
Increasing Web UI code coverage and
regression methodology improvements for
Venus (arm Physical IP logistics project)

Submitted By

Nirali Kotak

16MCEC08

DEPARTMENT OF COMPUTER ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2018

Increasing Web UI code coverage and
regression methodology improvements for

Venus

Major Project

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology in Computer Science and Engineering

Submitted By

Nirali Kotak

(16MCEC08)

Guided By

Prof. Rupal Kapdi

DEPARTMENT OF COMPUTER ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2018

Certificate

This is to certify that the major project entitled ”Increasing Web UI code cover-

age and regression methodology improvements for Venus” submitted by Nirali

Kotak (16MCEC08), towards the partial fulfillment of the requirements for the award

of degree of Master of Technology in Computer Science and Engineering of Nirma Uni-

versity, Ahmedabad, is the record of work carried out by him under my supervision and

guidance. In my opinion, the submitted work has reached a level required for being ac-

cepted for examination. The results embodied in this major project part-I, to the best of

my knowledge, haven’t been submitted to any other university or institution for award

of any degree or diploma.

Prof. Rupal Kapdi Dr. Priyanka Sharma

Guide & Assistant Professor, Professor,

CE Department, Coordinator M.Tech - CSE

Institute of Technology, Institute of Technology,

Nirma University, Ahmedabad. Nirma University, Ahmedabad

Dr. Sanjay Garg Dr Alka Mahajan

Professor and Head, Director,

CE Department, Institute of Technology,

Institute of Technology, Nirma University, Ahmedabad

Nirma University, Ahmedabad.

iii

Statement of Originality
———————————————————————————————————————

I, Nirali Kotak, 16MCEC08, give undertaking that the Major Project entitled ”Increasing

Web UI code coverage and regression methodology improvements for Venus

(arm Physical IP logistics project)” submitted by me, towards the partial fulfillment

of the requirements for the degree of Master of Technology in Computer Science &

Engineering of Institute of Technology, Nirma University, Ahmedabad, contains no

material that has been awarded for any degree or diploma in any university or school in

any territory to the best of my knowledge. It is the original work carried out by me and I

give assurance that no attempt of plagiarism has been made.It contains no material that

is previously published or written, except where reference has been made. I understand

that in the event of any similarity found subsequently with any published work or any

dissertation work elsewhere; it will result in severe disciplinary action.

———————–

Signature of Student

Date:

Place:

Endorsed by

Prof Rupal Kapdi

iv

Acknowledgements

It gives me immense pleasure in expressing thanks and profound gratitude to Prof.

Rupal Kapdi, Associate Professor, Computer Engineering Department, Institute of

Technology, Nirma University, Ahmedabad for her valuable guidance and continual en-

couragement throughout this work. The appreciation and continual support she has

imparted has been a great motivation to me in reaching a higher goal. Her guidance has

triggered and nourished my intellectual maturity that I will benefit from, for a long time

to come.

It gives me an immense pleasure to thank Dr. Sanjay Garg, Hon’ble Head of Com-

puter Engineering Department, Institute of Technology, Nirma University, Ahmedabad

for his kind support and providing basic infrastructure and healthy research environment.

A special thank you is expressed wholeheartedly to Dr. Alka Mahajan, Hon’ble

Director, Institute of Technology, Nirma University, Ahmedabad for the unmentionable

motivation she has extended throughout course of this work.

I would also thank the Institution, all faculty members of Computer Engineering

Department, Nirma University, Ahmedabad for their special attention and suggestions

towards the project work.

- Nirali Kotak

16MCEC08

v

Abstract

Code coverage is one of the method to identify the software application bugs. It

helps to identify the loopholes which can cause a problem in the application and are

left untouched while verifying different scenarios. Venus is an arm IP logistics web UI

application developed in EXTJs. Fabric test in python is one method to run regression

suite and track the code coverage which team has been using currently. The automation

framework provided by sencha technology is the another method proposed to increase the

code coverage for EXTJs app. In this report, an approach based on sencha test automa-

tion framework is presented for parallel execution of the regressions and track the code

coverage changes with addition of different scenarios. The results in this report shows

improvement in the code coverage in comparison to the fabric test method used which

will enable the team to work on further optimization approaches for regressions.

vi

Abbreviations

EXTJs Extended Javascript.

