

Routing Protocol Using

Game Theoretic Approach

By

Varma Jitendra G.

(05MCE019)

Department Of Computer Science & Engineering

Institute Of Technology

Nirma University Of Science & Technology

Ahmedabad 382481

May 2007

Routing Protocol Using

Game Theoretic Approach

Major Project

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology in Computer Science and Engineering

By

 Varma Jitendra G.

(05MCE019)

Guide

Dr. S.N. Pradhan

Prof. Gaurang Raval

Department Of Computer Science & Engineering

Institute Of Technology

Nirma University Of Science & Technology

Ahmedabad 382481

May 2007

This is to certify that Dissertation entitled

Routing Protocol Using
Game Theoretic Approach

Submitted by

Varma Jitendra G.

has been accepted toward fulfillment of the requirement

for the degree of

Master of Technology in Computer Science & Engineering

Prof. (Dr.) S. N. Pradhan Prof. D. J. Patel

Professor In Charge Head of The Department

Prof. A. B. Patel

Director, Institute of Technology

CERTIFICATE

This is to certify that the Major Project entitled “Routing Protocol Using Game

Theoretic Approach” submitted by Mr. Varma Jitendra G. (05MCE019), towards

the partial fulfillment of the requirements for the degree of Master of Technology

in Computer Science And Engineering of Nirma University of Science and

Technology, Ahmedabad is the record of work carried out by him under my

supervision and guidance. In my opinion, the submitted work has reached a level

required for being accepted for examination. The results embodied in this major

project, to the best of my knowledge, haven’t been submitted to any other

university or institution for award of any degree or diploma.

Prof.(Dr.) S. N. Pradhan

Guide,

Department of Computer Science &

Engineering,

Institute of Technology,

Nirma University,

Ahmedabad.

Prof. Gaurang Raval

Guide,

Assistance Professor

Department of Information Technology,

Institute of Technology,

Nirma University ,

Ahmedabad.

 IV

ACKNOWLEDGEMENT

Behind every successful venture, lie the joint efforts put in by more than one

person, co-operatively working as a team, although, they may be involved in the

process either directly or indirectly. No one can proceed towards achieving

success without the fruitful guidance of the mentors and co-ordinates. Thus, one

should never forget their contribution in the success of any task, either big or

small.

Hence, I would first of all like to express my humble gratitude towards the

mentor and guide of my project dissertation Dr. S. N. Pradhan (Senior Professor

and M.Tech. Co-ordinator) who have always inspired all of us to put in the

maximum of our efforts into the dissertation work. They have always been

willingly helpful to provide the necessary facilities and also to solve our problems,

which may have occurred during our ongoing project work.

My sincerest thanks to my guide Prof. Gaurang Raval sir to continuously guide

me in my project area and to provide me with all the necessary resources and

material which have been extremely useful in my dissertation study. I am highly

obliged to him for his constant overwhelming support.

Secondly, I would like to thank Prof. A. B. Patel (Director, NIT) and Prof. D. J.

Patel (H.O.D., CSE Dept.) for supervising the entire dissertation program and

organizing meetings in order to receive feedback from students as well as the

staff-in-charge regarding the problems faced in the program and their efforts to

solve them to their best.

Last, but not at all the least, I thank all the people, either directly or indirectly

related, involved or concerned in helping me with the project dissertation work

through their moral support; be it my family, my classmates or my friends.

 ─ JITENDRA VARMA ─

 (05MCE019)

 V

ABSTRACT

A recent trend in routing research is to avoid inefficiencies in network level

routing by allowing hosts to either choose routes themselves (e.g., source

routing) or use overlay routing networks. Such end-to-end route selection

schemes are selfish by nature; in that they allow end users to greedily select

routes to optimize their own performance without considering the system-wide

criteria. Recent theoretical results suggest that in the worst case, selfish routing

can result in serious performance degradation due to lack of cooperation. So, the

objective of this dissertation work is to apply Game Theoretic Approach on

routing protocols for removing inefficiencies and analyzing how it is better than

conventional TCP/IP routing protocols.

Game theory is a branch of applied mathematics, which deals with multiperson

decision making situations. A routing protocol can be modeled as a minimax

game between the network and the routers. And it is analyzed based on different

parameters like Delay, Jitter, Processing power etc.

Network Simulator 2 tool is used for coding and simulation purpose of

conventional routing protocol and minimax algorithm. rtProtoMIN - a new routing

protocol is implemented in NS2 which uses minimax algorithm for finding the

path from source to destination. The rtProtoDV (RIP) protocol available in NS2

and the newly implemented rtProtoMIN are being used in this project to analyze

their performance in different scenarios and are compared to the already existing

routing protocols.

 VI

CONTENTS

Acknowledgement …………………………………………………………………………………………… IV

Abstract ………. V

Contents ……… VI

List of figures ……………………………………………………………………………………………………. IX

List of tables …………………………………………………………………………………………………….. XI

Chapter 1 Introduction …………………………………………………………. 1

1.1 General ……………………………………………………………………………. 1

1.1.1 Routing Protocols …………………………………………………. 1

1.1.2 Game Theory…………………………………………………………. 1

1.1.3 Usage…………………………………………………………………….. 2

1.2 Scope Of Work…………………………………………………………………… 2

 1.3 Organization of Major Project…………………………………………… 3

Chapter 2 Literature Survey…………………………………………………….. 4

Basics of Game Theory……………………………………………………… 4

2.1.1 Introduction………………………………………………………….. 4

2.1.2 Prisoner’s Dilemma………………………………………………. 5

2.1.3 Assumptions and definitions………………………………… 5

2.1.4 Classifications of Games………………………………………. 6

2.1.5 Strategic Games…………………………………………………… 8

 2.1

2.1.6 Extensive Games…………………………………………………. 9

2.2 Routing Protocols………………………………………………………………. 11

2.2.1 Introduction………………………………………………………….. 11

2.2.2 Dynamic Routing Protocols………………………………….. 11

2.2.3 TCP/IP Routing Protocols……………………………………… 14

2.3 Related Work…………………………………………………………………….. 16

2.3.1 Inefficiencies in Routing Protocol…………………………. 16

2.3.2 Detour Project………………………………………………………. 18

2.3.3 Problem Definition…………………………………………………. 19

Chapter 3 Modeling Routing as Game……………………………………….. 20

 3.1 Minimax Algorithm…………………………………………………………….. 20

 3.2 Mapping Routing as Game………………………………………………. 22

 VII

3.2.1 Detailed description of Game Move ………………….. 24

3.2.2 Detailed Description of a Set-of-Routers Atomic

Move……………………………………………………………………..

24

3.3 Game Trees………………………………………………………………………. 26

 3.3.1 Example……………………………………………………………….. 27

Chapter 4 Simulation Environment……………………………………………. 30

4.1 Basic of Network Simulator 2…………………………………………… 30

4.1.1 Architecture of NS2………………………………………………. 31

4.1.2 C++ and OTcl duality…………………………………………... 31

4.1.3 Simplified user’s view…………………………………………… 33

 4.2 Routing Module in NS2………………………………………………………. 34

 4.3 Example……………………………………………………………………………… 36

 4.4 Structure Of Tracing………………………………………………………….. 37

Chapter 5 RIP Simulation…………………………………………………………. 40

5.1 Simulation setup………………………………………………………………… 40

5.2 Results and Inefficiencies………………………………………………….. 42

Chapter 6 Implementation Details of rtProtoMIN……………………….. 43

6.1 Introduction……………………………………………………………………….. 43

6.2 Block diagram of RtProtoMIN…………………………………………….. 43

6.3 Internals and architecture of rtProtoMIN…………………………… 44

 6.3.1 rtProtoMIN……………………………………………………………... 45

6.4 Route.h……………………………………………………………………………….. 47

6.4.1 Class RouteLogic …………………………………………………… 47

6.4.2 Class rtObject………………………………………………………… 49

6.4.3 The Class rtPeer…………………………………………………….. 49

6.4.4 Class Agent/rtProto……………………………………………….. 50

6.5 Rttable.h…………………………………………………………………………….. 50

6.5.1 Class Neighbor………………………………………………………. 51

6.5.2 Class rt_Entry………………………………………………………… 51

6.5.3 Class rttable…………………………………………………………… 52

6.5.4 Other Classes Simulator, Node, Link, and

Classifier………………………………………………………………….

52

 6.6 Changes to be made when adding rtProtoMIN protocol in

NS2……………………………………………………………………………………..

53

 VIII

Chapter 7 Simulation Study and Results……………………………………. 55

7.1 Scenario1: Varying Packet Size………………………………………… 56

7.1.1 Simulation Setup………………………………………………….. 56

7.1.2 Statistics of Scenario……………………………………………. 57

7.1.3 Results…………………………………………………………………… 60

7.2 Scenario 2: Fixed packet size and varying network………… 64

7.2.1 Simulation Setup…………………………………………………… 64

7.2.2 Results…………………………………………………………………… 68

7.3 Scenario 3: Changing queue……………………………………………… 69

7.3.1 Simulation setup……………………………………………………. 69

7.3.2 Simulation Results…………………………………………………. 70

Chapter 8 Summary and Conclusion………………………………………….. 72

8.1 Summary……………………………………………………………………………. 72

8.2 Conclusion………………………………………………………………………….. 74

8.3 Future Work……………………………………………………………………….. 75

References……………………………………………………………………………….. 76

Appendix A Minimax Algorithm…………………………………………………. 78

Appendix B AWK Scripts………………………………………………………….. 81

 IX

LIST OF FIGURES

Figure 2.1: Extensive form……………………………………………………………………………….. 10

Figure 2.2: Detour Architecture………………………………………………………………………… 18

Figure 3.1: A Representation Of Game …………………………………………………………… 21

Figure 3.2: The Minimax Algorithm At Work……………………………………………………. 22

Figure 3.3: Modeling Routing As Game……………………………………………………………. 24

Figure 3.4: Network …………………………………………………………………………………………. 27

Figure 3.5: Game tree whish gives path from source to destination ……………. 28

Figure 3.6: Game Tree After Change In Topology Of Network ……………………… 29

Figure 4.1: Architectural View of NS ………………………………………………………………. 31

Figure 4.2: C++ and OTcl: The Duality ………………………………………………………….. 32

Figure 4.3: Simplified User’s View Of Network Simulator 2 ………………………….. 33

Figure 4.4:Interaction Among Node, Routing Module, And Routing .The

 Dashed Line Shows The Details Of One Routing Module ………………

34

Figure 4.5: Network Of Nodes And Routers ……………………………………………………. 36

Figure 4.6: Simulation Of Above Network And NS2 Working Environment …… 37

Figure 4.7: Fields Appearing In Trace ……………………………………………………………… 37

Figure 5.1: Example 1 RIP Implementation ……………………………………………………. 41

Figure 5.2: Example 2 RIP Implementation ……………………………………………………. 41

Figure 5.3: Example 3 RIP Implementation ……………………………………………………. 41

Figure 5.4: Example 4 RIP Implementation ……………………………………………………. 41

Figure 6.1: Block Diagram of rtProtoMIN ………………………………………………………… 44

Figure 6.2: Rtprotomin Class And Header Structure ……………………………………… 45

Figure 6.3: Call Graph Of Sendpkt Function …………………………………………………… 46

Figure 6.4: Call Graph Of Recv () Function …………………………………………………….. 46

Figure 6.5: Route Logic Class and structure: route_entry and adj_entry …….. 48

Figure 6.6: Class Neighbor ………………………………………………………………………………. 51

Figure 6.7: Class rt_entry ……………………………………………………………………………….. 51

Figure 7.1: Routing Network …………………………………………………………………………… 57

Figure 7.2: Example1 PS 1040: Graph Delay …………………………………………………. 62

Figure 7.3: Example1 PS 1540: Graph Delay …………………………………………………. 62

Figure 7.4: Example1 PS 2040: Graph Delay …………………………………………………. 63

Figure 7.5: Example1 PS 2540: Graph Delay …………………………………………………. 63

 X

Figure 7.6 : Scenario 2: Example 1 ……………………………………………………………….. 66

Figure 7.7 : Scenario 2: Example 2 ……………………………………………………………….. 66

Figure 7.8 : Scenario 2: Example 3 ……………………………………………………………….. 67

Figure 7.9 : Scenario 2: Example 4 ……………………………………………………………….. 67

Figure 8.1 :Graph of Scenario 1 ………………………………………………………………………. 73

Figure 8.2 :Graph of Scenario 2 ………………………………………………………………………. 74

 XI

LIST OF TABLES

Table 2.1: Prisoner’s Dilemma………………………………………………………………………. 5

Table 5.1: RIP Simulation Parameters…………………………………………………………… 40

Table 5.2: RIP Simulation Result…………………………………………………………………… 42

Table 7.1: Parameters Used During Simulation……………………………………………. 56

Table 7.2: Senario1: Simulation results ………………………………………………………. 60

Table 7.3: Scenario 1: Simulation Results …………………………………………………… 61

Table 7.4: Simulation Parameters For Scenario 2……………………………………….. 64

Table 7.5: Scenario2: Simulation Results…………………………………………………….. 68

Table 7.6: Scenario2: Simulation Results…………………………………………………….. 68

Table 7.7: Simulation Setup For Scenario 3…………………………………………………. 69

Table 7.8: Scenario3: Simulation Result………………………………………………………. 70

Table 7.9: Scenario3: Simulation Result………………………………………………………. 71

1 INTRODUCTION

1.1 GENERAL

1.1.1 Routing Protocols

In computer networking the term routing refers to selecting paths in a computer

network along which to send data. Routing directs forwarding, the passing of

logically addressed packets from their source toward their ultimate destination

through intermediary nodes (called routers). It facilitate the exchange of routing

information between networks, allowing routers to build routing tables

dynamically. Traditional IP routing stays simple because it uses next-hop

routing where the router only needs to consider where it sends the packet, and

does not need to consider the subsequent path of the packet on the remaining

hops[8]. Traditional IP routing stays simple because it uses next-hop routing

where the router only needs to consider where it sends the packet, and does not

need to consider the subsequent path of the packet on the remaining hops.

