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ABSTRACT 

 

A recent trend in routing research is to avoid inefficiencies in network level 

routing by allowing hosts to either choose routes themselves (e.g., source 

routing) or use overlay routing networks. Such end-to-end route selection 

schemes are selfish by nature; in that they allow end users to greedily select 

routes to optimize their own performance without considering the system-wide 

criteria. Recent theoretical results suggest that in the worst case, selfish routing 

can result in serious performance degradation due to lack of cooperation. So, the 

objective of this dissertation work is to apply Game Theoretic Approach on 

routing protocols for removing inefficiencies and analyzing how it is better than 

conventional TCP/IP routing protocols. 

 

Game theory is a branch of applied mathematics, which deals with multiperson 

decision making situations. A routing protocol can be modeled as a minimax 

game between the network and the routers. And it is analyzed based on different 

parameters like Delay, Jitter, Processing power etc.  

 

Network Simulator 2 tool is used for coding and simulation purpose of 

conventional routing protocol and minimax algorithm. rtProtoMIN - a new routing 

protocol is implemented in NS2 which uses minimax algorithm for finding the 

path from source to destination. The rtProtoDV (RIP) protocol available in NS2 

and the newly implemented rtProtoMIN are being used in this project to analyze 

their performance in different scenarios and are compared to the already existing 

routing protocols. 
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1                       INTRODUCTION 
 
 

1.1 GENERAL  
 
1.1.1 Routing Protocols 
 
In computer networking the term routing refers to selecting paths in a computer 

network along which to send data. Routing directs forwarding, the passing of 

logically addressed packets from their source toward their ultimate destination 

through intermediary nodes (called routers). It facilitate the exchange of routing 

information between networks, allowing routers to build routing tables 

dynamically. Traditional IP routing stays simple because it uses next-hop 

routing where the router only needs to consider where it sends the packet, and 

does not need to consider the subsequent path of the packet on the remaining 

hops[8]. Traditional IP routing stays simple because it uses next-hop routing 

where the router only needs to consider where it sends the packet, and does not 

need to consider the subsequent path of the packet on the remaining hops. 

 

1.1.2 Game Theory 

 

Game theory is a branch of applied mathematics, which deals with multiperson 

decision making situations. The basic assumption is that the decision makers 

pursue some well defined objectives and take into account their knowledge or 

expectations of the other decision makers’ behavior. Many applications of game 

theory are related to economics, but it has been applied to numerous fields 

ranging from law enforcement to voting decisions in European Union [5]. There 

are two main ways to capitalize game theory. It can be used to analyze existing 

systems or it can be used as a tool when designing new systems. Existing 

systems can be modeled as games. The models can be used to study the 

properties of the systems. For example, it is possible to analyze the effect of 

different kind of users on the system. The other approach is implementation 

theory, which is used when designing a new system. Instead of fixing a game 

and analyzing its outcome, the desired outcome is fixed and a game ending in 

that outcome is looked for. When a suitable game is discovered, a system 

fulfilling the properties of the game can be implemented. 

 



Chapter 1                                                                           Introduction        

 2 

 

1.1.3 Usage 

 

Game theory was invented to provide a mathematical foundation for reasoning 

about conflict and competition. It has grown into a rich theory, with powerful 

mathematical and computational tools. It also has the advantage of retaining its 

intuitive appeal, which is what first attracted us to it. Two insights enabled us to 

turn this pool of theory and tools into a potentially powerful analytical capability 

for analyzing routing [3]. 

 

The game theoretic techniques are applicable to the analysis of routing protocols. 

The particular way in which we have applied game theory to this problem is 

described in following chapters. 

 

1.2 SCOPE OF WORK  

 

The objective of this dissertation work is to apply Game Theoretic approach on 

routing protocols for removing inefficiencies and analyzing how it is better than 

conventional TCP/IP routing protocols. Network Simulator 2 tool is used for 

coding and simulation purpose of conventional routing protocol and minimax 

algorithm. RIP (rtProtoDV) routing protocol already implemented in NS2, game 

theory approach is applied on that and see how it improves the rtProtoDV. 

RtProtoDV uses distance vector technique for finding path to destination node 

but, here DV is replaced by minimax algorithm which used for finding path to 

destination node. RtProtoMIN - a new routing protocol is implemented in NS2 

which uses minimax algorithm for finding the path from source to destination. 

 

These two protocols rtProtoDV and rtProtoMIN are analyzed on different 

parameters like delay jitter, delay, convergence etc. These protocols are 

simulated on different scenarios like varying packet size and fixed network, fixed 

packet size and varying networks, convergence etc and analyzed how game 

theory improves rtProtoDV. 
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1.3 ORGANIZATION OF MAJOR PROJECT   
 
Chapter 2: This chapter contains literature survey and also gives the background 

information about game theory which is used for understanding how game is 

modeled as routing and basics of TCP/IP routing protocols. 

 

Chapter 3: This chapter gives the strategy; how routing is to be modeled as 

game and minimax algorithm is used for finding the path from source to 

destination. 

 

Chapter 4: This gives the whole information regarding the simulation 

environment, NS2 (Network Simulator 2) which is used for coding and simulation 

purpose. 

 

Chapter 5: In this chapter rtProtoDV (RIP) protocol which is already implemented 

in NS2 is simulated and inefficiency of that protocol is shown. 

 

Chapter 6: This chapter gives the implementation details of rtProtoMIN protocol 

in that routing is modeled as game. It gives the detailed information regarding 

data packet, control packet, classes and structure which is used for implementing 

rtProtMIN. 

 

Chapter 7: In this chapter rtProtoMIN and rtProtoDV is simulated on different 

scenarios and comparison is made between them and observed which protocol 

give the better performance and how game theory improves the performance of 

RIP. 

 

Chapter 8: This chapter contains summary of whole dissertation, conclusion of it 

and future work. 

 

Appendix A: This contains the pesudocode of minimax algorithm and discusses 

implementation details of it. 

 

Appendix B: This gives basic information regarding AWK scripts. 
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2              LITERATURE SURVEY 

 

2.1 BASICS OF GAME THEORY 

 

This section introduces the basic concepts of game theory. The aim is to supply 

sufficient information to understand the applications in this thesis work. The 

most common types of games and their solutions are presented. 

 

2.1.1 Introduction 

 

Game theory is a branch of applied mathematics, which deals with multiperson 

decision making situations. The basic assumption is that the decision makers 

pursue some well defined objectives and take into account their knowledge or 

expectations of the other decision maker’s behavior. Many applications of game 

theory are related to economics [7], but it has been applied to numerous fields 

ranging from law enforcement to voting decisions in European Union [5]. There 

are two main ways to capitalize game theory. It can be used to analyze existing 

systems or it can be used as a tool when designing new systems. Existing 

systems can be modeled as games. The models can be used to study the 

properties of the systems. For example, it is possible to analyze the effect of 

different kind of users on the system. The other approach is implementation 

theory, which is used when designing a new system. Instead of fixing a game 

and analyzing its outcome, the desired outcome is fixed and a game ending in 

that outcome is looked for. When a suitable game is discovered, a system 

fulfilling the properties of the game can be implemented. 

 

Most game theoretical ideas can be presented without mathematics, hence only 

give some formal definitions. The prisoner’s dilemma (classical games) which is 

used to demonstrate the concepts of game theory [5]. 
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2.1.2 Prisoner’s Dilemma 

 

In the prisoner’s dilemma, two criminals are arrested and charged against a 

crime. The police do not have enough evidence to convict the suspects, unless at 

least one confesses. The criminals are in separate cells, thus they are not able to 

communicate during the process. If neither confesses, they will be convicted of a 

minor crime and sentenced for one month. The police offer both the criminals a 

deal. If one confesses and the other does not, the confessing one will be released 

and the other will be sentenced for 9 months. If both confess, both will be 

sentenced for six months. The possible actions and corresponding sentences of 

the criminals are given in table 2.1. 

 

Table 2.1: Prisoner’s Dilemma 

 

 

2.1.3 Assumptions And Definitions 

 

2.1.3.1 Game 

 

A game consists of players, the possible actions of the players, and 

consequences of the actions. The players are decision makers, who choose how 

to act. The actions of the players result in a consequence or outcome. The 

players will try to ensure the best possible consequence according to their 

preferences [7]. The preferences of a player can be expressed either with a 

utility function, which maps every consequence to a real number, or with 

preference relations, which define the ranking of the consequences. With mild 

assumptions, a utility function can be constructed if the preference relations of a 

player are known.  
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2.1.3.2 Rationality 

 

The most fundamental assumption in game theory is rationality. Rational players 

are assumed to maximize their payoff. If the game is not deterministic, the 

players maximize their expected payoff. The idea of maximizing the expected 

payoff was justified by the seminal work of von Neumann and Morgenstern in 

1944 [5]. It is also assumed that the players are intelligent, which means that 

they know everything what we know about the game and they can make the 

same deductions about the situation that we can make. 

 

2.1.3.3 Solution 

 

In game theory, a solution of a game is a set of the possible outcomes. A game 

describes what actions the players can take and what consequences of the 

actions are. The solution of a game is a description of outcomes that may 

emerge in the game if the players act rationally and intelligently [7]. Generally, a 

solution is an outcome from which no player wants to deviate unilaterally. 

Solutions to some game types are presented in later sections. 

 

2.1.4 Classification Of Games 

 

Games can be classified into different categories according to their properties [5, 

6, 7]. The terminology used in game theory is inconsistent, thus different terms 

can be used for the same concept in different sources.  

 

2.1.4.1 Noncooperative and cooperative games 

 

Games can be divided into noncooperative and cooperative games according to 

their focus. Cooperative games are also called coalition games. In 

noncooperative games, the actions of the single players are considered. 

Correspondingly, in coalition games the joint actions of groups are analyzed, i.e. 

what is the outcome if a group of players cooperate. The interest is in what kind 

of coalitions form. The prisoner’s dilemma is noncooperative games. 
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2.1.4.2 Strategic and extensive games 

 

In strategic or static games, the players make their decisions simultaneously at 

the beginning of the game. While the game may last long and there can be 

probabilistic events, the players can not react to the events during the game. 

The prisoner’s dilemma is strategic game. 

 

On the other hand, the model of an extensive game defines the possible orders 

of the events. The players can make decisions during the game and they can 

react to other player’s decisions. Extensive games can be finite or infinite. Formal 

definitions of strategic and extensive games are given in section 2.1.5. 

 

A class of extensive games is repeated games, in which a game is played 

numerous times and the players can observe the outcome of the previous game 

before attending the next repetition. A typical example is a repeated prisoner’s 

dilemma in which the same situation is repeated several times [7]. 

 

2.1.4.3 Zero-sum games 

 

Games can be divided according to their payoff structures. A game is called 

zerosum game, if the sum of the utilities is constant in every outcome. Whatever 

is gained by one player is lost by the other players. [5] Gambling is a typical 

zero-sum game. Neither of the example discussed are zero-sum games. Zero-

sum games are also called strictly competitive games. 

 

2.1.4.4 Games with complete and incomplete information 

 

In games with complete information the preferences of the players are common 

knowledge, i.e. all the players know all the utility functions. In a game of 

incomplete information, in contrast, at least one player is uncertain about 

another player’s preferences [5]. 
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A sealed-bid auction is a typical game with incomplete information. A player 

knows his own valuation of the merchandise but does not know the valuations of 

the other bidders. 

 

2.1.5 Strategic Games 

 

In strategic games, the players first make their decisions and then the outcome 

of the game is determined. The outcome can be either deterministic or contains 

uncertainties. 

 

The actions of the players may take place during a long time period but the 

decisions are made without knowledge of the decisions of the other players.  