PDM Platform Manager

NDM Naming Database Manager

PCM Post Contract Manager

ESM Part Manager
——————————————————————————————————————

–

vii

Contents

Certificate iii

Statement of Originality iv

Acknowledgements v

Abstract vi

Abbreviations vii

List of Figures ix

1 Introduction 1
1.1 General . 1
1.2 Technology Services Group . 2
1.3 Venus: Configuration management . 2

2 TSG Architecture 3
2.1 TSG IPLogistics . 3

3 Venus Code Coverage 6
3.1 Technique:- . 6

4 Implementation and Analysis 8
4.1 Implementation . 8
4.2 Strategy . 12
4.3 Implementation Challenges . 12
4.4 Results and Analysis . 13

5 Conclusion and Future Work 17
5.1 Conclusion . 17
5.2 Future Work . 18

Bibliography 19

viii

List of Figures

2.1 TSG . 3
2.2 TSG Architecture . 5

4.1 Django architecture . 10
4.2 Code Coverage . 14
4.3 Code Coverage . 15
4.4 Code Coverage . 16

ix

Chapter 1

Introduction

1.1 General

arm works in areas of designing and delivering processors catering to various need of its

customers. The requirements of customers vary in terms of optimization parameters like

memory, processing capacity, battery consumption etc. ARM Holdings has grown from

a small Acorn in Cambridge - maker of some of the earliest home computers - into one of

the world’s most important designers of semiconductors, providing the brains for Apple’s

must-have iPhones and iPads

The ARM processor was licensed to many semiconductor companies for an upfront

license fee and then royalties on production silicon. This made ARM a partner to all

these companies, effectively trying to speed up their time to market as it benefited both

ARM and its partners. For each set of customer requirement arm follows a strict process

of delivering the final product (libraries) to keep product quality consistent. To ensure

this process is flexible and easy to use, the release work flow is automated using software

systems.

Essentially, the release work flow consists of four stages, namely: 1) Packaging the

parts, 2) Building the release tree, 3) Validation of the release tree and 4) Upload and

certify. Mercury application aims at automating above product release flow.

Each phase of the work flow varies according to the requirements of the customer

and hence requires some amount of configuration. This configurations are stored and

maintained by yet another software system: Venus.

1

1.2 Technology Services Group

TSG business group is responsible for providing the infrastructure, software and tech-

nology solutions for the arm other business groups. TSG is responsible in introducing

cutting edge technology for its solutions deliver the product to customer for other busi-

ness group

1.3 Venus: Configuration management

Venus is developed to streamline different arm divisions to release a product using tech-

nological solutions, user workflows and metadata management. It is basically a database

driven approach with respect to Mercury and also pre-production tasks. Venus is web

application that stores and provides access to configurations to various other software

systems(like mercury). Venus is used by Marketing team, arm Design group, Technology

Service Group,etc to configure the build workflow for each customer.The maintainence of

Venus is with the Technology Services Group. The technology stack of Venus application

is : mysql as database, python/django on the server and EXTJs as the front-end. The

application is hosted on RHEL(Red Hat Enterprise Linux) datacentre.

The front-end is using EXTJs 6.2. EXTJs uses MVVC architecture. Venus imple-

ments six functionalities using the MVVC architecture of EXTJs. EXTJs is a client

side javascript framework and it has a mutually exclusive codebase than python/django.

For python/django codebase unit test cases have been implemented that ensures the ro-

bustness of application after each development release. There is no any regressions suite

to support very few functional use cases. Also there is no regression suites for EXTJs

components leaving the chances of software bugs to exist more.

The current regression strategy for Venus application uses CICD which uses Jenkins.

Regressions runs are configured to run every day. Current regressions results in failing

of the functional use cases. Also it does not support the code coverage and is run in

sequential.

2

Chapter 2

TSG Architecture

2.1 TSG IPLogistics

TSG Technology Services Group of arm has been working to automate the business work-

flows of arm product release flow. TSG has been successful in delivering and streamlining

the process flows based on the business requirements. The stakeholder of TSG team are

Marketing Engineering, Software Developers and the client. Before TSG it used to take

days/weeks to deliver the product to the client. The IP library files are delivered to

the client which is generated through different stages of the release workflow. This re-

quired human interference which attracting errors. This was too much of effort and also

sometimes required to revisit client requirements during the product release resulting

into inconsistency at different stages for the data. TSG approaches to solve this problem

through software introducing consistency through the release flow. The software solution

enforces different teams to be consistent with data at different stages of the release cycle

resulting in product release with high quality.