1.1.2 Game Theory

Game theory is a branch of applied mathematics, which deals with multiperson

decision making situations. The basic assumption is that the decision makers

pursue some well defined objectives and take into account their knowledge or

expectations of the other decision makers’ behavior. Many applications of game

theory are related to economics, but it has been applied to numerous fields

ranging from law enforcement to voting decisions in European Union [5]. There

are two main ways to capitalize game theory. It can be used to analyze existing

systems or it can be used as a tool when designing new systems. Existing

systems can be modeled as games. The models can be used to study the

properties of the systems. For example, it is possible to analyze the effect of

different kind of users on the system. The other approach is implementation

theory, which is used when designing a new system. Instead of fixing a game

and analyzing its outcome, the desired outcome is fixed and a game ending in

that outcome is looked for. When a suitable game is discovered, a system

fulfilling the properties of the game can be implemented.

Chapter 1 Introduction

 2

1.1.3 Usage

Game theory was invented to provide a mathematical foundation for reasoning

about conflict and competition. It has grown into a rich theory, with powerful

mathematical and computational tools. It also has the advantage of retaining its

intuitive appeal, which is what first attracted us to it. Two insights enabled us to

turn this pool of theory and tools into a potentially powerful analytical capability

for analyzing routing [3].

The game theoretic techniques are applicable to the analysis of routing protocols.

The particular way in which we have applied game theory to this problem is

described in following chapters.

1.2 SCOPE OF WORK

The objective of this dissertation work is to apply Game Theoretic approach on

routing protocols for removing inefficiencies and analyzing how it is better than

conventional TCP/IP routing protocols. Network Simulator 2 tool is used for

coding and simulation purpose of conventional routing protocol and minimax

algorithm. RIP (rtProtoDV) routing protocol already implemented in NS2, game

theory approach is applied on that and see how it improves the rtProtoDV.

RtProtoDV uses distance vector technique for finding path to destination node

but, here DV is replaced by minimax algorithm which used for finding path to

destination node. RtProtoMIN - a new routing protocol is implemented in NS2

which uses minimax algorithm for finding the path from source to destination.

These two protocols rtProtoDV and rtProtoMIN are analyzed on different

parameters like delay jitter, delay, convergence etc. These protocols are

simulated on different scenarios like varying packet size and fixed network, fixed

packet size and varying networks, convergence etc and analyzed how game

theory improves rtProtoDV.

Chapter 1 Introduction

 3

1.3 ORGANIZATION OF MAJOR PROJECT

Chapter 2: This chapter contains literature survey and also gives the background

information about game theory which is used for understanding how game is

modeled as routing and basics of TCP/IP routing protocols.

Chapter 3: This chapter gives the strategy; how routing is to be modeled as

game and minimax algorithm is used for finding the path from source to

destination.

Chapter 4: This gives the whole information regarding the simulation

environment, NS2 (Network Simulator 2) which is used for coding and simulation

purpose.

Chapter 5: In this chapter rtProtoDV (RIP) protocol which is already implemented

in NS2 is simulated and inefficiency of that protocol is shown.

Chapter 6: This chapter gives the implementation details of rtProtoMIN protocol

in that routing is modeled as game. It gives the detailed information regarding

data packet, control packet, classes and structure which is used for implementing

rtProtMIN.

Chapter 7: In this chapter rtProtoMIN and rtProtoDV is simulated on different

scenarios and comparison is made between them and observed which protocol

give the better performance and how game theory improves the performance of

RIP.

Chapter 8: This chapter contains summary of whole dissertation, conclusion of it

and future work.

Appendix A: This contains the pesudocode of minimax algorithm and discusses

implementation details of it.

Appendix B: This gives basic information regarding AWK scripts.

 4

2 LITERATURE SURVEY

2.1 BASICS OF GAME THEORY

This section introduces the basic concepts of game theory. The aim is to supply

sufficient information to understand the applications in this thesis work. The

most common types of games and their solutions are presented.

2.1.1 Introduction

Game theory is a branch of applied mathematics, which deals with multiperson

decision making situations. The basic assumption is that the decision makers

pursue some well defined objectives and take into account their knowledge or

expectations of the other decision maker’s behavior. Many applications of game

theory are related to economics [7], but it has been applied to numerous fields

ranging from law enforcement to voting decisions in European Union [5]. There

are two main ways to capitalize game theory. It can be used to analyze existing

systems or it can be used as a tool when designing new systems. Existing

systems can be modeled as games. The models can be used to study the

properties of the systems. For example, it is possible to analyze the effect of

different kind of users on the system. The other approach is implementation

theory, which is used when designing a new system. Instead of fixing a game

and analyzing its outcome, the desired outcome is fixed and a game ending in

that outcome is looked for. When a suitable game is discovered, a system

fulfilling the properties of the game can be implemented.

Most game theoretical ideas can be presented without mathematics, hence only

give some formal definitions. The prisoner’s dilemma (classical games) which is

used to demonstrate the concepts of game theory [5].

Chapter 2 Literature Survey

5

2.1.2 Prisoner’s Dilemma

In the prisoner’s dilemma, two criminals are arrested and charged against a

crime. The police do not have enough evidence to convict the suspects, unless at

least one confesses. The criminals are in separate cells, thus they are not able to

communicate during the process. If neither confesses, they will be convicted of a

minor crime and sentenced for one month. The police offer both the criminals a

deal. If one confesses and the other does not, the confessing one will be released

and the other will be sentenced for 9 months. If both confess, both will be

sentenced for six months. The possible actions and corresponding sentences of

the criminals are given in table 2.1.

Table 2.1: Prisoner’s Dilemma

2.1.3 Assumptions And Definitions

2.1.3.1 Game

A game consists of players, the possible actions of the players, and

consequences of the actions. The players are decision makers, who choose how

to act. The actions of the players result in a consequence or outcome. The

players will try to ensure the best possible consequence according to their

preferences [7]. The preferences of a player can be expressed either with a

utility function, which maps every consequence to a real number, or with

preference relations, which define the ranking of the consequences. With mild

assumptions, a utility function can be constructed if the preference relations of a

player are known.

Chapter 2 Literature Survey

6

2.1.3.2 Rationality

The most fundamental assumption in game theory is rationality. Rational players

are assumed to maximize their payoff. If the game is not deterministic, the

players maximize their expected payoff. The idea of maximizing the expected

payoff was justified by the seminal work of von Neumann and Morgenstern in

1944 [5]. It is also assumed that the players are intelligent, which means that

they know everything what we know about the game and they can make the

same deductions about the situation that we can make.

2.1.3.3 Solution

In game theory, a solution of a game is a set of the possible outcomes. A game

describes what actions the players can take and what consequences of the

actions are. The solution of a game is a description of outcomes that may

emerge in the game if the players act rationally and intelligently [7]. Generally, a

solution is an outcome from which no player wants to deviate unilaterally.

Solutions to some game types are presented in later sections.

2.1.4 Classification Of Games

Games can be classified into different categories according to their properties [5,

6, 7]. The terminology used in game theory is inconsistent, thus different terms

can be used for the same concept in different sources.

2.1.4.1 Noncooperative and cooperative games

Games can be divided into noncooperative and cooperative games according to

their focus. Cooperative games are also called coalition games. In

noncooperative games, the actions of the single players are considered.

Correspondingly, in coalition games the joint actions of groups are analyzed, i.e.

what is the outcome if a group of players cooperate. The interest is in what kind

of coalitions form. The prisoner’s dilemma is noncooperative games.

Chapter 2 Literature Survey

7

2.1.4.2 Strategic and extensive games

In strategic or static games, the players make their decisions simultaneously at

the beginning of the game. While the game may last long and there can be

probabilistic events, the players can not react to the events during the game.

The prisoner’s dilemma is strategic game.

On the other hand, the model of an extensive game defines the possible orders

of the events. The players can make decisions during the game and they can

react to other player’s decisions. Extensive games can be finite or infinite. Formal

definitions of strategic and extensive games are given in section 2.1.5.

A class of extensive games is repeated games, in which a game is played

numerous times and the players can observe the outcome of the previous game

before attending the next repetition. A typical example is a repeated prisoner’s

dilemma in which the same situation is repeated several times [7].

2.1.4.3 Zero-sum games

Games can be divided according to their payoff structures. A game is called

zerosum game, if the sum of the utilities is constant in every outcome. Whatever

is gained by one player is lost by the other players. [5] Gambling is a typical

zero-sum game. Neither of the example discussed are zero-sum games. Zero-

sum games are also called strictly competitive games.

2.1.4.4 Games with complete and incomplete information

In games with complete information the preferences of the players are common

knowledge, i.e. all the players know all the utility functions. In a game of

incomplete information, in contrast, at least one player is uncertain about

another player’s preferences [5].

Chapter 2 Literature Survey

8

A sealed-bid auction is a typical game with incomplete information. A player

knows his own valuation of the merchandise but does not know the valuations of

the other bidders.

2.1.5 Strategic Games

In strategic games, the players first make their decisions and then the outcome

of the game is determined. The outcome can be either deterministic or contains

uncertainties.

The actions of the players may take place during a long time period but the

decisions are made without knowledge of the decisions of the other players.

Definition 2.1.5.1 A strategic game consists of

• a finite set N (the set of players)

• for each player I N a nonempty set Ai (the set of actions available to

player i)

• for each player i N a utility function Ui on A = [5,7]

The players can choose their actions either from discrete alternatives or from a

continuous set. For example, a choice of a route in a network is discrete but the

possible transmission powers in a wireless network form a continuous set. If the

decisions are discrete, strategic games with two players are usually illustrated

with a matrix representation as in tables 2.1

The solution of a strategic game is Nash equilibrium. Every strategic game with

finite number of players each with a finite set of actions has an equilibrium point.

This Nash equilibrium is a point from which no single player wants to deviate

unilaterally [7].

Definition 2.1.5.2: Nash equilibrium of a strategic game (N; (Ai); (Ui)) is a

profile of actions with the property that for every player

we have

Chapter 2 Literature Survey

9

2.1.6 Extensive Games

The strategic game model is suitable for representing simple real life events such

as auctions. Many more complex situations can be abstracted sufficiently to be

modeled as a strategic game. However, the limitations of the strategic games are

evident in many cases. A more versatile model is needed, when more complex

interactions are occurring between the decision makers [6].

Especially the possibility to react to the actions of the other players is essential in

many applications, thus a broader model is needed. Extensive games eliminate

the limitation of the simultaneous decisions, thus they make possible to model a

wider range of real life situations. It should be noted that for simplicity the

following formulation does not allow simultaneous actions of the players, i.e. the

game has perfect information. An extensive game with imperfect information can

be formulated similarly [5].

Definition 2.1.6.1 An extensive game with perfect information has the following

components.

• A set N (the set of players)

• A set H of sequences (finite or infinite) of actions that satisfies the

following three properties.

• A function P that assigns to each nonterminal history (each member of

H\Z) a member of N. (P is the player function, P (h) being the player who

takes an action after the history h.)

• For each player a utility function Ui on Z.

We form an example two-stage extensive game. First, player 1 chooses between

actions L and R. After observing player 1’s decision, player 2 decides between

actions A and B if player 1 played L and between C and D if player 1 played R.

Extensive games with two players can be illustrated with matrices similarly to the

Chapter 2 Literature Survey

10

strategic games. The example game is given. Instead of the actions, the columns

and rows are now the strategies of the players. The utilities of the outcomes are

also visible. All the relevant information is available in the matrix, but the

chronology of events is hard to perceive. A better option is to form a tree

illustrating the game as in Figure 2.1.

Figure 2.1: Extensive Form

As in the strategic games, the solution of an extensive game is a Nash

equilibrium from which no player has an incentive to deviate unilaterally. The

solution of the example game can be deducted easily.

