
PLACER TOOL FOR RECONFIGURABLE
LOGIC BLOCKS ON eFPGA

BY

NILAY CHANDRAKANT PARMAR

(07MCE013)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

AHMEDABAD-382481

MAY 2009

PLACER TOOL FOR RECONFIGURABLE
LOGIC BLOCKS ON eFPGA

Major Project

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology in Computer Science and Engineering

By

Nilay Chandrakant Parmar

(07MCE013)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

AHMEDABAD-382481

May 2009

Certificate

This is to certify that the Major Project entitled ”Placer Tool For Reconfigurable

Logic Blocks on eFPGA” submitted by Nilay Chandrakant Parmar (07MCE013), to-

wards the partial fulfillment of the requirements for the degree of Master of Technology

in Computer Science and Engineering of Nirma University of Science and Technol-

ogy, Ahmedabad is the record of work carried out by him under my supervision and

guidance. In my opinion, the submitted work has reached a level required for being

accepted for examination. The results embodied in this major project, to the best

of my knowledge, haven’t been submitted to any other university or institution for

award of any degree or diploma.

Dr. S.N. Pradhan Prof. D. J. Patel

P.G. Coordinator, Guide, Professor and Head,

Department Computer Engineering, Department of Computer Engineering,

Institute of Technology, Institute of Technology,

Nirma University, Ahmedabad Nirma University, Ahmedabad

Dr K Kotecha

Director,

Institute of Technology,

Nirma University, Ahmedabad

To Whom it may Concern

Certified that the above statement made by the student is correct to the best of our

knowledge and belief.

Mrs. Jyoti Malhotra

Specialist

Mr. Himanshu Srivastava

Senior Software Engineer

Approved as to style and content by:

I certify that I have read this dissertation and that in my opinion it is fully

adequate, in cope and quality, as a dissertation for the degree of Master Of Technology

in Computer Science and Engineering.

Mrs. Namerita Khanna

Section Manager

NVM-BCD e-Configurable Logic

Abstract

The Training Semester from 15th September 2008 has given me an opportunity to

work with one of the best semiconductor companies in the world, STMicroelectronics.

PiCoGA is STMicroelectronics Specific FPGA Chip which is an acronym for

Pipelined Configurable Gate Array. The PiCoGA is designed to implement a pe-

culiar pipeline where each stage corresponds to a piece of computation, so that high

throughput circuits can be mapped. In this way a sequence of PiCoGA instructions

can be processed filling the pipeline in order to exploit parallelism.

Along with this the configurable unit also preserved its state across instruction

executions. A new PiCoGA instruction may directly use the results of previous ones,

thus reducing the pressure on the register file. Moreover a tight integration in the

processor core gives the opportunity to use the PiCoGA in many different computa-

tional cores. With the arrival of PiCoGA, the problem of multi-computing was solved

to achieve a much faster computation.

The main goal of this Dissertation is to Design a CAD(Computer Aided Design)

tool which perform the placement of Reconfigurable Logic Blocks on eFPGA, address

the challenges occurring because of the different constraints due to the architecture

of chip.

Acknowledgements

”Outstanding achievement is not possible in vacuums. It needs lot of help and

assistance besides a healthy environment, luckily I have.”

First and foremost I would like to specially thank Dr. S.N. Pradhan, M.Tech

section head, Nirma University, Ahmedabad for providing me with an opportunity to

take up this training and for their constant support and encouragement.

I would like to give my special thank to Prof. D.J Patel, Head, Computer

Science & Engineering Department, Nirma University, Ahmedabad for his encour-

agement and motivation throughout the Major Project. I am also thankful to Dr.

Ketan Kotecha, Director, Institute of Technology, Nirma University, Ahmedabad

for his kind support in all respect during my study.

I am immensely grateful to Mrs. Namerita Khannar (Section Manager ECL)

for providing me the opportunity to work on this project. Without her this project

work could not have seen the daylight.

I would like to express my hearty thanks and indebtedness to my guide Mrs.

Jyoti Malhotra & Mr. Himanshu Srivastava for their enormous help and en-

couragement throughout the course of this thesis, who happens to be my role model,

has always given me a real example of how a researcher should be, proving ’Vidya

Dadati Vinayam’. They give me an opportunity to do my thesis work and provide

all resources required for my project work.

- Nilay Chandrakant Parmar

(07MCE013)

Contents

Certificate iii

To Whom it may Concern iv

Abstract v

Acknowledgements vi

List of Figures ix

List of Tables x

Abbreviations xi

1 Introduction 1
1.1 General . 1
1.2 Motivation . 2
1.3 STMicroelectronics . 4

1.3.1 Introduction . 4
1.3.2 Why ST? . 5
1.3.3 Area Of Products . 6

1.4 Scope of Work . 7
1.5 Outline of Thesis . 8

2 PiCoGA Architecture 9
2.1 FPGA Architecture Issue . 9
2.2 FPGA Architecture . 12
2.3 FPGA Logic Block Architecture . 13
2.4 FPGA Routing Architecture . 14
2.5 PiCoGA Structure . 17

3 Placement Algorithms 19
3.1 Force Directed Placement . 19

3.1.1 Force Directed Placement Techniques 20

vii

CONTENTS viii

3.2 Placement by Partition . 22
3.2.1 Breuer’s Algorithms . 22

3.3 Clustering Approach . 24
3.4 Simulated Annealing . 24
3.5 Placement: VPR (Versatile Place and Route) 28

3.5.1 Overview of VPR Placement Tool 28
3.5.2 New Adaptive Annealing Schedule 30
3.5.3 New Cost Function . 33
3.5.4 Incremental Net Bounding Box Update 34

3.6 Conclusion . 38

4 Programming The Tool 39
4.1 Read Input & Generate Chip View 41
4.2 Clustering . 43
4.3 Global/Detailed Placement . 45
4.4 Generate Output . 48

5 Conclusion and Future Scope 56
5.1 Conclusion . 56
5.2 Future Scope . 57

A Placement Related Algorithms 59

References 61

List of Figures

2.1 Example Global Routing Architecture 10

2.2 Example logic cluster containing two LUTs 11

2.3 Example Detailed Routing Architecture 12

2.4 Generic FPGA . 13

2.5 A 2-input LUT implemented in an SRAM-based FPGA 14

2.6 An island-style FPGA . 15

2.7 Example channel segmentation distribution 16

2.8 PiCoGA Structure . 17

3.1 Example Global Routing Architecture 20

3.2 (a) Cut-oriented, (b) Block-oriented 23

3.3 FPGA model assumed by VPR placer 29

3.4 Data stored to enable incremental bounding box updates 35

4.1 FPGA CAD Flow . 40

4.2 PiCoGA Placer Tool Flow . 41

4.3 Read Input and Generate Chip View Flow Diagram 50

4.4 Clustering Flow Diagram . 51

4.5 Global/Detailed Placement Flow . 52

4.6 Simulated Annealing Result 1 . 53

4.7 Simulated Annealing Result 2 . 54

4.8 Generate Output Flow Diagram . 55

ix

List of Tables

I Temperature Update Schedule . 32

II Placement CPU time with and without incremental bounding box re-

calculation . 37

III Comparison of Placement Algorithms 38

I Summary of CAD Contributions . 57

x

Abbreviations

ASIC Application Specific Integrated Circuit
BB Bounding Box
CAD Computer Aided Design
CPS Coarse Placement Solution
eFPGA embedded Field Programmable Gate Array
FF Flip Flop
FPGA Field Programmable Gate Array
GUI Graphical User Interface
IC Integrated Circuit
I/O Input Output
KL Kernighan Lin
LUT Look Up Table
MCNC Microelectronics Center of North Carolina
MPGA Mask Programmable Gate Array
NRE Non Recurring Engineering
OPF Output Connected to F Pin
PiCoGA Pipelined Configurable Gate Array
Pip Placement Input Parameter
Reg Register
RLC Resistance Inductance Capacitance
SA Simulated Annealing
SOC System On Chip
SRAM Static Random Access Memory
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit
VPR Versatile Place & Route

Chapter 1

Introduction

In this chapter, motivation behind the work, scope of work and thesis outline been

presented.

1.1 General

All FPGAs consist of a large number of programmable logic blocks, which can each

implement a small amount of digital logic, and programmable routing which allows

the logic block inputs and outputs to be connected to form larger circuits. In this

thesis three different issues investigated in FPGA architecture: two concern FPGA

routing design, and one concerns FPGA logic block design.

Along with this the configurable unit also preserved its state across instruction

executions. A new PiCoGA instruction may directly use the results of previous ones,

thus reducing the pressure on the register file. Moreover a tight integration in the

processor core gives the opportunity to use the PiCoGA in many different computa-

tional cores. With the arrival of PiCoGA, the problem of multi-computing was solved

to achieve a much faster computation.

For PiCoGA architectures, one needs Computer Aided Design (CAD) tools capa-

ble of automatically implementing circuits. This thesis therefore has two major foci:

the study of PiCoGA architectural issues, and the development of a CAD infrastruc-

1

CHAPTER 1. INTRODUCTION 2

ture for the PiCoGA chip.

The main goal of this Dissertation is to Design a CAD(Computer Aided Design)

tool which perform the placement of Reconfigurable Logic Blocks on eFPGA, address

the challenges occurring because of the different constraints due to the architecture

of chip.

1.2 Motivation

In the thirteen years since their introduction, Field-Programmable Gate Arrays (FP-

GAs) have become one of the most popular implementation media for digital circuits,

growing into a $2 billion per year industry. The key to FPGAs’ popularity is their

programmability – an FPGA can implement any circuit simply by being appropri-

ately programmed. Other circuit implementation options, such as Standard Cells

or Mask-Programmed Gate Arrays (MPGAs), require that a different VLSI chip be

fabricated for each design. Use of a standard FPGA, rather than a custom MPGA,

has two key benefits: lower non-recurring engineering (NRE) costs, and faster time-to

market.

To implement a circuit in an MPGA, one sends the completed design to a silicon

foundry which manufactures a chip to implement exactly (and only) that design.

