
Application development to automate
platform code download to Set top box

Submitted By

EKTA S. JAYSWAL

16MCEC06

DEPARTMENT OF COMPUTER ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2018

Application development to automate
platform code download to Set top box

Major Project

Submitted in fulfillment of the requirements

for the degree of

Master of Technology in Computer Science and Engineering

Submitted By

EKTA S. JAYSWAL

(16MCEC06.)

Guided By

Prof. Vishal Parikh

DEPARTMENT OF COMPUTER ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

Dec 2017

Certificate

This is to certify that the major project entitled ”Application development to auto-

mate platform code download to Set top box” submitted by EKTA S. JAYSWAL

(16MCEC06), towards the fulfillment of the requirements for the award of degree of

Master of Technology in Computer Science and Engineering of Nirma University, Ahmed-

abad, is the record of work carried out by him under my supervision and guidance. In my

opinion, the submitted work has reached a level required for being accepted for exami-

nation. The results embodied in this major project part-II, to the best of my knowledge,

haven’t been submitted to any other university or institution for award of any degree or

diploma.

Prof. Vishal Parikh Dr. Priyanka Sharma

Guide & Assistant Professor, Associate Professor,

CE / IT Department, Coordinator M.Tech - CSE

Institute of Technology, Institute of Technology,

Nirma University, Ahmedabad. Nirma University, Ahmedabad

Dr. Sanjay Garg Dr Alka Mahajan

Professor and Head, Director,

CE Department, Institute of Technology,

Institute of Technology, Nirma University, Ahmedabad

Nirma University, Ahmedabad.

iii

Statement of Originality
———————————————————————————————————————

I, EKTA S. JAYSWAL, 16MCEC06, give undertaking that the Major Project enti-

tled ”Application development to automate platform code download to Set top

box” submitted by me, towards the partial fulfillment of the requirements for the degree

of Master of Technology in Computer Science & Engineering of Institute of Technol-

ogy, Nirma University, Ahmedabad, contains no material that has been awarded for any

degree or diploma in any university or school in any territory to the best of my knowl-

edge. It is the original work carried out by me and I give assurance that no attempt of

plagiarism has been made.It contains no material that is previously published or written,

except where reference has been made. I understand that in the event of any similarity

found subsequently with any published work or any dissertation work elsewhere; it will

result in severe disciplinary action.

———————–

Signature of Student

Date:

Place:

Endorsed by

Prof. Vishal Parikh

(Signature of Guide)

iv

Acknowledgements

It gives me immense pleasure in expressing thanks and profound gratitude to Prof.

Vishal Parikh, Assistant Professor, Computer Engineering Department, Institute of

Technology, Nirma University, Ahmedabad for his valuable guidance and continual en-

couragement throughout this work. The appreciation and continual support he has im-

parted has been a great motivation to me in reaching a higher goal. His guidance has

triggered and nourished my intellectual maturity that I will benefit from, for a long time

to come.

It gives me an immense pleasure to thank Dr. Sanjay Garg, Hon’ble Head of Com-

puter Engineering Department, Institute of Technology, Nirma University, Ahmedabad

for his kind support and providing basic infrastructure and healthy research environment.

A special thank you is expressed wholeheartedly to Dr. Alka Mahajan, Hon’ble

Director, Institute of Technology, Nirma University, Ahmedabad for the unmentionable

motivation he has extended throughout course of this work.

I would also thank the Institution, all faculty members of Computer Engineering

Department, Nirma University, Ahmedabad for their special attention and suggestions

towards the project work.

- EKTA S. JAYSWAL

16MCEC06

v

Abstract

Intelligent Automation of manual process has become current trend of modern era.

Automation can reduce man effort and time effort drastically. Automation is the process

of connecting different or dissimilar systems or software in a manner that they behave

as self-regulating entities. Usually this is done so that mundane tasks can be done more

efficiently and effectively, thus cutting about time. This application is basically developed

for ARRIS internal use only with the agenda of upgrading/downgrading multiple Set-top

boxes(STB) automatically through a common procedure. The way we get updates for

our devices operating systems, STB would also have up-gradation and down-gradation of

platform version and other applications on top of it. Up to now it was a typical manual

process consuming so much of human efforts for the simple repetitive tasks. Here my

project is to develop a third party plugin which is also a standalone executable which can

be imported in AutoMOTO (ARRIS internal tool) to automate the whole code download

and version verification process. I have targeted STB’s of different category based on the

supported protocols for the Code Download process. There are two modules which sup-

ports DAC based CDL and TFTP based CDL and automated the whole process. Return

On Investment(ROI) report indicates the clear achievement of eliminating hundreds of

staff days efforts.

vi

Abbreviations

ASTB Advanced Set-top Box

CSD Code Suite download

D5K DCT5100 and going forward platforms

DAC Digital Addressable Controller

DCT Digital Consumer Terminal

DLS Download Server

DSG DOCSIS Set-top Gateway

ECDS Entitlement Control Data Structure

EMM Entitlement Management Message

F/W Firmware

LOD Loader Object Directory

MSO Multiple System Operator

OOB Out-of-band

PROS Permissions Resource Object Signatory

RADD Remote Addressable DANIS/DLS 6000

RAM Random Access Memory

SDG Software Download Generator

CDL Code Download

STB Set-top Box

TC ThinClient Object
——————————————————————————————————————

–

vii

Contents

Certificate iii

Statement of Originality iv

Acknowledgements v

Abstract vi

Abbreviations vii

List of Figures xi

1 Introduction 1
1.1 Code Download a Manual Process . 1
1.2 Project objective and benefits . 1
1.3 Block Diagram for adding extra functionality by 3rd party Plugins(medium) 2