Chapter 2 Literature Survey

11

2.2 ROUTING PROTOCOLS

2.2.1 Introduction

In computer networking the term routing refers to selecting paths in a computer

network along which to send data.Routing directs forwarding, the passing of

logically addressed packets from their source toward their ultimate destination

through intermediary nodes (called routers). It facilitate the exchange of routing

information between networks, allowing routers to build routing tables

dynamically. Traditional IP routing stays simple because it uses next-hop

routing where the router only needs to consider where it sends the packet, and

does not need to consider the subsequent path of the packet on the remaining

hops. Traditional IP routing stays simple because it uses next-hop routing

where the router only needs to consider where it sends the packet, and does not

need to consider the subsequent path of the packet on the remaining hops.

Recent research has lead not only to many routing protocols, but too many

routing techniques. By a routing technique we mean the basic strategy that a

routing protocol uses to store and propagate routing information. A routing

technique captures the following three protocol characteristics [3]:

• Whether routing information is propagated on demand or proactively;

• Whether routing information is propagated by flooding or by propagation

on a spanning tree; and

• The format of the routing information stored locally and communicated

(whether it is link state data, distance vectors).

2.2.2 Dynamic Routing Protocols

If a designated path becomes unavailable, the existing nodes must determine an

alternate route to use to get their data to its destination. They usually

accomplish this through the use of a routing protocol using one of two broad

classes of routing algorithms: distance vector algorithms and link state

Chapter 2 Literature Survey

12

algorithms, which together account for nearly every routing algorithm in use on

the Internet [9].

2.2.2.1 Distance Vector Routing Algorithm

Distance Vector protocols judge best path based on metric variable. Distance can

be hops or a combination of metrics calculated to represent a distance value. The

name distance vector is derived from the fact that routes are advertised as

vectors of (distance, direction), where distance is defined in terms of a metric

and direction is defined in terms of the next-hop router.

Distance vector algorithms use the Bellman-Ford algorithm. This approach

assigns a number, the cost, to each of the links between each node in the

network. Nodes will send information from point A to point B via the path that

results in the lowest total cost (i.e. the sum of the costs of the links between the

nodes used) [8 , 9].

Distance-vector routing protocols are simple and efficient in small networks, and

require little managaement if any. However, they do not scale well, and have

poor convergence properties, which has led to the development of more complex

but highly scalable link-state routing protocols for use in large networks.

Distance-vector protocols suffer from the count-to-infinity problem.

Distance vector routing protocols include the following:

• Routing Information Protocol (RIP) for IP

• Cisco's Internet Gateway Routing Protocol (IGRP)

2.2.2.2 Link State Routing Protocol

When applying link-state algorithms, each node uses as its fundamental

data a map of the network in the form of a graph. To produce this, each node

floods the entire network with information about what other nodes it can connect

to, and each node then independently assembles this information into a map.

Using this map, each router then independently determines the best route from

itself to every other node.

Chapter 2 Literature Survey

13

Link state protocols, sometimes called shortest path first or distributed database

protocols, are built around a well-known algorithm from graph theory, E. W.

Dijkstra'a shortest path algorithm [9].

Examples of link state routing protocols are:

• Open Shortest Path First (OSPF) for IP

• The ISO's Intermediate System to Intermediate System (IS-IS) .

Although link state protocols are rightly considered more complex than distance

vector protocols, the basic functionality is not complex at all:

• Each router establishes a relationship—an adjacency—with each of its

neighbors.

• Each router sends link state advertisements (LSAs), some

• Each router stores a copy of all the LSAs it has seen in a database. If all

works well, the databases in all routers should be identical.

• The completed topological database, also called the link state database,

describes a graph of the internetwork. Using the Dijkstra algorithm, each

router calculates the shortest path to each network and enters this

information into the route table [9].

There are different routing protocols for routing data on internet, TCP/IP routing

protocols and Adhoc routing protocols.

� TCP/IP Routing

 -RIP

 -OSPF

 -BGP

� Ad hoc network routing protocols

 -Dynamic source routing

 -AODV (Adhoc on Demand Distance Vector)

 -Hierarchical State routing protocol

 -Optimized Link State Routing Protocol

 -Destination sequenced Distance vector

Chapter 2 Literature Survey

14

By using Game theory approach inefficiency of Adhoc routing protocols are

removed and performance is measured [3]. But the inefficiency in TCP/IP routing

protocols are not removed .So here game theory is applied approach on TCP/IP

routing protocols and to improve the performance of protocols. The inefficiency

of routing protocol is given in detail in following sections.

2.2.3 TCP/IP Routing Protocols

Thesis work mainly concentrates on three routing protocols RIP, OSPF and BGP.

2.2.3.1 Routing Information Protocol (RIP)

The Routing Information Protocol (RIP) is one of the most commonly used

interior gateway protocol (IGP) routing protocols on internal networks (and to a

lesser extent, networks connected to the Internet), which helps routers

dynamically adapt to changes of network connections by communicating

information about which networks each router can reach and how far away those

networks are. Although RIP is still actively used, it is generally considered to

have been made obsolete by routing protocols such as OSPF and IS-IS [9].

Nonetheless, a somewhat more capable protocol in the same basic family

(distance-vector routing protocols), is the Cisco proprietary (IGRP) Interior

Gateway Routing Protocol.

RIP is a distance-vector routing protocol, which employs the hop count as a

routing metric. The maximum number of hops allowed with RIP is 15. Each RIP

router transmits full updates every 30 seconds by default, generating large

amounts of network traffic in lower bandwidth networks. It runs above the

network layer of the Internet protocol suite, using UDP port 520 to carry its data.

A mechanism called split horizon with limited poison reverse is used to avoid

routing loops. Routers of some brands also use a holddown mechanism known as

heuristics, whose usefulness is arguable and is not a part of the standard

protocol.

Chapter 2 Literature Survey

15

2.2.3.2 Open Shortest Path First (OSPF)

Open Shortest Path First (OSPF) is a routing protocol which was first defined as

version 2 in RFC 2328. It is used to allow routers to dynamically learn routes

from other routers and to advertise routes to other routers. Advertisements

containing routes are referred to as Link State Advertisements (LSAs) in OSPF

[9]. OSPF router keeps track of the state of all the various network connections

(links) between itself and a network it is trying to send data to. This makes it a

link-state routing protocol. OSPF supports the use of classless IP address ranges

and is very efficient. OSPF uses areas to organize a network into a hierarchal

structure; it summarizes route information to reduce the number of advertised

routes and thereby reduce network load and uses a designated router to reduce

the quantity and frequency of Link State Advertisements. OSPF does require the

router have a more powerful processor and more memory than other routing

protocols.

OSPF selects the best routes by finding the lowest cost paths to a destination. All

router interfaces (links) are given a cost. The cost of a route is equal to the sum

of all the costs configured on all the outbound links between the router and the

destination network, plus the cost configured on the interface that OSPF received

the Link State Advertisement on. The Open Shortest Path First (OSPF)

protocol is a link-state, hierarchical interior gateway protocol (IGP) for network

routing. Dijkstra's algorithm is used to calculate the shortest path tree. It uses

cost as its routing metric. A link state database is constructed of the network

topology which is identical on all routers in the area.

2.2.3.3 Boarder Gateway Protocol (BGP)

The Border Gateway Protocol (BGP) is the core routing protocol of the

Internet. It works by maintaining a table of IP networks or 'prefixes' which

designate network reachability between autonomous systems (AS). It is

described as a path vector protocol. BGP does not use traditional IGP metrics,

but makes routing decisions based on path, network policies and/or rulesets.BGP

Chapter 2 Literature Survey

16

supports Classless Inter-Domain Routing and uses route aggregation to decrease

the size of routing tables [9].

Very large private IP networks can also make use of BGP. An example would be

the joining of a number of large Open Shortest Path First (OSPF) networks where

OSPF by itself would not scale to size. Another reason to use BGP would be

multihoming a network for better redundancy.

2.3 RELATED WORK

2.3.1 Inefficiency In Routing Protocol:

Despite its obvious success, robustness, and scalability, the Internet suffers from

a number of end-to-end performances and availability problems. Internet's

inefficiencies can be argued as Internet behavior can be improved by spreading

intelligent routers at key access and interchange points to actively manage traffic

[1].

A routing system is responsible for forwarding traffic between nodes of a

network. There are a number of problems this system can be inefficient. It can

forward packets along routes that are non-optimal or it can spread load

unequally, such that some links are over-utilized while others are idle.

We classify potential sources of routing inefficiencies into four principle

categories:

• Poor Routing Metrics. [1] Today's backbone, or “default-free”, routers

generally exchange only connectivity information between each other. In

the absence of explicit policy rules, these routers make routing decisions

by minimizing the number of independent Autonomous Systems (AS)

traversed in getting to the destination. This metric correlates poorly with

performance characteristics such as latency or drop rate; it does not

change as the performance changes. This is not surprising when one

considers that AS's generally correspond to organizational domains and

Chapter 2 Literature Survey

17

can have enormous scope. For instance, all of MCI's Internet backbone is

represented by a single AS number.

• Restrictive Routing Policies. Policy routing allows each AS to define its

own rules for where to send traffic, which routes to advertise, and what

traffic to transit. These policies are constructed to support the interests of

individual service providers and can negatively affect overall reachability

and performance [1]. For instance, the common early exit policy attempts

to dispatch a packet bound for a host on a foreign network as soon as

possible, even if this means sending it in the opposite geographical

direction from where it is going. This is suboptimal but, for lack of

alternative mechanisms, it is used to limit the amount of traffic one

network carries for another. For similar reasons, large providers have

established private peering relationships to exchange routing information

and traffic, while smaller providers are left at the congested public

exchange points. Consequently, packets sent from or destined to smaller

networks have less diversity in their choice of routes and poorer

connectivity as a result. Finally, some government-funded networks have

legal limitations on how they may be used, resulting in policies that only

carry traffic meeting some acceptable use criteria.

• Manual Load Balancing. Internet Service Providers and multi-homed

organizations generally must pay a fixed fee for the links they use to

connect their routers. [1] Consequently, they are interested in balancing

the amount of load on their links to take the best advantage of their fixed

cost. There is no mechanism for doing this automatically so operators

balance load by adding and removing policy rules on a daily basis in

response to measured link utilization. While this may keep link utilization

high, it does not make for the best routing decisions. In fact, it is

extremely likely that there is an alternative assignment of routes to links

that would achieve both equal utilization and better overall performance.

• Single Path Routing. Current Internet routers select a single path to

reach a given destination. Alternate paths to the same destination may

Chapter 2 Literature Survey

18

have underutilized links. This capacity can only be exploited by routing

traffic along multiple paths to each destination [1].

2.3.2 Detour Project:

While it is clear that each of these factors contribute to making a less efficient

routing system,

� Detour: - Is the project implemented to remove the inefficiencies in

routing [1].

Detour is composed of a set of geographically distributed router nodes

interconnected using tunnels. A tunnel can be thought of as a virtual point-to-

point link. Each packet entering a tunnel is encapsulated into a new IP packet

and forwarded through the Internet until it reaches the tunnel's exit point. This

same mechanism has previously been used to form the multicast backbone

(MBONE) and the experimental IPv6 backbone (6BONE). Tunnels are useful

because they allow new routing functionality to be prototyped while using the

existing network infrastructure.

Figure 2.2: Detour Architecture

Chapter 2 Literature Survey

19

A host wishing to use the Detour network will direct its outbound traffic to the

nearest Detour router. Its packets will be forwarded along tunnels within the

Detour network and will exit at a point close to the destination. In order that

responses return in the same fashion, the system must perform network address

translation, so the source address of the packet reflects the exit router and not

the actual source. This complication is a necessary consequence of using tunnels

to superimpose a new routing framework.

� Such end-to-end route selection schemes are selfish by nature in that they

allow end users to greedily select routes to optimize their own

performance without considering the system-wide criteria.

� Selfish routing can result in serious performance degradation due to lack

of cooperation.

2.3.3 PROBLEM DEFINITION

� Implementing the exciting routing protocol (RIP) using Game approach, by

using different algorithms.

� A game-theoretic approach to compute the traffic equilibria of various

routing schemes and then evaluate their performance.

� Analyzing the performance of protocol by game theory and the other

conventional protocols on different parameters like

• Delay jitter

• Convergence

• Throughput

• Delay

• Soundness

• Processing Time

 20

3 MODELING ROUTING AS GAME

This chapter explains how routing protocols can be modeled as game. And also

gives the strategy for implantation of game theory algorithm on routing

protocols. Here minimax algorithm is applied on routing protocol for finding path

from source to destination.

3.1 MINIMAX ALGORITHM:

Game theory was invented to provide a mathematical foundation for reasoning

about conflict and competition [5]. It has grown into a rich theory, with powerful

mathematical and computational tools. It also has the advantage of retaining its

intuitive appeal, which is what first attracted us to it. Two insights enabled us to

turn this pool of theory and tools into a potentially powerful analytical capability

for analyzing routing:

• A routing protocol can be modelled as a minimax game between the

network and the routers.

• The minimax value of the game can quantify the performance properties.

