements

With immense pleasure, I would like to present the project report on ”MultiAgent

Framework for Interactive Job Management for Grid”. I am very much grateful to

all the people who have helped me and provided guidance during the course of the

project.

First of all, I would like to thank Prof. Madhuri Bhavsar, Institute of Tech-

nology, Nirma University, and Ahmedabad, who persuaded in taking this particular

project and constantly supported and motivated to complete the project. Her keen

understanding and knowledge of the grid concepts helped in understanding the grid

architecture and workflow, which made it easy for me to implement the same.

I would certainly like to thank Dr. S.N.Pradhan, PG-Coordinator, Computer

Engineering Department, Institute of Technology, and Ahmedabad for his constant

encouragement and motivation throughout the course of the project.

Finally, I am thankful to Nirma University for providing all the required resources

that were needed for the project. I would also like to thank all those people who have

directly or indirectly helped us in our project.

- Mehta Sneha L

07MCE009

List of Figures

2.1 View of MultiAgent Framework . 7

3.1 Globus Architecture . 11
3.2 GRAM Architecture . 13

5.1 Overview Of Interactive Grid Compuitng System 22

6.1 Agent Based Grid System hierarchy 26
6.2 MultiAgent Design . 27

7.1 job processing sequence . 30
7.2 Job execution using grid services . 32
7.3 Job Execution Sequence . 33

8.1 Condor Architecture Combined with Grid 35
8.2 Generation of Super Computing Power 43

9.1 Job Management System Architecture 46
9.2 Representation of Agent Based System 47
9.3 UserLogin . 48
9.4 welcome . 49
9.5 Performance Comparison of System having Agents and without Agents 50
9.6 Create proxy . 51
9.7 Job Submission . 52
9.8 Job Checkpointing . 53
9.9 Job Termination . 53

1

Chapter 1

Introduction

1.1 Orientation of Project

Grid computing is gaining a lot of attention within the IT industry. Though it has

been used within the academic and scientific community for some time, standards,

enabling technologies, toolkits and products are becoming available that allow busi-

nesses to utilize and reap the advantages of grid computing [1].

Grid Computing is an active research area which promises to provide a flexible

infrastructure for complex, dynamic and distributed resource sharing. Recent research

on Grid has largely focused on issues of performance, scalability and standardization.

Managing access to computing and data resources is a complex and time consuming

task. As Grid computing matures, deciding which systems to use, where the data

resides for a particular application domain, how to migrate the data to the point

of computation (or vice versa), and data rates required to maintain a particular

application ”behavior” become significant.

Globus a middleware which is a de facto standard for grid computing. This project

contains setup for a grid environment, in which 50s or 100s of excecution nodes out

of which one has been choosen as a submission node, and the other two are container

nodes. These container nodes are actually having the schedulers of OpenPBS, SGE

2

CHAPTER 1. INTRODUCTION 3

and also condor which creates heterogeneous environment for clusters. When the

submission node submits jobs to the containers, then these jobs are scheduled to run

on other nodes attached to the OpenPBS and SGE clusters in parallel.

Agent and multi-agent technologies provide a promising approach to make Grid

technologies and solutions based on Grid and Cluster technologies smarter, more

flexible, and adaptable. Agents could play an important role in Grid Computing.

Traditional use of Grid Computing Systems has been for batch jobs in the scientific

and academic computing. We envision the next generation Grid computing systems

to support graphical interactive sessions.

1.1.1 Objective

Main objectives of project, are as follows-

• The first objective was to setup the grid environment , using the Globus Toolkit.

Also setup and configured OpenPBS ,SGE ,and Condor schedulers on two of

the grid nodes.

• Second objective was to design an Agent.

• Configuring heterogeneous grid environment.

• Using this Agents implement and integrate MultiAgent Framework for interac-

tive Jobs.

1.1.2 Who can benefit from the Grid

• Medical/Healthcare

• Geological and climate applications

• Pharmaceutical, Chemical, Biotechnology

• Physics and Astrophysics

CHAPTER 1. INTRODUCTION 4

• Computer Science

1.1.3 Scope

The grid environment setup includes a network of 100s of workstation established

in a lab of the university.One of the special features of this project is study and

configuration of OpenPBS , SGE clusters and condor,which can certainly be helpful

in applications.

As agent-level grids can take advantage of the capabilities of computational grids

in supporting their load balancing and quality-of-service requirements. Also designing

and implementing MultiAgent framework provides Interactive, and on-demand access

to grid resources.

1.1.4 Thesis Organization

The Project work will be implemented in two major phases. The initial phase contains

grid environment has been setup, which was the fundamental task. Next phase is to

design, identify agent design, implement and integrate agents and job Management

in heterogeneous framework.The rest of the thesis is organized as follows:

Chapter 2 includes literature survey.

Chapter 3 introduces grid computing and explains why it is needed and its

types. It also explains the Globus Toolkit components, which are necessary for the

functioning of the grid.

Chapter 4 includes the prerequisites, installation and configuration of the Globus

on submission and container nodes.

Chapter 5 includes introduction of the interactive jobs, its requirements and it’s

proposed architecture.

Chapter 6 introduces multiagent framework, what are agents, it’s model and

agent design for project.

CHAPTER 1. INTRODUCTION 5

Chapter 7 contains job processing cycle, its components and resources needed

to run a particular job.

Chapter 8 includes introduction to configuration of Condor on different nodes.

It also explains how to connect it with globus and job execution in Condor.

Chapter 9 covers the whole implementation of agents which has been deployed on

the grid. It includes all information about how jobs were taken, how the application

has been designed and how it has been deployed on the grid. It also includes the time

taken to execute the job.

Chapter 10 includes conclusion and future work that can be done on the grid.

Chapter 2

Literature Survey

The Grid and agent communities both develop concepts and mechanisms for open

distributed systems, albeit from different perspectives. The Grid community has his-

torically focused on brawn: infrastructure, tools, and applications for reliable and

secure resource sharing within dynamic and geographically distributed virtual or-

ganizations. In contrast, the agents community has focused on brain: autonomous

problem solvers that can act flexibly in uncertain and dynamic environments. Yet

as the scale and ambition of both Grid and agent deployments increase, we see a

convergence of interests, with agent systems requiring robust infrastructure and Grid

systems requiring autonomous, flexible behavior [2]

Agent technology provides several concepts, which allow analysts to design ap-

plications in a way close to the human thought. Furthermore, agents provide ap-

plications with useful features for dealing with complex and dynamic environments.

Agents are accepted as a powerful high-level abstraction for modelling complex soft-

ware systems.It is intended that an entire system be built of a hierarchy of identical

agents with the same functionality. Agents are considered both service providers and

service requestors.

6

CHAPTER 2. LITERATURE SURVEY 7

2.1 Methodology

• While many agents can be utilized as a compute intensive multi-agent system,

the agents are not predetermined to work together. They possess their own

motivation, resource and environment.

• Autonomy is used to describe the character of an agent, with regard to its

intelligence and social ability. An agent can fulfil high-level tasks directly or

through cooperation with other agents.

• Architecture is used to provide a framework for interaction between agents [3].