The non-recurring engineering (NRE) fees to have the first chip manufactured are

typically $100 000 to $250 000; these fees cover the cost of making lithography masks

for the circuit and of running a new design through the fabrication plant. A design

is implemented in an FPGA, however, simply by programming a standard FPGA to

have the desired functionality, so there are no NRE costs. This makes FPGAs the

lowest cost implementation medium for small and medium volume designs.

Time-to-market is the other key advantage of FPGAs. MPGA designs typically

take 6 - 8 weeks to fabricate. If bugs are found in the finished chip it must be thrown

away, and one must wait another 6 - 8 weeks to fabricate a corrected design. FPGAs,

on the other hand, can be programmed in seconds, and any bugs found once the chip

CHAPTER 1. INTRODUCTION 3

is tested in system can be corrected in minutes by reprogramming the FPGA. With

today’s short product cycles, the time-to-market advantage this provides is often

compelling.

FPGA programmability carries a price, however. In MPGAs and Standard Cells

circuitry is interconnected with metal wires. FPGAs, in contrast, must connect cir-

cuitry via programmable switches. These switches have higher resistance than metal

wires and add significant capacitance to connections, reducing circuit speed. As well,

the switches take up more area than metal wires would, so an FPGA must be con-

siderably larger than an MPGA to implement the same circuit. Typically a circuit

implemented in an FPGA is about 10 times larger and 3 times slower than the same

circuit implemented via an MPGA in an equivalent process. The larger size of FPGA

circuitry makes FPGA implementations more expensive than MPGAs for high vol-

ume designs, and the limited speed of FPGAs precludes their use in very high-speed

designs. Consequently, there is a compelling motivation to research new FPGA archi-

tectures which reduce these speed and density penalties as much as possible. As well,

the FPGA marketplace is highly competitive, so each FPGA manufacturer is con-

stantly searching for better FPGA architectures in order to gain a speed and density

advantage over its competitors.

In order to investigate the quality of different FPGA architectures, one needs

Computer Aided Design (CAD) tools capable of automatically implementing circuits

in each FPGA architecture of interest. This thesis therefore has two major foci: the

study of several FPGA architectural issues, and the development of a highly ”flexible”

CAD infrastructure that enables these investigations of different FPGA architectures.

CHAPTER 1. INTRODUCTION 4

1.3 STMicroelectronics

1.3.1 Introduction

ST Microelectronics is a global independent semiconductor company and is a leader

in developing and delivering semiconductor solutions across the spectrum of micro-

electronics applications. An unrivalled combination of silicon and system expertise,

manufacturing strength, Intellectual Property (IP) portfolio and strategic partners

positions the Company at the forefront of System-on-Chip (SoC) technology and its

products play a key role in enabling today’s convergence trends. ST is one of the

world’s largest semiconductor companies.

ST is one of the world’s largest semiconductor companies. In 2004, ST’s net rev-

enues were US$8,760 million and net earnings were US$601 million. According to

the most recent data from independent sources, ST is the world’s leading supplier

of application-specific analog ICs overall with number one rankings in various seg-

ments within this field, including wireless ASICs, computer peripheral ASICs and

automotive ASSPs. ST is also the leader in MPEG-2 decoder ICs, and ASICs/ASSPs

overall, including a number one position in digital consumer ASSPs. Additionally,

ST is ranked at number two for discrete products, and in the memory market, ST is

ranked third in NOR Flash ICs. In application segments overall: ST is number one for

ICs in set-top boxes; at number two in smart cards, at number three in automotive;

and at number four in wireless.

The Company’s products are manufactured and designed using a broad range of

fabrication processes and proprietary design methods. To complement this depth

and diversity of process and design technology, the Company also possesses a broad

intellectual property portfolio that it has used to enter into cross-licensing agreements

with many other leading semiconductor manufacturers.

The Company currently offers over 3,000 main types of products to more than

1,500 customers, Alcatel, Bosch, DaimlerChrysler, Ford, Hewlett-Packard, IBM, Mo-

torola, Nokia, Nortel Networks, Philips, Seagate Technology, Siemens, Sony, Thomson

CHAPTER 1. INTRODUCTION 5

and Western Digital. Approximately two-thirds of ST’s revenue is derived from dif-

ferentiated products, a combination of dedicated, semi-custom and programmable

products designed to suit a specific customer or a specific application and therefore

having high system content. This result reflects ST’s exceptionally early recogni-

tion of the importance of system-on-chip technology, which is key for addressing the

fast growing market f or convergence products, and the success of the strategies it

developed to ensure its leading position in this key emerging field.

1.3.2 Why ST?

Since its formation, the Company has significantly broadened and upgraded its range

of products and technologies and has strengthened its manufacturing and distribution

capabilities in Europe, North America, and the Asia Pacific region. This capacity

expansion is an ongoing process with the upgrading of existing facilities and the

creation of new 8-inch, sub-micron fabs around the world. ST currently has five

8-inch fabs in operation in: Rousset (France); Agrate Brianza, R2 (Italy); Crolles

(France); Phoenix (Arizona); Catania (Italy); and Singapore. Furthermore, a new

12-inch manufacturing facility is currently under construction in Catania; and the

company is now ramping up production from a 12-inch pilot line called Crolles2,

in partnership with Philips and Freescale Semiconductor. The Crolles2 operation is

also host to the joint development program between the three companies to develop

leading-edge CMOS process technology down to the 32nm node, in conjunction with

TSMC for process alignment.

The group totals close to 50,000 employees, 16 advanced research and development

units, 39 design and application centres, 16 main manufacturing sites and 78 sales

offices in 36 countries.

Corporate Headquarters, as well as the headquarters for Europe and for Emerging

Markets, are in Geneva. The Company’s U.S. Headquarters are in Carrollton (Dallas,

Texas); those for Asia/Pacific are based in Singapore; and Japanese operations are

CHAPTER 1. INTRODUCTION 6

headquartered in Tokyo.

1.3.3 Area Of Products

• Analog and mixed signal IC’s

• Memories

• Microcontrollers

• Power management IC’s

• Transistors

• ASSP for home video

• ASSP for mobile systems

• Amplifiers & Linear

• Diodes

• EMI Filtering & Conditioning

• Logic, Signal Switch

• Protection Devices

• Sensors

• Smartcard ICs

• And many more

CHAPTER 1. INTRODUCTION 7

1.4 Scope of Work

The primary goal in placement process is to place the heavily connected blocks to-

gether for

• Decreased wire length.

• Increased Circuit speed.

• Optimize area usage.

The main objective of this thesis is to modify the existing annealing algorithms

to utilize the PiCoGA architecture and to claim the performance improvement. But

placement of logic blocks on eFPGA has many constraints due to the architecture of

chip. Need to implement an algorithm in such a way that one can have a minimum

wires and minimum size of a chip. There should be no long wires in a chip. Next

challenging thing is to design an algorithm in such a way that it is independent on

architecture on a chip. So, algorithm should not depend on the number of rows and

number of columns of a chip.

The scope of this thesis work encompasses the architectural study and program-

ming methodology of the PiCoGA architecture. Based on this knowledge two place-

ment algorithms are selected: Simulated Annealing and Versatile Placement and

Route (VPR). This VPR is an extended version of Simulated Annealing. The basic

pseudo code for both these algorithm is same but there is some changes in VPR line

Cost computation, Updation on Temperature, Computation of a swapping region,

etc. After completion of a code of placer tool, need to do manual testing. In the

whole process of designing a placer tool, very important thing is to understand the

SDK used to design the placer tool. How best one can apply this SDK features in

designing the placer tool. In addition the user been provided the facility to enter into

the algorithm from any point.

CHAPTER 1. INTRODUCTION 8

1.5 Outline of Thesis

• Chapter 2 presents the details of the Chip architecture like detail of transistor

used to design RLC, Routing architecture, different type of connection boxes

which are used to connect the IO lines which global horizontal and vertical,

Different switch boxes to connect horizontal and vertical lines.

• Chapter 3 explains various placement algorithms. If also describes the compar-

ison between both the algorithms. Which algorithm is better and why choose

that algorithm to design this tool.

• Chapter 4 describes the programming methods for Tool. It also describes the

whole process of designing the placer tool. How the algorithm is partitioned to

ease of design? How the core part of this placer tool which is implementation

of SA algorithm is independent of the architecture of chip? How this tool can

allow the user to enter from any point?

Chapter 2

PiCoGA Architecture

2.1 FPGA Architecture Issue

All FPGAs consist of a large number of programmable logic blocks, which can each

implement a small amount of digital logic, and programmable routing which allows

the logic block inputs and outputs to be connected to form larger circuits. There are

three different issues in FPGA architecture: two concern FPGA routing design, and

one concerns FPGA logic block design.

The first issue investigated is global routing architecture. The global routing

architecture of an FPGA specifies the relative width of the various channels within

the chip. Figure. 2.1 depicts an example global routing architecture in which the

channels near the center of the FPGA are wider than those near the edges [1].

In MPGA and standard cell implementations, a custom chip is created for each

design, so routing channels can easily be made wider in areas of a chip where the

demand for routing is greater. In FPGAs, however, all routing resources are prefab-

ricated, so the width of all the routing channels is set by the FPGA manufacturer.

Then to find the distribution of routing resources, or tracks, to the various channels

that permits their efficient utilization by the largest class of circuits. If there are

too few tracks in some area of the chip then many circuits will be unroutable, while

9

CHAPTER 2. PICOGA ARCHITECTURE 10

Figure 2.1: Example Global Routing Architecture

if there are too many tracks, they may be wasted. There is no agreement amongst

commercial FPGAs on the best global routing architecture, so this question has clear

commercial relevance.