 

Definition 2.1.5.1 A strategic game consists of 

 

• a finite set N (the set of players) 

• for each player I  N a nonempty set Ai (the set of actions available to 

player i) 

• for each player i  N a utility function Ui  on A =  [5,7] 

 

The players can choose their actions either from discrete alternatives or from a 

continuous set. For example, a choice of a route in a network is discrete but the 

possible transmission powers in a wireless network form a continuous set. If the 

decisions are discrete, strategic games with two players are usually illustrated 

with a matrix representation as in tables 2.1 

 

The solution of a strategic game is Nash equilibrium. Every strategic game with 

finite number of players each with a finite set of actions has an equilibrium point. 

This Nash equilibrium is a point from which no single player wants to deviate 

unilaterally [7].  

 

Definition 2.1.5.2: Nash equilibrium of a strategic game (N; (Ai); (Ui)) is a 

profile of actions with the property that for every player 

we have 
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2.1.6 Extensive Games 

 

The strategic game model is suitable for representing simple real life events such 

as auctions. Many more complex situations can be abstracted sufficiently to be 

modeled as a strategic game. However, the limitations of the strategic games are 

evident in many cases. A more versatile model is needed, when more complex 

interactions are occurring between the decision makers [6].  

 

Especially the possibility to react to the actions of the other players is essential in 

many applications, thus a broader model is needed. Extensive games eliminate 

the limitation of the simultaneous decisions, thus they make possible to model a 

wider range of real life situations. It should be noted that for simplicity the 

following formulation does not allow simultaneous actions of the players, i.e. the 

game has perfect information. An extensive game with imperfect information can 

be formulated similarly [5]. 

 

Definition 2.1.6.1 An extensive game with perfect information has the following 

components. 

 

• A set N (the set of players) 

• A set H of sequences (finite or infinite) of actions that satisfies the 

following three properties. 

• A function P that assigns to each nonterminal history (each member of 

H\Z) a member of N. (P is the player function, P (h) being the player who 

takes an action after the history h.) 

• For each player a utility function Ui on Z. 

 

We form an example two-stage extensive game. First, player 1 chooses between 

actions L and R. After observing player 1’s decision, player 2 decides between 

actions A and B if player 1 played L and between C and D if player 1 played R. 

Extensive games with two players can be illustrated with matrices similarly to the 
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strategic games. The example game is given. Instead of the actions, the columns 

and rows are now the strategies of the players. The utilities of the outcomes are 

also visible. All the relevant information is available in the matrix, but the 

chronology of events is hard to perceive. A better option is to form a tree 

illustrating the game as in Figure 2.1. 

 

Figure 2.1: Extensive Form 

 

As in the strategic games, the solution of an extensive game is a Nash 

equilibrium from which no player has an incentive to deviate unilaterally. The 

solution of the example game can be deducted easily. 
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2.2 ROUTING PROTOCOLS 

 

2.2.1 Introduction 

 

In computer networking the term routing refers to selecting paths in a computer 

network along which to send data.Routing directs forwarding, the passing of 

logically addressed packets from their source toward their ultimate destination 

through intermediary nodes (called routers). It facilitate the exchange of routing 

information between networks, allowing routers to build routing tables 

dynamically. Traditional IP routing stays simple because it uses next-hop 

routing where the router only needs to consider where it sends the packet, and 

does not need to consider the subsequent path of the packet on the remaining 

hops. Traditional IP routing stays simple because it uses next-hop routing 

where the router only needs to consider where it sends the packet, and does not 

need to consider the subsequent path of the packet on the remaining hops. 

 

Recent research has lead not only to many routing protocols, but too many 

routing techniques. By a routing technique we mean the basic strategy that a 

routing protocol uses to store and propagate routing information. A routing 

technique captures the following three protocol characteristics [3]: 

 

• Whether routing information is propagated on demand or proactively; 

• Whether routing information is propagated by flooding or by   propagation 

on a spanning tree; and 

• The format of the routing information stored locally and    communicated 

(whether it is link state data, distance vectors). 

 

2.2.2 Dynamic Routing Protocols 

 

If a designated path becomes unavailable, the existing nodes must determine an 

alternate route to use to get their data to its destination. They usually 

accomplish this through the use of a routing protocol using one of two broad 

classes of routing algorithms: distance vector algorithms and link state 
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algorithms, which together account for nearly every routing algorithm in use on 

the Internet [9]. 

 

2.2.2.1 Distance Vector Routing Algorithm  

 

Distance Vector protocols judge best path based on metric variable. Distance can 

be hops or a combination of metrics calculated to represent a distance value. The 

name distance vector is derived from the fact that routes are advertised as 

vectors of (distance, direction), where distance is defined in terms of a metric 

and direction is defined in terms of the next-hop router. 

 

Distance vector algorithms use the Bellman-Ford algorithm. This approach 

assigns a number, the cost, to each of the links between each node in the 

network. Nodes will send information from point A to point B via the path that 

results in the lowest total cost (i.e. the sum of the costs of the links between the 

nodes used) [8 , 9]. 

 

Distance-vector routing protocols are simple and efficient in small networks, and 

require little managaement if any. However, they do not scale well, and have 

poor convergence properties, which has led to the development of more complex 

but highly scalable link-state routing protocols for use in large networks. 

Distance-vector protocols suffer from the count-to-infinity problem. 

Distance vector routing protocols include the following: 

• Routing Information Protocol (RIP) for IP  

• Cisco's Internet Gateway Routing Protocol (IGRP)  

2.2.2.2 Link State Routing Protocol 

 

When applying link-state algorithms, each node uses as its fundamental 

data a map of the network in the form of a graph. To produce this, each node 

floods the entire network with information about what other nodes it can connect 

to, and each node then independently assembles this information into a map. 

Using this map, each router then independently determines the best route from 

itself to every other node. 
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Link state protocols, sometimes called shortest path first or distributed database 

protocols, are built around a well-known algorithm from graph theory, E. W. 

Dijkstra'a shortest path algorithm [9]. 

Examples of link state routing protocols are: 

• Open Shortest Path First (OSPF) for IP 

• The ISO's Intermediate System to Intermediate System (IS-IS) . 

Although link state protocols are rightly considered more complex than distance 

vector protocols, the basic functionality is not complex at all: 

• Each router establishes a relationship—an adjacency—with each of its 

neighbors. 

• Each router sends link state advertisements (LSAs), some 

• Each router stores a copy of all the LSAs it has seen in a database. If all 

works well, the databases in all routers should be identical. 

• The completed topological database, also called the link state database, 

describes a graph of the internetwork. Using the Dijkstra algorithm, each 

router calculates the shortest path to each network and enters this 

information into the route table [9]. 

There are different routing protocols for routing data on internet, TCP/IP routing 

protocols and Adhoc routing protocols. 

 

� TCP/IP Routing 

         -RIP 

         -OSPF 

         -BGP 

� Ad hoc network routing protocols  

         -Dynamic source routing 

         -AODV (Adhoc on Demand Distance Vector)  

         -Hierarchical State routing protocol  

         -Optimized Link State Routing Protocol  

         -Destination sequenced Distance vector 
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By using Game theory approach inefficiency of Adhoc routing protocols are 

removed and performance is measured [3]. But the inefficiency in TCP/IP routing 

protocols are not removed .So here game theory is applied approach on TCP/IP 

routing protocols and to improve the performance of protocols. The inefficiency 

of routing protocol is given in detail in following sections. 

 

2.2.3 TCP/IP Routing Protocols 

 

Thesis work mainly concentrates on three routing protocols RIP, OSPF and BGP. 

 

2.2.3.1 Routing Information Protocol (RIP)  

 

The Routing Information Protocol (RIP) is one of the most commonly used 

interior gateway protocol (IGP) routing protocols on internal networks (and to a 

lesser extent, networks connected to the Internet), which helps routers 

dynamically adapt to changes of network connections by communicating 

information about which networks each router can reach and how far away those 

networks are. Although RIP is still actively used, it is generally considered to 

have been made obsolete by routing protocols such as OSPF and IS-IS [9]. 

Nonetheless, a somewhat more capable protocol in the same basic family 

(distance-vector routing protocols), is the Cisco proprietary (IGRP) Interior 

Gateway Routing Protocol. 

 

RIP is a distance-vector routing protocol, which employs the hop count as a 

routing metric. The maximum number of hops allowed with RIP is 15. Each RIP 

router transmits full updates every 30 seconds by default, generating large 

amounts of network traffic in lower bandwidth networks. It runs above the 

network layer of the Internet protocol suite, using UDP port 520 to carry its data. 

A mechanism called split horizon with limited poison reverse is used to avoid 

routing loops. Routers of some brands also use a holddown mechanism known as 

heuristics, whose usefulness is arguable and is not a part of the standard 

protocol. 

 

 



 

Chapter 2                                                                  Literature Survey        

15 

 

2.2.3.2 Open Shortest Path First (OSPF) 

Open Shortest Path First (OSPF) is a routing protocol which was first defined as 

version 2 in RFC 2328. It is used to allow routers to dynamically learn routes 

from other routers and to advertise routes to other routers. Advertisements 

containing routes are referred to as Link State Advertisements (LSAs) in OSPF 

[9]. OSPF router keeps track of the state of all the various network connections 

(links) between itself and a network it is trying to send data to. This makes it a 

link-state routing protocol. OSPF supports the use of classless IP address ranges 

and is very efficient. OSPF uses areas to organize a network into a hierarchal 

structure; it summarizes route information to reduce the number of advertised 

routes and thereby reduce network load and uses a designated router to reduce 

the quantity and frequency of Link State Advertisements. OSPF does require the 

router have a more powerful processor and more memory than other routing 

protocols. 

OSPF selects the best routes by finding the lowest cost paths to a destination. All 

router interfaces (links) are given a cost. The cost of a route is equal to the sum 

of all the costs configured on all the outbound links between the router and the 

destination network, plus the cost configured on the interface that OSPF received 

the Link State Advertisement on. The Open Shortest Path First (OSPF) 

protocol is a link-state, hierarchical interior gateway protocol (IGP) for network 

routing. Dijkstra's algorithm is used to calculate the shortest path tree. It uses 

cost as its routing metric. A link state database is constructed of the network 

topology which is identical on all routers in the area. 

2.2.3.3 Boarder Gateway Protocol (BGP) 

The Border Gateway Protocol (BGP) is the core routing protocol of the 

Internet. It works by maintaining a table of IP networks or 'prefixes' which 

designate network reachability between autonomous systems (AS). It is 

described as a path vector protocol. BGP does not use traditional IGP metrics, 

but makes routing decisions based on path, network policies and/or rulesets.BGP  
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supports Classless Inter-Domain Routing and uses route aggregation to decrease 

the size of routing tables [9]. 

 

Very large private IP networks can also make use of BGP. An example would be 

the joining of a number of large Open Shortest Path First (OSPF) networks where 

OSPF by itself would not scale to size. Another reason to use BGP would be 

multihoming a network for better redundancy. 

 

2.3 RELATED WORK 

 

2.3.1 Inefficiency In Routing Protocol: 

 

Despite its obvious success, robustness, and scalability, the Internet suffers from 

a number of end-to-end performances and availability problems. Internet's 

inefficiencies can be argued as Internet behavior can be improved by spreading 

intelligent routers at key access and interchange points to actively manage traffic 

[1]. 

 

A routing system is responsible for forwarding traffic between nodes of a 

network. There are a number of problems this system can be inefficient. It can 

forward packets along routes that are non-optimal or it can spread load 

unequally, such that some links are over-utilized while others are idle. 