2 Tools and Technologies used 3
2.0.1 Visual Studio 2015 (C#.net) . 3
2.0.2 AutoMOTO (ARRIS Testing Tool) 3
2.0.3 WINSCP . 3
2.0.4 Tera Term . 4
2.0.5 Selenium (Webdriver, configuration, version, script) 4
2.0.6 Mozilla Firefox Browser . 4
2.0.7 Virtual Serial Port Emulator . 4
2.0.8 Set Top Box . 4

3 System Analysis 6
3.1 System scope . 6
3.2 Sytem Features . 6
3.3 User Characteristics . 7
3.4 Operating environment . 7

4 DAC Based Code Download 8
4.1 ThinClient Code Download Introduction 8
4.2 Flow Diagram : . 9
4.3 Code Download Process . 10

4.3.1 Downloading . 10
4.3.2 Components of a Download Data Stream 10
4.3.3 Methods of Targeting multiple STBs for Downloads 10

viii

4.3.4 Method of Targeting Terminals for Downloads 10
4.3.5 Object Module - Types . 10
4.3.6 Object Assignment Options . 11
4.3.7 Object Assignment Options . 11

4.4 Hardware used and their funtions . 11
4.4.1 DAC6000/RADD6000 Functions 11
4.4.2 OM 1000 Functions . 12

4.5 Setup and run . 12
4.5.1 Add medium in Automoto . 12
4.5.2 Configure device with Code Loader interface 12
4.5.3 Create test case for DAC based CDL 14
4.5.4 FTP build file upload and run test case 14
4.5.5 Troubleshooting Tips . 14
4.5.6 Version Verification . 14

5 TFTP based Code Download for Set-top boxes 18
5.1 Flow Diagram . 18
5.2 Setup and Run Test Case . 19

5.2.1 Steps . 19
5.2.2 Add medium in Automoto . 20
5.2.3 Configure device with Code Loader interface 20
5.2.4 Create test case for TFTP based CDL 21
5.2.5 FTP build file upload and run test case 21
5.2.6 Run-time Variable Support . 21

6 Implementation 22
6.1 DAC Based Code Download Process . 22
6.2 DAC User Interface . 23
6.3 Earlier server uploading was done Using WinSCP 24
6.4 DAC Code Structure . 24
6.5 Serial Communication code structure . 25
6.6 Selenium Code Structure . 26
6.7 Creating Firefox Instance code snippet 27
6.8 TFTP based CDL: Support FTP and Run-time variable 28
6.9 TFTP UI: Runtime variable support . 29
6.10 TFTP Code Snippet . 30

7 Other Work 31
7.1 ACCEL (Automatically Controlled Collection Of Error Logs) functionality

enhancements. 31
7.1.1 Overview . 31
7.1.2 ACCEL Components . 31
7.1.3 Tools and Technologies used . 33
7.1.4 Tasks and Description . 33
7.1.5 Implementation and Screen-shots 34

7.2 APPIUM Mobile Automation . 36
7.2.1 Overview . 36
7.2.2 Tools and Technologies used . 37
7.2.3 Tasks and Description . 38

ix

8 Return On Investment (ROI) 39
8.1 ROI Table . 39

9 Conclusion 41

References 42

x

List of Figures

1.1 Block Diagram for adding extra functionality by 3rd party Plugins(medium) 2

4.1 DAC Flow diagram . 9
4.2 DAC based Architecture . 11
4.3 Current versions on STB v34.45-Platform and TvGuide-v79.85 15
4.4 Current Version is 34.45 and its being downgraded to 34.16: 15
4.5 34.16 is Loading . 16
4.6 New version : 34.16-Enabled . 16
4.7 The architecture of the ANN . 17

5.1 TFTP Based CDL: Block Diagram . 18

6.1 DAC UI With FTP and Multiple object support 23
6.2 FTP using WinSCP . 24
6.3 DAC Code Structure . 25
6.4 Serial Communication Code Structure 26
6.5 Selenium code structure . 27
6.6 Creating Firefox Instance code snippet 28
6.7 TFTP UI . 28
6.8 Run-time variable support in code downaload 29
6.9 TFTP Code structure . 30

7.1 ACCEL System Overview . 32
7.2 Find link to similar issues and JIRA link to known issues 34
7.3 Output after clicking on find link . 35
7.4 Known Issue’s JIRA link . 35
7.5 Code snippet to fetch data . 36

8.1 ROI representation . 39
8.2 Comparison of Manual Process and Automated Process 40

xi

Chapter 1

Introduction

Automation is the process of connecting different or dissimilar systems or software in a

manner that they behave as self-regulating entities. Usually this is done so that mundane

tasks can be done more efficiently and effectively, thus cutting about time. Development

and Test team would identify why the specific issue was introduced and identify the action

items to prevent it in future. Television Now-a-Days has become a necessity rather than

a source of joy, and Set top boxes are the heart of these television. STB would also have

F/W up-gradation and down-gradation, the manual process is automated in this project.

ELM STBs and ThinClient STBs are targeted for CDL automation.

1.1 Code Download a Manual Process

The way we get software updates in our mobile devices, Set-top boxes also would have

firmware version upgradation or down gradation as per requirement. A manual process

includes: Either using USB flash method or manual TFTP based process, which consumes

so much of time if need to handled for many boxes at the same time. Also some error

and failing scenarios need to be handled, debuggable and report the possible reasons. So

there is a need to Automate Code download procedure.

1.2 Project objective and benefits

Develop a plugin which can work with an internal framework called AutoMoto(ARRIS In-

ternal Tool) to automate code download procedure for set top boxes. Different categories

of STBs need to be targeted based on the supported protocols for Code Download pro-

cess such as DAC, TFTP etc and automated the whole process of firmware/application

1

up-gradation and down-gradation.