Minimax (sometimes minmax) is a method in decision theory for minimizing

the maximum possible loss [13]. Alternatively, it can be thought of as

maximizing the minimum gain (maximin). It started from two player zero-sum

game theory, covering both the cases where players take alternate moves and

those where they make simultaneous moves. It has also been extended to more

complex games and to general decision making in the presence of uncertainty.

A simple version of the algorithm deals with games such as tic-tac-toe, where

each player can win, lose, or draw. If player A can win in one move, his best

move is that winning move. If player B knows that one move will lead to the

situation where player A can win in one move, while another move will lead to

the situation where player A can, at best, draw, then player B's best move is the

one leading to a draw. Late in the game, it's easy to see what the "best" move

is. The Minimax algorithm helps find the best move, by working backwards from

the end of the game. At each step it assumes that player A is trying to maximize

Chapter 3 Modeling Routing As Game

21

the chances of A winning, while on the next turn player B is trying to minimize

the chances of A winning (i.e., to maximize B's own chances of winning) [13].

Suppose we are considering a two-player game in which, at each turn, a player

has a choice of three legal moves. Figure 3.1 might represent possible choices

for the first two moves of such a game; it is a tree in which each node represents

a state of the game and each branch represents a legal move between two

states. Such a structure is called a game tree [3].

Figure 3.1: A Representation of Game

A Run of the game is a path through the game tree starting at the root node

(which represents the initial state) and ending at a leaf node (at which the game

has ended). Each run of the game therefore corresponds to a particular sequence

of moves chosen by the two players in turn. A cost function is evaluated at the

leaves of the game tree [3]. It maps each complete run of the game to a value

representing the outcome of the game for this run. The outcome is the cost of

this run for a particular player, known as the minimising player. The game must

be zero-sum, meaning that the cost for the other player (the maximising player)

is minus the cost for the minimising player. As their names suggest, the

minimising player tries to minimise the cost function, while the maximising

player tries to maximise it. When the game tree can be fully explored, the

Chapter 3 Modeling Routing As Game

22

minimax strategy will find a path that guarantees the best outcome for each

player when the other plays as well as possible.

 Stage 1 Stage2 Stage3

Figure: 3.2 the minimax algorithm at work

For example, consider a game in which each player makes a single move in turn,

each choosing from two possible moves. Figure 3.2 shows three stages of a

minimax search for such a game. Stage 1 shows the value of the cost function at

each leaf node. Stage 2 shows that in the left-hand, middle layer state of the

game tree Player II (the minimising player) would choose the move that

minimizes the outcome; the game would end in the leaf state with outcome 2.

Stage 3 shows Player II’s decision in the right-hand state, and also that Player I

would choose the move leading to the left-hand state, guaranteeing himself the

largest minimal outcome.

3.2 MAPPING ROUTING AS A GAME

The intuition behind modeling routing as a game is to note that the problem of

routing can be understood as a contest between the network and the routers.

And also see that game theory useful for improving the performance of routing

protocols. The routers are, in effect, competing with a network that is trying to

outwit them.

Chapter 3 Modeling Routing As Game

23

• Identify the two players and their initial states, saying which is the

minimizing player and which is the maximising player

• Define the game moves for each of the players;

• Specify a cost function that quantifies the outcome for the minimising

player; the minimising player chooses moves to minimise this function

and the maximizing player chooses moves to maximize it.

In all our uses of game theory the two players will be same. All the routers

together form one player, which is referred to henceforth as the set-of-routers

player; the other player is the set of links, which is called the network player [3].

Game moves for the set-of-routers player are, in essence to execute the routing

protocol. And for the network player game moves are to change the network

topology. This is the basic insight behind our mapping to model routing protocols

as games. Once the game has been defined the game tree can be constructed

and explored.

The minimax strategy searches through the game tree to find the minimax path

[14]; the minimax value (or minimax outcome) is the cost function applied to

this path. The meaning of the minimax value can be interpreted in the following

way: within the constraints provided to the game, if the routers behave

optimally, then whatever changes in the network occur, the routers are

guaranteed to do no worse than the minimax value.

We define the game as follows:

• The set-of-routers player, representing the set of all the routers, is the

minimizing player; the network player, representing the set of all the links,

is the maximising player; in the initial state of the game all links are down

and each router has a correct view of the network;

• An atomic move for a router is to send all its routing messages, as

specified by the protocol (in addition, all routers notice local link changes

and process received messages). An atomic move for the network changes

the state of one link from up to down or vice versa. A game move, for

either player, is a (small) number of atomic moves;

Chapter 3 Modeling Routing As Game

24

Below figure 3.3 shows how game components is mapped into game component.

Figure 3.3: Modeling Routing as Game

3.2.1. Detailed Description Of Game Moves:

All the routers together form one player, which is referred to henceforth as the

set-of-routers player; the other player is the set of links, which is called the

network player. Game moves for the set-of-routers player are, in essence, to

execute the routing protocol. And for the network player game moves are to

change the network topology.

The minimax algorithm in section 3.1 moves is considered as game moves for

finding the path from source to destination.

3.2.2 Detailed Description Of A Set-Of-Routers Atomic Move

The atomic moves and game moves for the network are reasonably clear. The

game moves for the set-of-routers are rather more complex, so we elaborate on

them in detail.

In each atomic move one router is chosen (the choice being determined by the

need to minimise the cost function that records inconsistency and network

traffic). Let us say that router n is chosen, and then the atomic move consists of

the following sequence of activities:

Available Adaptations

Routing Component Game Component

Action Set

Nodes in Network Player Set

Adaptation Algorithm

Decision Update Algorithm

Valuation Function
(Preference Relations)

Utility Function

Learning Process

Chapter 3 Modeling Routing As Game

25

(i) Each router checks the state of its local links, and updates its own

record of the state of those links accordingly.

(ii) Each router performs some processing, as follows:

(a) In link state routing, every router creates its own LSP and puts it on

its outgoing queue.

(b) In distance vector routing, each router discards distance vectors it

had received from neighbors for which the link has just gone down, and

recalculates its own distance vector accordingly.

 (iii) Router n performs a broadcast, which consists of the following:

(a) In link state routing, router n processes the LSPs on its holding

queue (which is empty the first time when this router is scheduled). For

each one, if router n is now linked to the LSP’s destination router, that

LSP is removed from the holding queue and added to a list of LSPs that

are to be broadcast. Router n then processes the LSPs on its outgoing

queue (which contains only router n’s own LSP the first time this router

is scheduled). Each LSP in the outgoing queue is cloned a number of

times, with each clone corresponding to a particular destination router

other than n itself and the sender of the LSP (if different from n). For

each cloned LSP, if n is linked to the destination of that LSP, the LSP is

added to the list of LSPs to be broadcast, overwriting any duplicate LSPs

already there. If n is not linked to the destination of the LSP, the LSP is

added to n’s holding queue, as long as its timestamp is more recent

than that of any LSP already in the holding queue, originating from the

same source and with the same destination. Each LSP in the list to be

broadcast is then delivered to its destination.

(b) In distance vector routing, router n broadcasts its own distance

vector to all neighbors to which it is linked (as required by the “output

always” model).

Chapter 3 Modeling Routing As Game

26

 (iv) All routers that have been sent updates receive them, and act as

 Follows:

(a) In link state routing, when a router receives an LSP it updates its

view of the network accordingly. It then puts the LSP on its outgoing

queue, but only if its timestamp is more recent than that of any LSP

already in the outgoing queue, originating from the same source and

with the same destination. (In reverse-path forwarding, the router does

none of this unless it believes the sender of the LSP is on the shortest

path between itself and the source of the LSP.)

(b) In distance vector routing, when a router receives a distance vector,

it adds this to its list of stored distance vectors, replacing any distance

vector previously received from the same neighbor. It then recalculates

its own distance vector.

3.3 GAME TREES

When the above defined atomic moves are applied on the network all the routing

tables and the game tree are constructed. On that game tree minimax algorithm

applied to fine destination.

The game tree consists of all moves available to the current player as children of

the root, and then all moves available to the next player as children of these

nodes, and so forth, as far into the future of the game as desired. Each branch of

the tree represents a possible move that player could make at that point in the

game. Evaluating the game at a leaf of this tree yields the projected status of the

game after that sequence of moves is made by the players. A deeper search of

the game tree provides more information about possible advantages or traps and

therefore yields a better move.

Chapter 3 Modeling Routing As Game

27

3.3.1 Example

Figure 3.4 Network

The statistics of the network as follows:

Packet sending node = n0, n12

Destination node= n11

Routers= 10 routers

On the above example atomic moves of router and network links are

applied and game tree is constructed and finds destinations using minimax

algorithm.

Chapter 3 Modeling Routing As Game

28

Figure 3.5 Game tree whish gives path from source to destination

The figure.3.4 shows the network for which finds the path from source to

destination. When the routers prepare the routing table by using RIP protocol

control messages like request and reply message, these are the atomic moves

for the game and it prepares the tree which gives the connectivity information of

whole network. The tree is used by minimax module for finding the path from

source to destination. The above figure.3.5 shows the tree with their possible

moves for each router, and finds the path from source to destination.

When in network convergence occur (some links are down) the topology of the

whole network will be changing. According to that, the whole tree for network

will be changing, figure.3.6 shows how it responses to topology change.

Chapter 3 Modeling Routing As Game

29

Figure: 3.6 Game tree after change in topology of network

In section 2.1 basics of game theory, when there is change in game or there is

any need for backward movement, it takes the backward movement for finding

the best move for minimizing the possible loss.

When there is any topology change in the network, minimax algorithm takes the

moves backward and prepares the tree and finds the path to destination node.

 30

4 SIMULATION ENVIRONMENT

This chapter gives the basic information about simulation environment or tool

used for coding and simulation. The purpose of this chapter is to give a new user

some basic idea of how the simulator works, how to setup simulation networks,

how to create new network components, routing module etc.

4.1 BASIC OF NETWORK SIMULATOR

NS is an object oriented simulator, written in C++, with an OTcl interpreter as a

front-end. The simulator supports a class hierarchy in C++ (also called the

compiled hierarchy in this document), and a similar class hierarchy within the

OTcl interpreter. The two hierarchies are closely related to each other; from the

user’s perspective, there is a one-to-one correspondence between a class in the

interpreted hierarchy and one in the compiled hierarchy. The root of this

hierarchy is the class TclObject. Users create new simulator objects through the

interpreter; these objects are instantiated within the interpreter, and are closely

mirrored by a corresponding object in the compiled hierarchy. The interpreted

class hierarchy is automatically established through methods defined in the class

TclClass. User instantiated objects are mirrored through methods defined in the

class TclObject. There are other hierarchies in the C++ code and OTcl scripts;

these other hierarchies are not mirrored like TclObject [16].

NS uses two languages because simulator has needs to do two different kind of

things it.

• Detailed simulations of protocols require a systems programming language

which can efficiently manipulate bytes, packet headers, and implement

algorithms that run over large data sets. For these tasks run-time speed is

important and turn-around time (run simulation, find bug, fix bug,

recompile, re-run) is less important.

• On the other hand, a large part of network research involves slightly

varying parameters or configurations, or quickly exploring a number of

Chapter 4 Simulation Environment

 31

scenarios. In these cases, iteration time (change the model and re-run) is

more important. Since configuration runs once (at the beginning of the

simulation), run-time of this part of the task is less important.

NS meets both of these needs with two languages, C++ and OTcl. C++ is fast to

run but slower to change, making it suitable for detailed protocol

implementation.

4.1.1 Architecture Of NS2

Figure 4.1 Architectural View of NS2

Figure 4.1 shows the general architecture of NS. In this figure a general user

(not an NS developer) can be thought of standing at the left bottom corner,

designing and running simulations in Tcl using the simulator objects in the OTcl

library. The event schedulers and most of the network components are

implemented in C++ and available to OTcl through an OTcl linkage that is

implemented using tclcl. The whole thing together makes NS, which is an OO

extended Tcl interpreter with network simulator libraries [16].

4.1.2 C++ And OTcl Duality:

The event scheduler and the basic network component objects in the data path

are written and compiled using C++. These compiled objects are made available

to the OTcl interpreter through an OTcl linkage that creates a matching OTcl

object for each of the C++ objects and makes the control functions and the

Chapter 4 Simulation Environment

 32

configurable variables specified by the C++ object act as member functions and

member variables of the corresponding OTcl object. In this way, the controls of

the C++ objects are given to OTcl. It is also possible to add member functions

and variables to a C++ linked OTcl object. The objects in C++ that do not need

to be controlled in a simulation or internally used by another object do not need

to be linked to Otcl [16].

Figure 4.2 C++ and OTcl: The Duality

Figure 4.2 shows an object hierarchy example in C++ and OTcl. One thing to

note in the figure is that for C++ objects that have an OTcl linkage forming a

hierarchy, there is a matching OTcl object hierarchy very similar to that of C++.

There are a number of classes defined in ~tclcl/. In NS2 only focus on the six

classes that are used in NS2:

• The Class Tcl contains the methods that C++ code will use to access the

interpreter.