For example, multiple agents can be organized into a hierarchy.

Figure 2.1: View of MultiAgent Framework

CHAPTER 2. LITERATURE SURVEY 8

2.2 Batch and Interactive Jobs

Generally, there are two kinds of job submission methods: batch execution and inter-

active execution. When a batch job is submitted, it is submitted to a queue, where it

waits until it reaches the top of the queue and the required resources become available.

An interactive job [4] is a job where the nodes are reserved for users to log into and

issue commands by hand. An interactive job is run immediately upon submitting if

the specified resource are available. Since the interactive jobs never wait, and all the

input and output are handled transparently, it is very useful for testing batch scripts

and debugging programs . Although interactive jobs may decrease the utilization of

the system, it is vital for a working scientific computing system.

Traditional use of Grid Computing Systems has been for batch jobs in the scientific

and academic computing. We envision the next generation Grid computing systems

to support graphical interactive sessions. In this project a resource management

framework has been proposed for supporting graphical interactive sessions in a Grid

computing system. The high level architectural resource management framework

distributed among the submission node, central scheduler node, and the execution

node.

2.3 Performance Analysis

Paper [5] describes performance measurement of two different agent based technolo-

gies.The performance measures evaluated were execution time and generated traffic.

For each agent platform, average round trip times needed for the circular exchange

of messages between two agents and the traffic generated during this process was

measured. The motivation for this was to determine the maximum amount of user

data that can be transferred over the network in a limited amount of time, as well as

the message overhead.The results indicate that technology which uses Java to code

user data, had the lowest RTT when sending large messages.This system uses java to

CHAPTER 2. LITERATURE SURVEY 9

provide portability and flexibility while increasind whole system performance.

2.4 Section Summary

The Globus is widely used as middleware to successfully provide Grid services. How-

ever, previously it was impossible to submit interactive jobs to a Globus Gatekeeper.

A novel way is introduced to submit interactive jobs to Grid resources via Grid com-

puting. It is based on a GSI which uses user authentication. Interactive jobs are

submitted to an interactive secure shell process rather than directly to a Globus

Gatekeeper.

Chapter 3

Introduction to Grid

3.1 What is Grid

A grid is a system that

o Coordinates resources that are not subject to centralized control Grid integrates

and coordinates resources and users that exist within different control domains.

o Uses standard open, general purpose protocols and interfaces : A grid is built

from multipurpose protocols and interfaces that address such issues like authentica-

tion, authorization and resource discovery.

o To deliver non-trivial qualities of services: A grid allows its constituent resources

to be used in a coordinated fashion to provide various qualities of service like response

time, throughput etc.

3.2 Types of GRID

• Computational Grid: This grid [6] is used to allocate resources specifically

for computing power. The resources are usually high-performance machines.

• Data Grid: This grid is used for housing and providing access to data over

multiple organizations.

10

CHAPTER 3. INTRODUCTION TO GRID 11

• Scavenging Grid: It is one type of Computational grid which uses the unused

resources for computational power. It steals CPU cycles when CPU is idle, so

it is also called Cycle Scavenging Grid.

3.3 GRID Architecture and Core Services

Grid uses Globus as a middleware it’s architecture consists components as shown in

figure 3.1

Figure 3.1: Globus Architecture

Main Grid services[7] includes:

• Scheduling (Globus Resource Allocation Manager)

• Information (Metacomputing Directory Service)

• Security (Globus Security Infrastructure)

• Health and Status (Heartbeat monitor)

CHAPTER 3. INTRODUCTION TO GRID 12

• Remote file access (Global Access to Secondary Storage)

• Reservation of Resources in Advance (GARA)

3.3.1 GSI

A major requirement for grid computing is security. At the base of any grid en-

vironment, there must be mechanisms to provide security including authentication,

authorization, data encryption, and so on. The Grid Security Infrastructure (GSI)

component of the Globus Toolkit provides robust security mechanisms. The GSI in-

cludes an OpenSSL implementation. It also provides a single sign-on mechanism, so

once a user is authenticated, a proxy certificate is created and used when performing

actions within the grid.

As a very important component of GSI is the certificate. A certificate is used to

identify all the users and the services present in the grid. Usually, there is a central

Certificate Authority for a grid, which will issue certificates to each and every node

present in the grid.

3.3.2 GRAM

GRAM is the module that provides the remote execution and status management

of the execution. When a job is submitted by a client, the request is sent to the

remote host and handled by the gatekeeper daemon located in the remote host. Then

the gatekeeper creates a job manager to start and monitor the job. When the job

is finished, the job manager sends the status information back to the client and

terminates.

Gatekeeper

The gatekeeper daemon builds the secure communication between clients and servers.

The gatekeeper daemon is similar to inetd daemon in terms of functionality. However,

gatekeeper provides a secure communication. It communicates with the GRAM client

CHAPTER 3. INTRODUCTION TO GRID 13

Figure 3.2: GRAM Architecture

and authenticates the right to submit jobs. After authentication, gatekeeper forks

and creates a job manager delegating the authority to communicate with clients.

JobManager

Job manager is created by the gatekeeper daemon as part of the job requesting process.

It provides the interfaces that control the allocation of each local resource manager,

such as a job scheduler like PBS, LSF,or Condor.

3.3.3 MDS

MDS provides access to static and dynamic information of resources. Basically, it

contains the following components:

O Grid Resource Information Service(GRIS): GRIS is the repository of local re-

source information derived from information providers. GRIS is able to register its

information with a GIIS, but GRIS itself does not receive registration requests.

CHAPTER 3. INTRODUCTION TO GRID 14

o Grid Index Information Service (GIIS): GIIS is the repository that contains

indexes of resource information registered by the GRIS and other GIISs.

o MDS client: A search for resource information that you want in your grid

environment is initially performed by the MDS client.

3.3.4 Data Management

When building a grid, the most important asset within grid is data. Within design,

user will have to determine their data requirements and how he will move data around

infrastructure or otherwise access the required data in a secure and efficient manner.

Standardizing on a set of grid protocols will allow to communicate between any data

source that is available within design.

Globus provides the GridFTP and Global Access to Secondary Storage (GASS)

data transfer utilities in the grid environment. In addition, a replica management

capability is provided to help manage and access replicas of a data set.

Chapter 4

GLOBUS: Grid Preamble

Globus is a grid middleware, considered to be the de facto standard for grid comput-

ing. So, for practical experience of the grid computing it is best to start with the

installation of Globus.