 

We classify potential sources of routing inefficiencies into four principle 

categories: 

 

• Poor Routing Metrics. [1] Today's backbone, or “default-free”, routers 

generally exchange only connectivity information between each other. In 

the absence of explicit policy rules, these routers make routing decisions 

by minimizing the number of independent Autonomous Systems (AS) 

traversed in getting to the destination. This metric correlates poorly with 

performance characteristics such as latency or drop rate; it does not 

change as the performance changes. This is not surprising when one 

considers that AS's generally correspond to organizational domains and 
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can have enormous scope. For instance, all of MCI's Internet backbone is 

represented by a single AS number. 

 

• Restrictive Routing Policies. Policy routing allows each AS to define its 

own rules for where to send traffic, which routes to advertise, and what 

traffic to transit. These policies are constructed to support the interests of 

individual service providers and can negatively affect overall reachability 

and performance [1]. For instance, the common early exit policy attempts 

to dispatch a packet bound for a host on a foreign network as soon as 

possible, even if this means sending it in the opposite geographical 

direction from where it is going. This is suboptimal but, for lack of 

alternative mechanisms, it is used to limit the amount of traffic one 

network carries for another. For similar reasons, large providers have 

established private peering relationships to exchange routing information 

and traffic, while smaller providers are left at the congested public 

exchange points. Consequently, packets sent from or destined to smaller 

networks have less diversity in their choice of routes and poorer 

connectivity as a result. Finally, some government-funded networks have 

legal limitations on how they may be used, resulting in policies that only 

carry traffic meeting some acceptable use criteria. 

 

• Manual Load Balancing. Internet Service Providers and multi-homed 

organizations generally must pay a fixed fee for the links they use to 

connect their routers. [1] Consequently, they are interested in balancing 

the amount of load on their links to take the best advantage of their fixed 

cost. There is no mechanism for doing this automatically so operators 

balance load by adding and removing policy rules on a daily basis in 

response to measured link utilization. While this may keep link utilization 

high, it does not make for the best routing decisions. In fact, it is 

extremely likely that there is an alternative assignment of routes to links 

that would achieve both equal utilization and better overall performance. 

 

• Single Path Routing. Current Internet routers select a single path to 

reach a given destination. Alternate paths to the same destination may 
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have underutilized links. This capacity can only be exploited by routing 

traffic along multiple paths to each destination [1]. 

 

2.3.2 Detour Project: 

 

While it is clear that each of these factors contribute to making a less efficient 

routing system, 

 

� Detour: - Is the project implemented to remove the inefficiencies in 

routing [1]. 

 

Detour is composed of a set of geographically distributed router nodes 

interconnected using tunnels. A tunnel can be thought of as a virtual point-to-

point link. Each packet entering a tunnel is encapsulated into a new IP packet 

and forwarded through the Internet until it reaches the tunnel's exit point. This 

same mechanism has previously been used to form the multicast backbone 

(MBONE) and the experimental IPv6 backbone (6BONE). Tunnels are useful 

because they allow new routing functionality to be prototyped while using the 

existing network infrastructure. 

 

 

Figure 2.2: Detour Architecture 
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A host wishing to use the Detour network will direct its outbound traffic to the 

nearest Detour router. Its packets will be forwarded along tunnels within the 

Detour network and will exit at a point close to the destination. In order that 

responses return in the same fashion, the system must perform network address 

translation, so the source address of the packet reflects the exit router and not 

the actual source. This complication is a necessary consequence of using tunnels 

to superimpose a new routing framework.  

 

� Such end-to-end route selection schemes are selfish by nature in that they 

allow end users to greedily select routes to optimize their own 

performance without considering the system-wide criteria. 

 

� Selfish routing can result in serious performance degradation due to lack 

of cooperation. 

 

2.3.3 PROBLEM DEFINITION 

 

� Implementing the exciting routing protocol (RIP) using Game approach, by 

using different algorithms. 

� A game-theoretic approach to compute the traffic equilibria of various 

routing schemes and then evaluate their performance. 

� Analyzing the performance of protocol by game theory and the other 

conventional protocols on different parameters like  

•  Delay jitter  

•  Convergence 

•  Throughput 

•  Delay 

•  Soundness 

•  Processing Time 
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3           MODELING ROUTING AS GAME  

 

This chapter explains how routing protocols can be modeled as game. And also 

gives the strategy for implantation of game theory algorithm on routing 

protocols. Here minimax algorithm is applied on routing protocol for finding path 

from source to destination.  

 

3.1 MINIMAX ALGORITHM: 

 

Game theory was invented to provide a mathematical foundation for reasoning 

about conflict and competition [5]. It has grown into a rich theory, with powerful 

mathematical and computational tools. It also has the advantage of retaining its 

intuitive appeal, which is what first attracted us to it. Two insights enabled us to 

turn this pool of theory and tools into a potentially powerful analytical capability 

for analyzing routing: 

 

• A routing protocol can be modelled as a minimax game between the 

network and the routers. 

• The minimax value of the game can quantify the performance properties. 

Minimax (sometimes minmax) is a method in decision theory for minimizing 

the maximum possible loss [13]. Alternatively, it can be thought of as 

maximizing the minimum gain (maximin). It started from two player zero-sum 

game theory, covering both the cases where players take alternate moves and 

those where they make simultaneous moves. It has also been extended to more 

complex games and to general decision making in the presence of uncertainty. 

A simple version of the algorithm deals with games such as tic-tac-toe, where 

each player can win, lose, or draw. If player A can win in one move, his best 

move is that winning move. If player B knows that one move will lead to the 

situation where player A can win in one move, while another move will lead to 

the situation where player A can, at best, draw, then player B's best move is the 

one leading to a draw. Late in the game, it's easy to see what the "best" move 

is. The Minimax algorithm helps find the best move, by working backwards from 

the end of the game. At each step it assumes that player A is trying to maximize 
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the chances of A winning, while on the next turn player B is trying to minimize 

the chances of A winning (i.e., to maximize B's own chances of winning) [13].  

Suppose we are considering a two-player game in which, at each turn, a player 

has a choice of three legal moves. Figure 3.1 might represent possible choices 

for the first two moves of such a game; it is a tree in which each node represents 

a state of the game and each branch represents a legal move between two 

states. Such a structure is called a game tree [3]. 

 

 

 

Figure 3.1: A Representation of Game 

 

A Run of the game is a path through the game tree starting at the root node 

(which represents the initial state) and ending at a leaf node (at which the game 

has ended). Each run of the game therefore corresponds to a particular sequence 

of moves chosen by the two players in turn. A cost function is evaluated at the 

leaves of the game tree [3]. It maps each complete run of the game to a value 

representing the outcome of the game for this run. The outcome is the cost of 

this run for a particular player, known as the minimising player. The game must 

be zero-sum, meaning that the cost for the other player (the maximising player) 

is minus the cost for the minimising player. As their names suggest, the 

minimising player tries to minimise the cost function, while the maximising 

player tries to maximise it. When the game tree can be fully explored, the 
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minimax strategy will find a path that guarantees the best outcome for each 

player when the other plays as well as possible.   

 

 

                             Stage 1  Stage2  Stage3 

 

Figure: 3.2 the minimax algorithm at work 

 

For example, consider a game in which each player makes a single move in turn, 

each choosing from two possible moves. Figure 3.2 shows three stages of a 

minimax search for such a game. Stage 1 shows the value of the cost function at 

each leaf node. Stage 2 shows that in the left-hand, middle layer state of the 

game tree Player II (the minimising player) would choose the move that 

minimizes the outcome; the game would end in the leaf state with outcome 2. 

Stage 3 shows Player II’s decision in the right-hand state, and also that Player I 

would choose the move leading to the left-hand state, guaranteeing himself the 

largest minimal outcome. 

 

3.2 MAPPING ROUTING AS A GAME 

 

The intuition behind modeling routing as a game is to note that the problem of 

routing can be understood as a contest between the network and the routers. 

And also see that game theory useful for improving the performance of routing 

protocols. The routers are, in effect, competing with a network that is trying to 

outwit them. 
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• Identify the two players and their initial states, saying which is the 

minimizing player and which is the maximising player 

• Define the game moves for each of the players; 

• Specify a cost function that quantifies the outcome for the minimising 

player; the minimising player chooses moves to minimise this function 

and the maximizing player chooses moves to maximize it. 

 

In all our uses of game theory the two players will be same. All the routers 

together form one player, which is referred to henceforth as the set-of-routers 

player; the other player is the set of links, which is called the network player [3]. 

Game moves for the set-of-routers player are, in essence to execute the routing 

protocol. And for the network player game moves are to change the network 

topology. This is the basic insight behind our mapping to model routing protocols 

as games. Once the game has been defined the game tree can be constructed 

and explored. 

 

The minimax strategy searches through the game tree to find the minimax path 

[14]; the minimax value (or minimax outcome) is the cost function applied to 

this path. The meaning of the minimax value can be interpreted in the following 

way: within the constraints provided to the game, if the routers behave 

optimally, then whatever changes in the network occur, the routers are 

guaranteed to do no worse than the minimax value. 

 

We define the game as follows: 

 

• The set-of-routers player, representing the set of all the routers, is the 

minimizing player; the network player, representing the set of all the links, 

is the maximising player; in the initial state of the game all links are down 

and each router has a correct view of the network; 

• An atomic move for a router is to send all its routing messages, as 

specified by the protocol (in addition, all routers notice local link changes 

and process received messages). An atomic move for the network changes 

the state of one link from up to down or vice versa. A game move, for 

either player, is a (small) number of atomic moves;  
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Below figure 3.3 shows how game components is mapped into game component.  

 

 

 

Figure 3.3: Modeling Routing as Game 

 
 
3.2.1. Detailed Description Of Game Moves: 

 

All the routers together form one player, which is referred to henceforth as the 

set-of-routers player; the other player is the set of links, which is called the 

network player. Game moves for the set-of-routers player are, in essence, to 

execute the routing protocol. And for the network player game moves are to 

change the network topology. 

 

The minimax algorithm in section 3.1 moves is considered as game moves for 

finding the path from source to destination. 

 

3.2.2 Detailed Description Of A Set-Of-Routers Atomic Move 

 

The atomic moves and game moves for the network are reasonably clear. The 

game moves for the set-of-routers are rather more complex, so we elaborate on 

them in detail. 

 

In each atomic move one router is chosen (the choice being determined by the 

need to minimise the cost function that records inconsistency and network 

traffic). Let us say that router n is chosen, and then the atomic move consists of 

the following sequence of activities:  

Available Adaptations 

Routing Component Game Component 

Action Set 

Nodes in Network Player Set 

Adaptation Algorithm 

Decision Update Algorithm 

Valuation Function 
(Preference Relations) 

Utility Function 

Learning Process 
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(i) Each router checks the state of its local links, and updates its own 

record of the state of those links accordingly.  

 

(ii) Each router performs some processing, as follows: 

 

(a) In link state routing, every router creates its own LSP and puts it on 

its outgoing queue. 

(b) In distance vector routing, each router discards distance vectors it 

had received from neighbors for which the link has just gone down, and 

recalculates its own distance vector accordingly. 

 

     (iii)    Router n performs a broadcast, which consists of the following: 

 

(a) In link state routing, router n processes the LSPs on its holding 

queue (which is empty the first time when this router is scheduled). For 

each one, if router n is now linked to the LSP’s destination router, that 

LSP is removed from the holding queue and added to a list of LSPs that 

are to be broadcast. Router n then processes the LSPs on its outgoing 

queue (which contains only router n’s own LSP the first time this router 

is scheduled). Each LSP in the outgoing queue is cloned a number of 

times, with each clone corresponding to a particular destination router 

other than n itself and the sender of the LSP (if different from n). For 

each cloned LSP, if n is linked to the destination of that LSP, the LSP is 

added to the list of LSPs to be broadcast, overwriting any duplicate LSPs 

already there. If n is not linked to the destination of the LSP, the LSP is 

added to n’s holding queue, as long as its timestamp is more recent 

than that of any LSP already in the holding queue, originating from the 

same source and with the same destination. Each LSP in the list to be 

broadcast is then delivered to its destination. 