The second issue is the use of cluster-based logic blocks in FPGA. These logic

blocks are groups, or clusters, of look-up tables (LUTs) and flip flops along with local

routing to interconnect the LUTs within a cluster; Figure 2.2 depicts an example logic

cluster[1]. In an FPGA using cluster-based logic blocks, many connections will then

be made via the local interconnect within a cluster. Since this local interconnect can

be made faster than the general purpose interconnect between logic blocks, cluster-

based logic blocks can improve FPGA speeds. As well, an FPGA in which every logic

CHAPTER 2. PICOGA ARCHITECTURE 11

block contains several LUTs will need fewer logic blocks to implement a circuit than

an FPGA in which each logic block is a single LUT. These reduce the size of placement

and routing problem considerably. Since placement and routing is usually the most

time-consuming step in mapping a design to an FPGA, cluster-based logic blocks can

significantly reduce design compile time. As FPGAs grow larger, it is important to

keep this compile time from growing too large or one of the key advantages of FPGAs,

rapid prototyping and quick design turns, will be lost.

Figure 2.2: Example logic cluster containing two LUTs

The effect of cluster-based logic blocks on FPGA area is complex, and is the focus

of our investigation of these logic blocks. On the one hand, grouping related LUTs

together into a single logic block reduces the number of connections to be routed

between logic blocks, saving routing area. Since the general-purpose interconnect

consumes most of the die area in SRAM-based FPGAs, this is a significant area

savings. On the other hand, in the logic clusters, the area required by the local

routing grows quadratically with the number of LUTs in a cluster. For sufficiently

large clusters, the area used by this local interconnect will exceed the area saved in the

general interconnect. Then, investigate how the number of LUTs per cluster affects

both FPGA area and other important FPGA architecture parameters, such as the

proper number of inputs to a logic block and the required flexibility of the general-

purpose interconnect. While recent FPGAs from Xilinx, Altera, Lucent Technologies,

CHAPTER 2. PICOGA ARCHITECTURE 12

Actel and Vantis have all grouped several LUTs together into logic clusters, there has

been little published work investigating the impact of the logic cluster used on FPGA

area-efficiency.

The final FPGA issue is that of detailed routing architecture. The detailed routing

architecture of an FPGA defines how logic block inputs and outputs can be intercon-

nected. The style of detailed routing architecture is the island-style architecture. A

simplified detailed-routing architecture is depicted in Figure 2.3.

Figure 2.3: Example Detailed Routing Architecture

Detailed routing architecture is the key element of an FPGA because most of an

FPGA’s area is devoted to routing, and most of a circuit’s delay is due to routing

delays rather than logic block delays, so creating detailed routing architectures that

are both fast and area-efficient is clearly crucial.

2.2 FPGA Architecture

All FPGAs are composed of three fundamental components: logic blocks, I/O blocks

and programmable routing, as Figure 2.4 shows. A circuit is implemented in an

CHAPTER 2. PICOGA ARCHITECTURE 13

FPGA by programming each of the logic blocks to implement a small portion of the

logic required by the circuit, and each of the I/O blocks to act as either an input pad

or an output pad, as required by the circuit. The programmable routing is configured

to make all the necessary connections between logic blocks and from logic blocks to

I/O blocks. The following section briefly describes the basic technologies used to

make FPGAs programmable.

Figure 2.4: Generic FPGA

2.3 FPGA Logic Block Architecture

The logic block used in an FPGA strongly influences the FPGA speed and area-

efficiency. While many different logic blocks have been used in FPGAs, most current

commercial FPGAs are using logic blocks based on look-up tables (LUTs). Figure

2.5 shows how a 2-input LUT can be implemented in an SRAM-based FPGA. A k-

CHAPTER 2. PICOGA ARCHITECTURE 14

input LUT requires 2k SRAM-cells and a 2k-input multiplexer. A k-input LUT can

implement any function of k-inputs; one simply programs the 2k SRAM cells to be

the truth table of the desired function.

Figure 2.5: A 2-input LUT implemented in an SRAM-based FPGA

Most modern FPGAs are composed not of a single LUT, but of groups of LUTs

and registers with some local interconnect between them, and there has been some

research into logic blocks containing groups of LUTs. The area model used in this

study modeled routing area by estimating the number of routing switches needed

after global routing. Since this model did not account for the fact that the routing

transistors would most likely have to be sized up for the larger logic blocks, these

area numbers are probably somewhat inaccurate (overly optimistic) for logic blocks

with more than one LUT.

2.4 FPGA Routing Architecture

Commercial FPGAs can be classified into three groups, based on their routing ar-

chitecture. The FPGAs of Xilinx, Lucent and Vantis are island-style FPGAs, while

Actel’s FPGAs are rowbased, and Altera’s FPGAs are hierarchical. In this thesis,

almost exclusively investigated the island-style routing architecture, so description of

this style of routing architecture below.

CHAPTER 2. PICOGA ARCHITECTURE 15

Figure 2.6 depicts an island-style FPGA. Logic blocks are surrounded by routing

channels of pre-fabricated wiring segments on all four sides. A logic block input or

output, which called a pin, can connect to some or all of the wiring segments in he

channel adjacent to it via a connection block of programmable switches. At every

intersection of a horizontal channel and a vertical channel, there is a switch block.

This is simply a set of programmable switches that allow some of the wire segments

incident to the switch block to be connected to others; note that for clarity only a

few of the programmable switches contained by switch boxes are shown in Figure

2.6. By turning on the appropriate switches, short wire segments can be connected

together to form longer connections. In the FPGA of Figure 2.6, notice that some

wire segments continue unbroken through a switch block. These longer wires span

multiple logic blocks, and are a crucial feature in commercial FPGAs.

Figure 2.6: An island-style FPGA

CHAPTER 2. PICOGA ARCHITECTURE 16

The number of tracks, or wires, contained in a channel is denoted by W. The

number of wires in each channel to which a logic block pin can connect is called the

connection block flexibility, or Fc. The number of wires to which each incoming wire

can connect in a switch box is called the switch block flexibility, or Fs[1]. In the

FPGA of Figure 2.6, for example, W is 4 for all channels, Fc is 2 and Fs is 3.

Considering the importance of an FPGA’s routing architecture to both its area-

efficiency and speed, relatively little prior research has been conducted. The question

of how many wires each channel in an FPGA should contain relative to the other

channels, which is called as a global routing architecture of an FPGA has not been

studied before. There is some prior work concerning the detailed routing architecture

of FPGAs, however.

Most prior work has investigated FPGAs in which all wires span only one logic

block before terminating at a switch block, and have compared architectures only on

the basis of area efficiency. The area-efficiency metric in these studies has usually

been the number of programmable switches contained in the routing.

Figure 2.7: Example channel segmentation distribution

A few studies have looked at routing architectures that include different lengths

of wires. Figure 2.7 shows one channel in such an FPGA. The length of a wiring

segment is the number of logic blocks it spans; Figure 2.7 shows segments of length

1, 2 and 4. The segmentation distribution defines what fraction of the tracks in each

channel are of each length. In Figure 2.7 for example, 40% of the tracks are of length

1, 40% are of length 2, and 20% are of length 4. When a wire spans the entire width

CHAPTER 2. PICOGA ARCHITECTURE 17

or height of an FPGA, use Xilinx’s terminology and call it a long line.

2.5 PiCoGA Structure

The PiCoGA is an array of rows, each representing a possible stage of a customized

pipeline. The width of the datapath obtained should fit the processor one, so each row

is able to process 32-bit operands. As shown in Figure 2.8, each row is connected to

the other ones with configurable interconnect channels and to the processor register

file with six 32-bit busses[2].

Figure 2.8: PiCoGA Structure

In a single cycle, four words can be received from the register file and up to two

words can be produced for write-back operations. The busses span the whole array, so

that any row can access them, improving routability. Pipeline activity is controlled by

CHAPTER 2. PICOGA ARCHITECTURE 18

a dedicated configurable control unit, which generates three signals for each row of the

array. The first one enables the execution of the pipeline stage, allowing the registers

in the row to sample new data. In every cycle, only rows having input data ready are

activated. In this way, a state stored in flip-flops inside the array can be correctly held

and at the same time unnecessary power dissipation is avoided. The second signal

controls initialization steps of a state held inside the array, while the third enables

a burst write of LUTs with data available in the processor Register File. Each row

is composed of 16 Reconfigurable Logic Cells (RLC) and a configurable horizontal

interconnect channel. Vertical channels have 12 pairs of wires while horizontal ones

have only 8 pairs of wires. Switch blocks adjacent to each RLC connect vertical and

horizontal wires. Since most of the remaining portion of control logic not mapped in

the processor standard dataflow is implemented in the configurable control unit, the

array core can be datapath oriented. Therefore, the PiCoGA has a 2-bit granularity

for both interconnections and LUTs, except for input connection blocks which have

1-bit granularity. This is a good compromise if considered that bit-level operators

such as bit permutation, which are frequent in cryptography algorithms, are not well

supported by other functional units.

Chapter 3

Placement Algorithms

Placement algorithms determine which logic block within an FPGA should implement

each of the logic blocks required by the circuit. The optimization goals are to place

connected logic blocks close together to minimize the required wiring (wirelength-

driven placement), and sometimes to place blocks to balance the wiring density across

the FPGA (routability-driven placement) or to maximize circuit speed (timing-driven

placement).

The three major classes of placers in use today are min-cut (partitioning-based),

analytic which are often followed by local iterative improvement, and simulated an-

nealing based placers. This means the optimization goals of our placer may change

from architecture to architecture. It is much easier to add new optimization goals or

constraints to a simulated annealing based placer than to a min-cut or an analytic

placer, so the focus on this algorithm below.

3.1 Force Directed Placement

Force-directed placement algorithms are rich in variety and differ greatly in imple-

mentation details[3]. The common denominator in these algorithms is the method

of calculating the location where a module should be placed in order to achieve its

ideal placement. This method is as follows. Consider any given initial placement.

19

CHAPTER 3. PLACEMENT ALGORITHMS 20

Assume the modules that are connected by nets exert an attractive force on each

other (Figure 3.1).

Figure 3.1: Example Global Routing Architecture

The magnitude of the force between any two modules is directly proportional

to the distance between the modules. as in Hookes law for the force exerted by

stretched springs, the constant of proportionality being the sum of weights of all nets

directly connecting them. If the modules in such a system were allowed to move freely,

they would move in the direction of the force until the system achieved equilibrium

in a minimum energy state, that is, with the springs in minimum tension (which

is equivalent to minimum wire length), and a zero resultant force on each module.