4.1 Configuration Details

• Operating System .. Fedora 4.0

• Middleware .. Globus 4.0

• Machines .. Machines having following configuration

nodeA 10.1.10.85 user-85a.nitdomain5.edu

nodeB 10.1.10.103 user-103a.nitdomain5.edu

nodeC 10.1.10.99 user-99a.nitdomain5.edu

4.2 Configuration Steps

The steps of GT4 [6] configuration are as follows:

15

CHAPTER 4. GLOBUS: GRID PREAMBLE 16

4.2.1 Installing and Configuring Linux

• Installing and Configuring Linux

• Setting up accounts

4.2.2 Deploying Torque (OpenPBS)

Torque Open PBS or just PBS) is deployed on nodeB as a remote batch system, and

then later configured Globus GRAM WS so that jobs can be submitted into PBS via

Globus from the grid.

a Deploying RSH

b Downloading and Installing Torque

c Configuring and Deploying Torque (PBS)

d Starting PBS

e Testing PBS

4.2.3 Deploying Sun Grid Engine (SGE)

Sun Grid Engine (SGE) is deployed on nodeC as a ”remote” batch system, and then

later configured Globus GRAM WS so that jobs can be submitted into SGE via

Globus from the grid.

a Downloading SGE

b Unpacking the SGE distribution

c Installing and Configuring SGE

d Testing SGE

CHAPTER 4. GLOBUS: GRID PREAMBLE 17

4.2.4 Deploying The PostgreSQL Relational Database

It is required to run the Globus Reliable File Transfer (RFT) service on nodes B

and C since they are the head nodes for our “clusters”. RFT requires a relational

database backend in order to preserve state across machine shutdowns.

a Preliminaries

b Initialization

c Starting the database

4.2.5 Fixing Java And ANT

The default java installed for Fedora Core 4 MUST be removed. It will not work with

the Globus toolkit and it is easier and less troublesome to remove it entirely.

a Removing default Java

b Java installation

c Installing Ant

4.2.6 Deploying Globus

The Globus Toolkit should be installed as user ’globus’ and not as root. The toolkit

should be deployed on

• nodeA since that node will serve as the ’client’ machine

• nodeB since that node will host the Globus GRAM WS that front ends the PBS

batch system, along with other Globus grid services.

• nodeC since that node will host the Globus GRAM WS that front ends the

SGE batch system, along with other Globus grid services.

CHAPTER 4. GLOBUS: GRID PREAMBLE 18

• Preliminaries

• Building and Installing

• Installing updated packages

• Creating a Certificate Authority V. Obtaining a Host Certificate on nodeB

• Making a Copy for the Container

• Creating the grid-mapfile

• Configuring the RFT Service

• Configuring sudo

• Starting the Container

• Starting globus-gridftp-server

• Repeat for nodeA

• Obtaining Credentials for Generic User

• Testing the Grid Services on nodeB

• Obtaining host credentials for nodeA

• Testing globus-gridftp-server on nodeA

• Testing file staging

• Completing Deployment on nodeC

4.2.7 Connecting Globus GRAM WS and Torque (OpenPBS)

I. Building the WS GRAM PBS jobmanager

II. Testing the GRAM WS PBS jobmanager

CHAPTER 4. GLOBUS: GRID PREAMBLE 19

4.2.8 Connecting Globus Gram WS and SUN Grid Engine

Now Globus GRAM WS on nodeC and SGE are connected so that jobs can be

submitted into the SGE batch queue.

a Turning on reporting for SGE

b Building the WS GRAM SGE jobmanager

c Testing the GRAM WS SGE jobmanager

Chapter 5

Necessities for Interactivity

5.1 Introduction

Grid Computing technology provides resource sharing and resource virtualization to

end-users, allowing for computational resources to be accessed as a utility. Resource

Management is one of the key research areas for Grid Computing. Traditionally, Grid

technologies have been used for executing batch jobs in the scientific and academic

community. We believe that the application domains addressed by Grid technologies

need to be extended to include graphical, interactive sessions. We propose interactive

grids - next generation grids addressing the needs of graphical, interactive sessions.

Interactive Grids permit end-users to access and control a remote resource eg. remote

workstation in the Grid for graphical, interactive use.

Users want to use HPC systems in a manner similar to how they interact with

their personal computer. Driven by these requirements, it is increasingly being recog-

nized that a large pool of HPC users requires interactive, on-demand access to HPC

resources. Interactive access is defined to be users can input information into the

application and received timely visual output from the application, while on-demand

access is defined as being allocated immediate access to the requested resources rather

than having to wait for resources to be allocated by a batch queuing system. Pro-

20

CHAPTER 5. NECESSITIES FOR INTERACTIVITY 21

viding users with interactive, on-demand access to an HPC system will afford these

users:

• Quicker first-time access to the system.

• Faster code debug cycles.

• Having to their jobs according to their needs.

There are number of challenges to implementing interactive, on-demand access to

HPC systems including:

• Since HPC resources still cost nowhere near a level where every potential user

can have their personal HPC resource in their office or cubicle, how can the

sharing of the interactive, on-demand HPC resources be abstracted in such a

way the users feel like they are not sharing the resources with many other users.

• Given the number of potential users for an HPC system, the number and dura-

tion of application executions, and the number of simultaneous processors that

each application execution requires, how many processors and other resources

will be required?

• How can broader interactive, on-demand access enable greater visual feedback

and visualization of data being processed?

• Are there interactive, on-demand access policies that are fair to all of the users

of such an HPC system?

5.2 Requirements

We are considering interactive grids - Grid computing systems that extend the ap-

plication domain to include graphical interactive sessions. Specifically, an Interactive

Grid Computing System allows the end-user access and control of a remote resource

CHAPTER 5. NECESSITIES FOR INTERACTIVITY 22

in the Grid for graphical, interactive use. To enable such grids, we require a resource

management architecture that effectively manages the vast heterogeneous resources

across administrative domains, as well as effectively manages the resources during the

graphical interactive session.

5.3 Proposed Architecture

The important issues to consider for a resource management framework for interactive

grids [8], as compared to traditional batch-oriented grids are:

• Providing QoS guarantees for graphical sessions.

• Guaranteeing SLAs per graphical session.

• Accurate prediction of application behavior and resource load.

Figure 5.1: Overview Of Interactive Grid Compuitng System

oInteractive Grid Computing System: An interactive grid computing sys-

tem is a Grid computing system supporting Graphical Interactive sessions to remote

CHAPTER 5. NECESSITIES FOR INTERACTIVITY 23

nodes. At a high level, it consists of Submission nodes, a Distributed Resource Man-

agement System, Execution nodes and Storage nodes. The end-user submits job

requests through a submission node, and is given access to a remote execution node

for graphical, interactive use.

oGlobal Interactive session: A global interactive session constitutes the asso-

ciation between the end-user and the remote execution node, wherein: the end-user

interacts with the remote execution node to launch one or more applications, and sub-

sequently interacts with the launched applications through per-application sessions.

oPer-application interactive session: A per-application interactive session for

an application executing on the remote execution node, constitutes the association

between the end user and the executing application, wherein: the end-user interacts

directly with the application. A per-application interactive session occurs in the

context of a global interactive session. We are most interested in graphics application

sessions. However, our proposed solution would also work with text only applications

as a special case.

Application Profiles: The application profiles contain the estimated CPU and

bandwidth required for various classes of applications to provide acceptable frame rate

and performance levels while executing remotely in an Interactive Grid computing

system.

Chapter 6

MultiAgent Framework for Job

Management

6.1 Agent

An agent is a software entity that shows several degrees of autonomy, since it has

to take decisions and to carry out jobs without the direct participation of the user.