• The class TclObject is the base class for all simulator objects that are also

mirrored in the compiled hierarchy.

• The class TclClass defines the interpreted class hierarchy, and the methods

to permit the user to instantiate TclObjects.

• The class TclCommand is used to define simple global interpreter

commands.

Chapter 4 Simulation Environment

 33

• The class EmbeddedTcl contains the methods to load higher level built-in

commands that make configuring simulations easier.

• Finally, the class InstVar contains methods to access C++ member

variables as OTcl instance variables [16].

4.1.3 Simplified User’s View:

Figure 4.3 Simplified User’s View Of Network Simulator 2

As shown in Figure 4.3, in a simplified user's view, NS is Object-oriented Tcl

(OTcl) script interpreter that has a simulation event scheduler and network

component object libraries, and network setup (plumbing) module libraries. To

setup and run a simulation network, a user should write an OTcl script that

initiates an event scheduler, sets up the network topology using the network

objects and the plumbing functions in the library, and tells traffic sources when

to start and stop transmitting packets through the event scheduler [16].

When a simulation is finished, NS produces one or more text-based output files

that contain detailed simulation data, if specified to do so in the input Tcl script.

The data can be used for simulation analysis or as an input to a graphical

simulation display tool called Network Animator (NAM) that is developed as a

part of VINT project [16]. NAM has a nice graphical user interface similar to that

of a CD player (play, fast forward, rewind, pause and so on), and also has a

Chapter 4 Simulation Environment

 34

display speed controller. Furthermore, it can graphically present information such

as throughput and number of packet drops at each link, although the graphical

information cannot be used for accurate simulation analysis.

4.2 ROUTING MODULE IN NETWORK SIMULATOR:

Every routing implementation in NS consists of three functional blocks:

• Routing agent exchanges routing packet with neighbors,

• Route logic uses the information gathered by routing agents (or the global

topology database in the case of static routing) to perform the actual route

computation,

• Classifiers sit inside a Node. They use the computed routing table to

perform packet forwarding.

When implementing a new routing protocol, one does not necessarily implement

all of these three blocks. For instance, when one implements a link state routing

protocol, one simply implement a routing agent that exchanges information in

the manner link state does, and a route logic that applies Dijkstra on the

resulting topology database. It can then use the same classifiers as other unicast

routing protocols [16].

Figure: 4.4 Interaction among node, routing module, and routing .the dashed line shows the details of

one routing module

Chapter 4 Simulation Environment

 35

When a new routing protocol implementation includes more than one functional

block, especially when it contains its own classifier, it is desirable to have

another object, which we call a routing module, that manages all these functional

blocks and to interface with node to organize its classifiers. Figure 4.4 shows

functional relation among these objects. Notice that routing modules may have

direct relationship with route computation blocks, i.e., route logic and/or routing

agents. However, route computation may not install their routes directly through

a routing module, because there may exist other modules that are interested in

learning about the new routes. This is not a requirement, however, because it is

possible that some route computation is specific to one particular routing

module, for instance, label installation in the MPLS module [16].

A routing module contains three major functionalities:

1. A routing module initializes its connection to a node through register {},

 and tears the connection down via unregister{}. Usually, in register {} a

 routing module

• tells the node whether it interests in knowing route updates and transport

agent attachments, and

• Creates its classifiers and install them in the node (details described in the

next subsection). In unregister { } a routing module does the exact

opposite: it deletes its classifiers and removes its hooks on routing update

in the node.

2. If a routing module is interested in knowing routing updates, the node will

 inform the module via RtModule::add-route {dst, target} and

 RtModule::delete-route{dst, nullagent}.

3. If a routing module is interested in learning about transport agent

 attachment and detachment in a node, the node will inform the module

 via RtModule::attach {agent, port} and RtModule::detach {agent,

 nullagent}.

Chapter 4 Simulation Environment

 36

There are several derived routing module examples in ~ns/tcl/lib/ns-

rtmodule.tcl, which may serve as templates for new routing modules [16].

4.3 EXAMPLE

Figure 4.5 shows example simulate using NS2 tool and observes how it

finds route for destination and also the working environment of NS2 tool.

Figure 4.5: Network of nodes and routers

Simulation of above example:

0

2

1

3

4

5

6

10

1

9

3

4

9

5

4

20
Source

Destination

Chapter 4 Simulation Environment

 37

Figure 4.6: Simulation Of Above Network And NS2 Working Environment

The figure 4.6 shows the simulation environment of NS2, it shows how the

packet is sent to destination node. When the simulation of any network is

executed, NAM file of that particular example will run and also trace file is

generated for analysis of the network.

4.4 STRUCTURE OF TRACING:

NS simulation can produce both the visualization trace (for NAM) as well as an

ASCII file trace corresponding to the events registered at the networks

When tracing into an output ASCII file, the trace is organized in 12 fields (L to R)

as follows in figure.4.7

Figure 4.7: Fields Appearing In Trace

Chapter 4 Simulation Environment

 38

1. The first field is the event type. It is given by one of four possible

symbols

r: receive (at to_node)

+: enqueue (at queue)

- : dequeue (at queue)

d: drop(at queue)

2. The second field gives the time at which the event occurs.

3. Gives the input node of the link at which the event occurs.

4. Gives the output node of the link at which the event occurs.

5. Gives the packet type.

6. Gives the packet size.

7. Some flags

8. This is the flow id of IPv6 that a user can set for each flow at input OTcl

script. One can use this filed further for analysis purpose; it is also

used for specifying stream color for the NAM display.

9. This is the source address given in the form of “node. Port”.

10.This is the destination address given in the same form.

11.This network layer protocol packet sequence number. Even thought

UDP network in real network do not use sequence number, NS keeps

the track of NS packet sequence number for analysis purpose [12].

12.The last field shows the unique id of packet.

Having simulation trace data at hand, all one has to do is to transform a subset

of the data of interest into a comprehensible information and analyze it. One can

of course write programs in any programming language that can handle data

files like awk, pearl etc. Yet several tools that seem particularly adapted for

these purpose and that are freely available under various operating systems.

[17] Tracegraph is the tool implemented in matlab, and which is freely available

.In this tool trace file is given as input, and various graphs will generate

according to users requirement.

Chapter 4 Simulation Environment

 39

Trace graph supports the following ns-2 trace file formats:

• Wired

• Satellite

• Wireless (old and new trace)

• Wired-cum-wireless.

Trace file loading stage is divided into 4 stages:

• automatic trace file format recognition using the first n file lines, where n

is specified in Trace graph configuration file, if the format cannot be

recognized it can be specified manually

• Trace file parsing to extract necessary simulation data which is saved to a

temporary file, trace files can contain much more data than is needed by

the system, so unnecessary information is omitted to speed up trace file

loading

• Temporary file loading

• Constraints calculations (packets types, packets sizes, flows IDs, trace

levels, number of nodes, simulation time) – in order to speed up data

processing [17].

 40

5 RIP SIMULATION

Network simulator 2 has unicast support for routing protocols like RIP, OSPF etc.

In this chapter rtProtoDV (RIP) which is already implemented in NS2, is

simulated and the results are analyzed for inefficiencies in rtProtoDV. Here, to

see the behavior of RIP 4 different examples are taken with different parameters

like bandwidth, queue, packet size... etc and how it works. According to

simulation results the inefficiencies in RIP protocol are found.

5.1 SIMULATION SETUP:

In this simulation 4 examples are taken, the parameters as follows.

 Table 5.1 RIP simulation parameters

Parameter Value

Bandwidth Varied (but same for all

example)

Simulation time 20 sec

Nodes varied

Traffic Type FTP

Packet size 1040

Traffic TCP

Following are the examples used for simulation and analyzing RIP protocol.

Chapter 5 Rip Simulation

 41

Figure 5.1: Example1 RIP implementation

Packet sending node = n0

Destination node= n11

Routers= 9 routers

Figure 5.2: Example 2 RIP implementation

Packet sending node = n0,n12,n13

Destination node= n10

Routers= 10 routers

Figure 5.3: Example 3 RIP implementation

Packet sending node = n0, n12

Destination node= n10

Routers= 10 routers

Figure 5.4: Example 4 RIP implementation

Packet sending node = n0, n13

Destination node= n10

Routers= 12 routers

Chapter 5 Rip Simulation

 42

5.2 RESULT

Fallowing table shows results of above 4 examples on different parameters like

convergence, throughput, delay, Processing time, delay jitter etc.

Table 5.2 RIP Simulation Result

A=Average

M=Maximum

From above results we can say that:

• The timer associated with each entry in routing table much larger than

the period of transmission of information.

• Slow Convergence

• Count to infinity Problem

• Difference in the links speed is not reflected in hop count metrics

• Congested links are included in path from source to destination.

As we have seen in chapter 3 how the routing is to be modeled as game. So here

that approach is to be used for modeling routing as game and removing the in

inefficacies of RIP protocol.

Parameters Example1 Example 2 Example 3 Example 4

Convergence

(Sec)

0.069 0.56

0.43 0.555

Throughput

(PKT/TIL)

A= 2.2321

M=5.0

A=0.8909

M=3.0

A=2.01851

M=4.0

A=15.7142

M=34.0

Jitter

{Sec)

A=0.01081

M=0.2582

A=0.5119

M=8186

A=0.0530

M=0.7658

A=0.0442

M=0.6168

Processing Time

(Sec)

A= 0.01934

M=0.2454

A=0.111985

M=0.81864

A=0.0301

M=0.3468

A=0.0267

M=0.371406

Delay

(Sec)

A=0.2524

M=0.4386

A=0.6953

M=1.2206

A=0.3418

M=0.7228

A=0.3361

M=0.6868

 43

6 IMPLEMENTATION DETAILS OF RTPROTOMIN

6.1 INTRODUCTION:

The RIP (Routing Information Protocol) uses Distance Vector (DV) routing

protocol for finding path from source to destination, and sends the packets. DV

routing is the implementation of Distributed Bellman-Ford (or Distance Vector)

routing. As we seen in above chapter rtProtoDV is the RIP implementation in

Network Simulator 2 (NS2) unicast routing. Here replacing Distributed Bellman-

Ford (or Distance Vector) with game theory algorithms, like minimax algorithm

for finding path. RtProtoMIN is implemented in NS2. The structure, classes and

all details of rtProtoMIN are as follows.

6.2 BLOCK DIAGRAM OF RTPROTOMIN:-

Figure 6.1 shows how different files are used when simulating example. There

are two main .h and .cc files are modified and one .h and .cc file is added in NS2

for rtProtoMIN.

• rtProtoMIN.h, rtProtoMIN.cc

• route.h, route.cc

• rttable.h , rttable.cc

• bsd-list.h

These are the main files associated with rtProtoMIN, and tcl files are as follows

• Ns-route.tcl

• Route-proto.tcl

These 2 files are useful for implementing rtProtoMIN in tcl script. This mainly

concerns with simulation of rtProtoMIN.

Chapter 6 Implementation Details Of Rtprotomin

 44

Figure: 6.1 Block Diagram of rtProtoMIN

6.3. INTERNALS AND ARCHITECTURE OF RTPROTOMIN:

Here all the classes associated with rtProtoMIN, and the code path used to

configure and execute rtProtoMIN protocols is explained.

The Class rtProtoMIN and the header structure are defined as shown in figure

6.2.

Chapter 6 Implementation Details Of Rtprotomin

 45

6.3.1 RtProtoMIN:

Figure 6.2: RtProtoMIN Class And Header Structure

The above figure 6.2 shows the class rtProtoMIN and header structure which

passes the information to other routers. That packet is called as control packet

that is rtProtoMIN. The internal methods and call graph of rtProtoMIN is as

follows.

6.3.1.1 Hdr_MIN:

The header structure of rtProtoMIN as shown above, it contains the metrics

variable. When there are multiple routes to the same destination, a router should

have a mechanism to calculate the best path. A metric is a variable assigned to

router as a means of ranking them from most preferred to least preferred.

6.3.1.2 Sendpkt ():

This function concerns with sending packet to the destination node. In that three

main parameters have to pass destination address, metrics variable.

ns_addr_t: Declares the network address in NS2.

u_int32_t: Unsigned 32 bit integer.

Chapter 6 Implementation Details Of Rtprotomin

 46

The call graph of sendPkt function is as shown in below figure.

Figure 6.3: Call Graph Of Sendpkt Function.

6.3.1.3 Recv ():

This function deals with receiving the packet to destination node, after receiving

it will free that packet.

The call graph of receive function is as follows

Figure 6.4: Call Graph Of Recv () Function.

There are four main classes, the class RouteLogic, the class rtObject, the class

rtPeer, and the base class Agent/rtProto for all protocols. In addition, the routing

architecture extends the classes Simulator, Link, Node and Classifier.

Chapter 6 Implementation Details Of Rtprotomin

 47

6.4 ROUTE.H

Here two structures are defined

• Adj_entry

• Route_Entry

Also all the methods which are useful for finding the routes like , compute routes

, lookup, check , alloc , minimax .etc. It cotains main class that is RouteLogic.