 

(b) In distance vector routing, router n broadcasts its own distance 

vector to all neighbors to which it is linked (as required by the “output 

always” model). 
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   (iv)   All routers that have been sent updates receive them, and act as   

           Follows: 

 

(a) In link state routing, when a router receives an LSP it updates its 

view of the network accordingly. It then puts the LSP on its outgoing 

queue, but only if its timestamp is more recent than that of any LSP 

already in the outgoing queue, originating from the same source and 

with the same destination. (In reverse-path forwarding, the router does 

none of this unless it believes the sender of the LSP is on the shortest 

path between itself and the source of the LSP.) 

 

(b) In distance vector routing, when a router receives a distance vector, 

it adds this to its list of stored distance vectors, replacing any distance 

vector previously received from the same neighbor. It then recalculates 

its own distance vector. 

3.3 GAME TREES 

When the above defined atomic moves are applied on the network all the routing 

tables and the game tree are constructed. On that game tree minimax algorithm 

applied to fine destination. 

The game tree consists of all moves available to the current player as children of 

the root, and then all moves available to the next player as children of these 

nodes, and so forth, as far into the future of the game as desired. Each branch of 

the tree represents a possible move that player could make at that point in the 

game. Evaluating the game at a leaf of this tree yields the projected status of the 

game after that sequence of moves is made by the players. A deeper search of 

the game tree provides more information about possible advantages or traps and 

therefore yields a better move.  
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3.3.1 Example  
 
 

 
 

Figure 3.4 Network  

 
The statistics of the network as follows:  
 
Packet sending node = n0, n12 

Destination node= n11 

Routers= 10 routers 

 

On the above example atomic moves of router and network links are 

applied and game tree is constructed and finds destinations using minimax 

algorithm. 
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Figure 3.5 Game tree whish gives path from source to destination 

 

The figure.3.4 shows the network for which finds the path from source to 

destination. When the routers prepare the routing table by using RIP protocol 

control messages like request and reply message, these are the atomic moves 

for the game and it prepares the tree which gives the connectivity information of 

whole network. The tree is used by minimax module for finding the path from 

source to destination. The above figure.3.5 shows the tree with their possible 

moves for each router, and finds the path from source to destination.  

 

When in network convergence occur (some links are down) the topology of the 

whole network will be changing. According to that, the whole tree for network 

will be changing, figure.3.6 shows how it responses to topology change. 
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Figure: 3.6 Game tree after change in topology of network 

 

In section 2.1 basics of game theory, when there is change in game or there is 

any need for backward movement, it takes the backward movement for finding 

the best move for minimizing the possible loss. 

 

When there is any topology change in the network, minimax algorithm takes the 

moves backward and prepares the tree and finds the path to destination node. 
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4               SIMULATION ENVIRONMENT    

 

This chapter gives the basic information about simulation environment or tool 

used for coding and simulation. The purpose of this chapter is to give a new user 

some basic idea of how the simulator works, how to setup simulation networks, 

how to create new network components, routing module etc.  

 

4.1 BASIC OF NETWORK SIMULATOR  

 

NS is an object oriented simulator, written in C++, with an OTcl interpreter as a 

front-end. The simulator supports a class hierarchy in C++ (also called the 

compiled hierarchy in this document), and a similar class hierarchy within the 

OTcl interpreter. The two hierarchies are closely related to each other; from the 

user’s perspective, there is a one-to-one correspondence between a class in the 

interpreted hierarchy and one in the compiled hierarchy. The root of this 

hierarchy is the class TclObject. Users create new simulator objects through the 

interpreter; these objects are instantiated within the interpreter, and are closely 

mirrored by a corresponding object in the compiled hierarchy. The interpreted 

class hierarchy is automatically established through methods defined in the class 

TclClass. User instantiated objects are mirrored through methods defined in the 

class TclObject. There are other hierarchies in the C++ code and OTcl scripts; 

these other hierarchies are not mirrored like TclObject [16]. 

 

NS uses two languages because simulator has needs to do two different kind of 

things it.  

 

• Detailed simulations of protocols require a systems programming language 

which can efficiently manipulate bytes, packet headers, and implement 

algorithms that run over large data sets. For these tasks run-time speed is 

important and turn-around time (run simulation, find bug, fix bug, 

recompile, re-run) is less important. 

 

• On the other hand, a large part of network research involves slightly 

varying parameters or configurations, or quickly exploring a number of 
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scenarios. In these cases, iteration time (change the model and re-run) is 

more important. Since configuration runs once (at the beginning of the 

simulation), run-time of this part of the task is less important. 

 

NS meets both of these needs with two languages, C++ and OTcl. C++ is fast to 

run but slower to change, making it suitable for detailed protocol 

implementation. 

 

4.1.1 Architecture Of NS2  

 

 

 

Figure 4.1 Architectural View of NS2 

 

Figure 4.1 shows the general architecture of NS. In this figure a general user 

(not an NS developer) can be thought of standing at the left bottom corner, 

designing and running simulations in Tcl using the simulator objects in the OTcl 

library. The event schedulers and most of the network components are 

implemented in C++ and available to OTcl through an OTcl linkage that is 

implemented using tclcl. The whole thing together makes NS, which is an OO 

extended Tcl interpreter with network simulator libraries [16]. 

 

4.1.2 C++ And OTcl Duality: 

 

The event scheduler and the basic network component objects in the data path 

are written and compiled using C++. These compiled objects are made available 

to the OTcl interpreter through an OTcl linkage that creates a matching OTcl 

object for each of the C++ objects and makes the control functions and the 
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configurable variables specified by the C++ object act as member functions and 

member variables of the corresponding OTcl object. In this way, the controls of 

the C++ objects are given to OTcl. It is also possible to add member functions 

and variables to a C++ linked OTcl object. The objects in C++ that do not need 

to be controlled in a simulation or internally used by another object do not need 

to be linked to Otcl [16]. 

 

 

 

Figure 4.2 C++ and OTcl: The Duality 

 

Figure 4.2 shows an object hierarchy example in C++ and OTcl. One thing to 

note in the figure is that for C++ objects that have an OTcl linkage forming a 

hierarchy, there is a matching OTcl object hierarchy very similar to that of C++. 

 

There are a number of classes defined in ~tclcl/. In NS2 only focus on the six 

classes that are used in NS2:  

 

• The Class Tcl contains the methods that C++ code will use to access the 

interpreter. 

 

•  The class TclObject is the base class for all simulator objects that are also 

mirrored in the compiled hierarchy.  

 

• The class TclClass defines the interpreted class hierarchy, and the methods 

to permit the user to instantiate TclObjects.  

 

• The class TclCommand is used to define simple global interpreter 

commands.  
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• The class EmbeddedTcl contains the methods to load higher level built-in 

commands that make configuring simulations easier.  

 

• Finally, the class InstVar contains methods to access C++ member 

variables as OTcl instance variables [16]. 

 

4.1.3 Simplified User’s View: 

 

 

 

Figure 4.3 Simplified User’s View Of Network Simulator 2  

 

As shown in Figure 4.3, in a simplified user's view, NS is Object-oriented Tcl 

(OTcl) script interpreter that has a simulation event scheduler and network 

component object libraries, and network setup (plumbing) module libraries. To 

setup and run a simulation network, a user should write an OTcl script that 

initiates an event scheduler, sets up the network topology using the network 

objects and the plumbing functions in the library, and tells traffic sources when 

to start and stop transmitting packets through the event scheduler [16]. 

 

When a simulation is finished, NS produces one or more text-based output files 

that contain detailed simulation data, if specified to do so in the input Tcl script. 

The data can be used for simulation analysis or as an input to a graphical 

simulation display tool called Network Animator (NAM) that is developed as a 

part of VINT project [16]. NAM has a nice graphical user interface similar to that 

of a CD player (play, fast forward, rewind, pause and so on), and also has a 
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display speed controller. Furthermore, it can graphically present information such 

as throughput and number of packet drops at each link, although the graphical 

information cannot be used for accurate simulation analysis. 

 

4.2 ROUTING MODULE IN NETWORK SIMULATOR: 

 

Every routing implementation in NS consists of three functional blocks: 

 

• Routing agent exchanges routing packet with neighbors, 

• Route logic uses the information gathered by routing agents (or the global 

topology database in the case of static routing) to perform the actual route 

computation, 

• Classifiers sit inside a Node. They use the computed routing table to 

perform packet forwarding. 

 

When implementing a new routing protocol, one does not necessarily implement 

all of these three blocks. For instance, when one implements a link state routing 

protocol, one simply implement a routing agent that exchanges information in 

the manner link state does, and a route logic that applies Dijkstra on the 

resulting topology database. It can then use the same classifiers as other unicast 

routing protocols [16]. 

 

 

Figure: 4.4 Interaction among node, routing module, and routing .the dashed line shows the details of 

one routing module 
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When a new routing protocol implementation includes more than one functional 

block, especially when it contains its own classifier, it is desirable to have 

another object, which we call a routing module, that manages all these functional 

blocks and to interface with node to organize its classifiers. Figure 4.4 shows 

functional relation among these objects. Notice that routing modules may have 

direct relationship with route computation blocks, i.e., route logic and/or routing 

agents. However, route computation may not install their routes directly through 

a routing module, because there may exist other modules that are interested in 

learning about the new routes. This is not a requirement, however, because it is 

possible that some route computation is specific to one particular routing 

module, for instance, label installation in the MPLS module [16]. 

 

A routing module contains three major functionalities: 

 

1. A routing module initializes its connection to a node through register {},  

    and tears the connection down via unregister{}. Usually, in register {} a   

    routing module 

 

• tells the node whether it interests in knowing route updates and transport 

agent attachments, and  

• Creates its classifiers and install them in the node (details described in the 

next subsection). In unregister { } a routing module does the exact 

opposite: it deletes its classifiers and removes its hooks on routing update 

in the node. 

 

2. If a routing module is interested in knowing routing updates, the node will   

    inform the module via RtModule::add-route {dst, target} and  

    RtModule::delete-route{dst, nullagent}. 

 

3. If a routing module is interested in learning about transport agent  

    attachment and detachment in a node, the node will inform the module   

    via RtModule::attach {agent, port} and RtModule::detach {agent,  

    nullagent}. 
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There are several derived routing module examples in ~ns/tcl/lib/ns-

rtmodule.tcl, which may serve as templates for new routing modules [16]. 

 

4.3 EXAMPLE  

 

Figure 4.5 shows example simulate using NS2 tool and observes how it 

finds route for destination and also the working environment of NS2 tool. 

 

 

 

Figure 4.5: Network of nodes and routers 

 

 

Simulation of above example: 
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Figure 4.6: Simulation Of Above Network And NS2 Working Environment 

 

The figure 4.6 shows the simulation environment of NS2, it shows how the 

packet is sent to destination node. When the simulation of any network is 

executed, NAM file of that particular example will run and also trace file is 

generated for analysis of the network. 

 

4.4 STRUCTURE OF TRACING: 

 

NS simulation can produce both the visualization trace (for NAM) as well as an 

ASCII file trace corresponding to the events registered at the networks 

 

When tracing into an output ASCII file, the trace is organized in 12 fields (L to R) 

as follows in figure.4.7 

 

Figure 4.7: Fields Appearing In Trace 
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1. The first field is the event type. It is given by one of four possible 

symbols  

 

r: receive (at to_node) 

+: enqueue (at queue) 

-  : dequeue (at queue) 

d: drop( at queue) 

 

2. The second field gives the time at which the event occurs. 

3. Gives the input node of the link at which the event occurs. 

4. Gives the output node of the link at which the event occurs. 

5. Gives the packet type. 

6. Gives the packet size. 

7. Some flags 

8. This is the flow id of IPv6 that a user can set for each flow at input OTcl 

script. One can use this filed further for analysis purpose; it is also 

used for specifying stream color for the NAM display. 