Different teams work for different workflows of arm business release flow. As shown in

Figure 2.1: TSG

fig 2.2,

3

The software solutions help the Engineering team in accessing the data through its dif-

ferent stages of release cycle and deliver the product to the client. This data generated

is fed to Mercury(named after greek Messenger God) which goes through certain process

to release the product to the client as shown in figure 2.1 Pegasus team works for PDG

Memory Builder team works for PDG SC and IO. Mercury takes care of product logsitics.

It collects the data generated from the applications and does shipment of the files to the

server from where the client accesses the data. Venus is the central database for storage

and access to the data by different teams. The contract is recorded in Venus which is a

pre-production task.

From figure 2.2, at high level Mercury flow has multiple info stream which has led to

variety of inconsistencies. Mercury has introduced NDM feature which enforces the En-

gineering team to enter the file patterns and conventions of the part of product to ensure

consistency of the data. Logistics introduction has been successful in achieving 10x per-

formance. Some key features of Mercury are:

• Auto-generated config file based on SAP. Before Mercury config file was created

manually

• Ensures staged structure approach

• Enforcement of Marketing’s Naming conventions

4

Figure 2.2: TSG Architecture

5

Chapter 3

Venus Code Coverage

3.1 Technique:-

Code Coverage is a method to identify the degree of the source code covered when a

specific designed test suite is executed. The code which is not covered with most of the

use cases is more prone to software bug and hence the software quality is compromised.

Also the code which seems to be unused can be confirmed by code coverage results and

the application can be improved by removing unused code. Code coverage results are

identified based on various criteria. The main criteria which helps identifying correct

code coverage are:

• Branch Coverage: This coverage ensures that a branch is executed for all the con-

ditions depending on different data combinations for the process flow

• Statement Coverage: This coverage ensures that all the statements of the code is

covered.

• Function Coverage: This coverage ensures that all of the functions in the code base

is executed and working fine.

Approaches identified:

• Manual Verification with Code Coverage: Chromium latest version supports the

code coverage.One approach could be every time before the release developer could

6

manually run specific scenario and gather the code coverage results for the source

code. This has its own disadvantages:

– Developer might miss to run some use cases

– Human efforts are more

• Automate the code coverage: Sencha Test uses jasmine framework for developing

scenarios. Automating the scenarios will benefit the human efforts required to ver-

ify the app. It is like Develop once and use multiple times approach which will help

team to to improve the release process with an additional quality check with code

coverage alongwith the existing regressions. Sencha test supports Web driver and

In browser scenarios. The Webdriver based scenarios uses the selenium webdrive-

rio api and In browser scenario which supports EXTJs api which runs inside the

browser. For code coverage in current approach we have configured In browser sce-

nario and sencha command line(STC) with chrome headless browser.This approach

is configured to run in parallel. This will help in optimizing the time taken for the

nightly regressions

7

Chapter 4

Implementation and Analysis

4.1 Implementation

Earlier the scenarios are executed in sequential. As the scenarios increase the run time

for the regressions increase. This is a major drawback when the regressions are run in

nightly builds as it occupies the resources which are dedicated for execution of the re-

gressions. Secondly, the scenarios are run using local databases which can be common to

all the developers. This creates inconsistency in the data if a scenario executed performs

CRUD operation to the database.

• Currently our implementation is In browser scenario. Test author can use one of

the two below implementations:

– Webdriver scenario

In webdriver scenario, the test and application are executed differently and

the communication between the two can be done through Futures API. Using

Futures API, we can locate the already-existing component in application.

Under the hood in Webdriver scenario sencha test leverages the WebDriver.

The test author has to focus on writing test as interacting with the WebDriver

is handled by sencha test.

– In-browser scenario

[1] Main advantage of in-browser scenarios for test author is he/she could

use the EXTJs API to locate the component or perform an action. The test

8

and the application run together so it is as good as test is injected inside the

application and it executes the test as it is part of the application code. Code

coverage tool Istanbul can be configured to track the code coverage of the

application

• Parallel execution

Parallel execution improves time as it utilizes the maximum processing core avail-

able in the cluster machine.