Often an agent is an active object, i.e., an object with autonomous computational

capability. A mobile agent is an autonomous software entity, which has the ability to

roam among the nodes in a network-aware fashion. Some of the advantages of agents

are:-

• Lower consumption of bandwidth

• Tolerate unreliable connections, i.e., fault-tolerance

• Can be used to balance the load among the connected nodes.

• Supports very flexible design

24

CHAPTER 6. MULTIAGENT FRAMEWORK FOR JOB MANAGEMENT 25

6.1.1 Working of An Agent

All components and sub-systems in a grid environment can be represented as agents,

and each agent is registered with a local or system-wide manager called facilitator.

The whole system is divided into two layers for managing different tasks, i.e., local

management and system-wide management.

In local management, general-purpose agents are placed on network devices to

interact with the resources, which are distributed, and manage the local events, thus

reducing the workloads for the local manager. To represent local resources, each

general-purpose agent collects relevant identification information, resource informa-

tion, state information, etc.

A facilitator agent is defined as a server agent. Normally, these facilitators are

located at tree nodes or hosts on the network topology, where each tree node corre-

sponds to a specific subnet and each subnet consists of several host.

A user interface agent is responsible for receiving inputs, sending requests to the

facilitator for delegation of tasks to appropriate agents, and displaying the results.

The other two categories of agents are application agents and meta-agents. An

application agent is responsible for providing a collection of services of a particular

type. These services could be domain independent, user-specific, or domain-specific.

While a facilitator processes domain-independent coordination strategies, a meta-

agent is used to assist the facilitator agent in coordinating the activities of other

agents by using domain- and application specific knowledge or reasoning. Inter-agent

Communication Language (ICL) is to set up the communication between agents and

facilitator.

CHAPTER 6. MULTIAGENT FRAMEWORK FOR JOB MANAGEMENT 26

6.2 Agent Based Grid Design

Figure 6.1: Agent Based Grid System hierarchy

The multi-agent system-based hierarchy grid architecture model highly abstracts

the substance application. It can be divided into layers in logic, as shown in Figure

6.1.

CHAPTER 6. MULTIAGENT FRAMEWORK FOR JOB MANAGEMENT 27

6.3 MultiAgent Framework Design

Figure 6.2: MultiAgent Design

Figure 6.2 describes how work process is done in multiagent framework.Work

process is presented in following steps:

• Through Interface Agent user submits a job.

CHAPTER 6. MULTIAGENT FRAMEWORK FOR JOB MANAGEMENT 28

• Each and every Agent communicates with controller agent which is the master

agent.

• Controller Agent through GRAM calls Info and Resource Allocation Agent to

assign a suitable node and resources.

• Resource database returns nodes itinerary to the Info Agent.

• Job creating Agent assigns job-id and resources.

• Each Agent begins a user process on an available node.

• After the available node execution, the result is back to the sub-agents.

• Sub-agents pass the result to their main master Agent or Controller Agent.

• Controller Agent handles with all the back results and submits the ultimate

result to the user thorugh Interface Agent.

Chapter 7

Job processing Methodology

Grid computing allows sharing of resources from different administrative bodies to end

users. Execution of programs submitted by arbitrary users is an important feature of

grid system. This resource sharing can compromise the security of a resource, affecting

the integrity of the resource. The integrity of the resource machine is important as

crashes due to malicious actions from a foreign job can disrupt many other executing

jobs. Unnecessary resource down time incurs lost of precious time for job execution.

There are four main entities in architecture, which are clients, middleware, sched-

ulers and resources. A client is a user who submits a job to the system. A job refers

to a collection of Java classes that the client wants to execute. The job is submit-

ted by the client to the web portal through a graphical user interface (GUI). Also

agent is an entity which helps to achieve this. The agent delegates the management

of jobs to schedulers. A scheduler divides a job into smaller tasks (in the case of

an independent job, a task refers to the subset of parameters that can be executed

independently) and sends the tasks to the resources for execution. Figure shows the

proposed architecture model.

29

CHAPTER 7. JOB PROCESSING METHODOLOGY 30

Figure 7.1: job processing sequence

7.1 Job definition

The clients submit a job to the server in the form of Java class files together with the

job descriptions and the input parameters for the Java class files. The job descriptions

are stored in a separate file in XML format. This file is submitted together with the

Java class files during the job submission. The job descriptions consist of:

o Job Priority: This information is required by the scheduler to be able to man-

age jobs optimally. The scheduler can charge different price for scheduling different

priority job.

o Job Scheduling policy: The policy is used by the scheduler to choose suitable

resources for the job execution. These policies lead to a scheduling decision for speed,

cost or other criteria of optimizations. The optimizations determine the cost of job

execution charged by the resources.

o Job Requirements: This information is used by the scheduler to select the re-

sources for the job execution. The requirements cover memory requirement, storage

requirement, execution deadline time. Use of this information allows the scheduler to

decide whether it requires extra resources.

CHAPTER 7. JOB PROCESSING METHODOLOGY 31

o Job execution time: Job’s execution time. This information is required by

the resource to check whether a job is working correctly. Thus if a job is running

for unreasonably longer period than the approximated execution time, the resource

machine can decide to terminate the job and return an error message to the job owner.

7.2 Job Execution and States

Job Execution takes following steps:

• Event tells the server to start scheduling cycle.

• Server sends scheduling command to scheduler.

• Scheduler requests resource info.

• Server returns the requested info.

• Scheduler request job info from server.

• Server sends job status info to scheduler and scheduler makes the policy decision

to run the job.

• Scheduler sends run request to server.

• Server sends job to run.

Figure7.2 how grid services deals and manages with submitted job.

7.3 Job Management

The basic object that grid manages is the job. So in the job has the following prop-

erties: o Batch or Interactive

o Defines a list of required resources

o Defines a priority

o Defines the time of execution

CHAPTER 7. JOB PROCESSING METHODOLOGY 32

Figure 7.2: Job execution using grid services

7.4 Resources

Each submitted job can specify a list of resources required for its execution: the

number and the type of the specifiable resources is platform dependent.

• host: name of the host on which job should be run.

• nodes: number and/or type of nodes to be reserved for exclusive use by the job.

• number of CPUs: number of CPUs requested by job

7.5 Performance parameters

• Resource Discovery : Time taken to find resources for the particular job.

• Selection of best resource : Amount of time taken by a agent to select a best

resource.

• Job Execution Time : Total time taken to execute a particular job.

• job interarrival times are assumed to be independent and identically distributed.

CHAPTER 7. JOB PROCESSING METHODOLOGY 33

Figure 7.3: Job Execution Sequence

• Size of the input data processed by a job is proportional to that jobs length.

• Average RTT: Shows the time needed for the circular exchange of messages

between agents.

• Data Transferred: Shows the data transferred by agents during the exchange of

messages.

• Message Overhead: Shows the traffic generated by the agent platform in order

to transfer the actual data.

Chapter 8

Eneration of Supercomputing

Power

After configuring Globus, the Grid is ready to accept the jobs. The next task is to

generate the supercomputing power i.e. large computational capability by means of

connecting several machines to the grid and utilizing their resources for computation.

A goal of grid computing is to allow the utilization of resources that span many

administrative domains. A Condor pool often includes resources owned and controlled

by many different people. Yet collaborating researchers from different organizations

may not find it feasible to combine all of their computers into a single, large Condor

pool. Condor shines in grid computing, continuing to evolve with the field.