9. This is the source address given in the form of “node. Port”. 

10.This is the destination address given in the same form. 

11.This network layer protocol packet sequence number. Even thought 

UDP network in real network do not use sequence number, NS keeps 

the track of NS packet sequence number for analysis purpose [12]. 

12.The last field shows the unique id of packet. 

 

Having simulation trace data at hand, all one has to do is to transform a subset 

of the data of interest into a comprehensible information and analyze it. One can 

of course write programs in any programming language that can handle data 

files like awk, pearl etc. Yet several tools that seem particularly adapted for 

these purpose and that are freely available under various operating systems. 

[17] Tracegraph is the tool implemented in matlab, and which is freely available 

.In this tool trace file is given as input, and various graphs will generate 

according to users requirement. 
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Trace graph supports the following ns-2 trace file formats:  

• Wired 

• Satellite 

• Wireless (old and new trace) 

• Wired-cum-wireless.  

Trace file loading stage is divided into 4 stages:  

• automatic trace file format recognition using the first n file lines, where n 

is specified in Trace graph configuration file, if the format cannot be 

recognized it can be specified manually 

• Trace file parsing to extract necessary simulation data which is saved to a 

temporary file, trace files can contain much more data than is needed by 

the system, so unnecessary information is omitted to speed up trace file 

loading 

• Temporary file loading 

• Constraints calculations (packets types, packets sizes, flows IDs, trace 

levels, number of nodes, simulation time) – in order to speed up data 

processing [17]. 
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5                                                               RIP SIMULATION 
 

 
Network simulator 2 has unicast support for routing protocols like RIP, OSPF etc. 

In this chapter rtProtoDV (RIP) which is already implemented in NS2, is 

simulated and the results are analyzed for inefficiencies in rtProtoDV. Here, to 

see the behavior of RIP 4 different examples are taken with different parameters 

like bandwidth, queue, packet size... etc and how it works. According to 

simulation results the inefficiencies in RIP protocol are found.  

 

5.1 SIMULATION SETUP: 

 

In this simulation 4 examples are taken, the parameters as follows. 

 

   Table 5.1 RIP simulation parameters 

Parameter Value 

Bandwidth  Varied (but same for all 

example) 

Simulation time  20 sec 

Nodes varied 

Traffic Type  FTP 

Packet size  1040 

Traffic TCP  

 

Following are the examples used for simulation and analyzing RIP protocol. 
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Figure 5.1: Example1 RIP implementation 

 

Packet sending node = n0 

Destination node= n11 

Routers= 9 routers 

Figure 5.2: Example 2 RIP implementation 

 

Packet sending node = n0,n12,n13 

Destination node= n10 

Routers= 10 routers 

 

 
 

 
 

Figure 5.3: Example 3 RIP implementation 

Packet sending node = n0, n12 

Destination node= n10 

Routers= 10 routers 

 

Figure 5.4: Example 4 RIP implementation 

Packet sending node = n0, n13 

Destination node= n10 

Routers= 12 routers 
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5.2 RESULT 

 

Fallowing table shows results of above 4 examples on different parameters like 

convergence, throughput, delay, Processing time, delay jitter etc. 

 

Table 5.2 RIP Simulation Result 

 

 

A=Average 

M=Maximum 

From above results we can say that: 

 

•  The timer associated with each entry in routing table much larger than 

the period of transmission of information. 

• Slow Convergence 

• Count to infinity Problem 

• Difference in the links speed is not reflected in hop count metrics 

• Congested links are included in path from source to destination. 

 

As we have seen in chapter 3 how the routing is to be modeled as game. So here 

that approach is to be used for modeling routing as game and removing the in 

inefficacies of RIP protocol. 

Parameters Example1 Example 2 Example 3 Example 4 

Convergence 

(Sec) 

0.069 0.56 

 

0.43 0.555 

Throughput 

(PKT/TIL) 

A= 2.2321 

M=5.0 

A=0.8909 

M=3.0 

A=2.01851 

M=4.0 

A=15.7142 

M=34.0 

Jitter  

{Sec) 

A=0.01081 

M=0.2582 

A=0.5119 

M=8186 

A=0.0530 

M=0.7658 

A=0.0442 

M=0.6168 

Processing Time 

(Sec) 

A= 0.01934 

M=0.2454 

A=0.111985 

M=0.81864 

A=0.0301 

M=0.3468 

A=0.0267 

M=0.371406 

Delay 

(Sec) 

A=0.2524 

M=0.4386 

A=0.6953 

M=1.2206 

A=0.3418 

M=0.7228 

A=0.3361 

M=0.6868 
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6                 IMPLEMENTATION DETAILS OF RTPROTOMIN 
 
 

 
6.1 INTRODUCTION: 

 
The RIP (Routing Information Protocol) uses Distance Vector (DV) routing 

protocol for finding path from source to destination, and sends the packets. DV 

routing is the implementation of Distributed Bellman-Ford (or Distance Vector) 

routing. As we seen in above chapter rtProtoDV is the RIP implementation in 

Network Simulator 2 (NS2) unicast routing. Here replacing Distributed Bellman-

Ford (or Distance Vector) with game theory algorithms, like minimax algorithm 

for finding path. RtProtoMIN is implemented in NS2. The structure, classes and 

all details of rtProtoMIN are as follows. 

 

6.2 BLOCK DIAGRAM OF RTPROTOMIN:-  
 
Figure 6.1 shows how different files are used when simulating example. There 

are two main .h and .cc files are modified and one .h and .cc file is added in NS2 

for rtProtoMIN. 

 

• rtProtoMIN.h, rtProtoMIN.cc  

• route.h, route.cc 

• rttable.h , rttable.cc 

• bsd-list.h 

 

These are the main files associated with rtProtoMIN, and tcl files are as follows  

 

• Ns-route.tcl 

• Route-proto.tcl 

 

These 2 files are useful for implementing rtProtoMIN in tcl script. This mainly 

concerns with simulation of rtProtoMIN. 
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Figure: 6.1 Block Diagram of rtProtoMIN 

 
6.3. INTERNALS AND ARCHITECTURE OF RTPROTOMIN: 

 
Here all the classes associated with rtProtoMIN, and the code path used to 

configure and execute rtProtoMIN protocols is explained. 

 

The Class rtProtoMIN and the header structure are defined as shown in figure 

6.2. 
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6.3.1 RtProtoMIN: 
 
 

      
 
 

Figure 6.2: RtProtoMIN Class And Header Structure 

 
 

The above figure 6.2 shows the class rtProtoMIN and header structure which 

passes the information to other routers. That packet is called as control packet 

that is rtProtoMIN. The internal methods and call graph of rtProtoMIN is as 

follows. 

 

6.3.1.1 Hdr_MIN:  

 

The header structure of rtProtoMIN as shown above, it contains the metrics 

variable. When there are multiple routes to the same destination, a router should 

have a mechanism to calculate the best path. A metric is a variable assigned to 

router as a means of ranking them from most preferred to least preferred. 

 

6.3.1.2 Sendpkt (): 

 

This function concerns with sending packet to the destination node. In that three 

main parameters have to pass destination address, metrics variable. 

ns_addr_t: Declares the network address in NS2. 

u_int32_t: Unsigned 32 bit integer.  
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The call graph of sendPkt function is as shown in below figure.  

 

 

Figure 6.3: Call Graph Of Sendpkt Function. 

 
6.3.1.3 Recv (): 

 

This function deals with receiving the packet to destination node, after receiving 

it will free that packet. 

 

The call graph of receive function is as follows 

  

 
 

Figure 6.4: Call Graph Of Recv () Function. 

 

 
There are four main classes, the class RouteLogic, the class rtObject, the class 

rtPeer, and the base class Agent/rtProto for all protocols. In addition, the routing 

architecture extends the classes Simulator, Link, Node and Classifier. 
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6.4 ROUTE.H 

 

Here two structures are defined  

 

• Adj_entry  

• Route_Entry  

 

Also all the methods which are useful for finding the routes like , compute routes 

, lookup, check , alloc , minimax .etc. It cotains main class that is RouteLogic. 

 

6.4.1 Class RouteLogic 

  

This class defines two methods to configure unicast routing, and one method to 

query it for route information. It also defines an instance procedure that is 

applicable when the topology is dynamic.  

 

• The instance procedure register {} is invoked by Simulator::rtproto 

{}. It takes the protocol and a list of nodes as arguments, and constructs 

an instance variable, rtprotos_, as an array; the array index is the name 

of the protocol, and the value is the list of nodes that will run this protocol. 

 

• The configure {} reads the rtprotos_ instance variable, and for each 

element in the array, invokes route protocol methods to perform the 

appropriate initializations. It is invoked by the simulator run procedure. 

 

• The instance procedure lookup {} takes two node numbers, node Id1 

and node Id2, as argument; it returns the id of the neighbor node that 

node Id1 uses to reach node Id2. 
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Figure 6.5: Route Logic Class and structure: route_entry and adj_entry 

 

The above diagram shows two structures, which is used in route computation 

and other member function used for route computation. The new module added 

in routelogic is minimax () shown by red color in diagram. rtProtoMIN use 

minimax algorithm for finding route from source to destination. 

 

Route_entry: This structure consists of two variables next_hop and entry. It 

concerns with route information for network. 

 

Adj_entry: This structure consists of two variables cost and entry. It concerns 

with cost information for each adjacent entry of router. 

 

RouteLogic class also consists of other function like constructor Route_Logic() 

it initializes all variables to zero , alloc (): used for allocating memory for 
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routers , reset_all(): when route are found or there is convergence all routers 

are reset again and find the routes , check (): checks the maximum hops 

allowed for the protocol , insert(): this method adds adjacent routes for each 

router, Minimax (): the implementation details and logic is given in above 

chapter. It takes tree as argument formed using atomic moves; this tree 

contains all connectivity information of whole network. 

 

The routine checks the protocol agent’s instance variable, rtsChanged_ to see if 

any of the routes in that protocol have changed since the protocol was last 

examined. It then uses the protocol’s instance variables arrays, nextHop_, 

rtpref_, and metric_ to compute its own arrays. The rtObject will install or 

modify any of the routes as the changes are found. 

 

6.4.2 Class Rtobject  

 

This class is used in simulations that use dynamic routing. Each node has a 

rtObject associated with it, that acts as a co-ordinator for the different routing 

protocols that operate at a node. At any node, the rtObject at that node tracks 

each of the protocols operating at that node; it computes and installs the next 

route to each destination available via each of the protocols. In the event that 

the routing tables change, or the topology changes, the rtObject will alert the 

protocols to take the appropriate action. 

 

The class defines the procedure init-all {}; this procedure takes a list of nodes 

as arguments, and creates a rtObject at each of the nodes in its argument list. 

It subsequently invokes its minimax () method for finding routes. 

 

6.4.3 The Class Rtpeer  

 

This is a container class used by the protocol agents. Each object stores the 

address of the peer agent, and the metric and preference for each route 

advertised by that peer. A protocol agent will store one object per peer. The 

class maintains the instance variable addr_, and the instance variable arrays, 

metric_ and rtpref_; the array indices are the destination node handles. The 

class instance procedures, metric{} and preference{}, take one destination 
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and value, and set the respective array variable. The procedures, metric{} and 

preference{}, take a destination and return the current value for that 

destination. The instance procedure addr {} returns the address of the peer 

agent. 