Benefits: Suppose a RAC is having 100 STBs connected and all boxes need to be up-

graded then earlier it used to take 1 Day Man efforts. But after this plugin in use, it can

reduce it to some minutes procedure only. In manual process if something goes wrong

its difficult to debug and report. But this plugin will handle all possible error cases and

will take actions accordingly and can report all the execution details along with possible

problems.

1.3 Block Diagram for adding extra functionality by

3rd party Plugins(medium)

This block diagram indicates that to add any new additional functionality you can create

a plugin in .net and generate a class library file ”.dll” file. Then by adding the plugin

into AutoMoto medium manager it can be used according to requirement.

Figure 1.1: Block Diagram for adding extra functionality by 3rd party Plugins(medium)

2

Chapter 2

Tools and Technologies used

2.0.1 Visual Studio 2015 (C#.net)

Microsoft Visual Studio is used as development environment of our plugin. C#.net

pogramming language is used for the development.

2.0.2 AutoMOTO (ARRIS Testing Tool)

Version: 20.19 AutoMOTO is a framework, developed by ARRIS developers for their

devices only.

It can be used by developers as well as testers to automate test procedures, that otherwise

would have consumed a lot of time.

Using AutoMOTO, a tester can create, manage,schedule, and review the results of auto-

mated tests.

The medium used is a .Net DLL program object which helps in communication between

AutoMOTO software and various testable devices via a software or hardware interface

(such as COM port, USB devices, TCP/IP and SNMP protocols etc.).[1]

2.0.3 WINSCP

Win SCP(Windows Secure Copy) is a free and open source SFTP, FTP, WebDAV and

SCP client for Microsoft Windows. Its main function is secure file transfer between a

local and a remote computer.[2]

3

2.0.4 Tera Term

Tera Term is an open-source, free, software implemented, terminal (communications)

program. Which is used to interact with the serially connected device with computer.

This tool allows to configure each port with typical custom configurations.[3]

2.0.5 Selenium (Webdriver, configuration, version, script)

Version: 3.5 latest Selenium web driver Selenium is a suite of testing automation tools

used for Web-Base applications: Selenium IDE, Selenium RC, Selenium WebDriver and

Selenium Grid. These tools provide a rich set of testing functions specifically geared to

varied testing scenarios of all types of Web applications. The operations provided by these

tools are highly flexible and afford many options for comparing UI elements to expected

application behavior. Selenium tests can be executed on multiple browser platforms.[4]

2.0.6 Mozilla Firefox Browser

Version : v56 (Any version ¿55 will be compatible) Mozilla firefox is used along with

Selenium automation tool to execute the script for DAC CDL. Headless browser is used

so that whole process can be executed in background. Make sure, no firefox instance is

opened before starting the execution.[5]

2.0.7 Virtual Serial Port Emulator

VSPE is used to monitor the on going process on port concurrently along with Auto-

MOTO script. Its splitter functionality creates a virtual port and maps it to actual

physical port with appropriate compatible configurations. This tool enables accessing

the same port concurrently, it allows to interact and view the received and sent data on

port from our machine.

2.0.8 Set Top Box

A STB is a device that converts a digital television signal to analogue for viewing on

a conventional set, or that enables cable or satellite television to be viewed.The signal

sources for the set top box might be an Ethernet cable, a satellite dish, a coaxial cable,

a telephone line , broadband over power lines,or even an ordinary VHF or UHF antenna.

Content, in this context, could mean any or all of video, audio, Internet web pages, in-

teractive video games, or other possibilities. Set top boxes are devices which helps in

4

displaying the transmitted content onto the TV. [6] Set top box needs 2 basic software

elements to work: Firmware and Tv guide.

STB are of different categories in ARRIS:

ELM,ThinClient, RDK, VTR, IRVINE, DELMUR Different categories boxes support dif-

ferent type of protocols for Code Download Procedure.

For DAC based CDL ThinClient STBs and TFTP based CDL ELM based STBs are

used.[6]

5

Chapter 3

System Analysis

3.1 System scope

Test Script developer can use this plugin to develop the test script when code download

process initiation and verification is required.

Tester can use it for testing the stability of STB

Tester and test script developer can provide custom runtime parameter as well during

runtime.

On site this can be used to upgrade or downgrade STB platform version as well as

application objects versions.

3.2 Sytem Features

1. Code download process is supported for Thinclient loader which uses DAC method

and KACodeLoader which uses TFTP method.

2. User interface is provided for configuring multiple set top boxes with code loader

interfaces, which allows DAC, FTP and serial port (COM Port) configurations.

3. DAC base CDL: Dac Configurations customization for each interfaces is supported.

4. FTP support is provided for automatic upload of build files on server. FTP Con-

figurations customization for each interface.

5. Supports for Platform Object creation, usage as well as uploading using FTP pro-

tocol.

6

6. Supports for multiple Application Object creation, usage as well as uploading using

FTP protocol.

7. FTP functionality which can eliminate use of any tool to upload build files on server

in TFTP and DAC based CDL both.

8. Automatic deletion of all created objects by script from DAC once CDL process is

completed.

9. Supports separate insertion rate for Platform object build as well as Application

Object build.

10. Uni-cast, multi-cast and broadcast is supported. In user interface Terminal index

and Broad cast both addressing types are supported to accept user inputs.

11. Run time variable support is provided partially.

12. TFTP based CDL: User interface takes input from source, destination, other FTP

configurations, platform type and reload checkbox.

13. FTP file upload on runtime as well as Runtime variable support is provided fully

for it.

3.3 User Characteristics

User must be familiar with AutoMoto, and should be aware of working of Automoto,

creating test steps, configuration, execution, scripting, runtime variable usage etc.

User with less programming skills will be fine.

User should be familier with the set-top boxes.

3.4 Operating environment

This plugin will be used with AUTOMoto, and hence operating environment will be

machine having Windows 7 and above operating systems only.