Hence the force-directed placement methods are based on moving the modules in the

direction of the total force exerted on them until this force is zero.

3.1.1 Force Directed Placement Techniques

The early implementations of the force-directed placement algorithm were in the

1960s. There are many variations in existence today. Some are constructive; some

are based on iterative improvement [3].

CHAPTER 3. PLACEMENT ALGORITHMS 21

Here, one problem is to decide the order in which to select the modules for moving

to the target location. In most implementations, the module or seed module with the

strongest force vector is selected. In other implementations, the modules are selected

randomly. In still others, the modules are selected on the basis of some estimate of

their connectivity. Another problem is where to move the selected module if the slot

nearest to the zero force target location is already occupied, as it most probably will

be.

One solution is to move it to the nearest available free location. But the nearest

free location may be very far in some cases. This is an approximate method and, at

best, will need more iterations to achieve a good solution.

The second solution is to compute the target location of a module selected as

described above, then evaluate the change in wire length or cost when the module is

interchanged with the module at the target location. If there is a reduction in the

wire length, the interchange is accepted; otherwise it is rejected. It is necessary to

evaluate the wire length because it is possible that in an attempt to interchange the

selected module with the module previously at the target point, we are moving that

other module far away from its own target point; hence the move can result in a loss

instead of a gain.

The third solution is to perform a ripple move; that is, select the module previously

occupying the target point for the next move. This process is continued until the

target point of a module lies at an empty slot. Then a new seed is selected.

The fourth solution is to compute the target point of each module, then look for

pairs of modules such that the target point of one module is very close to the current

location of the other. If such modules are interchanged, both of them will achieve

their target locations with mutual benefit.

The fifth solution uses repeated trial interchanges. If an interchange reduces the

cost, it is accepted; otherwise it is rejected. The cost function in this case is the sum

of the forces acting on the modules.

CHAPTER 3. PLACEMENT ALGORITHMS 22

3.2 Placement by Partition

Placement by partitioning is an important class of placement algorithms based on

repeated division of the given circuit into densely connected sub-circuits such that

the number of nets cut by the partition is minimized [4]. Also, with each partitioning

of the circuit, the available chip area is partitioned alternately in the horizontal and

vertical direction. Each sub-circuit is assigned to one partition of the chip area. If

this process is carried on until each sub-circuit consists of only one module, then each

module will have been mapped to a unique position on the chip. Most placement

by partitioning algorithms, or Min-cut algorithms, use some modified form of the

Kernighan-Lin and Fiduccia-Mattheyses heuristics for partitioning.

The Kernighan-Lin partitioning algorithm is as follows. Start with a random

initial partition that divides the set of modules into two disjoint sets A and B. Evaluate

the net cut (the number of nets connecting modules in A to modules in B and are

therefore cut by the partition). For all pairs (a, b), a cA, b e B, find the reduction g

in the net cut obtained by interchanging a and b (moving a to set B and b to A). g is

called the gain of the interchange. If g > 0, then the interchange is beneficial. Select

the module pair (al, bl) with the highest gain gl. Remove al and bl from A and B,

and find the new maximum gain g2 for a pairwise interchange (a2, b2). Continue this

process until A and B are empty.

3.2.1 Breuer’s Algorithms

Breuers algorithms are among the early applications of partitioning for placement[5].

They minimize the number of nets that are cut when the circuit is repeatedly parti-

tioned along a given set of cut lines. Consider a set of modules connected by a set

of nets. Let c be a line crossing the surface of the chip. If one or more elements

connected to a net s are on one side of c and one or more elements are on the other

side, then, while routing the net, at least one connection must cross line c. The cut

line c is said to cut the net s.

CHAPTER 3. PLACEMENT ALGORITHMS 23

Cut Oriented Min-Cut Placement Algorithm. Start with the entire chip and a

given set of cut lines. Let the first cut line partition the chip into two blocks. Also

partition the circuit into two subcircuits such that the net-cut is minimized. Now

partition all the blocks intersected by the second cut line, and partition the circuit

correspondingly. Repeat this procedure for all cut lines. This process is shown in

Figure 3.2a.

Figure 3.2: (a) Cut-oriented, (b) Block-oriented

Block-Oriented Min-Cut Placement Algorithm. In this algorithm, we select a cut

line to partition the chip into two regions. Then we select a separate cut line for each

region and partition the regions further. This process is repeated until each block

consists of one slot only. Here, different regions cam have different cut lines, as shown

in Figure 3.2b.

The cut lines for partitioning the chip may be selected in any sequence. Breuer

has given three sequences, which are most suitable for three different types of layout.

These are as follows:

a. Quadrature Placement Procedure

b. Bisection Placement Procedure

c. Slice Bisection Procedure

CHAPTER 3. PLACEMENT ALGORITHMS 24

3.3 Clustering Approach

Clustering is another class of placement technique[6]. We have given a netlist hyper-

graph H(V, E) consist of a set of modules (vertices) V = v1, v2, , vn and a set of nets

(hyperedges) E = e1, e2, , en. So, we can define a cluster Ci is a non-empty subset of

V. K-way clustering (Pk) is a set of k clusters such that every vi from set V belongs

to exactly one cluster in Pk. Given H(V,E), a value 2¡=k¡=n, and cluster size bounds

Lower (L) & Upper (U), construct Pk = C1, C2, , Ck with L¡=—Ci—¡= U, 1¡=i¡=k,

that optimizes a given objective function f(Pk). Pk is referred as clustering when k

size is large and as partitioning when k is small, k ¡= 10.

Clustering contracts a large problem instance into smaller instance this saves

runtime or allows better search of the solution space. When it is known that cells

should be near each other in the placement, clustering them together prevents from

making a mistake. Clustering can incorporate knowledge of problem structure that

the placer would otherwise have to ignore.

So, Clustering can speed up placement process and lead to better placement solu-

tion quality. Output generated by clustering can applied to any placement techniques

to improve the performance of the technique. This technique gives poor results but

it is the fastest method for placement.

3.4 Simulated Annealing

Simulated annealing mimics the annealing process used to gradually cool molten

metal to produce high-quality metal objects. Pseudo-code for a generic simulated

annealing-based placer is shown in Algorithm 3.1 [1] [7]. A cost function is used to

evaluate the quality of any placement of logic blocks – for example, a common cost

function in wirelength-driven placement is the sum over all nets of the half perimeter

of their bounding boxes. An initial placement is created by assigning logic blocks

randomly to the available locations in the FPGA. A large number of moves, or local

CHAPTER 3. PLACEMENT ALGORITHMS 25

improvements, are then made to gradually improve the placement. A logic block is

selected at random, and a new location for it is also selected at random. The change

in cost function that would result from moving the selected logic block to the proposed

new location is computed. If the cost would decrease, the move is always accepted

and the block is moved. If the cost would increase, there is still a chance of the

move being accepted, even though it makes the placement worse. This probability of

acceptance is given by e−DC/T , where DC is the (positive) change in cost function the

move causes, and T is a parameter called temperature that controls the likelihood of

accepting moves that make the placement worse. Initially, T is very high so almost

all moves are accepted; it is gradually decreased as the placement is refined so that

eventually the probability of accepting a move that makes the placement worse is

very low. This ability to accept hill-climbing moves that make a placement worse

allows simulated annealing to escape local minima in the cost function.

Algorithm 3.1 Pseudo-code of a generic simulated annealing-based placer

S = RandomPlacement ();

T = InitialTemperature ();

Rlimit = InitialRlimit ();

1 while (ExitCriterion () == False) { /* ”Outer loop” */

2 while (InnerLoopCriterion () == False) { /* ”Inner loop” */

3 Snew = GenerateViaMove (S, Rlimit);

4 DC = Cost (Snew) - Cost (S);

5 r = random (0,1);

6 if (rle−DC/T) {

7 S = Snew;

8 }

9 } /* End ”inner loop” */

10 T = UpdateTemp ();

11 Rlimit = UpdateRlimit ();

12 } /* End ”outer loop” */

CHAPTER 3. PLACEMENT ALGORITHMS 26

The rate at which temperature is decreased, the exit criterion for terminating the

anneal, the number of moves attempted at each temperature (InnerLoopCriterion),

and the method by which potential moves are generated are defined by the annealing

schedule. A good annealing schedule is crucial to obtain good results in a reason-

able amount of CPU time. Many proposed annealing schedules are ”fixed” schedules

that have no ability to adapt to different problems. Such schedules can work well

within the narrow application range for which they were developed, but their lack

of adaptability means they are not very general. Accordingly, we discuss below only

”adaptive” annealing schedules that determine an annealing schedule based on statis-

tics computed during the anneal itself.

Annealing schedule performs a set of random moves on the initial placement, and

sets the initial temperature (InitialT) to 20 s, where s is the standard deviation of

the cost over these moves. New temperatures (UpdateT) are computed via:

Tnew = Told(e
−λTold/σ) (3.1)

where λ is typically set to 0.7 and s is the standard deviation of the moves ac-

cepted at Told. The InnerLoopCriterion of Algorithm 3.1 is fairly complex for this

schedule; it involves monitoring the fraction of new states generated that have their

costs within a certain range of the average cost at that temperature, and there are

several special cases and fall-back cases defined. Finally, the anneal terminates (Ex-

itCriterion), when the difference between the maximum and minimum costs accepted

at that temperature equals the maximum cost change caused by any one move at

that temperature.

When we employs feedback control to set the annealing schedule. It monitors the

standard deviation of the cost, the average cost, and the fraction of proposed moves

that were accepted, α, over the past τ moves. Typically τ is 100. These values are

inputs to a sophisticated feedback system that determines a new temperature. In this

schedule, a new temperature is computed every move – that is, the ”inner loop” in

CHAPTER 3. PLACEMENT ALGORITHMS 27

Algorithm 3.1 executes only one iteration each time control reaches it. The anneal

terminates when there has been no change in the average cost for the last k∗τ moves,

where k is typically 5. This annealing schedule also employs a range limiter to control

the move generation process. The Rlimit parameter in Algorithm 3.1 controls how

close together blocks must be to be considered for swapping. Initially, Rlimit is fairly

large, and swaps of blocks far apart on a chip are likely. Throughout the anneal,

Rlimit is adjusted to try to keep the fraction of moves accepted at any temperature

close to 0.44. If the fraction of moves accepted, α, is less than 0.44, Rlimit is reduced,

while if α is greater than 0.44, Rlimit is increased.