 

6.4.4 Class Agent/rtProto 

 

This class is the base class from which all routing protocol agents are derived. 

The constructor for the rtProtoMIN agent initializes a number of instance 

variables; each agent stores an array, indexed by the destination node handle, of 

the preference and metric, the interface (or link) to the next hop, and the remote 

peer incident on the interface, for the best route to each destination computed 

by the agent. The agent creates these instance variables, and then schedules 

sending its first update within the first 0.5 seconds of simulation start. 

 

6.5 RTTABLE.H: 

 

This file concerns with the routing table building, rttable.h declarer all the 

methods and definition of these methods are written in rttable.cc. 

This file contains main 3 classes which are useful for building routing table.  

 

• Class Neighbour 

• Class rt_entry 

• Class rttable 

 

Here each move for building routing table is called as atomic move; this is 

explained in previous chapter 3. This move is useful for building tree, which 

contains all connectivity information of the network. 

 

Rttable.h uses bsd-list.h for storing all information. Bsd-list.h defines the 

different type of data structure, those are useful for storing information of 

routing table, neighbor etc. It defines the five types of data structures singly 

link-list, singly link-list tail queue, lists, tail queues and circular queues. 
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These data structure used by rttable.h for building routing table and storing 

neighbor connectivity information. 

 

6.5.1 Class Neighbor: 

 

This class defines the methods for getting all information of neighbors in the 

network. Below diagram shows class neighbor, it shows attributes and methods.  

Neighbor method makes the neighbor entry of neighbor node.  

 

LIST_ENTRY (neighbor) concerns with entry of neighbor, which is defined in bsd-

list.h. 

 

 
 

Figure 6.6: Class Neighbor 

 

 

6.5.2 Class Rt_Entry: 

 
 

Figure 6.7: Class rt_entry 
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The above diagram shows the route entry class the attributes and methods as 

shown in figure 6.7. This class concerns with inserting neighbors, neighbor 

lookup. Rt_entry initializes all the variables to zero which is used for building 

routing table. LIST_ENTRY () concerns with neighbor route entry. 

 
6.5.3 Class Rttable: 

 

This class concerns with adding the routing information for routers and prepares 

routing table. There are three main functions of this class are,  

 

Rt_add (): This adds entry into routing table, it adds destination address and 

metrics variable i.e. cost to reach to the destination node. It uses 

LIST_HEAD_INSERT () structure for adding routing information. 

 

Rt_lookup (): This method search the whole routing table for particular id i.e 

destination node. And returns the neighbor node route to destination node.  

 

Rt_delete (): If there is convergence or when the simulation ends the particular 

entry or whole routing table is deleted by using this method , and it is modified 

using request and reply messages of protocol. LIST_REMOVE () is used for this 

purpose. 

 
6.5.4 Other Classes Simulator, Node, Link, And Classifier 

 

The one other method used internally is get-routelogic {}; this procedure returns 

the instance of routelogic in the simulation. 

 

• The class Node contains these additional instance procedures to support 

dynamic unicast routing: init-routing {}, add-routes {}, delete-routes {}, 

and rtObject {}. 

 

• The instance procedure init-routing {} is invoked by the rtObject at the 

node. It stores a pointer to the rtObject, in its instance variable rtObject_, 

for later manipulation or retrieval.  
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• The instance procedure add-routes{} takes a node id, and a list of links. It 

will add the list of links as the routes to reach the destination identified by 

the node id. The realization of multiPath routing is done by using a 

separate Classifier/multiPath. 

 

• The instance procedure delete-routes {} takes a node id, a list of 

interfaces, and a nullAgent. It removes each of the interfaces in the list 

from the installed list of interfaces. 

 

In this way all these four files are related to each other. As shown in figure 6.1 

the interface between simulation example and the .cc and .h header files. The 

.tcl files like ns-proto.tcl, route-proto.tcl that forms the duality objects with the 

objects of C++ code. As this duality seen in the architecture of network simulator 

2.  

 

 
6.6 CHANGES TO BE MADE WHEN ADDING RTPROTOMIN 

PROTOCOL IN NS2:-  

 

Following are the steps for adding rtProtoMIN protocol into NS2. 

 

1) rtProtoMIN.h and rtProtoMIN.cc files are put into routing folder. 

/usr/src/ns/routing/  

 

2) Packet.h :- 

Following changes are made in the file. RtProtoMIN is the control packet of 

the protocol. 

 

� PT-RTPROTOMIN this packet is add in to packet.h 

� P_info() Name_[PT-RTPROTOMIN] = “rtProtoMIN” 

 

3) TCL Library  

When adding new routing protocol we have to add the same changes in tcl 

library. There are two main files in which we have to make changes. 
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• Tcl/lib/ns-packet.tcl  

Add “rtProtoMIN” 

• TCL/lib/ns-default.tcl 

 Agent/rtProto/MIN   -   set Preference 

 Agent/rtProto/MIN   -   Infinity 

 Agent/rtProto/MIN   -   adveretinterval 2 

 

4) TCL/rtglib/route-protocol.tcl 

Add all the function which is used to connect tcl and .cc files with 

simulation 

 

5) Add path /routing/rtProtoMIN.o in make file. During recompilation NS2 

rtProtoMIN.o file will be generated. 

 

6) Recompile whole NS2  

 

� Make clean  

� Touch packet.h 

� Make  

 

By using these steps we can add rtProtoMIN protocol in NS2.  

So now $ns rtProto MIN can be used for the simulation of protocol. 
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7           SIMULATION STUDY AND RESULTS 

 

Network Simulator 2 tool is used for the simulation of unicast routing protocol. 

As we have seen in above chapters the implementation details of rtProtoMIN 

which uses minimax algorithm for finding path, and NS2 have rtProtoDV which 

uses conventional way for finding path. 

 

Now in this chapter these two protocols simulation is done on different scenarios, 

and analyzed on different parameters. 

 

• Fixed network Varying Packet size: In this scenario network is fixed and 

packet size is varied from example to example, and it analyzed to find how 

they responds to delay 

 

• Fixed Packet Size varying network: In this scenario Packet size is same for 

the entire network but network is changed and its complexity is increased.  

 

• Changing queue to see how it responds to jitter  

 

The above scenarios are simulated for both rtProtoDV and rtProtoMIN, and 

comparison is made between them to see the performance of routing protocol. 
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7.1 SCENARIO1: VARYING PACKET SIZE  

 

In this scenario we have taken a network, in that the packet size varied from 

example to example. The setup of this example as follows. 

 

7.1.1 Simulation setup 

 

Table 7.1 Parameters used during simulation. 

 

Parameter Value 

Bandwidth  Varied (but same for all 

example) 

Simulation time  20 sec 

Nodes 26 

Traffic Type  FTP 

Packet size  Varied from example to 

example 

Number of flows  7 

Traffic TCP  

 

Here four examples are taken, in that the network is same for four example and 

simulation parameters as in table 7.1. But packet size is varies 1040, 1540, 2040 

and 2540 from example 1 to example 4. These four examples are simulated 

using rtProtoDV and rtProtoMIN routing protocols. Here in this simulation bursty 

(bulky) data transmitted by each flow, to see how these both protocols respond 

to delay and jitter. 
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Figure 7.1 Routing Network 

 

Figure 7.1 shows the network which is used for simulation of this scenario. In 

above network blue circles are routers and black circles are traffic generating 

nodes in the network. Here there are total 7 flows which are sending data, from 

that only source node 0 and destination 7 are used for reading purpose and other 

nodes are generating heavy traffic in network. By this setup delay and jitter of 

network is analyzed for both protocols and see which protocol gives the good 

performance.   

 

7.1.2 Statistics Of Scenario 1:  

 

Example 1: 

 

In this example packet size is 1040 and its result is collected in below table 7.2. 

The statistics of the network as follows. 

 

Simulation length in seconds: 19.715883 

Number of nodes: 26 

Number of sending nodes: 7 

Number of receiving nodes: 5 

Number of generated packets: 3337 
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Number of sent packets: 3337 

Number of forwarded packets: 12014 

Number of dropped packets: 24 

Number of lost packets: 100 

Packet size: 1040 

Number of sent bytes: 3470480 

Number of forwarded bytes: 12494560 

Number of dropped bytes: 24960 

Packets dropping nodes: 12  13  15  17  19 

 

Example 2: 

 

In this example packet size is 1540 and its result is collected in below table 7.2. 

The statistics of the network as follows. 

 

Simulation length in seconds: 19.715626 

Number of nodes: 26 

Number of sending nodes: 7 

Number of receiving nodes: 5 

Number of generated packets: 2244 

Number of sent packets: 2244 

Number of forwarded packets: 7995 

Number of dropped packets: 23 

Number of lost packets: 94 

Packet size: 1540 

Number of sent bytes: 3455760 

Number of forwarded bytes: 12312300 

Number of dropped bytes: 35420 

Packets dropping nodes: 12 13 15 17 19 

 

Example 3: 

 

In this example packet size is 2040 and its result is collected in below table 7.3. 

The statistics of the network as follows. 
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Simulation length in seconds: 19.715632 

Number of nodes: 26 

Number of sending nodes: 7 

Number of receiving nodes: 5 

Number of generated packets: 1723 

Number of sent packets: 1721 

Number of forwarded packets: 6058 

Number of dropped packets: 15 

Number of lost packets: 80 

Packet size: 2040 

Number of sent bytes: 3510840 

Number of forwarded bytes: 12358320 

Number of dropped bytes: 30600 

Packets dropping nodes: 12 13 17 19 

 

Example 4: 

 

In this example packet size is 2540 and its result is collected in below table7.4 . 

The statistics of the network as follows. 

 

Simulation length in seconds: 19.715233 

Number of nodes: 26 

Number of sending nodes: 7 

Number of receiving nodes: 5 

Number of generated packets: 1447 

Number of sent packets: 1446 

Number of forwarded packets: 4939 

Number of dropped packets: 7 

Number of lost packets: 89 

Packet size: 2540 

Number of sent bytes: 3672840 

Number of forwarded bytes: 12545060 

Number of dropped bytes: 17780 

Packets dropping nodes: 12 17 19 
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7.1.3 Results: 

 

The above network is simulated and trace file is generated, these are analyzed 

by using AWK script for delay, jitter, packet loss, generated packets etc.  These 

awk scripts are in appendix B. The collected results for rtProtoDV and rtProtoMIN 

have shown in tables 7.2 & 7.3. 

 

Table 7.2 senario1: simulation results  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 1 

PS : 1040 

Example 2 

PS : 1540 

Parameters 

rtProtoDV rtProtoMIN rtProtoDV rtProtoMIN 

 

Average 

 

0.020653 

 

0.012710 

 

0.03939 

 

 

0.027147 
 

Jitter 

(Sec) 

  

Maximum 

 

0.33002 

 

0.256223 

 

0.80028 

 

0.75631 

 

Average 

 

0.3820 

 

0.2949 

 

0.6966 

 

0.512546 

 

Minimum 

 

0.1504 

 

0.106971 

 

0.1939 

 

0.145244 

 

 

Delay 

( Sec) 

 

Maximum 

 

0.7957 

 

0.510179 

 

1.332 

 

1.00944 

 

Processing 

Time(Sec) 

 

 

Maximum 

 

0.39225 

 

 

 

0.448966 

 

0.621822 

 

 

0.719478 
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Table 7.3:  Scenario 1 Simulation results 

 

 

 

 

The above table shows the result of scenario 1. As we see that packet size is 

increasing from example 1 to example 4 . Here mainly Delay parameter is 

concerned. From table 7.2 & 7.4 it is observed that maximum and average delay 

for example 1 & 2 is rtProtoMIN is better as compared to rtProtoDV. As the 

packet size increased from 2040 to 2540 the delay performance for rtProtoMIN is 

decreased as compared to rtProtoDV. And same case with jitter for first two 

examples it gives the best results but for later two examples it does not gives 

better results as compared to rtProtoDV. 