Condor can be used to manage a cluster of dedicated compute nodes. In addition,

unique mechanisms enable Condor to effectively harness wasted CPU power from

otherwise idle desktop workstations. For instance, Condor can be configured to only

use desktop machines where the keyboard and mouse are idle. Should Condor detect

that a machine is no longer available (such as a key press detected), in many circum-

stances Condor is able to transparently produce a checkpoint and migrate a job to a

different machine which would otherwise be idle. Condor does not require a shared

file system across machines - if no shared file system is available, Condor can transfer

34

CHAPTER 8. ENERATION OF SUPERCOMPUTING POWER 35

the job’s data files on behalf of the user, or Condor may be able to transparently

redirect all the job’s I/O requests back to the submit machine. As a result, Condor

can be used to seamlessly combine all of an organization’s computational power into

one resource.

Condor can be used to build Grid-style computing environments that cross admin-

istrative boundaries. Condor’s “flocking” technology allows multiple Condor compute

installations to work together. Condor incorporates many of the emerging Grid-based

computing methodologies and protocols. For instance, Condor-G is fully interopera-

ble with resources managed by Globus.

Figure 8.1: Condor Architecture Combined with Grid

Figure 8.1 describes the association of condor with the grid platform. The upper

most layer is consist of Users. They are having applications, problem solving programs

or softwares etc.

The middle layer is comprised of Grid platform. The condor is associated with

grid platform here. Condor-G is a special variant of condor made for Globus. It

works at both side of the grid platform. It has intermediate interface with user and

CHAPTER 8. ENERATION OF SUPERCOMPUTING POWER 36

grid platform as well as interface between grid platform and the grid fabric. Condor

provides functionality of allowing multiple nodes to be connected to grid platform

with ease. It also contains some security aspects which are not concerned for this

project.

8.1 Installation and Configuration

8.1.1 Installation

The first step is to download condor package from the website of University of Wis-

consin - http://www.cs.wisc.edu/condor. It can be downloaded as binary, source or

rpm.

Assuming that binary package is downloaded for Linux platform do rpm -ivh

packagename on the terminal.

Configuration of central-manager and submitter-host

The following is a list of steps which were required in order to get a condor cluster up

and running. All machines in the (initial) cluster were wiped and had a fresh install

of Fedora Core 4. However, it shouldn’t be too much of a stretch to get this working

on any FC4 machine. Throughout, I used the precompiled binary rpm versions of

condor. Unless stated, these steps are the same for the head node and the slave nodes.

• Get the latest stable version of condor from http://www.cs.wisc.edu/condor/downloads

I got the rpms for version 7.0.5.

• Next need to install a C++ library for backwards compatibility. This may not

be needed if the condor binaries have been recompiled recently or you already

have this library installed. I used yum, with the default repos as follows:

yum install compat-libstdc++-33-3.2.3-47.fc4.i386.

• Create a new user named condor (as root).

CHAPTER 8. ENERATION OF SUPERCOMPUTING POWER 37

• Condor has been installed into: /opt/condor

Globus will use Condor as a schedular on nodeC and so Globus GRAM should

be able to submit jobs to Condor. Hence, Condor should be configured under the

ownership of globus user who is the owner of Globus container too.

To configure Condor as central-manager and submitter-host run the following file

in Condor-home from terminal with globus user as owner:

Condor configure −−owner=globus −−type=submit,manager

Next, the condorconfigure file which keeps all the configuration settings should

be modified for condor usage. Edit this file stored in etc directory in Condor home.

Make changes in this file mentioned bellow:

Set RESERVED SWAP=0. This will not block the job from being started even

though swap memory can not be reserved before job is started.

Set HOSTALLOW READ=* and HOSTALLOW WRITE=* so that no node will

be blocked from writing the output files back once the jobs are completed.

Set JAVA=¡installation dir of jdk¿ to let condor work with java properly.

In order for Condor to work properly you must set your CONDOR CONFIG

environment variable to point to your configuration file.Set the environment by adding

following line in the .bash profile file

• export CONDOR CONFIG=(Condor installation dir)/etc/condor config

• export PATH=$PATH:(Condor installation dir)/bin

• export PATH=$PATH:(Condor installation dir)/sbin

8.2 Adding Execution Hosts

Condor is a heterogeneous execution system. Therefore, it can have either Windows

or Linux nodes as execution nodes. For this project, Linux nodes were already used in

the OpenPBS scheduling system. So many Windows machines were setup as condor

execution nodes.

CHAPTER 8. ENERATION OF SUPERCOMPUTING POWER 38

8.2.1 Installation of Condor client on Windows machine

First, download the Condor setup for Windows from the same website that is men-

tioned above for Linux Condor download. Run the setup on Windows node to be

configured as execution node. Following steps are to be followed:

• First, enter the fully qualified host name or IP of nodeC when asked to join

an existing Condor pool. This step suggests the need of nodeC to be setup as

submitter and central manager node.

• Next since the nodes are simple execution nodes they need not submit jobs into

Condor pool.

• Whether the jobs submitted to this node should always run or they should be

suspended at some local activity is set.

• Then setup asks DNS name or IP.

• User has to enter path to java. It is advisable to have same version of jdk

installed on each Windows host as that was installed on nodes A, B and C.

• Setup prompts next for hosts access on this node. Set both read and write

access to * so that no host will be blocked because of that.

• User can accept rest of the options as default ones and install Condor.

• Once Condor has been installed, the condor master daemon will be started as

a service everytime on a start-up.

• Change the host file in c:/windows/system32/drivers/etc/host file and make an

entry of central manager

CHAPTER 8. ENERATION OF SUPERCOMPUTING POWER 39

8.3 Connecting Globus GRAM-WS And Condor

Condor is a schedular system which Globus toolkit uses to schedule jobs. Even

though, both Globus toolkit and Condor have been installed, Globus toolkit can not

use Condor until Condor is connected with Globus GRAM-WS.

8.3.1 Setup Globus job manager for Condor

Environment has to be setup in first place. Edit .bash profile file stored in home

directory of globus user in nodeC and environment variables for containercert.pem

and containerkey.pem:

• export X509 USER CERT=$GLOBUS LOCATION/etc/containercert.pem

• export X509 USER KEY=$GLOBUS LOCATION/etc/containerkey.pem

• Make sure (Condor home)/bin and (Condor home)/sbin are in PATH.

• As globus user, change to the directory gt−4.0.1−all−source−installer in home

of globus user.

• Now, the package gt4−gram−condor is to be built.

• make gt4−gram−condor

• Install the built package by:make install

• Configure the job-manager by running following:

$GLOBUS LOCATION/setup/globus/setup−globus

−job−manager−condor

8.4 Job manager for Condor

The setup changes the Globus container. After the setup is run, the container also

spawns GRAM−schedular−event−generator. This event-generator keeps track of the

CHAPTER 8. ENERATION OF SUPERCOMPUTING POWER 40

current status of the job by referring to the log files generated by Condor and forwards

the job status to the GRAM.