One disadvantage of this is its complexity. To overcome this problem we can make

changes in inner loop exit criteria. In this schedule, the number of moves attempted

in the ”inner loop” is 10∗Nblocks1.33. The range limiter, Rlimit is updated according

to a fixed (hard-coded) schedule; the exact form of this is not specified, but it likely

initially spans the entire chip, and gradually shrinks to a small region. The ”outer

loop” is executed 150 times, and then the anneal terminates. The temperature is

controlled by the fraction of moves accepted:

Tnew = [1− α− 0.44

40
]Told (3.2)

where 0.44 is desired acceptance rate, and 40 is a damping coefficient to prevent

wild oscillations in temperature. While this schedule is much simpler than previous,

it has sacrificed some of the adaptability of the previous schedule, since the range

limiter variation and the number of outer loop iterations are now hard-coded.

Since the amount of routing in FPGAs is limited and set by the manufacturer

when the FPGA is fabricated, some FPGA placers attempt to optimize not just the

wirelength of a placement, but also its routability. Simulated annealing can be used

in a tool that performs placement and routing simultaneously in one combined step.

After any swap of blocks, all the affected nets are re-routed via a maze router. To

keep the CPU time reasonable, this maze router is constrained to look at only a small

CHAPTER 3. PLACEMENT ALGORITHMS 28

number of potential routes when the temperature is high; at lower temperatures, the

router is allowed to spend more time looking for routes. If no suitable route is found

among the allowed candidates, the net is marked as currently unroutable, and the

placement cost is increased. The result quality of this tool is high, but the CPU time

required is very large – a circuit containing only 461 Xilinx 4000 logic blocks required

11 hours of CPU time to place and route, and the complexity of this algorithm appears

to be approximately O(n3).

3.5 Placement: VPR (Versatile Place and Route)

The Versatile Place and Route (VPR) CAD tool performs placement and either global

routing or combined global-detailed routing for FPGAs. The name Versatile Place

and Route reflects the primary goal in this tool’s design: be able to target a wide

variety of FPGA architectures. In the following sections we describe the capabilities

of and algorithms used in the VPR placement tool.

3.5.1 Overview of VPR Placement Tool

In VPR, an FPGA is modelled as a set of legal slots, or discrete locations, at which

logic blocks or I/O pads can be placed. In keeping with the versatility design goal,

an FPGA architecture description file specifies:

• The number of logic block input and output pins

• The number of I/O pads that fit into one row or one column of the FPGA

• The relative widths of the various routing channels across the FPGA

The dimensions of the logic block array must also be set; if these are not specified

on the command line, the smallest logic block array that will fit the circuit is used.

In Figure 3.3, for example, two I/O pads fit into each row or column of the FPGA,

the logic block array is 4 x 3 logic blocks, and the channels between the logic block

CHAPTER 3. PLACEMENT ALGORITHMS 29

array and the I/O pads are only half as wide as those within the logic block array.

Notice that perimeter I/O is assumed (i.e. wire-bonded pads, rather than flip-chip),

so I/O blocks can only be placed on the edges of the FPGA.

Figure 3.3: FPGA model assumed by VPR placer

Users can have VPR determine good locations for the I/O pads during placement,

or they can lock the I/O pads in a configuration specified by an input file, or have

VPR generate a random locked I/O configuration[1]. This last capability allows the

tool to measure the effect of random pin assignment on different architectures – an

important issue in FPGAs. Locked I/Os occur frequently in real FPGA designs, since

the circuit board on which an FPGA is mounted is often fabricated before the FPGA

circuit design is competed. In such cases, the placement tool must keep the circuit

I/Os in the locations required by the circuit board design.

VPR uses the simulated annealing algorithm, which was described in detail in

Section 3.4. Since the basic application of simulated annealing to placement is well

known, the following sections focus on the aspects of our implementation that are

improvements to the prior art.

CHAPTER 3. PLACEMENT ALGORITHMS 30

3.5.2 New Adaptive Annealing Schedule

As described in Section 3.4, a good annealing schedule is essential to obtain high-

quality solutions in a reasonable computation time with simulated annealing. Recall

that an annealing schedule specifies the number of moves to attempt per temper-

ature, how temperature varies throughout the anneal, and when the anneal should

terminate. Our placement tool targets many different FPGA architectures, can use

several different cost functions, and is used with a wide variety of circuits that span a

large range of sizes. Consequently, we need an annealing schedule that automatically

adapts to the current placement problem; fixed annealing schedules will not work

well.

Three parts of this annealing schedule are taken from prior work. First, we com-

pute the initial temperature in the same as equation 3.1. Let Nblocks be the total

number of logic blocks plus the number of I/O pads in a circuit. We first create a

random placement of the circuit. Next, we perform Nblocks moves (pairwise swaps)

of logic blocks or I/O pads, and compute the standard deviation of the cost of these

Nblocks different configurations. The initial temperature is set to 20 times this stan-

dard deviation, ensuring that virtually every move is accepted at the start of the

anneal.

The second feature of our annealing schedule taken from prior work is the number

of new placement configurations evaluated at each temperature. We set the number

of moves per temperature to

MovesPerTemperature = InnerNum ∗ (Nblocks)
4/3 (3.3)

where the default value of InnerNum is 10. This default number can be overridden

on the command line, however, to allow different CPU time / placement quality trade-

offs. Reducing the number of moves per temperature by a factor of 10, for example,

speeds up the placer by a factor of 10 and reduces the final placement quality by less

than 10%.

CHAPTER 3. PLACEMENT ALGORITHMS 31

It is desirable to keep the fraction of moves accepted, α, near 0.44 for as long as

possible. We accomplish this, by using the value of α to control a range limiter –

only interchanges of blocks that are less than or equal to Rlimit units apart in the

x and y directions are attempted. A small value of Rlimit increases α by ensuring

that only blocks which are close together are considered for swapping. These ”local

swaps” tend to result in relatively small changes in the placement cost, increasing

their probability of acceptance. Initially, Rlimit is set to the span of the entire chip.

Whenever the temperature is reduced, the value of Rlimit is updated according to the

value of α measured at the old temperature:

Rnew
limit = Rold

limit ∗ (1− 0.44− α) (3.4)

and then clamped to the range 1 ≤ Rlimit ≤ maximum FPGA dimension. This

results in Rlimit being the size of the entire chip for the first part of the anneal,

shrinking gradually during the middle stages of the anneal, and finally being 1 logic

block at low temperatures.

The key difference between our new annealing schedule and previous schedules

lies in our method of updating the temperature as the anneal progresses. When the

temperature is so high that almost any move is accepted, we are essentially moving

randomly from one placement to another and little improvement in cost is obtained.

Conversely, if very few moves are being accepted (because the temperature is very low

and the current placement is of fairly high quality), there is also little improvement

in cost. With this motivation in mind, we created a temperature update scheme that

increases the amount of time spent at the most productive temperatures – those where

a significant fraction of, but not all, moves are being accepted. We use the fraction of

moves being accepted, α, to directly control how quickly the temperature drops. A

new temperature is computed as Tnew = γTold, where the value of γ depends on the

fraction of attempted moves that were accepted (α) at Told, as shown in Table I. The

exact values of α and γ listed in Table I were found via experimentation. While the

CHAPTER 3. PLACEMENT ALGORITHMS 32

α γ
α >0.96 0.5

0.8 <α ≤ 0.96 0.9
0.15 <α ≤ 0.8 0.95

α ≤ 0.15 0.8

Table I: Temperature Update Schedule

values in Table I led to the best performance, the performance of the annealer is not

extremely sensitive to the exact value of γ as a function of α. So long as the function

γ(α) has the right form – γ is near 1 for a around 0.44, and γ is significantly smaller

for α near 1 or 0 – the annealer performs reasonably well.

We terminate the anneal when:

T < ε
Cost

Nnets

(3.5)

where Nnets is the number of nets in the circuit, and we use an ε value of 0.005. The

movement of a logic block will always affect at least one net. When the temperature

is less than a small fraction of the average cost of a net, it is unlikely that any move

that results in a cost increase will be accepted, so we terminate the anneal. Again,

the performance of the annealer is not terribly sensitive to the ε factor in 3.5. Any

value between 0.05 and 0.005 is reasonable, with smaller values giving slightly higher

quality placements at the cost of slightly increased CPU time.

The annealing schedule described above has produced excellent results with a wide

variety of cost functions, FPGA architectures, circuits, and moves per temperature

(i.e. desired quality) values. This annealing schedule was not sufficiently robust

for our purposes, particularly with large circuits. For some circuits its temperature

update scheme became too conservative, and the temperature decreased extremely

slowly. For some other circuits its exit criterion did not function correctly, and a large

amount of CPU time was wasted at very low temperatures with no significant quality

improvement.

CHAPTER 3. PLACEMENT ALGORITHMS 33

3.5.3 New Cost Function

One of the FPGA architectural issues we investigate is global routing architecture.

Recall that many global routing architectures have wider channels in some regions

of the FPGA than in others. To fully optimize for such architectures, those portions

of a circuit that require more routing should be placed in regions of the FPGA that

have wider routing channels. The key to obtaining such global-routing-architecture-

aware placements is ensuring that the cost function used properly models the relative

difficulty of routing connections in areas with different channel widths. Accordingly,

we developed what we call a linear congestion cost function. Of all the alternatives we

have explored, this cost function provides the best results in a reasonable computation

time. Its functional form is

Costlinearcongesion =
Nnets∑
i=1

q(i)[
bbx(i)

Cav,x(i)β
+

bby(i)

Cav,y(i)β
] (3.6)

where the summation is over the Nnets in the circuit. For each net, i, bbx(i)

and bby(i) denote the horizontal and vertical spans of its bounding box, respectively.