 

Simulation processing time for rtProtoMIN increases as we increase packet size. 

But processing time of rtProtoDV is less as compared to rtProtoMIN. 

 

The below graphs shows comparison of Delay between rtProtoDV and 

rtProtoMIN. The graph is plotted for Packet send time at source node 0 VS Delay 

between source node 0 and destination node 7. The graphs as follows. 

 

 

Example 3 

PS : 2040 

Example 4 

PS : 2540 

Parameters 

rtProtoDV rtProtoMIN rtProtoDV rtProtoMIN 

 

Average 

 

0.04815 

 

0.03764 

 

0.047051 

 

 

0.051136 
 

Jitter 

(Sec) 

  

Maximum 

 

0.45091 

 

0.40904 

 

1.004249 

 

1.057614 

 

Average 

 

0.7471 

 

0.82205 

 

0.957002 

 

0.9819 

 

Minimum 

 

0.2374 

 

0.21135 

 

0.28093 

 

0.2983 

 

 

Delay 

( Sec) 

 

Maximum 

 

1.1887 

 

1.33852 

 

1.4986 

 

1.56639 

 

Processing 

Time(Sec) 

 

 

Maximum 

 

0.82807 

 

0.95131 

 

1.21190 

 

1.268051 
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Figure 7.2. Example1 PS 1040: Delay  

 

 

 

Figure 7.3: Example2 PS 1540: Delay  
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Figure 7.4: Example 3 PS 2040: Delay 

 

 

 

Figure 7.5: Example 4 Ps 2540: Delay  

 

As shown in above graphs the red line indicates delay for rtProtoDV and blue line 

indicates delay variation for rtProtoMIN. As shown in figure 7.2 delays for 
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rtProtoMIN is less as compared to rtProtoDV but at some places it goes high it is 

due to the bulky data transmission by different nodes. We got the best 

performance of rtProtoMIN for pocketsize 1540, as shown figure 7.3 rtProtoMIN 

shows good performance than rtProtoDV. 

 

As packet size increases almost same delay variation for rtProtoDV is observed 

and rtProtoMIN as in figure 7.5. 

 

7.2 SCENARIO 2: FIXED PACKET SIZE AND VARYING NETWORK 

 

In this scenario the packet size is fixed for all four networks but varying the 

network and also increasing the traffic on network. These examples analyzed on 

different parameters like Jitter, Delay, and Simulation Processing Time etc.  

 

7.2.1 Simulation Setup and Statistics 

 

Table 7.4 Simulation Parameters 

 

Parameter Value 

Bandwidth  Varied  

Simulation time  20 sec 

Nodes Varied  

Traffic Type  FTP 

Packet size  1040 

Number of flows  Varied  

Traffic TCP  

Queue Drop Tail 

Queue Size  20 

 

Here four examples are taken, in that the packet size is same for four examples 

and simulation parameters as in table 7.4. But network, traffic, flows varies from 

example 1 to example 4. These four examples are simulated using rtProtoDV and 

rtProtoMIN routing protocols. Here in this simulation bursty (bulky) data 
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transmitted by each flow, to see how these both protocols respond to delay and 

jitter. 

 

Examples: 

 

Below examples are used for the simulation purpose. In these examples blue box 

is the routers, and black circles which generate the traffic on the network. In all 

the examples the flows are varied from example to example, and busty data is 

transmitted by senders to see the effect on jitter and how these two protocols 

handles it. These networks simulated by using rtProtoDV and rtProtoMIN and 

analyzed on jitter, delay, processing time etc. 

The networks and there statistics as follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 7                                               Simulation Study And Results 

 66 

 
 

Fig 7.6 : Example 1 

 

Simulation length in seconds:19.733147 

Number of nodes: 16 

Number of sending nodes: 4 

Number of receiving nodes: 4 

Number of generated packets: 1016 

Number of sent packets: 999 

Number of forwarded packets: 3420 

Number of dropped packets: 15 

Number of lost packets: 23 

Packet size: 1040 

Number of sent bytes: 1038960 

Number of forwarded bytes: 3556800 

Number of dropped bytes: 15600 

Packets dropping nodes: 2  4  8  9 

 

 

 

Fig 7.7: Example 2 

 

Simulation length in seconds: 19.8125 

Number of nodes: 22 

Number of sending nodes: 6 

Number of receiving nodes: 6 

Number of generated packets: 1657 

Number of sent packets: 1649 

Number of forwarded packets: 6122 

Number of dropped packets: 38 

Number of lost packets: 74 

Packet size: 1040 

Number of sent bytes: 1714960 

Number of forwarded bytes: 6366880 

Number of dropped bytes: 39520 

Packets dropping nodes: 2  5  6  7 
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Fig 7.8: Example 3 

 

Simulation length in seconds: 

20.41628 

Number of nodes: 22 

Number of sending nodes: 6 

Number of receiving nodes: 6 

Number of generated packets: 2179 

Number of sent packets: 2179 

Number of forwarded packets: 8762 

Number of dropped packets: 30 

Number of lost packets: 21 

Packet size: 1040 

Number of sent bytes: 2266160 

Number of forwarded bytes: 9112480 

Number of dropped bytes: 31200 

Packets dropping nodes: 0  4  5  7 

 

 

 

 
 

Fig 7.9: Example 4 

 

Simulation length in seconds: 

20.59629 

Number of nodes: 23 

Number of sending nodes: 7 

Number of receiving nodes: 6 

Number of generated packets: 2264 

Number of sent packets: 2264 

Number of forwarded packets: 8103 

Number of dropped packets: 37 

Number of lost packets: 37 

Packet size: 1040 

Number of sent bytes: 2354560 

Number of forwarded bytes: 8427120 

Number of dropped bytes: 38480 

Packets dropping nodes: 3  11 
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7.2.2 Results 

Below table is collection of results of above simulation setup. 

 

7.5 scenario2: simulation results 

 

 

 

7.6 Scenario2: Simulation result 

 

 

 

 

Example 1 

PS : 1040 

Example 2  

PS : 1040 

Parameters 

rtProtoDV rtProtoMIN rtProtoDV rtProtoMIN 

 

Jitter (Sec) 

 

Range 

 

0.0 - 0.7488 
 

0.0 - 0.2673 

 

 

0.0 - 0.37942 

 

 

0.0 - 0.18400 

 

 

Average 

 

0.44023 

 

 

0.146320 
 

0.60200 

 

 

0.48001 

 

 

Minimum 

 

0.169253 

 

 

0.381533 
 

0.288499 

 

 

0.246480 

 

 

 

Delay 

( Sec) 

 

Maximum 

 

0.973973 

 

 

0.890773 

 

1.035539 

 

 

0.936869 

Processing 

Time(Sec) 

 

 

Maximum 

 

0.712666 

 

 

0.781893 
 

0.690389 
 

0.770057 

 

Example 3 

PS : 1040 

Example 4 

PS : 1040 

Parameters 

rtProtoDV rtProtoMIN rtProtoDV rtProtoMIN 

 

Jitter (Sec) 

 

Range 

 

0.0 - 0.41774 

 

 

0.0 -  0.30850 

 

 

0.0 - 0.43741 

 

 

0.0 - 0.30506 

 

 

Average 

 

0.366154 

 

 

0.32724 

 

 

0.56660 

 

 

0.48390 

 

 

Minimum 

 

0.236106 

 

 

0.20224 

 

 

0.19301 

 

 

0.17405 

 

 

 

Delay 

( Sec) 

 

Maximum 

 

0.716453 

 

 

0.64080 

 

 

0.75109 

 

 

0.71884 

 

 

Processing 

Time(Sec) 

 

 

Maximum 

 

0.429093 

 

 

0.621760 

 

 

 

0.508267 

 

 

 

0.831261 
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In table 7.5 & 7.6 jitter results are taken in rage from minimum to maximum 

jitter. As from above table we see that for all four examples jitter is better for 

rtProtoMIN as compared to rtProtoDV. In case of delay, rtProtoMIN delays less as 

compare to rtProtoDV delay. 

 

But the processing power is increased for rtProtoMIN as compared to rtProtoDV. 

Here in case of fixed packet size and varying network, we get the best 

performance is seen of rtProtoMIN as compare to rtProtoDV. 

 

7.3 SCENARIO 3: CHANGING QUEUE 

 

In this scenario the examples of section 7.2 are used for simulation purpose but, 

different queues used for simulation and see how it responds to congestion and 

variation of jitter.  

 

7.3.1 Simulation Setup  

 

   Table 7.7: simulation setup for scenario 3 

 

Parameter Value 

Bandwidth  Varied  

Simulation time  20 sec 

Nodes Varied  

Traffic Type  FTP 

Packet size  1040 

Number of flows  Varied  

Traffic TCP  

Queue DropTail,FQ,RED,DRR 

Queue Size  20 

 

Here four examples are taken, in that the packet size is same for four examples 

and simulation parameters as in table 7.7. But network, traffic, flows and queue 

varies from example 1 to example 4. These four examples are simulated using 
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rtProtoDV and rtProtoMIN routing protocols. Here in this simulation bursty 

(bulky) data transmitted by each flow, to see how these both protocols respond 

to delay and jitter. 

 

In this simulation four queues are used DropTail, FQ (Fair Queuing), RED 

(Random early detection), DRR (Deficit round robin). For these four queues jitter 

and delay are found, and range of jitter and delay is in the below table 7.8 & 7.9. 

This range is between minimum and maximum value of jitter and delay. 

 

7.3.2 Simulation Results 

 

The below table is collection of results for all four examples, jitter and delay 

range (minimum – maximum) is given in blow table. 

 

Table 7.8: Scenario3: simulation result 

 

 

 

 

 

 

 

 

Parameters Example 1 

PS : 1040 

Example 2  

PS : 1040 

 Queue rtProtoDV rtProtoMIN rtProtoDV rtProtoMIN 

DropTail 0.0 - 0.7488 0.0 - 0.2673 

 

0.0 - 0.37942 

 

0.0 - 0.18400 

 

RED 0.0 - 0.3814 0.0 - 0.1819 0.0 - 0.3310 0.0 - 0.0944 

FQ 0.0 - 0.1331 0.0 - 0.9238 0.0 - 0.0480 0.0 - 0.0528 

 

 

 

Jitter (sec) 

DRR 0.0 - 0.9984 0.0 - 0.8400 0.0 - 0.0448 0.0 - 0.0369 

DropTail 0.1692 - 0.7164 

 

0.3815 - 0.6408 0.2884 - 0.7510 

 

0.2464-0.7188 

 
RED 0.285-0.6013 

 

0.2399 - 0.4602 

 

0.2884 - 0.6628 0.2464 - 0.5904 

 

FQ 0.1752 - 1.605 

 

0.1463 - 1.2434 

 

0.2884 - 0.4425 

 

0.2464 - 0.4733 

 

 

 

Delay 

( Sec) 

DRR 0.1692 - 1.3906 

 

0.1463 - 1.2066 

 

0.2884 - 0.4427 

 

0.2464 - 0.4070 
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Table 7.9 Scenario3: Simulation results  

 

 

 

In above simulation four examples are simulated, by changing their queues and 

seen how it responds to jitter and delay. 

 

As from above table 7.8 and 7.9 for DropTail, RED queue gives the best 

performance for rtProtoMIN as compared to rtProtoDV. In case of DRR queue for 

first three example rtProtoMIN gives good performance than rtProtoDV, but for 

last example jitter and delay increases as compare to rtProtoDV. 