For parallel execution, scenarios should be logically identified by the test author

such that the tests are not dependent on each other. If the tests are dependent on

any previous data, then it should be executed in sequential.

For example, Reorder scenario in pdm is enabled only for the owner of the pdm.

This requires first creation of the pdm and then reorder Products or PVTS.

• Fixtures

Application technology stack is :

– Python 2.7.13 and django 1.10

– MySql as backend

– ExtJs as frontend

[2] django is free and open source Python Web framework. It helps developers to

write the application without taking care of much of the web development hassle as

it is all handled in django. django is based on MVT architecture where M- Model,

V- view and T- template. django takes care of the controller which communicates

between the view and model. [3]

[2] django commands/utilities:

– dumpdata : This command takes a dump of the database and outputs it to

the file mentioned in the command. dumpdata refers to the database men-

tioned in django settings.py file. It takes default database mentioned under

the default subscript if no database name is mentioned For example, python

manage.py dumpdata –database venus - This takes dump of venus database

python manage.py dumpdata - This takes dump of database in default[db]

subscript.

9

Figure 4.1: Django architecture

– makemigrations : This command is responsible to create migrations for any

app level changes. For example, makemigrations ¡applabel¿

– migrate : Synchronizes the database state with the current set of models

and migrations.This command handles any migrations in django. Any model

changes(any database schema changes will be migrated/applied when migrate

command is used) For example migrate applabel 0002venus

– runserver : Spawns a lightweight development server. Default IP address and

port is localhost and 8000 respectively. Any server side code changes don’t

require restarting the server. It refreshes the server with the changes.

– testserver : Spawns a lightweight development server with the predefined fix-

ture file. It creates new database and applies all the migrations. After applying

migrations it loads up the data from the fixture file. This server starts up with

the new database created with the specified IP address and port

Pre-requisites for Fixture implementation :

– Database cleanup : Removing any foreign-key constraints from the database

– Inconsistency between django model and database tables Also django fixture

patch was introduced in the current working environment.

• Periodic execution of regressions

Currently there is no setup for nightly regressions or regression run at specific

interval of time. To configure Jenkins access to rhe7 machine is required where

10

jenkins is installed. Initially I tried configuring cron job for a periodic execution i.e

everyday

Cron job is a linux based utility which executes a script or commands like a user

does at specific interval. User needs to configure crontab. Some cronjob commands:

crontab -e : opens up the crontab where one can see the cronjobs configured to exe-

cute. User can edit the configurations for the cronjobs. Edit may include changing

the time when to execute, changing the job to be executed, adding/deleting any

job,etc...

crontab -l : Lists the cron job scheduled

MAILTO argument in cronjob sends the standard output to the recipient specified

as value to the MAILTO argument.

Continuous Integration/ Continuous Deployment Jenkins is the preferred tool in

the organization for the Continuous Integration and Continuous Deployment. Cur-

rently venus regressions are running in Jenkins rhe6 machine. Sencha test requires

rhe7 machine. To configure Jenkins to run on through rhe6 machine till the time

venus regressions are ported to rhe7 or a dedicated cluster machine is made available

on rhe7 we are spawning the sencha tests through current regressions.

bsub command requests any available rhe7 host and runs the script. This script

executes the commands stepwise which are required to run sencha tests. For exam-

ple, Activate the virtual environment, source the required modules and run sencha

tests.

busb -R rhe7 rusage[mem=10000] ./script.sh

• Display output Earlier the output displayed was a summary of number of scenarios

executed, number of tests passed and number of tests failed like below :

– Summary

Total time: 1200.884s

Scenarios ran: 45 (parallel = 45)

Scenarios failed: 0 (parallel = 0)

Now the summary is improved to display the error message of each failure alongwith

the failure test and whether it is a System error or a genuine failure ¡packagename¿:

11

¡Testname¿ : Expected screenshot mismatch with baseline System Error: ¡packa-

gename¿: ¡Testname¿ : Expected screenshot mismatch with baseline

4.2 Strategy

Currently the project is configured to run in hybrid mode where read based scenarios are

run with local database whereas write based scenarios are executed with fixture based

database.

Sencha tests are executed using testclientui method. Currently testclientui method

spawns two servers : runserver and testserver

runserver (on port 9000+ useroffset)

testserver(on port 10000 + useroffset)

For every scenario, identification of read/write scenario is done based on value of type-

oftest attribute.