The q(i) factor compensates for the fact that the bounding box wire length model

underestimates the wiring necessary to connect nets with more than three terminals.

Its value depends on the number of terminals of net i. We obtained the appropriate

values of q(i); q(i) is 1 for nets with 3 or fewer terminals, and slowly increases to 2.79

for nets with 50 terminals. Cav,x(i) and Cav,y(i) are the average channel capacities (in

tracks) in the x and y directions, respectively, over the bounding box of net i.

This cost function penalizes placements which require more routing in areas of the

FPGA that have narrower channels. The exponent, β, in the cost function allows the

relative cost of using narrow and wide channels to be adjusted. When β is zero the

linear congestion cost function reverts to the standard bounding box cost function.

The larger the value of β, the more wiring in narrow channels is penalized relative to

wiring in wider channels; we have experimentally found that setting β to one results

in the highest quality placements.

CHAPTER 3. PLACEMENT ALGORITHMS 34

Cav depends only on the channel capacities, which do not change during a place-

ment, and on the maximum and minimum coordinates of a bounding box. We

therefore precompute all possible Cav,x and Cav,y values and store them in a two-

dimensional array indexed by the bounding box minimum and maximum coordinates.

Consequently, recomputing this cost function is essentially as fast as recomputing the

traditional bounding box cost function.

In an FPGA where all channels have the same capacity, Cav is also a constant and

hence the linear congestion cost function reduces to a bounding box cost function. In

FPGAs where some channels are wider than others, however, this cost function results

in higher quality placements than a bounding box cost function. The exact amount

of routability improvement depends on the precise global routing architecture used;

as one would expect, those in which there is a large difference between the widths

of channels in different regions show the largest improvement. For the architectures

studied in this thesis, placements produced with the linear congestion cost function

typically require 5 to 10% fewer tracks to route than placements produced with a

bounding box cost function.

3.5.4 Incremental Net Bounding Box Update

Even with a good annealing schedule, millions of potential block swaps will be eval-

uated in a typical placement run. The most computationally expensive part of eval-

uating a swap is computing the change in cost, ∆C, the swap would produce; it is

crucial that this computation be made as fast as possible.

Consider the computation of ∆C caused by the swap of two blocks. The only

terms in the summation of (3.6) that change are those corresponding to the nets

attached to the two swapped blocks. The bounding boxes of all the nets attached

to either of these two blocks must be recomputed, and then (3.6) can be used to

determine ∆C. The recomputation of the net bounding boxes is the key step here;

unless care is taken, it can dramatically slow the placer.

CHAPTER 3. PLACEMENT ALGORITHMS 35

The straightforward way to re-evaluate a net’s bounding box is to examine the

location of each of its terminals. Unfortunately, this is an O(k) operation for a k-

terminal net. Large circuits typically have many high-fanout nets, a few of which

have hundreds of terminals. As well, since high-fanout nets have terminals on so

many blocks, swapping any two blocks has a high probability of disturbing some

high-fanout nets.

We have developed an alternative to this brute-force computation, which we call

incremental bounding box evaluation. For each net, we store the coordinate of each

of the four sides of its bounding box (xmin, xmax, ymin, ymax), and the number of net

terminals that lie on each of these sides (Nxmin, Nxmax, Nymin, Nymax). Figure 3.4

shows an example of this data storage.

Figure 3.4: Data stored to enable incremental bounding box updates

Now say that some terminal of this net is moved via a swap from (xold, yold) to

(xnew, ynew). Since we have stored the extra information shown in Figure 3.4, we

can usually determine the new net bounding box by looking only at the terminal

which moved, rather than all k terminals. Algorithm 3.2 lists the pseudo-code used

CHAPTER 3. PLACEMENT ALGORITHMS 36

to update the xmin and Nxmin values for a net i; the code for the other four sides are

similar.

Algorithm 3.2 Pseudo-code to update the bounding box of net i incrementally

1 if (xnew != xold) { /* Terminal has moved horizontally */

2 if (xnew ¡ xmin(i)) { /* Terminal moved left past old xmin edge */

3 xmin(i) = xnew;

4 Nxmin(i) = 1;

5 }

6 else if (xnew == xmin(i)) { /* Terminal moved left to lie on the old xmin edge

*/

7 Nxmin ++;

8 }

9 else if (xold == xmin(i)) { /* Terminal was on xmin edge; moved right */

10 if (Nxmin ¿ 1) { /* Still terminals on xmin edge? */

11 Nxmin –;

12 }

13 else {

14 BruteForceBoundingBoxRecompute (i);

15 }

16 }

17 }

Notice that there is only one case for which the net bounding box must be re-

computed by the brute-force procedure: when the terminal moved is the only net

terminal on a side of the bounding box, and it is moved inward, toward the bounding

box center. In this case the recomputation is O(k), while in all other cases it is O(1).

The probability of an arbitrary net terminal being on some side of the bounding box,

and being the only terminal on that side of the bounding box is proportional to 1/k,

however. Hence the average net bounding box recomputation is O(1 + (1/k).k)=

O(1).

We have experimentally determined that our incremental bounding box update

CHAPTER 3. PLACEMENT ALGORITHMS 37

method is faster than the brute-force method for all nets with more than 4 terminals.

Using this more sophisticated technique for nets with more than 4 terminals yields,

on average, a more than five times speedup in the placer. Table II compares the CPU

time on a 300 MHz UltraSparc needed to place the ten largest MCNC benchmark

circuits with and without incremental bounding box recalculation. In this experiment

each logic block is a BLE (4-LUT / FF pair). The speedup due to incremental

bounding box updates ranges from 2.52 times to 9.41 times. The variation in speedup

is due to the different fanout distributions of these circuits – circuits with a higher

average fanout benefit more. Since placement is so timeconsuming, and there is

considerable need for fast CAD tools as FPGA sizes increase, this speedup is very

important. Another useful feature of the incremental bounding box code is that it

makes the CPU time required to place a circuit highly predictable from the circuit

size; this allows a CAD tool to give a user an accurate estimate of the time required

to place a circuit.

Circuit # Logic Blocks Without in-
cremental
bounding box

With in-
cremental
bounding box

SpeedUp

apex2 1878 116 46 2.52X
frisc 3556 599 127 4.72X

elliptic 3604 864 125 6.91X
s298 1931 386 41 9.41X
pdc 4575 664 172 3.86X

Table II: Placement CPU time with and without incremental bounding box recalcu-
lation

The InnerNum value for these results was set to 1; to obtain the highest quality

(5 - 10% better) results, InnerNum is set to ten, and therefore ten times more CPU

is required than Table II lists.

CHAPTER 3. PLACEMENT ALGORITHMS 38

3.6 Conclusion

This paper discussed six classes of VLSI module placement algorithms. Simulated

annealing is currently the most popular among researchers and is the best algorithm

available in terms of the placement quality, but it takes an excessive amount of compu-

tation time. It is derived by analogy from the process of annealing, or the attainment

of ordered placement of atoms in a metal during slow cooling from a high temperature.

Clustering algorithms would rank last in terms of placement quality but would

probably be the best in terms of cost/performance ratio, since they are much faster

than any other algorithms. These algorithms are based on a simple principle the

groups of cells that are densely connected to each other grouped with each other and

form a cluster/a bigger block.

Clustering followed by Simulated Annealing together these two techniques can

reduce the total time and improves the quality of placement also. First we apply

Clustering and then Simulated Annealing. For bigger configurations this approach

gives best results.

Algorithm Result Quality Speed
Simulated Annealing Near Optimal Very Slow
Genetic Algorithm Near Optimal Very Slow

Force Directed Medium...Good Slow...Medium
Numerical Optimization Medium...Good Slow...Medium

Min-Cut Good Medium
Clustering and Other Constructive Placement Poor Fast

Table III: Comparison of Placement Algorithms

Chapter 4

Programming The Tool

Implementing a circuit in a modern FPGA requires that hundreds of thousands or

even millions of programmable switches and configuration bits be set to the proper

state, on or off. Clearly if a circuit designer has to specify the state of each pro-

grammable switch in an FPGA very few designs will ever be completed! Instead,

users of FPGAs describe a circuit at a higher level of abstraction, typically using a

hardware description language (such as VHDL) or schematic entry. Computer-Aided

Design (CAD) programs then convert this high-level description into a programming

file specifying the state of every programmable switch in an FPGA. To keep the com-

plexity of this procedure tractable, the problem of determining how to map a circuit

into an FPGA is normally broken into a series of sequential sub problems, as shown

in Figure 4.1.

The whole chip has been described in a particular hierarchy. There are some basic

units in a chip like Input Registers, Output Register, RLCs and nets to connect these

RLCs. The algorithm which is used can directly be applied on RLCs but this process

is very time consuming. So, to ease of use and to save the time plus to reduce the

complexity of coding, a hierarchy of these units has been created.

• Pipeline

• Cluster

39

CHAPTER 4. PROGRAMMING THE TOOL 40

Figure 4.1: FPGA CAD Flow

• Macro

• RLC

Now start from RLC. It is a basic unit of a chip. For PiCoGA we have 24 rows and

16 columns. So, each row contains 16 RLCs. In each tile it has RLC in it because it

has an Island routing architecture. According to the requirement and functioning of

a chip some RLCs may be strongly connected and some RLCs may loosely connected.

Macro is a collection of RLCs. Based on the connectivity of RLCs, macro can be

define. All the RLCs which are responsible for implementing the single functionality

can reside in a single macro. A macro can contain two or more RLCs. At the stage

of detailed placement, placement has been done at macro level.

Cluster is a collection of Macros. Based on the connectivity of Macros, cluster

can be define. All the Macros which are responsible for implementing the single

functionality can reside in a single cluster. A cluster can contain more than one

Macros. One constraint is that cluster should not expanded more than one physical

row. So, in this chip one can have minimum 24 clusters. At the stage of global

placement, placement has been done at cluster level.