This setup also generates a Perl script named condor.pm. When GRAM schedules

a job to run on Condor, this script generates a job submission script based on job

description provided by user. This job submission script is recognized by Condor. So

GRAM submits the job submission script to Condor queue and the job is scheduled.

8.5 Configuring Globus to submit to a homoge-

nous Condor pool

1 Make sure $GLOBUS LOCATION and/or GPT LOCATION are set appropri-

ately.

2 Run the following command: $GLOBUS LOCATION/setup/globus/setup−globus

−gram−job−manager −type=condor

3 Edit $GLOBUS LOCATION/etc/grid−services/jobmanager−condor to add the

parameters −condor−arch and −condor−os, which specify what ARCH/OPSYS

to use. The results should look something like this (everything on a single line),

except that will change the pathnames to be correct for your system:

stderr log,local cred − /scratch/globus/libexec/globus−job−manager globus

−job−manager −conf /scratch/globus/etc/globus−job−manager.conf −type

condor −rdn jobmanager−condor −machine−type unknown −condor−arch IN-

TEL −condor−os LINUX

4 Run the following command: $GLOBUS LOCATION/setup/globus/setup−globus

−gram−reporter −type=condor

CHAPTER 8. ENERATION OF SUPERCOMPUTING POWER 41

8.6 Configuring Globus to submit to a heteroge-

neous Condor pool

1 Make sure $GLOBUS LOCATION and/or GPT LOCATION are set appropri-

ately.

2 Change the Globus etc directory: cd $GLOBUS LOCATION/etc.

Now, perform the following steps once for each platform in pool:

3 Make a copy of the globus−job−manager.conf file (the new file will be specific

to this particular platform):

cp globus−job−manager.conf globus−job−manager−condor−INTEL−LINUX.conf

4 Edit the −globus−host−cputype/manufacturer/osname/osversion options in

the new conf file to match those of the platform.

5 Make a copy of the grid-services/jobmanager file (the new file will be specific

to this particular platform). The name of this file will be the name that user

will use to submit jobs to this platform:

cp grid−services/jobmanager grid−services/jobmanager−condor−INTEL−LINUX

6 Edit the new file in grid-services to change the -conf, -type, and -rdn pareme-

ters and add the -condor-arch and -condor-os parameters (which specify which

ARCH/OPSYS to use). The end result should look something like this (all on

one line), except that you will change the pathnames to be correct for your

system::

stderr log,local cred − /scratch/globus/libexec/globus−job−manager globus

−job−manager −conf /scratch/globus/etc/globus−job−manager−INTEL−

LINUX.con.conf −type condor −rdn jobmanager−condor −machine−type un-

known −condor−arch INTEL −condor−os LINUX

CHAPTER 8. ENERATION OF SUPERCOMPUTING POWER 42

8.7 Testing Setup

To test Condor as a stand alone system, start condor master on central manager

nodeC by running condor master command as globus user.

Then run condor on command so that condor master will spawn all other neces-

sary daemons on the central manager like condor schedd, condor startd, condor master,

condor collector, condor negotiator.

8.8 Generating SuperComputing Power

To generate supercomputing power 100s of pcs has been integrated with grid. Pa-

rameters like GFlops, Load Average, Condor Load, Activity, Hostname of all the

machines generating heterogeneous grid environment has been taken so that their

aggregation power of all the machines help to achieve this goal.By integrating and

viewing and fetching all the required parameters results is as given in figure 8.2.

Figure 8.2 shows all the parameters with the GFlops.Hostname in the figure are

workstation from different labs in Nirma University.

CHAPTER 8. ENERATION OF SUPERCOMPUTING POWER 43

Figure 8.2: Generation of Super Computing Power

Chapter 9

Agent Implementation

9.1 Implementation Details

Generally there are two kinds of job submission methods, which are batch execution

and interactive execution.

Agents can provide a useful abstraction at each of the Grid layers. By their ability

to adapt to the prevailing circumstances, agents will provide services that are very

dynamic and robust, and suitable for a Grid environment. Agents can be used to

extend existing computational infrastructures. Few research groups have focused on

offering an environment to combine the concept of computational grid and agents.

An agent is the essential component of this work. An agent can be depicted as

an autonomous entity packaged of a set of internal modules, three of which, i.e., for

internal scheduling, problem solving and social communication routing, are normative

and others are optional. An agent has three basic capabilities Reactivity, Autonomy

and Social Communication Ability.

1) Reactivity

2) Autonomy

3) Social communication ability

Normally a system is made of different agents, involving their distributed data,

44

CHAPTER 9. AGENT IMPLEMENTATION 45

knowledge, or control. A multi-agent system is composed of a collection of, possibly

heterogeneous, autonomous entities which have their own problem-solving capabili-

ties and interact with one another in order to achieve an overall goal. Multi-agent

systems emphasize both the autonomy of individual agents and the cooperation be-

tween agents. Coordination is important for multi-agent [9] systems. In general,

coordination is about using a mechanism to manage the interdependencies between

the collaborative activities of agents.

Thus an agent is an object which works independently or autonomously to han-

dle the tasks. For this paper the proposed agent will combine a few functionalities

described above and work as an independent module for the client application. An

agent will accept job parameters from the client and accordingly provide them to grid

middleware for further measures and also keep the track of the job.

9.2 Agent Based Job Management

Job management is again an indispensable task for the grid computing environment.

Execution of job requires the resources but before that it is necessary to identify the

requirement of the resources by a particular job. Then after availability and allocation

of the resources is next step. Monitoring the execution is also an important task and

finally resources have to be made free for supplementary jobs. All these tasks have to

be taken care by the job management system or JMS. Few existing tools functioning

JMS are Condor, Torque and SGE.JMS usually consists of three components:

a. Queue Manager

b. Scheduler

c. Resource Manager

The term interactive job management refers to availability and accessibility of

various tasks of job while it is executing. We have identified following.

CHAPTER 9. AGENT IMPLEMENTATION 46

a. Job Submission

b. Job Status

c. Job Suspending

d. Job Resuming

e. Job Destroy

Figure 9.1: Job Management System Architecture

9.3 Agent Program Flow

The flow of the work would be as described in the figure 9.2 An initiating action

would be triggered by the client. The client will submit the job through an interactive

console to the system. After that an agent, which would be invoked by submitting a

job to the grid environment, will take care of rest of the events. The agent will accept

the job from client and will identify required parameters from the job.

CHAPTER 9. AGENT IMPLEMENTATION 47

Figure 9.2: Representation of Agent Based System

Agent will then submit those to the grid middleware for identifying required re-

sources and allocating them. Meanwhile for the executing job the agent will reside

there in the environment as an active object until job is finished (or cancelled or

destroyed).

9.4 MultiAgent Programming

In computational grids, performance based application applications need to simul-

taneously tap the computational power of multiple, dynamically.grid programming

environments (a) need to be portable to run on as many sites as possible, (b) they

need to be flexible to cope with different network protocols and dynamically changing

groups of compute nodes.

Many researchers believe that Java will be a useful technology to reduce the com-

plexity of grid application programming.Hence in this system java has been used to

provide both the functionalities and platform independency [10].