7

Chapter 4

DAC Based Code Download

4.1 ThinClient Code Download Introduction

The Code Suite Downloader is a normal task like most others in the Thin Client platform.

Its initialization performs normal startup functions such as allocating resources needed

for continuous processing of download commands from the head-end and API requests

from the application and from other parts of the system. There is no destructor since

the system is not designed to run without or to replace the Code Suite Downloader.

Part of initialization is to identify and check the integrity of important permanent struc-

tures (those maintained across resets), notably the Loader Object Directory. If invalid,

it must be recreated. If valid, then all objects in the table are also checked for validity.

Objects in transient states (such as to-be-deleted, loading) are deleted. Objects that ap-

pear to be using resources that do not exist are marked so that they cannot be enabled.

Once initialized, the Code Suite Downloader waits for messages and API requests. The

processing of head-end messages may initiate a long series of operations. API requests

may be simple (executed in the context of the caller and completed immediately; e.g.

function call), synchronous (queued for execution with response delivered later, and the

calling thread is blocked) or asynchronous (queued for execution with response delivered

later, calling thread is not blocked). At present, only simple API functions are defined.

When a download is initiated by a head-end ASTB tune download command, the Code

Suite Downloader checks the availability of the authentication structure (ECDS) for all

signed objects in the list, checks for sufficient resources to store all objects, makes the

necessary reservations, and downloads the objects as directed. Since the auto-enable flag

8

is set as default, all objects in the list are automatically enabled after they are successfully

downloaded.

In Code Suite mode, after application objects are loaded, Code Suite relocatable module

will handle loading objects relocatably and readers should read reference 12 for details.

If there is support for download path (DSG tunnel or QPSK) determination by the DSG

module, then the downloader will wait for a download path to be set by the DSG module

before downloading any objects.[6]

Notes: ECDS in this document applies to Non-DCH platforms only. For DCH plat-

forms, PKCS authentication replaces ECDS and PKCS signatures are required for Plat-

form Object and Application Object. For PKCS signature and authentication, the reader

should refer to reference 13 for details.[6]

4.2 Flow Diagram :

Figure 4.1: DAC Flow diagram

Description:

1 Code Download Process : using Selenium Web Automation tool, create and down-

load the code suit to appropriate STB or STBs.

2 Establish Serial communication and capture the logs from STBs.

3 Analyze logs and Track Code Download Process.

4 Version Verification: Once Download is completed Validate the Platform build

version and application object build versions

9

4.3 Code Download Process

Build a service to support a download

Load objects onto the DAC and then download them to the RADD

Define code suites

Build software object assignments

Monitor the download process

4.3.1 Downloading

The downloading function allows an MSO to deliver, upgrade/update firmware and ap-

plications to set-tops remotely or locally

4.3.2 Components of a Download Data Stream

Download Control Messages

Object Modules

4.3.3 Methods of Targeting multiple STBs for Downloads

Decoder Conditional Specific sets of terminals may be addressed through the use of

an optional decoder conditional. It is a preamble that contains an expression consisting

of decoder conditional terms and logical operators. A decoder conditional may be used

in conjunction with any other addressing mode (i.e. broadcast, terminal ID)

When building a decoder conditional on the DAC 6000, two things are entered, they are:

Decoder Conditional Name and Expression

4.3.4 Method of Targeting Terminals for Downloads

OM 1000 Configure the Background Service for the OM 1000 that services the Down-

stream Plant that the set-tops are on

Virtual Channel Map Only add the Background Service to the VCM that is as-

signed to the set-tops to be downloaded

4.3.5 Object Module - Types

Base Platform/Firmware Applications Monolithic Code Suite

10

4.3.6 Object Assignment Options

The final steps when downloading are: Define the object assignment on the DAC Load

the object assignment to the RADD

4.3.7 Object Assignment Options

Which object assignment to use will depend upon: Set-top type Object type

4.4 Hardware used and their funtions

Figure 4.2: DAC based Architecture

4.4.1 DAC6000/RADD6000 Functions

Authorizes video and audio services and operating features for DCTs. Facilitates secure

delivery of services. Provides an interface to business systems for provisioning and inven-

tory management. Maintains a database of terminal and headend equipment operating

parameters. Manages service databases and automated scheduling of services, including

subscriptions, IPPV Collects impulse transactions from terminals and transmits them to

the business system. Monitors the terminal population. Supports virtual channels in the

digital multiplex.

11

4.4.2 OM 1000 Functions

Control link through which the digital headend transmits addressable commands and

authorization messages that control DCTs. Other types of information delivered OOB:

Interactive Program Guide (IPG) or Electronic Program Guide (EPG) data Application

code downloads Control messages for emergency situations Figure3.3.2 OM 1000 Ex-

ecutable code downloads to upgrade cable terminal operations Interactive downstream

control messages OOB (Out-of-Band) Traffic includes Address Control (Change Services)

& Background Services:

1 Download Firmware & Software

2 Send Guide Data (EPG/IPG)

3 Interactive Control (VOD)

4 Handle EAS (Emergency Alert System)

Input Multiple DAC/RADD EMM Digital Streams Output One RF and QPSK Stream

In-Band vs. Out-of-Band (OOB) EPG Electronic Program Guide IPG - Interactive Pro-

gram Guide

4.5 Setup and run

4.5.1 Add medium in Automoto

• In order to use the third party plugin in AUTOMoto CodeLoadMedium.dll file of

plugin need to be added in Medium Manager. Please follow below steps for doing

the same.

Click on → Tools → Medium Manager → Add new Medium → Open path of

CodeDownload.dll file and select it → Click on Ok

4.5.2 Configure device with Code Loader interface

• Code download plugin need to access set-top box via serial communication. So serial

connection need to be configured in order to bind the device with the interface of

the plugin. Please follow below steps for doing the same.