CHAPTER 4. PROGRAMMING THE TOOL 41

Pipeline is a collection of clusters. Based on the connectivity of clusters, pipeline

can be define. All the clusters which are responsible for implementing the single

functionality can reside in a single pipeline. A pipeline can contain more than one

clusters. Pipeline can be expanded more than one physical row. So, in this chip one

can have minimum 1 pipeline and maximum 24 pipelines.

Specific in this dissertation to design a placer tool reconfigurable logic blocks on

eFPGA whole process is divided in subgroups. The whole process is shown in Figure

4.2.

Figure 4.2: PiCoGA Placer Tool Flow

4.1 Read Input & Generate Chip View

This is the first sub module to design a tool. In this sub module, read the input given

by user, check the validity of given data, assign these values to appropriate data

classes and generate the chip view. User has been provided two types of facilities to

give input to tool. A GUI as well as command line option provided to user to input

the data. Through GUI user just need to select the particular input files. System

CHAPTER 4. PROGRAMMING THE TOOL 42

will automatically reads the contents from those input files and design a chip view.

Next is command line input option in which user enters the file names at command

line and then system reads those files and generates a chip view.

In detail when system have input from user it need to check the validity of all the

data. For example, first it has to check the availability of input files. Then check the

contents of all the files. Suppose it has detail of RLC, checks the coordinates of it,

its connectivity of other RLCs, number of OPF nets, RLCs feeding output register

in appropriate column.

Then it checks the availability of all the files which are given by the user. It checks

that given path and check the existence of those files, names and path given by user.

After checking this thing system will generate the list of units which can be used in

placement of chip. It generates RLC list information. In which it contains all the

RLC and its detail like source of RLC, sink of RLC, id, name, coordinates, number of

OPF nets, parent block of that RLC, reference list index of RLC, Output register list,

etc. Same as RLC, create Cluster, Macro and Pipeline list information. Pipeline list

contains the objects of pipeline. It has some other attributes like constituent block

list, physical row index, etc. Cluster list contains the objects of cluster. Cluster is a

part if pipeline. We can say a pipeline can be described as a collection of one or more

cluster. Next, it generates the list of input and output registers. These also has some

additional parameters. All these registers are 32 bits. According to architecture, it

needs total 12, 32 bit input registers to feed all input lines of RLCs. Same as it needs

4, 32 bit output registers to receive the output from RLCs.

After creating a chip view it generates the net information. In which it creates a

RLC level, Macro level and pipeline level source and sink information. It designs the

complete hierarchy of units. Input registers feeding the RLCs, these RLCs are part

of macro and it is part of pipeline. So, on the basis of contents in input file the whole

hierarchy is defined this way.

Refer Figure 4.3 at the end of this chapter for flow of this module.

CHAPTER 4. PROGRAMMING THE TOOL 43

4.2 Clustering

Here clustering algorithm is used to speed up the placement algorithm. Clustering

algorithm creates a group of macros which are heavily connected to each other. This

algorithm has a list of pipelines, their constituent macros and other related informa-

tion. From this, create a list of clusters which covers all the existing macros of a

single pipeline. More than one cluster of a single pipeline can be created.

Algorithm 4.1 Clustering Algorithm

Priority Queue seedPQ; // based on the degree and connectivity factor of macro.

Priority Queue gainPQ; // based on the gain.

1 For each pipeline

2 seedPQ = 0;

3 gainPQ = 0;

4 For each Macro

5 Make it seed node.

6 Insert this macro in seedPQ;

7 End

8 For each macro in seedPQ

9 gainPQ = 0;

10 If(current cluster block is full OR cluster block not exist)

11 Create new cluster block;

12 If(macro not in cluster)

13 Add macro to cluster block;

14 createGainPQ(macro);

15 For all macros of gainPQ

16 If(cluster is not full & & macro is not part of cluster)

17 Add this macro block to cluster;

18 End

19 End

20 End

CHAPTER 4. PROGRAMMING THE TOOL 44

21 Function createGainPQ(macro)

22 Create a list of connected and unconnected macros list of this macro.

23 For all macros of this list

24 If(eligible)

25 Compute gain;

26 Add this macro to gainPQ;

27 End

To understand the algorithm 4.1 we have to understand some terminologies like;

degree, separation, gain, connectivity factor. Degree is the number of connected nets

to the macro block. Separation is the number of nodes which are connected to the

nets which are inlined to the macro. Connectivity factor is degree
separation2 . Gain is de-

pending on the number of pins connected to the net of macro.

Gain = 2n2
r
∗ (1 + αx)

Where,

n = number of macros of cluster.

r = number of connected pins to the net.

αx= number of connected pins to the net which are part of cluster.

As shown in algorithm 4.1, system has to add all the macros to an identical cluster.

Initially it takes two priority queues for data storage purpose. Then for each pipeline

take all constituent macro list. Now add this macros in first priority queue on the

basis of degree and connectivity factor.

Now, for each macros in this priority queue add this macro to a cluster block.

Either create a new cluster block or use an existing cluster to add this macro block.

Now, find the connected and unconnected macro blocks from the same pipeline. And

check their eligibility that they are able to add in the current cluster block or not. If

the macro block is eligible then add this macro block in the second priority queue on

the basis of gain of that macro block.

CHAPTER 4. PROGRAMMING THE TOOL 45

These eligibility criteria are on the basis of architecture, design, algorithm con-

straints. There are four eligibility criteria. First, the size of the macro block should

not exceed the cluster size after adding this macro block. Second, this macro block

should not already be the part of any other cluster. Third, OPF constraints should

not violated by adding this macro. Fourth, current cluster is already connected to an

output register of a half then added macro should not drive the output register from

the same half. It must not drive any output register of the same half.

Now, second queue which contains the macros which can be added to the cluster.

Then add these macro blocks one bye one to the current cluster block if they are not

part of any other cluster. Subsequently create gain priority queue add keep adding

macros to cluster till all the macros are part of some cluster.

At the end list of cluster blocks is been created which contains macro blocks of

same pipeline.

Refer Figure 4.4 at the end of this chapter for flow of this module.

4.3 Global/Detailed Placement

This module is the heart of the system. It implements simulated annealing algorithm.

The simulated annealing algorithm is implemented twice in whole placer tool. Global

Placement do placement of logic cluster blocks which are generated during previous

phase which is clustering. Second implementation is Detailed placement which does

the placement of logic macro blocks.

To implement this module there is some complecations realted to architecture

of a chip. We are implementing placer tool for a ST-PiCoGA chip which has a

specific architecture. If the algorothm implemented only for this chip then it will be

architecture specific. If in future one want to design the placer tool for some other

chip which has some other kind of architecture then this implemetation won’t be

re used. Then this algorithm has to be redesign for another chip. Each chip has

their own constraints. There are 3 kinds of constraints like Architecture, Design and

CHAPTER 4. PROGRAMMING THE TOOL 46

Algorithm constraints.

Ideally this placer algorithm should be designed in such a way that it should

do placement of blocks on chip according to its constraints. But, in this way it

will be architecture specific implementation which won’t be reused for other chip of

different architecture. To avoid this kind of dependencies placement algorithm been

implemented in such a way that it can be reused for other chip also.

System already have a database to implement this algorithm. What it does is, it

generates a local database which reads all the database blocks and their dependencies.

According to constraints it creates a table which stores the available and most feasible

place coordinates where a logic block can be placed. And placement algorithm only

has to place that logic blocks on chip as per the available space coordinates. So, in

this way it has pulled all the constrains dependent components out of the placement

implementation. When we want to implement placement of some other chip then this

implementation of algorithm will be reused.

Lets first start with Global placement. System implements simulated annealing

algorithm on cluster list. This cluster list is generated in previous phase which is

coarsening. Cluster is a part of pipeline block. There can be more than one cluster

in a single pipeline. Now, initially these pipeline are logically placed in different rows

of a chip. Coordinates to these blocks are still not assigned. What is to be done

in global placement is it has a table that contains information of child blocks of a

pipeline which are nothing but cluster blocks which are generated in previous phase

and their feasible row ids where these child blocks can be placed.

In this global placement strategy system has a database which is list of cluster

blocks of a pipeline. In placement it moves the cluster blocks to some other empty

physical row or swap the blocks to some other cluster block which can belongs to some

other pipeline. To move this block apply the same simulated annealing algorithm.

Now, look at the second approach of placement which is detailed placement. This

algoritms works same as global placer but one difference is global placer is applied

on the cluster blocks where detailed placer is applied on macro blocks. In our design

CHAPTER 4. PROGRAMMING THE TOOL 47

we already have a set of macros. Each marco is a set of number of RLCs. A macro

can contains one or more RLCs. As per the architecture of PiCoGA it has a macro

of maximum size 8 means a macro can contains upto 8 RLCs. In detailed placement

system creates a table which stores the information of macros of a pipeline. This

information contains the valid and feasible space coordinates where we can place this

macro. After generating this local database, apply simulated annealing algorithm to

place all these macro blocks.

This simulated annealing algorithm gives optimum result but is takes maximum

time for execution. The advantage of using this approach is the execution of simulated

annealing becomes faster. In global placer the placement at cluster lavel is done so

this can be helpful at detailed placer. At detailed placer system just has the scope of

available place is limited by the size of the pipeline. So, we don’t have to look at the

other physical rows of the chip to place macro block of a pipeline where that pipeline

is not expanded.

So, using this approach one can create a placement algorithm which is architecture

independent. This algorithm is reuseable and can be applied to other chips provided

that we have to modify the constraints handler according to the constraints of that

chip. But the main implementation which is heart of placer tool won’t be affected by

changing the chip architecture.

So, this way the whole placement process is done to place the reconfigurable logic

blocks on FPGA to reduce the size of a chip. As well as it also reduces the wire

length. And hence the main purpose is to reduce the NRE cost also satisfied. We can

clearly see that clustering + SA approach gives better results than other algorithms.

Refer Figure 4.5 at the end of this chapter for flow of this module.

As far as the results are concern it is clearly shown that it reduces the bounding

box size. This algorithm works in both the ways like it measures cost as well as

bounding box dimensions. Below figures 4.6 and 4.7 shows the results computed

on 17*17 logic block array which initially has bounding box cost is 75 units which

reduced to 30.66 units after applying this algorithm.