6.4.1 Class RouteLogic

This class defines two methods to configure unicast routing, and one method to

query it for route information. It also defines an instance procedure that is

applicable when the topology is dynamic.

• The instance procedure register {} is invoked by Simulator::rtproto

{}. It takes the protocol and a list of nodes as arguments, and constructs

an instance variable, rtprotos_, as an array; the array index is the name

of the protocol, and the value is the list of nodes that will run this protocol.

• The configure {} reads the rtprotos_ instance variable, and for each

element in the array, invokes route protocol methods to perform the

appropriate initializations. It is invoked by the simulator run procedure.

• The instance procedure lookup {} takes two node numbers, node Id1

and node Id2, as argument; it returns the id of the neighbor node that

node Id1 uses to reach node Id2.

Chapter 6 Implementation Details Of Rtprotomin

 48

Figure 6.5: Route Logic Class and structure: route_entry and adj_entry

The above diagram shows two structures, which is used in route computation

and other member function used for route computation. The new module added

in routelogic is minimax () shown by red color in diagram. rtProtoMIN use

minimax algorithm for finding route from source to destination.

Route_entry: This structure consists of two variables next_hop and entry. It

concerns with route information for network.

Adj_entry: This structure consists of two variables cost and entry. It concerns

with cost information for each adjacent entry of router.

RouteLogic class also consists of other function like constructor Route_Logic()

it initializes all variables to zero , alloc (): used for allocating memory for

Chapter 6 Implementation Details Of Rtprotomin

 49

routers , reset_all(): when route are found or there is convergence all routers

are reset again and find the routes , check (): checks the maximum hops

allowed for the protocol , insert(): this method adds adjacent routes for each

router, Minimax (): the implementation details and logic is given in above

chapter. It takes tree as argument formed using atomic moves; this tree

contains all connectivity information of whole network.

The routine checks the protocol agent’s instance variable, rtsChanged_ to see if

any of the routes in that protocol have changed since the protocol was last

examined. It then uses the protocol’s instance variables arrays, nextHop_,

rtpref_, and metric_ to compute its own arrays. The rtObject will install or

modify any of the routes as the changes are found.

6.4.2 Class Rtobject

This class is used in simulations that use dynamic routing. Each node has a

rtObject associated with it, that acts as a co-ordinator for the different routing

protocols that operate at a node. At any node, the rtObject at that node tracks

each of the protocols operating at that node; it computes and installs the next

route to each destination available via each of the protocols. In the event that

the routing tables change, or the topology changes, the rtObject will alert the

protocols to take the appropriate action.

The class defines the procedure init-all {}; this procedure takes a list of nodes

as arguments, and creates a rtObject at each of the nodes in its argument list.

It subsequently invokes its minimax () method for finding routes.

6.4.3 The Class Rtpeer

This is a container class used by the protocol agents. Each object stores the

address of the peer agent, and the metric and preference for each route

advertised by that peer. A protocol agent will store one object per peer. The

class maintains the instance variable addr_, and the instance variable arrays,

metric_ and rtpref_; the array indices are the destination node handles. The

class instance procedures, metric{} and preference{}, take one destination

Chapter 6 Implementation Details Of Rtprotomin

 50

and value, and set the respective array variable. The procedures, metric{} and

preference{}, take a destination and return the current value for that

destination. The instance procedure addr {} returns the address of the peer

agent.

6.4.4 Class Agent/rtProto

This class is the base class from which all routing protocol agents are derived.

The constructor for the rtProtoMIN agent initializes a number of instance

variables; each agent stores an array, indexed by the destination node handle, of

the preference and metric, the interface (or link) to the next hop, and the remote

peer incident on the interface, for the best route to each destination computed

by the agent. The agent creates these instance variables, and then schedules

sending its first update within the first 0.5 seconds of simulation start.

6.5 RTTABLE.H:

This file concerns with the routing table building, rttable.h declarer all the

methods and definition of these methods are written in rttable.cc.

This file contains main 3 classes which are useful for building routing table.

• Class Neighbour

• Class rt_entry

• Class rttable

Here each move for building routing table is called as atomic move; this is

explained in previous chapter 3. This move is useful for building tree, which

contains all connectivity information of the network.

Rttable.h uses bsd-list.h for storing all information. Bsd-list.h defines the

different type of data structure, those are useful for storing information of

routing table, neighbor etc. It defines the five types of data structures singly

link-list, singly link-list tail queue, lists, tail queues and circular queues.

Chapter 6 Implementation Details Of Rtprotomin

 51

These data structure used by rttable.h for building routing table and storing

neighbor connectivity information.

6.5.1 Class Neighbor:

This class defines the methods for getting all information of neighbors in the

network. Below diagram shows class neighbor, it shows attributes and methods.

Neighbor method makes the neighbor entry of neighbor node.

LIST_ENTRY (neighbor) concerns with entry of neighbor, which is defined in bsd-

list.h.

Figure 6.6: Class Neighbor

6.5.2 Class Rt_Entry:

Figure 6.7: Class rt_entry

Chapter 6 Implementation Details Of Rtprotomin

 52

The above diagram shows the route entry class the attributes and methods as

shown in figure 6.7. This class concerns with inserting neighbors, neighbor

lookup. Rt_entry initializes all the variables to zero which is used for building

routing table. LIST_ENTRY () concerns with neighbor route entry.

6.5.3 Class Rttable:

This class concerns with adding the routing information for routers and prepares

routing table. There are three main functions of this class are,

Rt_add (): This adds entry into routing table, it adds destination address and

metrics variable i.e. cost to reach to the destination node. It uses

LIST_HEAD_INSERT () structure for adding routing information.

Rt_lookup (): This method search the whole routing table for particular id i.e

destination node. And returns the neighbor node route to destination node.

Rt_delete (): If there is convergence or when the simulation ends the particular

entry or whole routing table is deleted by using this method , and it is modified

using request and reply messages of protocol. LIST_REMOVE () is used for this

purpose.

6.5.4 Other Classes Simulator, Node, Link, And Classifier

The one other method used internally is get-routelogic {}; this procedure returns

the instance of routelogic in the simulation.

• The class Node contains these additional instance procedures to support

dynamic unicast routing: init-routing {}, add-routes {}, delete-routes {},

and rtObject {}.

• The instance procedure init-routing {} is invoked by the rtObject at the

node. It stores a pointer to the rtObject, in its instance variable rtObject_,

for later manipulation or retrieval.

Chapter 6 Implementation Details Of Rtprotomin

 53

• The instance procedure add-routes{} takes a node id, and a list of links. It

will add the list of links as the routes to reach the destination identified by

the node id. The realization of multiPath routing is done by using a

separate Classifier/multiPath.

• The instance procedure delete-routes {} takes a node id, a list of

interfaces, and a nullAgent. It removes each of the interfaces in the list

from the installed list of interfaces.

In this way all these four files are related to each other. As shown in figure 6.1

the interface between simulation example and the .cc and .h header files. The

.tcl files like ns-proto.tcl, route-proto.tcl that forms the duality objects with the

objects of C++ code. As this duality seen in the architecture of network simulator

2.

6.6 CHANGES TO BE MADE WHEN ADDING RTPROTOMIN

PROTOCOL IN NS2:-

Following are the steps for adding rtProtoMIN protocol into NS2.

1) rtProtoMIN.h and rtProtoMIN.cc files are put into routing folder.

/usr/src/ns/routing/

2) Packet.h :-

Following changes are made in the file. RtProtoMIN is the control packet of

the protocol.

� PT-RTPROTOMIN this packet is add in to packet.h

� P_info() Name_[PT-RTPROTOMIN] = “rtProtoMIN”

3) TCL Library

When adding new routing protocol we have to add the same changes in tcl

library. There are two main files in which we have to make changes.

Chapter 6 Implementation Details Of Rtprotomin

 54

• Tcl/lib/ns-packet.tcl

Add “rtProtoMIN”

• TCL/lib/ns-default.tcl

 Agent/rtProto/MIN - set Preference

 Agent/rtProto/MIN - Infinity

 Agent/rtProto/MIN - adveretinterval 2

4) TCL/rtglib/route-protocol.tcl

Add all the function which is used to connect tcl and .cc files with

simulation

5) Add path /routing/rtProtoMIN.o in make file. During recompilation NS2

rtProtoMIN.o file will be generated.

6) Recompile whole NS2

� Make clean

� Touch packet.h

� Make

By using these steps we can add rtProtoMIN protocol in NS2.

So now $ns rtProto MIN can be used for the simulation of protocol.

 55

7 SIMULATION STUDY AND RESULTS

Network Simulator 2 tool is used for the simulation of unicast routing protocol.

As we have seen in above chapters the implementation details of rtProtoMIN

which uses minimax algorithm for finding path, and NS2 have rtProtoDV which

uses conventional way for finding path.

Now in this chapter these two protocols simulation is done on different scenarios,

and analyzed on different parameters.

• Fixed network Varying Packet size: In this scenario network is fixed and

packet size is varied from example to example, and it analyzed to find how

they responds to delay

• Fixed Packet Size varying network: In this scenario Packet size is same for

the entire network but network is changed and its complexity is increased.

• Changing queue to see how it responds to jitter

The above scenarios are simulated for both rtProtoDV and rtProtoMIN, and

comparison is made between them to see the performance of routing protocol.

Chapter 7 Simulation Study And Results

 56

7.1 SCENARIO1: VARYING PACKET SIZE

In this scenario we have taken a network, in that the packet size varied from

example to example. The setup of this example as follows.

7.1.1 Simulation setup

Table 7.1 Parameters used during simulation.

Parameter Value

Bandwidth Varied (but same for all

example)

Simulation time 20 sec

Nodes 26

Traffic Type FTP

Packet size Varied from example to

example

Number of flows 7

Traffic TCP

Here four examples are taken, in that the network is same for four example and

simulation parameters as in table 7.1. But packet size is varies 1040, 1540, 2040

and 2540 from example 1 to example 4. These four examples are simulated

using rtProtoDV and rtProtoMIN routing protocols. Here in this simulation bursty

(bulky) data transmitted by each flow, to see how these both protocols respond

to delay and jitter.

Chapter 7 Simulation Study And Results

 57

Figure 7.1 Routing Network

Figure 7.1 shows the network which is used for simulation of this scenario. In

above network blue circles are routers and black circles are traffic generating

nodes in the network. Here there are total 7 flows which are sending data, from

that only source node 0 and destination 7 are used for reading purpose and other

nodes are generating heavy traffic in network. By this setup delay and jitter of

network is analyzed for both protocols and see which protocol gives the good

performance.

7.1.2 Statistics Of Scenario 1:

Example 1:

In this example packet size is 1040 and its result is collected in below table 7.2.

The statistics of the network as follows.

Simulation length in seconds: 19.715883

Number of nodes: 26

Number of sending nodes: 7

Number of receiving nodes: 5

Number of generated packets: 3337

Chapter 7 Simulation Study And Results

 58

Number of sent packets: 3337

Number of forwarded packets: 12014

Number of dropped packets: 24

Number of lost packets: 100

Packet size: 1040

Number of sent bytes: 3470480

Number of forwarded bytes: 12494560

Number of dropped bytes: 24960

Packets dropping nodes: 12 13 15 17 19

Example 2:

In this example packet size is 1540 and its result is collected in below table 7.2.

The statistics of the network as follows.

Simulation length in seconds: 19.715626

Number of nodes: 26

Number of sending nodes: 7

Number of receiving nodes: 5

Number of generated packets: 2244

Number of sent packets: 2244

Number of forwarded packets: 7995

Number of dropped packets: 23

Number of lost packets: 94

Packet size: 1540

Number of sent bytes: 3455760

Number of forwarded bytes: 12312300

Number of dropped bytes: 35420

Packets dropping nodes: 12 13 15 17 19

Example 3:

In this example packet size is 2040 and its result is collected in below table 7.3.

The statistics of the network as follows.

Chapter 7 Simulation Study And Results

 59

Simulation length in seconds: 19.715632

Number of nodes: 26

Number of sending nodes: 7

Number of receiving nodes: 5

Number of generated packets: 1723

Number of sent packets: 1721

Number of forwarded packets: 6058

Number of dropped packets: 15

Number of lost packets: 80

Packet size: 2040

Number of sent bytes: 3510840

Number of forwarded bytes: 12358320

Number of dropped bytes: 30600

Packets dropping nodes: 12 13 17 19

Example 4:

In this example packet size is 2540 and its result is collected in below table7.4 .

The statistics of the network as follows.

Simulation length in seconds: 19.715233

Number of nodes: 26

Number of sending nodes: 7

Number of receiving nodes: 5

Number of generated packets: 1447

Number of sent packets: 1446

Number of forwarded packets: 4939

Number of dropped packets: 7

Number of lost packets: 89

Packet size: 2540

Number of sent bytes: 3672840

Number of forwarded bytes: 12545060

Number of dropped bytes: 17780

Packets dropping nodes: 12 17 19

Chapter 7 Simulation Study And Results

 60

7.1.3 Results:

The above network is simulated and trace file is generated, these are analyzed

by using AWK script for delay, jitter, packet loss, generated packets etc. These

awk scripts are in appendix B. The collected results for rtProtoDV and rtProtoMIN

have shown in tables 7.2 & 7.3.