Click on → Edit → Edit Configuration Wizard → Configuration Wizard will be

opened.

12

• Now here we need to create a new device, which we will have to bind with the free

interface of Code loader, by dragging and dropping that device on any of available

interface of our plugin on right side panel. This will open a user interface of our

Code Loaders configuration user interface.

Select → ThinClient Loader → Select DAC method → This will set up a UI on

right side. Here we need to enter appropriate configuration details, which will be

used while running test case.

1 Serial Configuration: Here Serial Connection parameters need to be selected

appropriately such as, COM Port : COM Port with which the STB is connected

using serial cable.

• Baud Rate: Enter baud rate compatible with STB. In case of ThinClient box, 38400

should be selected.

• Parity: Odd should be selected for ThinClient box. Other parameters are fine as

default one.

2 DAC Configurations:

Here the configurations of the DAC server to be used need to be entered appropri-

ately.

Note: Default configurations are fetched from the config.xml file. The updated

values will be saved in secondary variables of AUTOMoto.

3 FTP Configurations:

Here the configurations of the FTP server to be used need to be entered appropri-

ately.

Note: Default configurations are fetched from the config.xml file. The updated

values will be saved in secondary variables of AUTOMoto.

• Verify all entered data and press ok button. If it was successful then a prompt

will be shown along with interface number saying that it got configured and saved

successfully.

13

4.5.3 Create test case for DAC based CDL

• In order to create a new test case for the Code downloader follow the process below.

Click on→ Create New Test Case→ select Utilities→ Select Code loader→ Drag

and drop Icon

4.5.4 FTP build file upload and run test case

• Verify/update FTP server configurations where you want to upload the build files.

Click on → Browse Button → Open Build File → Click on Ok

• This will show prompt saying FTP upload was successful or not.

Follow this process for Application Objects as well.

• Run the test case, make sure to select the device which you configured when asked.

4.5.5 Troubleshooting Tips

Error code and their description:

DL01 - Your object is incompatible with the settop your are targeting

DL02 - The download object can not be found

DL03 - The download object differs in name or size from the object name or size con-

tained in segment 1

DL04 - The download service you have selected is not in your map

DL05 - The object you are downloading is an older version than the Boot version con-

tained in your settop

DL06 - Checksum failure

DL07 - Insufficient storage space (most commonly seen when trying to download platform

code before an application has had time to disable and erase)

4.5.6 Version Verification

After certain interval of time send command 1016 this will fetch following logs. This

indicates current versions on STB are v34.45 Platform and TvGuide v79.85.

14

Figure 4.3: Current versions on STB v34.45-Platform and TvGuide-v79.85

Figure 4.4: Current Version is 34.45 and its being downgraded to 34.16:

15

Figure 4.5: 34.16 is Loading

Figure 4.6: New version : 34.16-Enabled

• For Version verification we need to analyze log file of size Kbs or Mbs for a single

STBs logs, when we are having hundreds of box it increases the time complexity

of the task. Here there are only 5 attributes affecting the final success or failure of

CDL process but when we are having thousands of attributes then rather than using

a conventional approach, we can apply some intelligence using Machine Learning

16

approach to analyze such huge logs. I implemented a prototype to demonstrate the

power of Machine Learning and how we can apply it in such huge log analysis.

• This process of identifying on whether an upgrade(or a process) has failed or it has

succeeded involves to many conditions and is cumbersome .

• Methods of these types on very large LOG data takes hours and sometimes days to

run.

• To make it more efficient I proposed an alternate interpretation of the problem ,

it could be seen as : Classifying Success or Failure of a process given its

other surrounding parameters.

• This now is a standard machine learning classification problem . And I was given

an opportunity to present a prototype of this machine learning approach .

• I accomplished the classification task using a artificial neural network and it was

received with great appreciation in the company.

• My approach: Artificial Neural Network

150 Neurons for each entry in file: 150 rows

2 Hidden layers: with 256 neurons

Output: SoftMax → Success/Failure

Figure 4.7: The architecture of the ANN

17

Chapter 5

TFTP based Code Download for

Set-top boxes

Category of set-top boxes which supports TFTP protocol, are targeted by this particular

code download method of our plugin. Code download initiation as well as verification is

will be performed automatically.

5.1 Flow Diagram

A computer, through its Ethernet TFTP port, is a fast and easily obtainable instrument

for loading platform code into a set-top box.

Figure 5.1: TFTP Based CDL: Block Diagram

• Description of the flow:

- Appropriate Code Suite build must already be kept in TFTP Server

- Establish Serial Communication from our computer to STB and via this connection

perform following tasks.

18

- Get Current Version on STB via Serial communication

- Reboot STB

- Enter in SSBL boot mode via serial port

- Enter into debug mode via Serial communication

- Run install command with along with TFTP servers Ip and file path

- Track the process by monitoring Serial port data

- After the download completes, the STB will reboot.

- Verify that the expected platform version is running in the serial port output.

5.2 Setup and Run Test Case

5.2.1 Steps

1. To Create Test Step of Code Downloader drag and drop Code Loader from Modules

under Utility Category.

2. Enter appropriate information in User Interface of Code Loader.

• Select KALoader as loader and TFTP method

• Enter values in all the fields as follows with $varName. These values can be set at

runtime.

• Select Platform Type as ELM.

• Check or uncheck the Reload box. In case if your boxs current version is similar

as new version then reload will again load the same build. While unchecked reload

will come out with success saying Already Same Build.

• Click on Save.

3. Run the test. Select the device which is configured with Code Loader interface from

Config Wizrd. Here make sure you have configured with compatible configurations

of the box (e.g baud rate: 115200, parity: none etc).