CHAPTER 4. PROGRAMMING THE TOOL 48

4.4 Generate Output

This is a final and a very important sub module for the placement phase. In this

module it generates the output as desired by the user. In this module it generates

different placement output files, statistics files and log files which stores all the nec-

essary information for next phase of this CAD tool which is routing.

This module generates the command line output as well as GUI based output

options depending on the type of input provided by user. If the input to the system

given by user is from command line the output will be generated on command line.

Where if the input to the system given by user is from command line the output will

be generated on command line. System generates ”.rlc” file after detail placement

which will be the input to the routing phase of CAD tool. Also generate placement

statistics file and placement log file and ”.cps” file which is coarse placement solution

file.

Now if we look into detail mainly we have detail placement solution file which is

”.rlc” file which is the most important input to the next phase which is routing. In

this file, dump all the details of each RLCs like name, id, source register, destination

register, operation code, operands, LUTs, details of input output pins of RLCs. It

also contains some additional details like carry bit information, synchronization bit

information, coordinates detail, etc. Here, a simple example is given below. In

our placer tool system generates the same type of information at the end of detail

placement.

For Example,

Macro1

RLC1

Details:

Coordinates:

RLC2

Details:

CHAPTER 4. PROGRAMMING THE TOOL 49

Coordinates:

Then the coarse placement solution file which contains input register information,

output register information, pipeline and cluster level information. For IO register

this file contains register name, register ID, coordinates, etc. Now the main thing

of these file is information about pipeline and cluster level information. It contains

cluster level information like, cluster id, name, physical row, number of macros in it,

etc for each clusters of each pipeline. Here, a simple example is given below. In this

placer tool, it generates the same type of information at the end of coarse placement.

For example,

IO register information

Register name

Register Id

Pipeline Id

Cluster id

Etc

Pipeline id

Then placement statistics file which contains the information about the statistics

of placement. It dumps time for coarse placement, time for detail placement, total

time taken for placement. Number of clusters, number of pipelines, number physical

rows all these information dumps in this placement statistics file. We also have the

placement log file which keeps track of all the functionalities of placement of logic

blocks.

Refer Figure 4.8 at the end of this chapter for flow of this module.

CHAPTER 4. PROGRAMMING THE TOOL 50

Figure 4.3: Read Input and Generate Chip View Flow Diagram

CHAPTER 4. PROGRAMMING THE TOOL 51

Figure 4.4: Clustering Flow Diagram

CHAPTER 4. PROGRAMMING THE TOOL 52

Figure 4.5: Global/Detailed Placement Flow

CHAPTER 4. PROGRAMMING THE TOOL 53

Figure 4.6: Simulated Annealing Result 1

CHAPTER 4. PROGRAMMING THE TOOL 54

Figure 4.7: Simulated Annealing Result 2

CHAPTER 4. PROGRAMMING THE TOOL 55

Figure 4.8: Generate Output Flow Diagram

Chapter 5

Conclusion and Future Scope

5.1 Conclusion

In this dissertation placement tools presented here that take advantage of the PiCoGA

architecture. Placement is particularly difficult for this architecture because of the

limited routing resources available. It also shows the modifications required to adapt

these placement tools for implementing asynchronous circuits on Montage. These

algorithms have implications beyond that of this single architecture.

Our three stage hierarchical placement methodology combines clustering technique

with SA. First stage, Clustering technique is used to condense the input network.

Produced clusters have similar sizes, which greatly aids the following annealing stage.

Second stage, Condensed network is placed using SA. Third Stage use a low temper-

ature annealing algorithm on the flattened network to optimize the local ordering of

the cells. Cells which belonged to different (nearby) clusters may be exchanged.

This dissertation has contributed to two related research areas: FPGA CAD algo-

rithms and FPGA architecture. The new CAD algorithms and tools developed in this

research were described in Chapters 3 and 4, and are briefly summarized in Table I.

In Chapter 4, This is the logic block packing tool targeting cluster-based logic blocks

for private use of company. Here a new simulated annealing based placement tool cre-

56

CHAPTER 5. CONCLUSION AND FUTURE SCOPE 57

CAD Area Contributions
Placement Architecture Independent Placement Tool

New, robust annealing schedule
Fast incremental update scheme
High Quality results

Table I: Summary of CAD Contributions

ated(the placement portion of our Versatile Place and Route (VPR) program) which

incorporates three new enhancements over prior tools. First, a new annealing sched-

ule implemented that adapts automatically to different placement problems, provides

good result quality and is more robust. Second, a new, linear congestion placement

cost function designed that enhances the routability of circuits mapped to FPGAs in

which different channels have different widths. Finally, an incremental net bounding

box update algorithm implemented that reduces the CPU time required for place-

ment by more than a factor of five, on average, vs. using the traditional brute-force

bounding box recomputation.

5.2 Future Scope

There are two different ways in which one can enhance our CAD tools: by improving

the core algorithms to increase result quality, and by increasing the flexibility of the

FPGA architecture generator to allow easy investigation of a wider class of FPGAs.

The VPR placement algorithm could also be enhanced by adding a cost function

that considers the underlying detailed routing architecture when evaluating the cost

of a placement. For example, in an FPGA that contains only length 4 wires, any

connection between logic blocks in the same row or column is likely to be completed

with one wire segment if it spans less than four logic blocks. If, however, the connec-

tion spans five logic blocks, or if the connection is between logic blocks that are not

in the same row or column, it must use more than one wire segment. Consequently,

CHAPTER 5. CONCLUSION AND FUTURE SCOPE 58

the cost function should consider not only wirelength, but also the number of wire

segments required to route from a net source to a net sink. Using a cost function of

this type results in a routing-aware placement algorithm, without the high CPU time

required by simultaneous placement and routing approaches.

Automatically generating good FPGA architectures to match a set of parameters

is a new problem in FPGA CAD, and there are many avenues for future research in

this area.

Appendix A

Placement Related Algorithms

Start which Min-cut algorithm, first we see Kernighan-Lin bi-partition algorithm[8].

Algorithm A.1 Kernighan-Lin

Input: G = (V,E), |V|= 2n.

Output: Balanced bi-partition A and B with ”small” cut cost.

1 Begin

2 Bipartition G into A and B such that |VA|=|VB|, VA∩ VB = Ø, and VA∪ VB = V.

3 repeat

4 Compute Dv, ∀ v∈ V.

5 for i = 1 to n do

6 Find a pair of Unlocked vertices vai∈ VA and vbi∈ VB whose exchange makes

the largest decrease or smallest increase in cut cost;

7 Mark vai and vbi as locked, store the gain ḡi, and compute the new Cv, for all

unlocked v∈ V.

8 Find k, such that Gk =
∑k

i=1 ḡi is maximized;

9 if Gk ¿ 0 then

10 Move va1...vak from VA to VB and vb1...vbk from VB to VA;

11 Unlock v, ∀ v∈ V.

12 until Gk ≤ 0;

13 end

59

APPENDIX A. PLACEMENT RELATED ALGORITHMS 60

Now, let us see force directed placement algorithm [9].

Algorithm A.2

set up initial node valocities to (0,0).

set up initial node positions randomly // make sure that there should no overlaping.

1 Loop

2 total kinetic energy = 0 //running sum of total kinetic energy over all particles

3 for each node

4 net-force = (0, 0) // running sum of total force on this particular node

5 for each other node

6 net-force = net-force + Coulomb repulsion(this node, other node)

7 next node

8 for each spring connected to this node

9 net-force = net-force + Hooke attraction(this node, spring)

10 next spring

11 Find total kinetic energy from the kinetic energy of nodes.

12 next node

13 until total kinetic energy is less than some small number.

References

[1] V. Betz, “Architecture and CAD for speed and area optimization of FPGAs,”
tech. rep., Electrical and Computer Engineering,University of Toronto.

[2] C. Mucci, “Introduction to the DREAM architecture,” tech. rep., STMicroelec-
tronics,Bologna, 2006.

[3] Shahookar and Mazumder, “VLSI cell placement techniques,” tech. rep., Depart-
ment of Electrical Engineering and Computer Science, University of Michigan,
Ann Arbor, Michigan.

[4] D. A. E. and Kernighan, “A procedure for placement of standard cell vlsi circuits,”
tech. rep., IEEE Trans, Computer-Aided Design CAD-4, Near Visat Petrol Pump,
Chandkheda, Gandhinagar, May 1985.

[5] Breuer, “Min-cut placement and design automation and fault tolerant comput-
ing,” tech. rep., 1977.

[6] J. Cong and M. Smith, “A parallel bottom-up clustering algorithm with applica-
tions to circuit partitioning in VLSI design,” tech. rep., DAC, 1993.

[7] G. L. K, “Standard cell placement using simulated annealing,” tech. rep., In Pro-
ceedings of the 24th Design Automation Conference, 1987.

[8] K. Hadi, “A fundamental bi-partition algorithm of kernigan-lin,” tech. rep.

[9] Frunchterman, T. M. J., and Reingold, “Graph drawing by force-directed place-
ment,” tech. rep., 1991.

61

	Certificate
	To Whom it may Concern
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	General
	Motivation
	STMicroelectronics
	Introduction
	Why ST?
	Area Of Products

	Scope of Work
	Outline of Thesis

	PiCoGA Architecture
	FPGA Architecture Issue
	FPGA Architecture
	FPGA Logic Block Architecture
	FPGA Routing Architecture
	PiCoGA Structure

	Placement Algorithms
	Force Directed Placement
	Force Directed Placement Techniques

	Placement by Partition
	Breuer's Algorithms

	Clustering Approach
	Simulated Annealing
	Placement: VPR (Versatile Place and Route)
	Overview of VPR Placement Tool
	New Adaptive Annealing Schedule
	New Cost Function
	Incremental Net Bounding Box Update

	Conclusion

	Programming The Tool
	Read Input & Generate Chip View
	Clustering
	Global/Detailed Placement
	Generate Output

	Conclusion and Future Scope
	Conclusion
	Future Scope

	Placement Related Algorithms
	References