Table 7.2 senario1: simulation results

Example 1

PS : 1040

Example 2

PS : 1540

Parameters

rtProtoDV rtProtoMIN rtProtoDV rtProtoMIN

Average

0.020653

0.012710

0.03939

0.027147

Jitter

(Sec)

Maximum

0.33002

0.256223

0.80028

0.75631

Average

0.3820

0.2949

0.6966

0.512546

Minimum

0.1504

0.106971

0.1939

0.145244

Delay

(Sec)

Maximum

0.7957

0.510179

1.332

1.00944

Processing

Time(Sec)

Maximum

0.39225

0.448966

0.621822

0.719478

Chapter 7 Simulation Study And Results

 61

Table 7.3: Scenario 1 Simulation results

The above table shows the result of scenario 1. As we see that packet size is

increasing from example 1 to example 4 . Here mainly Delay parameter is

concerned. From table 7.2 & 7.4 it is observed that maximum and average delay

for example 1 & 2 is rtProtoMIN is better as compared to rtProtoDV. As the

packet size increased from 2040 to 2540 the delay performance for rtProtoMIN is

decreased as compared to rtProtoDV. And same case with jitter for first two

examples it gives the best results but for later two examples it does not gives

better results as compared to rtProtoDV.

Simulation processing time for rtProtoMIN increases as we increase packet size.

But processing time of rtProtoDV is less as compared to rtProtoMIN.

The below graphs shows comparison of Delay between rtProtoDV and

rtProtoMIN. The graph is plotted for Packet send time at source node 0 VS Delay

between source node 0 and destination node 7. The graphs as follows.

Example 3

PS : 2040

Example 4

PS : 2540

Parameters

rtProtoDV rtProtoMIN rtProtoDV rtProtoMIN

Average

0.04815

0.03764

0.047051

0.051136

Jitter

(Sec)

Maximum

0.45091

0.40904

1.004249

1.057614

Average

0.7471

0.82205

0.957002

0.9819

Minimum

0.2374

0.21135

0.28093

0.2983

Delay

(Sec)

Maximum

1.1887

1.33852

1.4986

1.56639

Processing

Time(Sec)

Maximum

0.82807

0.95131

1.21190

1.268051

Chapter 7 Simulation Study And Results

 62

Figure 7.2. Example1 PS 1040: Delay

Figure 7.3: Example2 PS 1540: Delay

Chapter 7 Simulation Study And Results

 63

Figure 7.4: Example 3 PS 2040: Delay

Figure 7.5: Example 4 Ps 2540: Delay

As shown in above graphs the red line indicates delay for rtProtoDV and blue line

indicates delay variation for rtProtoMIN. As shown in figure 7.2 delays for

Chapter 7 Simulation Study And Results

 64

rtProtoMIN is less as compared to rtProtoDV but at some places it goes high it is

due to the bulky data transmission by different nodes. We got the best

performance of rtProtoMIN for pocketsize 1540, as shown figure 7.3 rtProtoMIN

shows good performance than rtProtoDV.

As packet size increases almost same delay variation for rtProtoDV is observed

and rtProtoMIN as in figure 7.5.

7.2 SCENARIO 2: FIXED PACKET SIZE AND VARYING NETWORK

In this scenario the packet size is fixed for all four networks but varying the

network and also increasing the traffic on network. These examples analyzed on

different parameters like Jitter, Delay, and Simulation Processing Time etc.

7.2.1 Simulation Setup and Statistics

Table 7.4 Simulation Parameters

Parameter Value

Bandwidth Varied

Simulation time 20 sec

Nodes Varied

Traffic Type FTP

Packet size 1040

Number of flows Varied

Traffic TCP

Queue Drop Tail

Queue Size 20

Here four examples are taken, in that the packet size is same for four examples

and simulation parameters as in table 7.4. But network, traffic, flows varies from

example 1 to example 4. These four examples are simulated using rtProtoDV and

rtProtoMIN routing protocols. Here in this simulation bursty (bulky) data

Chapter 7 Simulation Study And Results

 65

transmitted by each flow, to see how these both protocols respond to delay and

jitter.

Examples:

Below examples are used for the simulation purpose. In these examples blue box

is the routers, and black circles which generate the traffic on the network. In all

the examples the flows are varied from example to example, and busty data is

transmitted by senders to see the effect on jitter and how these two protocols

handles it. These networks simulated by using rtProtoDV and rtProtoMIN and

analyzed on jitter, delay, processing time etc.

The networks and there statistics as follows.

Chapter 7 Simulation Study And Results

 66

Fig 7.6 : Example 1

Simulation length in seconds:19.733147

Number of nodes: 16

Number of sending nodes: 4

Number of receiving nodes: 4

Number of generated packets: 1016

Number of sent packets: 999

Number of forwarded packets: 3420

Number of dropped packets: 15

Number of lost packets: 23

Packet size: 1040

Number of sent bytes: 1038960

Number of forwarded bytes: 3556800

Number of dropped bytes: 15600

Packets dropping nodes: 2 4 8 9

Fig 7.7: Example 2

Simulation length in seconds: 19.8125

Number of nodes: 22

Number of sending nodes: 6

Number of receiving nodes: 6

Number of generated packets: 1657

Number of sent packets: 1649

Number of forwarded packets: 6122

Number of dropped packets: 38

Number of lost packets: 74

Packet size: 1040

Number of sent bytes: 1714960

Number of forwarded bytes: 6366880

Number of dropped bytes: 39520

Packets dropping nodes: 2 5 6 7

Chapter 7 Simulation Study And Results

 67

Fig 7.8: Example 3

Simulation length in seconds:

20.41628

Number of nodes: 22

Number of sending nodes: 6

Number of receiving nodes: 6

Number of generated packets: 2179

Number of sent packets: 2179

Number of forwarded packets: 8762

Number of dropped packets: 30

Number of lost packets: 21

Packet size: 1040

Number of sent bytes: 2266160

Number of forwarded bytes: 9112480

Number of dropped bytes: 31200

Packets dropping nodes: 0 4 5 7

Fig 7.9: Example 4

Simulation length in seconds:

20.59629

Number of nodes: 23

Number of sending nodes: 7

Number of receiving nodes: 6

Number of generated packets: 2264

Number of sent packets: 2264

Number of forwarded packets: 8103

Number of dropped packets: 37

Number of lost packets: 37

Packet size: 1040

Number of sent bytes: 2354560

Number of forwarded bytes: 8427120

Number of dropped bytes: 38480

Packets dropping nodes: 3 11

Chapter 7 Simulation Study And Results

 68

7.2.2 Results

Below table is collection of results of above simulation setup.

7.5 scenario2: simulation results

7.6 Scenario2: Simulation result

Example 1

PS : 1040

Example 2

PS : 1040

Parameters

rtProtoDV rtProtoMIN rtProtoDV rtProtoMIN

Jitter (Sec)

Range

0.0 - 0.7488

0.0 - 0.2673

0.0 - 0.37942

0.0 - 0.18400

Average

0.44023

0.146320

0.60200

0.48001

Minimum

0.169253

0.381533

0.288499

0.246480

Delay

(Sec)

Maximum

0.973973

0.890773

1.035539

0.936869

Processing

Time(Sec)

Maximum

0.712666

0.781893

0.690389

0.770057

Example 3

PS : 1040

Example 4

PS : 1040

Parameters

rtProtoDV rtProtoMIN rtProtoDV rtProtoMIN

Jitter (Sec)

Range

0.0 - 0.41774

0.0 - 0.30850

0.0 - 0.43741

0.0 - 0.30506

Average

0.366154

0.32724

0.56660

0.48390

Minimum

0.236106

0.20224

0.19301

0.17405

Delay

(Sec)

Maximum

0.716453

0.64080

0.75109

0.71884

Processing

Time(Sec)

Maximum

0.429093

0.621760

0.508267

0.831261

Chapter 7 Simulation Study And Results

 69

In table 7.5 & 7.6 jitter results are taken in rage from minimum to maximum

jitter. As from above table we see that for all four examples jitter is better for

rtProtoMIN as compared to rtProtoDV. In case of delay, rtProtoMIN delays less as

compare to rtProtoDV delay.

But the processing power is increased for rtProtoMIN as compared to rtProtoDV.

Here in case of fixed packet size and varying network, we get the best

performance is seen of rtProtoMIN as compare to rtProtoDV.

7.3 SCENARIO 3: CHANGING QUEUE

In this scenario the examples of section 7.2 are used for simulation purpose but,

different queues used for simulation and see how it responds to congestion and

variation of jitter.

7.3.1 Simulation Setup

 Table 7.7: simulation setup for scenario 3

Parameter Value

Bandwidth Varied

Simulation time 20 sec

Nodes Varied

Traffic Type FTP

Packet size 1040

Number of flows Varied

Traffic TCP

Queue DropTail,FQ,RED,DRR

Queue Size 20

Here four examples are taken, in that the packet size is same for four examples

and simulation parameters as in table 7.7. But network, traffic, flows and queue

varies from example 1 to example 4. These four examples are simulated using

Chapter 7 Simulation Study And Results

 70

rtProtoDV and rtProtoMIN routing protocols. Here in this simulation bursty

(bulky) data transmitted by each flow, to see how these both protocols respond

to delay and jitter.

In this simulation four queues are used DropTail, FQ (Fair Queuing), RED

(Random early detection), DRR (Deficit round robin). For these four queues jitter

and delay are found, and range of jitter and delay is in the below table 7.8 & 7.9.

This range is between minimum and maximum value of jitter and delay.

7.3.2 Simulation Results

The below table is collection of results for all four examples, jitter and delay

range (minimum – maximum) is given in blow table.

Table 7.8: Scenario3: simulation result

Parameters Example 1

PS : 1040

Example 2

PS : 1040

 Queue rtProtoDV rtProtoMIN rtProtoDV rtProtoMIN

DropTail 0.0 - 0.7488 0.0 - 0.2673

0.0 - 0.37942

0.0 - 0.18400

RED 0.0 - 0.3814 0.0 - 0.1819 0.0 - 0.3310 0.0 - 0.0944

FQ 0.0 - 0.1331 0.0 - 0.9238 0.0 - 0.0480 0.0 - 0.0528

Jitter (sec)

DRR 0.0 - 0.9984 0.0 - 0.8400 0.0 - 0.0448 0.0 - 0.0369

DropTail 0.1692 - 0.7164

0.3815 - 0.6408 0.2884 - 0.7510

0.2464-0.7188

RED 0.285-0.6013

0.2399 - 0.4602

0.2884 - 0.6628 0.2464 - 0.5904

FQ 0.1752 - 1.605

0.1463 - 1.2434

0.2884 - 0.4425

0.2464 - 0.4733

Delay

(Sec)

DRR 0.1692 - 1.3906

0.1463 - 1.2066

0.2884 - 0.4427

0.2464 - 0.4070

Chapter 7 Simulation Study And Results

 71

Table 7.9 Scenario3: Simulation results

In above simulation four examples are simulated, by changing their queues and

seen how it responds to jitter and delay.

As from above table 7.8 and 7.9 for DropTail, RED queue gives the best

performance for rtProtoMIN as compared to rtProtoDV. In case of DRR queue for

first three example rtProtoMIN gives good performance than rtProtoDV, but for

last example jitter and delay increases as compare to rtProtoDV.

Simulation result with queue FQ rtProtoMIN does not give better results as

compared to rtProtoDV. So from above results it can be concluded that

rtProtoMIN gives good performance for DropTail, DRR, RED queues but not for

FQ.

Example 3

PS : 1040

Example 4

PS : 1040

Parameters

rtProtoDV rtProtoMIN rtProtoDV rtProtoMIN

DropTail 0.0 - 0.41774

0.0 - 0.30850

0.0 - 0.43741

0.0 - 0.30506

RED 0.0 - 0.2550 0.0 - 0.3797 0.0 - 0.2358 0.0 - 0.2389

FQ 0.0 - 0.2923 0.0 - 0.1977 0.0 - 0.1153 0.0 - 0.2389

Jitter (sec)

DRR 0.0 - 0.2439 0.0 - 0.1620 0.0 - 0.7907 0.0 - 0.8454

DropTail 0.236 - 0.7164

0.2022 - 0.640

0.1930 - 0.751

0.1740 - 0.718

RED 0.2361 - .6526

0.146 - 0.460

0.1861 - 0.5004

0.1740 - 0.488

FQ 0.2315 - 1.6037

0.1752 - 1.6050

0.231 - 1.603

0.174 - 0.488

Delay

(Sec)

DRR 0.2361 - 0.793

0.2022 - 0.404 0.1861- 1.0939 0.175 - 1.270

 72

8 SUMMARY AND CONCLUSION

8.1 SUMMARY

In computer networking the term routing refers to selecting paths in a network

along which to send data. Recent research has lead not only to many routing

protocols, but to many routing techniques. By a routing technique we mean the

basic strategy that a routing protocol uses to store and propagate routing

information. Game theory was invented to provide a mathematical foundation for

reasoning about conflict and competition. It has grown into a rich theory, with

powerful mathematical and computational tools. Two insights enabled us to turn

this pool of theory and tools into a potentially powerful analytical capability for

analyzing routing.