4. Set Runtime variable values appropriately as follows:

$host: 10.237.155.19

$port: 22

19

$source: (Add path of your local machine)

C:-bi-elmINTERNAL-USE-ONLYKA-trunk.613583bcm45dcx4220.bin

$destination: ”/extra/tftpboot/”

$user name: root

$password: root123

5.2.2 Add medium in Automoto

• In order to use the third party plugin in AUTOMoto CodeLoadMedium.dll file of

plugin need to be added in Medium Manager. Please follow below steps for doing

the same.

Click on → Tools → Medium Manager → Add new Medium → Open path of

CodeDownload.dll file and select it → Click on Ok

5.2.3 Configure device with Code Loader interface

• Code download plugin need to access set-top box via serial communication. So serial

connection need to be configured in order to bind the device with the interface of

the plugin. Please follow below steps for doing the same.

Click on → Edit → Edit Configuration Wizard → Configuration Wizard will be

opened.

• Now here we need to create a new device, which we will have to bind with the free

interface of Code loader, by dragging and dropping that device on any of available

interface of our plugin on right side panel. This will open a user interface of our

Code Loaders configuration user interface.

Select→ KAcode Loader→ Select TFTP method→ This will set up a UI on right

side. Here we need to enter appropriate configuration details, which will be used

while running test case.

• Serial Configuration: Here Serial Connection parameters need to be selected appro-

priately such as, COM Port : COM Port with which the STB is connected using

serial cable.

• Baud Rate: Enter baud rate compatible with STB. In case of ThinClient box, 38400

should be selected.

20

• Parity: Odd should be selected for ThinClient box. Other parameters are fine as

default one.

• Verify all entered data and press ok button. If it was successful then a prompt

will be shown along with interface number saying that it got configured and saved

successfully.

5.2.4 Create test case for TFTP based CDL

• In order to create a new test case for the Code downloader follow the process below.

Click on→ Create New Test Case→ select Utilities→ Select Code loader→ Drag

and drop Icon

5.2.5 FTP build file upload and run test case

• Verify/update FTP server configurations where you want to upload the build files.

Click on → Browse Button → Open Build File → Click on Ok

5.2.6 Run-time Variable Support

TFTP based CDL is having support for run-time variable support. You can provide

$VarName in all input fields

• This will show prompt saying FTP upload was successful or not. Follow this process

for Application Objects as well.

• Run the test case, make sure to select the device which you configured when asked.

21

Chapter 6

Implementation

6.1 DAC Based Code Download Process

Once you execute, Mozilla Firefox instance is created in background and following se-

quence of actions are performed:

• By pass security exception of SSL

• Open DAC URL

• Login to DAC

• Refresh box in case of Terminal Index addressing type

• Creating platform Code Object and Application Objects

• Adding all Objects to RADD

• Creating Decoder Conditional in case of Broadcast addressing type

• Creating Code Suit

• Creating Code Suit Components and select services for each component of code

suit.

• Adding Code Suit Object to RADD

• Creating Assignment

• Targeting Assignment according to selected Addressing Type.

• Verify Version by serial log analysis

22

6.2 DAC User Interface

• There are several sections for the user inputs. There are some default values al-

ready provided according to the usability of the team. And some inputs will be

automatically fetched from the build files to be uploaded on FTP server.

• FTP Config: User can override the FTP server configuration parameters here.

• DAC Object: User can upload platform object build files from here, by clicking

on browse button, same functionality is supported for Application Objects as well.

Dac object details will be fetched from ”.dat” file automatically.

• Unicast, multicast and broadcast addressing modes are supported.

• FTP functionality eliminates use of WinSCP tool, which earlier was being used to

upload all build files on server. Thus, it eliminated the manual effort.

Figure 6.1: DAC UI With FTP and Multiple object support

23

6.3 Earlier server uploading was done Using Win-

SCP

Figure 6.2: FTP using WinSCP

6.4 DAC Code Structure

Here is the Code structure which contains 3 basic classes being used for the core func-

tionalities.

1. DACLoader: Responsible for using and the functionalities exposed by other two

classes.

2. SerialCommunication: Responsible for establishing serial connection, fetching and

processing serial logs from STB’s.

3. SeleniumHandling: Responsible for creating firefox instance in back-end and au-

tomating whole web process part using selenium web driver.

24

Figure 6.3: DAC Code Structure

6.5 Serial Communication code structure

This class contains methods and threads for establishing serial connection, fetching and

processing serial logs from STB’s.

25

Figure 6.4: Serial Communication Code Structure

6.6 Selenium Code Structure

This class contains methods for creating Firefox instance in back-end and automating

whole web process part using selenium web driver.

It also have mechanism for version verification process by analyzing the serial logs fetched

from the STB.

26

Figure 6.5: Selenium code structure

6.7 Creating Firefox Instance code snippet

Firefox instance need to be created which provide Security Certificate by pass, should be

running in background etc. Here is the code snippet.

27

Figure 6.6: Creating Firefox Instance code snippet

6.8 TFTP based CDL: Support FTP and Run-time

variable

Figure 6.7: TFTP UI

28

6.9 TFTP UI: Runtime variable support

Runtime variable is the way to change values on run time without interacting eith the

User Interface of plugin. Tester can even save the values of all run time variables in

”.van” file and can retrieve back again too.

Figure 6.8: Run-time variable support in code downaload

29

6.10 TFTP Code Snippet

Figure 6.9: TFTP Code structure

30

Chapter 7

Other Work

7.1 ACCEL (Automatically Controlled Collection Of

Error Logs) functionality enhancements.