CHAPTER 9. AGENT IMPLEMENTATION 48

9.4.1 Working of an MultiAgent System

Various java classes has been implemented to perform operations like login, file brows-

ing , choosing job option, showing the status, terminating etc. This classes are as

follows:

I Login authentication is performed in this class. Login operation is defined and

user interaction to input username and password is described shown in 9.3and

welcomes user.

Figure 9.3: UserLogin

II CreateProxy class Creates a proxy before submitting any job using grid-proxy-init

shown in 9.6.

III In JobSubmit class Job Submission is done according to user’s need using this

class.When a job is submitted it will give a message to user that job has been

submitted successfully shown in 9.7.

IV Class Checkpoint suspends and resumes a job modifying a cluster queue.In this

system cluster of PBS and SGE has been used.Using the queue of a particular

cluster user can change the the state of the job and restart later at the point

from where it was suspended.

- First compile a job want to submit

CHAPTER 9. AGENT IMPLEMENTATION 49

Figure 9.4: welcome

- Run and submit a job.

- Suspend job which will modify a cluster queue.

- This will create a checkpointing file which will save the state of a particular.

- Status will show one job is pending shown in 9.8.

V CancelJob class Terminates a particular job with the help of Job ID and name of

the job shown in figure 9.9.

CHAPTER 9. AGENT IMPLEMENTATION 50

9.5 Performance Measurement

Time without Agents Time with Agents

0.0616 0.0475
3.397 3.20
0.0458 0.0408
0.383 0.375
2.856 2.756

Table I: Performance Comparison of System having Agents and without Agents

Figure 9.5: Performance Comparison of System having Agents and without Agents

Graph shows the comparison between job completion deployed in the grid envi-

ronment with and without agents. It shows that the use of agents does not delay

interactive job submission.

CHAPTER 9. AGENT IMPLEMENTATION 51

Figure 9.6: Create proxy

CHAPTER 9. AGENT IMPLEMENTATION 52

Figure 9.7: Job Submission

CHAPTER 9. AGENT IMPLEMENTATION 53

Figure 9.8: Job Checkpointing

Figure 9.9: Job Termination

Chapter 10

Conclusion and Future Scope

10.1 Conclusion

It is envisaged that the grid infrastructure will be a large-scale distributed system

that will provide high-end computational and storage capabilities to differentiated

users. In this project Globus Toolkit is used to establish the grid platform using

desktop machines. Further more an agent based interactive job management system

is developed to incorporate the concept of agent in the grid.

Developed system provides an interactive job management in grid environment.

It works on the concept of the agent. A new job is assigned to an entity called

Initiator agent. All the work carried out by that job is monitored by the Master agent

through its various sub agents. This system provides the graphical user interface for

submitting, monitoring, Suspending, Resuming and destroying various grid jobs. It

also shows the current status of submitted and executing jobs.

Complete working is carried out by multiple agents. The object oriented method-

ology adopted provides platform independency for the jobs. It also increases the

performance as compared to normal execution of the job as jobs are already assigned

their respective agents and they will be taking care of their assigned jobs.

54

CHAPTER 10. CONCLUSION AND FUTURE SCOPE 55

10.2 Future Scope

As far as this project is concerned, it can have many enhancements.

Globus Toolkit has itself got a set of services, which help us in doing several

things like submission of jobs, getting resource attributes etc. We can ourselves

design, implement and deploy a service which will do some particular work. We can

have our own application as a service, and this service can be accessed by any node

present within the grid.

Though it provides very good results while running large or big jobs which require

very large computation resources, it is not advised to use the smaller jobs for execution

as there will be a communication overhead if jobs are smaller. Thus high speed

network or communication optimization can be considered as future work for this

project.

Appendix A

GRID Environment Setup

A.1 Server Node

• To start PBS MOM /opt/pbs/sbin/pbs mom

• PBS Server /opt/pbs/sbin/pbs server

• PBS Schedular /opt/pbs/sbin/pbs sched

• export GLOBUS LOCATION=/opt/globus−4.0.1

• source $GLOBUS LOCATION/etc/globus−user−env.sh

• export JAVA HOME=/opt/jdk1.5.0 12

• export PATH=$JAVA HOME/bin:$PATH

• export X509 USER CERT=/opt/globus−4.0.1/etc/containercert.pem

• export X509 USER KEY=/opt/globus−4.0.1/etc/containerkey.pem

A.1.1 While Starting Container at server

Before Starting the container check if postgresql service is running properly or not.

Follow the given steps

56

APPENDIX A. GRID ENVIRONMENT SETUP 57

• check if any other instance of postgres is running using ps aux | grep postgres.

If any other instance is running, change user to postgres with su postgres.

• kill -SIGTERM ”process id”

• /usr/bin/postmaster -i -D /opt/pgsql/data ¿ /opt/pgsql/logfile 2¿&1

&

• Change user to globus su globus

• Now set Globus location environment variables and java in PATH.

• export GLOBUS OPTIONS=-Xmx512M

• $GLOBUS LOCATION/bin/globus-start-container

Now that we are sure the container is running correctly, use Ctrl+c to stop it.

After a few seconds the container will stop.Start the container again but this time

run it in the background.

opt/globus-4.0.1/bin/globus-start-container ¿ $HOME/container.out 2¿&1 &

A.1.2 Starting globus-gridftp-server

• export GRIDMAP=/opt/globus-4.0.1/etc/grid-mapfile

• Start the server using using the -p flag to run it on the default port of 2811 -

/opt/globus-4.0.1/sbin/globus-gridftp-server -p 2811 -S

A.1.3 Working with MDS

GT4 contains WebMDS, it doesn’t have simple MDS. To work with MDS and get

resource information TOMCAT must be installed on machine.To start TOMCAT

SERVER:

APPENDIX A. GRID ENVIRONMENT SETUP 58

• Change Directory to installed one.

• sudo ./startup.sh

• Same way to stop tomcat service type command ”./shutdown.sh”

A.2 SGE Container node

• Set Globus location environment variables and java in PATH.

• export SGE ROOT=/opt/sge-root

• start ./sgemaster as root

A.2.1 Starting CONDOR

• export CONDOR CONFIG=(Condor installation dir)/etc/condor config

• export PATH=$PATH:(Condor installation dir)/bin

• export PATH=$PATH:(Condor installation dir)/sbin

To start CONDOR start condor master on central manager nodeC by running

”condor master” command as globus user.Then do ”condor on” which will spawns

all condor daemons.

Check to see if all the central manager daemons are running correctly with

ps aux | grep condor

A.3 Client node

As this is a client node no other environment variables are necessary. Make sure that

GLOBUS LOCATION and JAVA is in PATH.

Appendix B

TroubleShooting

Error: while GT4 make - UNTAR FAILED

Sol: It can be done by editing the file in $GLOBUS LOCATION/var/lib/perl/Grid/GPT/

where $gunzip is being set,it’s called LocalEnv.pm.The root cause of the error

is that gunzip –version was returning “gzip” in the version string instead of

“gunzip”.

Error: Starting Container gives error Check if port number and host are cor-

rect and postmaster is accepting tcp/ip connections.