The objective of this dissertation work is to apply Game Theoretic Approach on

routing protocols for removing inefficiencies and analyzing how it is better than

conventional TCP/IP routing protocols. The RIP (Routing Information Protocol)

uses Distance Vector (DV) routing protocol for finding the path from source to

destination, and sends the packets. DV routing is the implements Distributed

Bellman-Ford (or Distance Vector) routing. As in chapter 2 rtProtoDV is RIP

implementation in Network Simulator 2 (NS2) unicast routing. Distributed

Bellman-Ford algorithm is replaced (or Distance Vector) with game theory

algorithms, like minimax algorithm for finding path. These two protocols

rtProtoDV and rtProtoMIN is simulated on different scenarios and analyzed for

different parameters like delay jitter, delay, processing time, throughput,

convergence etc. In scenario 1 as packet size increases rtProtoMIN not gives that

much better performance than rtProtoDV. Delay graph for four examples is as

shown in figure 8.1.

Chapter 8 Summary And Conclusion

 73

Delay

0.7957

1.332
1.1887

1.4986

0.510179

1.00944

1.33852
1.56639

0

0.5

1

1.5

2

0 1 2 3 4 5

Examples

T
im
e

rtProtoDV rtProtoMIN

Figure 8.1: Scenario 1: Delay

 As from simulation for scenario2 fixed packet size and varying network,

rtProtoMIN got good results compared to rtProtoDV shown in figure 8.2. With

varied queue like (Droptail, DRR, RED) rtProtoMIN gives the good performance.

It means that game theory algorithm used in rtProtoMIN that is minimax

algorithm not gives the better performance for each scenario but for specific

scenarios it gives good performance.

There are some other algorithms like alpha-beta pruning algorithm which may

give the good performance than minimax algorithm.

Chapter 8 Summary And Conclusion

 74

Delay

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5

Examples

T
im

e
 (
S
e
c
)

rtProtoDV rtProtoMIN

Jitter

0.7488

0.37942 0.41774 0.43741

0.2673
0.184

0.3085 0.30506

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5

Examples

T
im

e
 (
S
e
c
)

rtProtoDV rtProtoMIN

Processing TIme

0.712666 0.690389

0.429093
0.508267

0.781893 0.770057

0.62176

0.831261

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

Examples

T
im
e
 (
S
e
c
)

rtProtoDV rtProtoMIN

Figure 8.2: Graphs Of Scenario 2

8.2 CONCLUSIONS

In routing networks, game theory has been used to analyze the cooperation of

the nodes. The game theoretic approaches try to analyze the problem using a

more analytical viewpoint. rtProtoMIN and rtProtoDV is analyzed on different

scenarios, and analyzed on different parameters like delay jitter, delay,

processing time etc.

In first scenario packet size is varied and network is fixed, in that case as packet

size increases the performance of rtProtoMIN decreases as compare to

Chapter 8 Summary And Conclusion

 75

rtProtoDV. For packet size 2540 rtProtoMIN and rtProtoDV gives same

performance. In second scenario packet size is fixed (1040) and network is

varied in that rtProtoMIN gives good performance as compared to rtProtoDV. But

in both the cases the simulation processing time of rtProtoMIN increased as

compared to rtProtoDV. In third scenario simulation setup is same as scenario 2

but varying the queue like DropTail, FQ, RED, DRR etc from example to example.

In this case for Drop Tail, RED and DRR queues rtProtoMIN gives good

performance as compared to rtProtoDV but, for queue FQ it gives the worst

results.

From above scenario rtProtoMIN gives the good performance with fixed type of

scenario like as second scenario if packet size increases the performance of

rtProtoMIN goes on decreases. As game theory achieves the cooperation

between routers in network, when best route is found from source to destination

the congested link is not included in best path.

8.3 FUTURE WORK

As seen in above chapters on rtProtoDV (RIP) game theory applied and observes

how game theory improves performance. rtProtoMIN is uses minimax algorithm

for finding path to destination node and, also analyzed on different scenarios. For

some specifications rtProtoMIN gives good performance than rtProtoDV.

But there are different game theoretic algorithms like alpha beta pruning (one

step ahead of minimax algorithm), repetitive game theory etc. are used in

implementation then there are more expectations of performance improvements.

The strategy used for implementations of rtProtoMIN, same strategy is applied

on other protocols like OSPF.

 76

 REFERENCES

1. S. Savage, T. Anderson, A. Aggarwal, D. Becker, N. Cardwell, A. Collins,

E.Hoffman, J. Snell, A. Vahdat, G. Voelker, and J. Zahorjan. Detour: a

case for Informed Internet routing and transport. In IEEE Micro, volume

19(1),

2. H. Tangmunarunkit, R. Govindan, S. Shenker, and D. Estrin. “The impact

of routing policy on Internet paths”. In Proceedings of IEEE INFOCOM ’01,

Anchorage, AK, Apr. 2001.

3. Irfan Zakiuddin a, Tim Hawkins b, Nick Moffat b.”Towards A Game

Theoretic Understanding of Ad-Hoc Routing”. In Electronic Notes in

Theoretical Computer Science

4. A. Akella et al., “Selfish behavior and stability of Internet: A game

theoretic analysis of TCP,” Proceedings of ACM SIGCOMM Conference on

Applications, Technologies, Architectures, and Protocols for Computer

Communications, August 2002, pp. 117-130.

5. Game Theory :Theodore L. Turocy Texas A&M University, Bernhard von

Stengel London School of Economics

6. Lecture Notes by Y. Narahari “Game Theory” Department of Computer

Science and Automation , Indian Institute of Bangalore , India September

2005.

7. Martin J. Osborne, Arial Rubinstin, A Course in Game Theory, MIT Press,

July 1994.

8. Todd Lammle, CCIE Professional CCNA Study guide, fourth edition

9. Jeff Doyle, Jennifer Carroll, TCP/IP Routing Volume 1: second edition

 References

 77

10. David Leberknight, “Object oriented programming and design minimax

search algorithm” page 7

11. The network simulator – NS-2. http://www.isi.edu/nsnam/ns.

12. Eitan Altman and Tania Jimenez “ NS Simulator for beginners” Lecture

Notes 2003-2004 , Univ. de Los Andes , Merida , Venezuela and ESSI

Sophia-Antipolis , France

13. Minimax pseudo code and implantation details:

http://www.pressibus.org/ataxx/autre/minimax/node2.html

14. Robin J. G. Upton “Dynamic Stochastic Control: A New Approach to Tree

Search & Game-Playing” PhD thesis Statistics Department University of

Warwick, UK 23 April 1998.

15. Francisco J. Ros, Pedro M. Ruiz “Implementation of new unicast routing

protocol in ns2 ” Dept. of Information and Communications Engineering

University of Murcia December, 2004

16. Kevin Fall, Kannan Varadhan “The ns Manual (formerly ns Notes and

Documentation)” The VINT Project a Collaboration between researchers at

UC Berkeley, LBL, USC/ISI, and Xerox PARC.

17. TraceGraph tool Description:

http://www.tracegraph.com/conference.html

 78

APPENDIX A MINIMAX PSEUDOCODE

The minimax algorithm is a method of selecting the best choice of action in a

situation, or game, where two opposing forces, or players, are working toward

mutually exclusive goals, acting on the same set of perfect information about the

outcome of the situation. It is specifically applied in searching game trees to

determine the best move for the current player of a game. It uses the simple

principle that at each move, the moving player will choose the best move

available.

A.1 MINIMAX PSEUDO CODE

minimax (in game board, in int depth, in int max_depth,

 out score chosen_score, out score chosen_move)

begin

 if (depth = max_depth) then

 chosen_score = evaluation (board);

 else

 moves_list = generate_moves (board);

 if (moves_list = NULL) then

 chosen_score = evaluation (board);

 else

 for (i = 1 to moves_list.length) do

 best_score = infinity;

 new_board = board;

 apply_move (new_board, moves_list[i]);

 minimax (new_board, depth+1, max_depth, the_score, the_move);

 if (better (the_score, best_score)) then

 best_score = the_score;

 best_move = the_move;

 endif

 enddo

 chosen_score = best_score;

Appendix A Minimax Pseudocode

 79

A.2 FUNCTIONS:

generate_moves (board):

This function generates all possible moves for the current player. It takes the

current board situation as the argument and returns the all possible moves at

particular situation.

Evaluation(board):

Evaluation is called just before exiting each node in the minimax tree. It should

return a value representing the strength of the board in chosen_score.

best_score holds the best value returned by any children of the current node in

the minimax tree.

apply_move :

This function takes a board and a move, returning the board with all the updates

required by the given move.

better (the_score, best_score) :

This function takes 2 scores to compare and a player, returning the score that is

more advantageous for the given player. If scores are stored as simple integers,

this function can be the standard < and > operators.

 chosen_move = best_move;

 endif

 endif

end.

Appendix A Minimax Pseudocode

 80

Run ():

This function gives the path from source to destination.

Cost_fuction ():

This function takes the Run output as argument and finds the cost of reaching

destination.

 81

APPENDIX B AWK SCRIPTS

As seen in chapter 4 when simulating any tcl script of NS2 in that case two files

are generated, one is NAM visualization file which shows the animation of

network and other is trace file which contains the trace of every millisecond of

simulation. The trace format of trace file is explained in chapter 4. This trace file

contains only textual data, we cannot visualize form that data. So for calculating

parameters likes jitter, delay, throughput, processing time etc awk scripts are

used.

B.1 BASICS OF AWK

Awk is a full-featured text processing language with syntax reminiscent of C.

While it possesses an extensive set of operators and capabilities. Awk breaks

each line of input passed to it into fields. By default, a field is a string of

consecutive characters delimited by white spaces, though there are options for

changing this. Awk parses and operates on each separate field. This makes it

ideal for handling structured text files -- especially tables -- data organized into

consistent chunks, such as rows and columns.

• The structure of awk commands

o Each awk command consists of a selector and/or an action; both

may not be omitted in the same command. Braces surround the

action.

o selector [only] -- action is print

o {action}[only] -- selector is every line

o selector {action} -- perform action on each line where selector is

true

o Each action may have multiple statements separated from each

other by semicolons or \n

Appendix B Awk Scripts

 82

• Line selection

o A selector is either zero, one, or two selection criteria; in the latter

case the criteria are separated by commas

o A selection criterion may be either an RE or a boolean expression

(BE) which evaluates to true or false

o Commands which have no selection criteria are applied to each line

of the input data set

o Commands which have one selection criterion are applied to every

line which matches or makes true the criterion depending upon

whether the criterion is an RE or a BE

o Commands which have two selection criteria are applied to the first

line which matches the first criterion, the next line which matches

the second criterion and all the lines between them.

o Unless a prior applied command has a next in it, every selector is

tested against every line of the input data set.

• Processing

o The BEGIN block(s) is(are) run (mawk's -v runs first)

o Command line variables are assigned

o For each line in the input data set

� It is read and NR, NF, $I, etc. are set

� For each command, its criteria are evaluated

� If the criteria is true/matches the command is executed

o After the input data set is exhausted, the END block(s) is(are) run

• Fields

o Each record is separated into fields named $1, $2, etc

o $0 is the entire record

o NF contains the number of fields in the current line

o FS contains the field separator RE; it defaults to the white space RE,

/[<SPACE><TAB>]*/

o Fields may be accessed either by $n or by $var where var contains

a value between 0 and NF

So by using awk script processes the trace file data and calculates different

parameters of network.

Appendix B Awk Scripts

 83

• Delay = packet receive time at destination node – packet send time at

source node.

• Round Trip Time (RTT) = acknowledge (ACK) packet receive time at

source node – packet send time at source node.

• Processing time = packet forward time at intermediate node – packet

receive time at intermediate node.

• Jitter = absolute value of (delay of packet i+1 – delay of packet i), where i

= 1.number of sent packets – 1.

• Throughput = number of generated/sent/received/forwarded/dropped

packets or bits in a certain time interval.

For Example:

Generated Packets:

Awk ‘BEGIN

 {SendPack =0}

 $1 = = "+" && $5 = = "tcp" && $3 = = "0"

 {SendPack = SendPack + 1}

 END {print SendPack} ' rip_example.tr

Appendix B Awk Scripts

 84

Drop Packets:

Awk 'BEGIN

 {DropPack =0 }

 $1 = = "d" && $5 = = "tcp" && $8 = = "0" && $6 = = "1040"

 {DropPack = DropPack + 1}

 END {print DropPack } ' rip_example.tr

In this way by using awk script different parameters of of routing network is

calculated.