7.1.1 Overview

• ACCEL 2.0 System Overview

– Automatically Controlled Collection of Error Logs

– ACCEL[7] is an Automated Solution that helps in the gathering of event re-

lated data from Settops or any device under test

– The benefit of ACCEL lies in the fact that it helps automate the reporting of

thousands of tests that would otherwise have to be reported manually

∗ Cost savings by eliminating the manual reporting

∗ Extreme time savings

∗ Reporting error reduction

∗ Standardized report format

7.1.2 ACCEL Components

• The following 5 subsystems make up ACCEL 2.0:

1. AutoMOTO Medium

– This is the event data collection tool

31

Figure 7.1: ACCEL System Overview

– Works with the device IDs under test that are contained in the Stability Man-

ager

2. Stability Manager

– A front-end GUI for the database

– Information related to the devices under test need to be entered into the Sta-

bility Manager so automated reports can be generated

3. Database

– Central Repository for all ACCEL 2.0 data

4. Report Email

– Color coded for quick review

– Sent out daily to a subscribed list by test group

– Provides high level report statistics with links to drill-down to greater level of

detail on the companion report website

5. Companion Report Website

– Provides detailed information for the high level report communicated in the

email

32

7.1.3 Tools and Technologies used

• Microsoft Visual Studio(Asp.net):

Microsoft Visual Studio is used as development environment of our plugin. Asp.net

programming language is used for the development.[8]

• ACCEL Website of ACCEL tool

It’s a tool for automatically Controlled Collection Of Error Logs. It fetches serial

logs form all the set-top boxes connected, does some analysis, generates report and

sends it to the uses.[7]

• AutoMoto

Version: 20.19. AutoMOTO is a framework, developed by ARRIS developers for

their devices only. It can be used by developers as well as testers to automate test

procedures, that otherwise would have consumed a lot of time.

Using AutoMOTO, a tester can create, manage,schedule, and review the results

of automated tests. The medium used is a .Net DLL program object which helps

in communication between AutoMOTO software and various testable devices via

a software or hardware interface (such as COM port, USB devices, TCP/IP and

SNMP protocols etc.).[1]

• MySQL Database

MySQL is an open-source relational database management system. Its name is a

combination of ”My”, the name of co-founder Michael Widenius’s daughter, and

”SQL”, the abbreviation for Structured Query Language.[9]

7.1.4 Tasks and Description

1. Provide find link to get list of similar issues

Accel report will have a result table generated based on the the input criteria

selected. In case of failure, some cases will be repeated in the history so that they

might already been logged in JIRA. So find link is provided in case if any match in

the JIRA database is found, which will lead to redirecting to a web page displaying

all such similar issues.

2. Filter out the retrieved list according to current Test Configuration Filtering need

33

to be applied to fetch only results which matches the test configuration of the

currently selected issue. Filtering on fetching results is applied to get desired results

and display the same on web pages.

3. Provide link to existing JIRA issues Identify if the issues already exist in database,

then provide link to that particular JIRA issue. So that user can directly go on the

particular issue and perform necessary actions.

7.1.5 Implementation and Screen-shots

Figure 7.2: Find link to similar issues and JIRA link to known issues

34

Figure 7.3: Output after clicking on find link

Figure 7.4: Known Issue’s JIRA link

35

Figure 7.5: Code snippet to fetch data

7.2 APPIUM Mobile Automation

7.2.1 Overview

Make Mobile Automation generic for multiple operating systems and differently capable

hard-wares. Basically the scenario was, company had all the setup of the automation

already setup on MAC machine, now the task is to port whole automation set up on

windows machine.

Appium tool is being used for the mobile application testing automation, along with the

legacy software of the company called DATE. DATE framework is specially developed for

automation testing, it supports .tcl scripts which are later convered into Ruby scripts.

These ruby scripts are being used to run all the test cases on android as well as iOS

mobile phones.This project required the basic understanding of APPIUM, Ruby scripts,

mobile automation, android an iOS.

36

7.2.2 Tools and Technologies used

1 Appium

Appium is an open source test automation framework for use with native, hybrid

and mobile web apps. [10] It drives iOS, Android, and Windows apps using the

WebDriver protocol.

2 Ruby

Ruby is a reflective,dynamic,object-oriented, general-purpose programming lan-

guage, which is being used for the test step automation.[11]

3 iOS and Android mobile applications

• The ARRIS SURFboard Manager mobile application: It steps you through

configuring your SURFboard Wi-Fi home network using your iOS or Android mobile

device (smartphone, tablet). With this mobile app, you can set up and monitor Wi-

Fi access, Parental Controls, and security protection on all the connected devices

(e.g., smartphones, tablets, computers, Smart TVs, gaming consoles, etc.) on your

Wi-Fi home network.[12]

37

• ARRIS HOMEASSURE: It aims delivering reliable, high-bandwidth Wi-Fi to

every corner of the home with a simple consumer experience.[13]

7.2.3 Tasks and Description

Tasks are are as follows:

1 Bring up Appium and all setup on Windows machine for Android.

Android and APPIUM bring up is done successfully. All the ruby tests are being

executed using APPIUM on windows machine.

2 Explore to bring up Appium and all setup on Windows machine for iOS and check

feasibility or alternative solution.

iOS and APPIUM has having so much of limitation of compatibility. So directly

that way is not feasible at all. But found a solution, that using VMWare, Xcode can

be installed in visrtual machine. That way iOS device can be tested using windows

machine only.

3 Retrieving software and hardware capabilities from connected device dynamically

and launch UI accordingly. Develop a generic approach independent of mobile op-

erating system and hardware capabilities.

Different android and iOs devices will have different hardware and software capa-

bilities. Thus they behave differently for the same test cases. Currently they are

handled by providing their configurations in a hard coded ways. But this need to

be done in a generic way that task is in progress.

38

Chapter 8

Return On Investment (ROI)

8.1 ROI Table

This automation achieves saving 217 staff days for the first year and 860 staff days from

the next year on wards.

It achieves, saving 21700peryearand86000 money of the company from the next year on

wards.

Here we are considering 100$as staff day cost.