Sol: Check if another instance of postgresql is not running.Check the log file for

hint.if this is so change user to postgres use kill -SIGTERM ”process id”

and start postmaster again.

Error: cannot create regular file “/opt/globus-4.0.1/etc/hostcert.pem”: Permission

denied (while sigining certificate)

Sol: when grid-cert-request is run it creates three files hostcert request.pem, hostkey.pem,

hostcert.pem. Here hostcert.pem file is empty remove that file.

Error: while running command globus-url-copy -vb gsiftp gives globus xio:Unable

to connect to nodeb.grid:2811

59

APPENDIX B. TROUBLESHOOTING 60

Sol: start gridftp server using command “globus-gridftp-server -S -p 2811”

Error: “globusrun-ws -submit -streaming -F https://hostname:8443/wsrf/services/

ManagedJobFactoryService -c /usr/bin/whoami” ERROR:Delegating user cre-

dentials...Failed. globusrun-ws: Error trying to delegate globus xio: Unable

to connect to hostname:8443 globus xio: System error in connect: Connection

refused globus xio: A system call failed: Connection refused

Sol: copy globus-host-ssl.conf , globus-user-ssl.conf , grid-security.conf to /etc/grid-

security/certificates and globus-user-ssl.conf.¡hashno¿ and globus-host-ssl.conf.¡hashno¿

to /etc/grid-security/.

Error: GRAM Job Submission failed because the connection to the server failed

(check host and port) (error code 12)

Sol: Your client is unable to contact the gatekeeper specified. Possible causes include:

* The gatekeeper is not running * The host is not reachable. * The gatekeeper

is on a non-standard port.

Error: globus-mds-start is not found in $GLOBUS LOCATION/sbin

Sol: GT4 uses web-mds other than MDS follow “webmdsAdminGuide” to start MDS

service.

Error: Starting Condor daemons Error in MasterLog “can’t obtain lock on Instance-

Lock”

Sol: The condor master process tries to lock a file when it starts up to prevent you

from starting multiple instances of the condor daemons.There are two instances

of condor master running so first stop condor master and then it start again..

Error: Running condor submit gives ERROR: submitting jobs as user/group 0 (root)

is not allowed for security reasons.

APPENDIX B. TROUBLESHOOTING 61

Sol: When we say to run the daemons as root, that means you *start* them as root.

They then switch to a non-root user whenever they don’t need root power. This

is to reduce the risk of screwing up the system if there’s a bug or other problem.

When the daemons need to the something that requires root power (like starting

a job as the user), the daemons switch to root, do the deed, then return to non-

root. When we say to run the daemons as root, that means you *start* them

as root. They then switch to a non-root user whenever they don’t need root

power. This is to reduce the risk of screwing up the system if there’s a bug or

other problem. When the daemons need to the something that requires root

power (like starting a job as the user), the daemons switch to root, do the deed,

then return to non-root.Also during configuration u have to give ownership to

globus user using command:

Condor configure -owner=globus -type=submit,manager

This will allow globus user to submit job.

Appendix C

List of Websites

1 Globus Toolkit

https://www.globus.org

2 Globus toolkit installation guide

https://www.globusconsortium.org/tutorial

3 Globus Research Papers

http://www.globus.org/alliance/publications/papers.php

4 Globus Toolkit 4.0.1 Manual

http://www.globus.org/toolkit/docs/development/4.0.1/

5 Condor website

http://www.cs.wisc.edu/condor

6 Condor Manual

http://www.cs.wisc.edu/condor/manual/v7.0/condor-V7.0.5-Manual.pdf

7 PBS website

http://www.openpbs.org

62

References

[1] D. Minoli, “A networking approach to grid computing,” Wiley Publications,
2006.

[2] I. Foster, N. Jennings, and Kesselman, “Brain meets brawn: why grid and agents
need each other,” 2004.

[3] J. Cao, D. P, Spooner, J. D, Turner, S. A, and Jarvis, “Agent-based resource
management for grid computing,” IEEE/ACM International Symposium, 2002.

[4] H. XIAO, H. WU, X. CHI, S. DENG, and H. ZHANG, “An implementation of
interactive jobs submission for grid computing portals,” Supercomputing Center,
Computer Network Information Center.

[5] K. Jurasovic, G. Jezic, and M. Kusek, “A performance analysis of multi-agent
systems,” 2006.

[6] I. Foster and C. Kesselman in The GRID 2: Blueprint for a New Computing
Infrastructure, November 2003.

[7] L. Ferreira, V. Berstis, J. Armstrong, M. Kendzierski, and A. Neukoetter in
Introduction to Grid with Globus, IBM redbooks.

[8] R. Kumar, V. Talwar, and S. Basu, “A resource management framework for
interactive grids,” Accepted in HPDC.

[9] J. Chen, Y. Wu, M. Li, and B. Hui, “Multi-agent system-based hierarchy grid
middleware,” University of California.

[10] R. V, van Nieuwpoort, J. Maassen, R. Hofman, T. Kielmann, and H. E. Bal,
“An efficient java-based grid programming environment,” November2002.

63

	Certificate
	Abstract
	Acknowledgements
	List of Figures
	Introduction
	Orientation of Project
	Objective
	Who can benefit from the Grid
	Scope
	Thesis Organization

	Literature Survey
	Methodology
	Batch and Interactive Jobs
	Performance Analysis
	Section Summary

	Introduction to Grid
	What is Grid
	Types of GRID
	GRID Architecture and Core Services
	GSI
	GRAM
	MDS
	Data Management

	GLOBUS: Grid Preamble
	Configuration Details
	Configuration Steps
	Installing and Configuring Linux
	Deploying Torque (OpenPBS)
	Deploying Sun Grid Engine (SGE)
	Deploying The PostgreSQL Relational Database
	Fixing Java And ANT
	Deploying Globus
	Connecting Globus GRAM WS and Torque (OpenPBS)
	Connecting Globus Gram WS and SUN Grid Engine

	Necessities for Interactivity
	Introduction
	Requirements
	Proposed Architecture

	MultiAgent Framework for Job Management
	Agent
	Working of An Agent

	Agent Based Grid Design
	MultiAgent Framework Design

	Job processing Methodology
	Job definition
	Job Execution and States
	Job Management
	Resources
	Performance parameters

	Eneration of Supercomputing Power
	Installation and Configuration
	Installation

	Adding Execution Hosts
	Installation of Condor client on Windows machine

	Connecting Globus GRAM-WS And Condor
	Setup Globus job manager for Condor

	Job manager for Condor
	Configuring Globus to submit to a homogenous Condor pool
	Configuring Globus to submit to a heterogeneous Condor pool
	Testing Setup
	Generating SuperComputing Power

	Agent Implementation
	Implementation Details
	Agent Based Job Management
	Agent Program Flow
	MultiAgent Programming
	Working of an MultiAgent System

	Performance Measurement

	Conclusion and Future Scope
	Conclusion
	Future Scope

	GRID Environment Setup
	Server Node
	While Starting Container at server
	Starting globus-gridftp-server
	Working with MDS

	SGE Container node
	Starting CONDOR

	Client node

	TroubleShooting
	List of Websites
	References