 

Simulation result with queue FQ rtProtoMIN does not give better results as 

compared to rtProtoDV. So from above results it can be concluded that 

rtProtoMIN gives good performance for DropTail, DRR, RED queues but not for 

FQ. 

 

Example 3 

PS : 1040 

Example 4 

PS : 1040 

Parameters 

rtProtoDV rtProtoMIN rtProtoDV rtProtoMIN 

DropTail 0.0 - 0.41774 

 

0.0 -  0.30850 

 

0.0 - 0.43741 

 

0.0 - 0.30506 

 

RED 0.0 - 0.2550 0.0 - 0.3797 0.0 - 0.2358 0.0 - 0.2389 

FQ 0.0 - 0.2923 0.0 - 0.1977 0.0 - 0.1153 0.0 - 0.2389 

 

 

 

Jitter (sec) 

DRR 0.0 - 0.2439 0.0 - 0.1620 0.0 - 0.7907 0.0 - 0.8454 

DropTail 0.236 - 0.7164 

 

0.2022 - 0.640 

 

0.1930 - 0.751 

 

0.1740 - 0.718 

 
RED 0.2361 - .6526 

 

0.146 - 0.460 

 

0.1861 - 0.5004 

 

0.1740 - 0.488 

 

FQ 0.2315 - 1.6037 

 

0.1752 - 1.6050 

 

0.231 - 1.603 

 

0.174 - 0.488 

 

 

 

Delay 

( Sec) 

DRR 0.2361 - 0.793 

 

0.2022 - 0.404 0.1861- 1.0939 0.175 - 1.270 
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8                                           SUMMARY AND CONCLUSION 
 
 
 

8.1 SUMMARY 
 
 
In computer networking the term routing refers to selecting paths in a network 

along which to send data. Recent research has lead not only to many routing 

protocols, but to many routing techniques. By a routing technique we mean the 

basic strategy that a routing protocol uses to store and propagate routing 

information. Game theory was invented to provide a mathematical foundation for 

reasoning about conflict and competition. It has grown into a rich theory, with 

powerful mathematical and computational tools. Two insights enabled us to turn 

this pool of theory and tools into a potentially powerful analytical capability for 

analyzing routing. 

 

The objective of this dissertation work is to apply Game Theoretic Approach on 

routing protocols for removing inefficiencies and analyzing how it is better than 

conventional TCP/IP routing protocols. The RIP (Routing Information Protocol) 

uses Distance Vector (DV) routing protocol for finding the path from source to 

destination, and sends the packets. DV routing is the implements Distributed 

Bellman-Ford (or Distance Vector) routing. As in chapter 2 rtProtoDV is RIP 

implementation in Network Simulator 2 (NS2) unicast routing. Distributed 

Bellman-Ford algorithm is replaced (or Distance Vector) with game theory 

algorithms, like minimax algorithm for finding path. These two protocols 

rtProtoDV and rtProtoMIN is simulated on different scenarios and analyzed for 

different parameters like delay jitter, delay, processing time, throughput, 

convergence etc. In scenario 1 as packet size increases rtProtoMIN not gives that 

much better performance than rtProtoDV. Delay graph for four examples is as 

shown in figure 8.1. 
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Figure 8.1: Scenario 1: Delay 

 

 As from simulation for scenario2 fixed packet size and varying network, 

rtProtoMIN got good results compared to rtProtoDV shown in figure 8.2. With 

varied queue like (Droptail, DRR, RED) rtProtoMIN gives the good performance. 

It means that game theory algorithm used in rtProtoMIN that is minimax 

algorithm not gives the better performance for each scenario but for specific 

scenarios it gives good performance. 

 

There are some other algorithms like alpha-beta pruning algorithm which may 

give the good performance than minimax algorithm.  
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Figure 8.2: Graphs Of Scenario 2 

 

8.2 CONCLUSIONS  

 

In routing networks, game theory has been used to analyze the cooperation of 

the nodes. The game theoretic approaches try to analyze the problem using a 

more analytical viewpoint. rtProtoMIN and rtProtoDV is analyzed on different 

scenarios, and analyzed on different parameters like delay jitter, delay, 

processing time etc. 

 

In first scenario packet size is varied and network is fixed, in that case as packet 

size increases the performance of rtProtoMIN decreases as compare to 
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rtProtoDV. For packet size 2540 rtProtoMIN and rtProtoDV gives same 

performance. In second scenario packet size is fixed (1040) and network is 

varied in that rtProtoMIN gives good performance as compared to rtProtoDV. But 

in both the cases the simulation processing time of rtProtoMIN increased as 

compared to rtProtoDV. In third scenario simulation setup is same as scenario 2 

but varying the queue like DropTail, FQ, RED, DRR etc from example to example. 

In this case for Drop Tail, RED and DRR queues rtProtoMIN gives good 

performance as compared to rtProtoDV but, for queue FQ it gives the worst 

results. 

 

From above scenario rtProtoMIN gives the good performance with fixed type of 

scenario like as second scenario if packet size increases the performance of 

rtProtoMIN goes on decreases. As game theory achieves the cooperation 

between routers in network, when best route is found from source to destination 

the congested link is not included in best path. 

 

8.3 FUTURE WORK 

 

As seen in above chapters on rtProtoDV (RIP) game theory applied and observes 

how game theory improves performance. rtProtoMIN is uses minimax algorithm 

for finding path to destination node and, also analyzed on different scenarios. For 

some specifications rtProtoMIN gives good performance than rtProtoDV. 

 

But there are different game theoretic algorithms like alpha beta pruning (one 

step ahead of minimax algorithm), repetitive game theory etc. are used in 

implementation then there are more expectations of performance improvements. 

The strategy used for implementations of rtProtoMIN, same strategy is applied 

on other protocols like OSPF. 
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APPENDIX A              MINIMAX PSEUDOCODE 
 
 

The minimax algorithm is a method of selecting the best choice of action in a 

situation, or game, where two opposing forces, or players, are working toward 

mutually exclusive goals, acting on the same set of perfect information about the 

outcome of the situation. It is specifically applied in searching game trees to 

determine the best move for the current player of a game. It uses the simple 

principle that at each move, the moving player will choose the best move 

available. 

 

A.1 MINIMAX PSEUDO CODE 

 

 
minimax (in game board, in int depth, in int max_depth, 

        out score chosen_score, out score chosen_move) 

begin  

    if (depth = max_depth) then 

        chosen_score = evaluation (board); 

    else  

        moves_list = generate_moves (board); 

        if (moves_list = NULL) then 

            chosen_score = evaluation (board); 

        else  

            for (i = 1 to moves_list.length) do 

                best_score = infinity; 

                new_board = board; 

                apply_move (new_board, moves_list[i]); 

                minimax (new_board, depth+1, max_depth, the_score, the_move); 

                if (better (the_score, best_score)) then 

                    best_score = the_score; 

                    best_move = the_move; 

                endif 

            enddo 

            chosen_score = best_score; 
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A.2 FUNCTIONS: 

 

generate_moves (board): 

 

This function generates all possible moves for the current player. It takes the 

current board situation as the argument and returns the all possible moves at 

particular situation. 

 

Evaluation(board): 

 

Evaluation is called just before exiting each node in the minimax tree. It should 

return a value representing the strength of the board in chosen_score. 

best_score holds the best value returned by any children of the current node in 

the minimax tree. 

 

apply_move :  

 

This function takes a board and a move, returning the board with all the updates 

required by the given move.  

 

 

better (the_score, best_score) : 

 

This function takes 2 scores to compare and a player, returning the score that is 

more advantageous for the given player. If scores are stored as simple integers, 

this function can be the standard < and > operators. 

  

 

            chosen_move = best_move; 

        endif 

    endif 

end. 
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Run (): 

 

This function gives the path from source to destination.  

 

Cost_fuction (): 

 

This function takes the Run output as argument and finds the cost of reaching 

destination. 
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APPENDIX B                  AWK SCRIPTS 
 
 

As seen in chapter 4 when simulating any tcl script of NS2 in that case two files 

are generated, one is NAM visualization file which shows the animation of 

network and other is trace file which contains the trace of every millisecond of 

simulation.  The trace format of trace file is explained in chapter 4. This trace file 

contains only textual data, we cannot visualize form that data. So for calculating 

parameters likes jitter, delay, throughput, processing time etc awk scripts are 

used. 

 

B.1 BASICS OF AWK 

 

Awk is a full-featured text processing language with syntax reminiscent of C. 

While it possesses an extensive set of operators and capabilities. Awk breaks 

each line of input passed to it into fields. By default, a field is a string of 

consecutive characters delimited by white spaces, though there are options for 

changing this. Awk parses and operates on each separate field. This makes it 

ideal for handling structured text files -- especially tables -- data organized into 

consistent chunks, such as rows and columns. 

• The structure of awk commands  

o Each awk command consists of a selector and/or an action; both 

may not be omitted in the same command. Braces surround the 

action.  

o selector [only] -- action is print  

o {action}[only] -- selector is every line  

o selector {action} -- perform action on each line where selector is 

true  

o Each action may have multiple statements separated from each 

other by semicolons or \n  
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• Line selection  

o A selector is either zero, one, or two selection criteria; in the latter 

case the criteria are separated by commas  

o A selection criterion may be either an RE or a boolean expression 

(BE) which evaluates to true or false  

o Commands which have no selection criteria are applied to each line 

of the input data set  

o Commands which have one selection criterion are applied to every 

line which matches or makes true the criterion depending upon 

whether the criterion is an RE or a BE  

o Commands which have two selection criteria are applied to the first 

line which matches the first criterion, the next line which matches 

the second criterion and all the lines between them.  

o Unless a prior applied command has a next in it, every selector is 

tested against every line of the input data set.  

• Processing  

o The BEGIN block(s) is(are) run (mawk's -v runs first)  

o Command line variables are assigned  

o For each line in the input data set  

� It is read and NR, NF, $I, etc. are set  

� For each command, its criteria are evaluated  

� If the criteria is true/matches the command is executed  

o After the input data set is exhausted, the END block(s) is(are) run 

• Fields  

o Each record is separated into fields named $1, $2, etc  

o $0 is the entire record  

o NF contains the number of fields in the current line  

o FS contains the field separator RE; it defaults to the white space RE, 

/[<SPACE><TAB>]*/  

o Fields may be accessed either by $n or by $var where var contains 

a value between 0 and NF  

So by using awk script processes the trace file data and calculates different 

parameters of network. 
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• Delay = packet receive time at destination node – packet send time at 

source node. 

 

• Round Trip Time (RTT) = acknowledge (ACK) packet receive time at 

source node – packet send time at source node. 

 

• Processing time = packet forward time at intermediate node – packet 

receive time at intermediate node. 

 

• Jitter = absolute value of (delay of packet i+1 – delay of packet i), where i 

= 1.number of sent packets – 1. 

 

• Throughput = number of generated/sent/received/forwarded/dropped 

packets or bits in a certain time interval. 

For Example: 

Generated Packets: 

Awk ‘BEGIN  

  {SendPack =0}  

  $1 = = "+" && $5 = = "tcp" && $3 = = "0"  

  {SendPack = SendPack + 1} 

 END {print SendPack} ' rip_example.tr 
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Drop Packets: 

Awk  'BEGIN  

  {DropPack =0 }  

  $1 = = "d" && $5 = = "tcp" && $8 = = "0" && $6 = = "1040"  

  {DropPack = DropPack + 1} 

 END {print DropPack } ' rip_example.tr 

In this way by using awk script different parameters of of routing network is 

calculated. 

 

 

 

 

 
 
 