Figure 8.1: ROI representation

39

Figure 8.2: Comparison of Manual Process and Automated Process

40

Chapter 9

Conclusion

Code Download automation plugin is basically developed for ARRIS internal use only

with the agenda of upgrading/downgrading multiple Set-top boxes(STB) automatically

through a common procedure. Different categories of STBs need to be targeted suc-

cessfully based on the supported protocols for Code Download process such as DAC,

TFTP etc and automated the whole process of firmware/application up-gradation and

down-gradation.

Automating the procedure of downloading code on multiple set top boxes can save

time and reduce man power required. Return on Investment suggest it saves a huge

cost to the company and plays a vital role in increasing efficiency and throughput of the

product development process.

ACCEL (Automatically Controlled Collection Of Error Logs) functionality enhance-

ments are done successfully. Appium bring up with ruby support for android was done

successfully along with successful test case execution. iOS setup for the same require-

ments is explored fully and report was submitted to company for their future reference.

41

Bibliography

[1] A. G. Inc., “Automoto documents.” https://AutoMOTO.mot.com, 2018.

[2] M. Pikryl, “Winscp.” https://winscp.net/eng, 2018.

[3] T. Teranishi, “Tera term.” https://en.wikipedia.org/wiki/TeraTerm, 2018.

[4] J. Evans, “Selenium webdriver.” https://www.seleniumhq.org/, 2018.

[5] M. C. Mozilla Foundation, “Mozzila firefox web browser.” mozilla.org/en-US/

firefox/new, 2018.

[6] A. G. Inc., “Arris internal documents.” https://

ArrisInternalDocuments365-095-32271x2.docx, 2018.

[7] A. G. Inc., “Accel documnets.” https://ACCEL.mot.com, 2018.

[8] M. Corporation, “Microsoft visual studio.” https://www.visualstudio.com/

thank-you-downloading-visual-studio/?sku=Community&rel=15, 2018.

[9] O. Corporation, “Mysql database.” https://www.mysql.com/downloads/, 2018.

[10] A. D. Group, “Tera term.” https://appium.io/docs/en/about-appium/intro/,

2018.

[11] e. a. Yukihiro Matsumoto, “Ruby programming language.” https://www.

ruby-lang.org/en/, 2018.

[12] A. G. Inc., “Surfboard manager mobile application.” https://

ArrisInternalDocument365-095-32808_x.1_SURFboard_Manager_UG, 2018.

[13] A. G. Inc., “Arris home assure.” http://www.arris.com/solutions/

wi-fi-connected-home/, 2018.

42

https://AutoMOTO.mot.com
https://winscp.net/eng
https://en.wikipedia.org/wiki/TeraTerm
https://www.seleniumhq.org/
mozilla.org/en-US/firefox/new
mozilla.org/en-US/firefox/new
https://ArrisInternalDocuments365-095-32271x2.docx
https://ArrisInternalDocuments365-095-32271x2.docx
https://ACCEL.mot.com
https://www.visualstudio.com/thank-you-downloading-visual-studio/?sku=Community&rel=15
https://www.visualstudio.com/thank-you-downloading-visual-studio/?sku=Community&rel=15
https://www.mysql.com/downloads/
https://appium.io/docs/en/about-appium/intro/
https://www.ruby-lang.org/en/
https://www.ruby-lang.org/en/
https://ArrisInternalDocument365-095-32808_x.1_SURFboard_Manager_UG
https://ArrisInternalDocument365-095-32808_x.1_SURFboard_Manager_UG
http://www.arris.com/solutions/wi-fi-connected-home/
http://www.arris.com/solutions/wi-fi-connected-home/

	Certificate
	Statement of Originality
	Acknowledgements
	Abstract
	Abbreviations
	List of Figures
	Introduction
	Code Download a Manual Process
	Project objective and benefits
	Block Diagram for adding extra functionality by 3rd party Plugins(medium)

	Tools and Technologies used
	Visual Studio 2015 (C#.net)
	AutoMOTO (ARRIS Testing Tool)
	WINSCP
	Tera Term
	Selenium (Webdriver, configuration, version, script)
	Mozilla Firefox Browser
	Virtual Serial Port Emulator
	Set Top Box

	System Analysis
	System scope
	Sytem Features
	User Characteristics
	Operating environment

	DAC Based Code Download
	ThinClient Code Download Introduction
	Flow Diagram :
	Code Download Process
	Downloading
	Components of a Download Data Stream
	Methods of Targeting multiple STBâ•Žs for Downloads
	Method of Targeting Terminals for Downloads
	Object Module - Types
	Object Assignment Options
	Object Assignment Options

	Hardware used and their funtions
	DAC6000/RADD6000 Functions
	OM 1000 Functions

	Setup and run
	Add medium in Automoto
	Configure device with Code Loader interface
	Create test case for DAC based CDL
	FTP build file upload and run test case
	Troubleshooting Tips
	Version Verification

	TFTP based Code Download for Set-top boxes
	Flow Diagram
	Setup and Run Test Case
	Steps
	Add medium in Automoto
	Configure device with Code Loader interface
	Create test case for TFTP based CDL
	FTP build file upload and run test case
	Run-time Variable Support

	Implementation
	DAC Based Code Download Process
	DAC User Interface
	Earlier server uploading was done Using WinSCP
	DAC Code Structure
	Serial Communication code structure
	Selenium Code Structure
	Creating Firefox Instance code snippet
	TFTP based CDL: Support FTP and Run-time variable
	TFTP UI: Runtime variable support
	TFTP Code Snippet

	Other Work
	ACCEL (Automatically Controlled Collection Of Error Logs) functionality enhancements.
	Overview
	ACCEL Components
	Tools and Technologies used
	Tasks and Description
	Implementation and Screen-shots

	APPIUM Mobile Automation
	Overview
	Tools and Technologies used
	Tasks and Description

	Return On Investment (ROI)
	ROI Table

	Conclusion
	References