”typeoftest” : ”read”(on port 9300)

”typeoftest” : ”write”(on port 10300)

4.3 Implementation Challenges

• Headless browser compatibility : phantomjs vs Chrome headless.

Chrome headless is preferred headless browser now which replaces the phantomjs

browser from the configuration. Earlier with phantomjs browser we were unable to

perform certain actions like double click or right click which works with Chrome

headless

• EXTJs API challenges

Right click action is one of the dominant action for any write operation in our

application. This can be achieved using the EXTJs right click code as there is no

available api to do right click in In-browser scenario.

• Configure Istanbul (sencha compatible code coverage tool) and excluding the sencha

libraries from code coverage results.This posed as one of the challenge.

• Fixture implementations

Initial data dump used was 70 MB in json file format. This file was difficult to

open. Any third party tool was not helpful. Only vi tool could do the job but that

12

too was very slow and it worked with a time lag for any action on the file. Data

reduction was the only option for this file. Also fixture loading took 15-20 minutes

of time which is very high each time for a developer.

Initial data was identified which are applied through django migrations and as

testserver initially applies django migrations the default app were excluded from

the dumps. These reduced the size of the file to half and not it was 35 MB.

Reducing further required sheer analysis of the relationship between the tables and

its content. This data is currently 700 kb. The time taken to start up the testserver

is now reduced to 40-45 secs which is a great cut-down and optimizing of time from

the previous value.

4.4 Results and Analysis

Results can be viewed as scenario execution, pass scenarios, fail scenarios and code cov-

erage report.

• pdm : newpdm : Expected screenshot failure

app2 : newpdm : Expected screenshot failure

System Error:

app3 : newpdm : Expected screenshot failure

Summary

Total time: 500.84s

Scenarios ran: 63

Total test cases ran : 187

Total test cases passed : 126

Total test cases failed: 61

• Code Coverage : Currently the code coverage is 44.32 percent

13

Figure 4.2: Code Coverage

14

Figure 4.3: Code Coverage

15

Figure 4.4: Code Coverage

16

Chapter 5

Conclusion and Future Work

5.1 Conclusion

This project exercise has benefitted in identifying some common bugs which exist in the

application and to make it more robust. Currently one of the application in venus has

introduced Live versioning feature. This has brough about change in th UI and also some

new bugs were detected as part of these changes. The bugs were easily identified with the

new developed sencha regressions and reported timely before the feature was deployed

in production. This helped developers to identify the broken corners of the code and

fix them. Regression execution helped to validate the correctiveness of the new feature

introduced.

This approach based on sencha test automation framework is feasible for parallel exe-

cution of the regressions and track the code coverage changes with addition of different

scenarios. The results in this report shows improvement in the code coverage in com-

parison to the fabric test method used which will enable the team to work on further

optimization approaches for regressions.

17

5.2 Future Work

• Achieve 80 percent code coverage. This activity will help in smooth migration of

the application to higher version or any feature changes/improvements as it will

identify the new bugs introduced and also the unused code or stale code.

• Fixture implementation for multiple database

• Achieve fixture implementation for read based scenarios and spawn only one server

• Migrate mercury app in venus web application to the current ExtJs 6 version

18

Bibliography

[1] “Sencha documentations(url: https://docs.sencha.com/sencha_test/2.0.2/

guides/product_overview.html).”

[2] “Web documentation (url: https://docs.djangoproject.com).”

[3] “Django tutorial(url: https://www.tutoriapoints.com/django/django_

overview.htm).”

19

https://docs.sencha.com/sencha_test/2.0.2/guides/product_overview.html
https://docs.sencha.com/sencha_test/2.0.2/guides/product_overview.html
https://docs.djangoproject.com
https://www.tutoriapoints.com/django/django_overview.htm
https://www.tutoriapoints.com/django/django_overview.htm

	Certificate
	Statement of Originality
	Acknowledgements
	Abstract
	Abbreviations
	List of Figures
	Introduction
	General
	Technology Services Group
	Venus: Configuration management

	TSG Architecture
	TSG IPLogistics

	Venus Code Coverage
	Technique:-

	Implementation and Analysis
	Implementation
	Strategy
	Implementation Challenges
	Results and Analysis

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

