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Abstract

The increasing popularity of power constrained mobile computers and embedded

computing applications drives the need for analyzing and optimizing power in all the

components of a system. Recent years have witnessed a rapid growth in research

activity targeted at reducing energy consumption in microprocessor based systems.

However, this research has by and large not recognized the potential energy savings

achievable through optimization of software running on the microprocessor. Some

research work suggested the energy efficient techniques at basic gate and architecture

level, but not at the instruction level. Some software optimization techniques and

compiler techniques are also suggested for that.

Software constitutes a major component of today’s systems, and its role is pro-

jected to grow even further. Thus, an ever increasing portion of the functionality of

today’s systems is in the form of instructions, as opposed to gates. This motivates

the need for analyzing power consumption from the point of view of instructions

something that traditional circuit and gate level power analysis tools are inadequate

for.

This study describes an alternative, measurement based software level power

analysis approach that provides an accurate and practical way of quantifying the

power cost of software for the ARM processor based architecture. For that,try to

analyze power consumption of the JPEG2000 codec.For that Simplescalar Toolset

(simplesim/ARM) which gives architecture performance analysis and Sim-Panalyzer

which gives power performance analysis are used.The main source of power and mem-

ory access of JPEG2000 is EBCOT (Embedded Block Coding for Optimized Trunca-

tion) part. In this study analysis of the EBCOT algorithm and its relation in terms

of power consumption are presented.
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Chapter 1

Introduction

1.1 General

Until recently, power dissipation was an issue that primarily concerned designers of

embedded portable computer systems. However, power issues are becoming some of

the primary design constraints for even very high-end microprocessors. Power con-

sumption analysis is the basis of high-level power reduction techniques because they

do not rely on actual physical design. High-level power reduction of microprocessor-

based systems saves power consumption by changing energy-sensitive factors such as

instruction fetch addresses, opcode encoding, register encoding, data fetch addresses,

immediate operands, etc. Some of the energy-sensitive factors have great degrees of

freedom while others are more restrictive. Under certain circumstances, even data

and instructions can be changed as far as the original semantic is preserved. Conse-

quently, it is important to be informed of power consumption variations with respect

to the energy-sensitive factors for setting up proper power reduction strategies.

Power analysis can be performed by ”simulation-based” or ”measurement- based”

approaches. [1] Simulation-based power analysis is convenient as far as a simulation

model is available because it does not necessitate a prototype. Simulation is preferable

to avoid system dependent bias as power consumption is also variable to bus config-

1
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uration and peripheral devices. Measurement-based power consumption analysis is

sometimes more feasible due to the availability of existing models even if a prototype

is necessary. Even with a prototype, correct measurements are not easily obtainable

because digital systems consume power in a spiky manner with over hundreds MHz

in the power spectrum.

Instruction-level power studies of ARM ISA processors have been performed ear-

lier. However, none of these accurately characterize or model external memory ac-

cesses or stalls. While this is acceptable for small benchmarks, a real OS and appli-

cation can spend a significant number of cycles in such states. We accurately model

both instructions and events such as stalls and memory accesses, in order to create a

power model that is sufficiently accurate for modeling a full-featured OS and complete

applications running over billions of clock cycles.

The intricacy involved by these new electronic appliances imposed a new design

paradigm to cope with the specific requirements, e.g., low cost with fast time to

market, and restrictions they have. Also, energy consumption is a critical factor in

system-level design of embedded portable appliances. A hardware-software co-design

framework must be employed to proceed with the design from the software applica-

tions intended to run on these appliances to the final specifications of the hardware

that implements the desired functionality given the above-mentioned constraints.

Studies have demonstrated that circuit- and gate-level techniques have less than a

2x impact on power, while architecture- and algorithm-level strategies offer savings

of 10x - 100x or more. Hence, the greatest benefits are derived by trying to assess

early in the design process the merits of the potential implementation. Architecture

optimization corresponds to searching for the best design that optimizes all objec-

tives. Since the optimization problem involves multiple criteria (power consumption,

throughput, and cost) to reach the global optimum a set of desicive points in the de-

sign space have to be found. Ideally, when designing an embedded system, a designer

would like to explore a number of architectural alternatives and test functionality,

energy consumption, and performance without the need to build a prototype.
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1.2 Motivation

The increasing popularity of power constrained mobile computers and embedded com-

puting applications drives the need for analyzing and optimizing power in all the

components of a system. This has forced an examination of the power consumption

characteristics of all modules - ranging from disk-drives and displays to the individ-

ual chips and interconnects. Focusing solely on the hardware components of a design

tends to ignore the impact of the software on the overall power consumption of the sys-

tem. Software constitutes a major component of systems where power is a constraint.

Its presence is very visible in a mobile computer, in the form of the system software

and application programs running on the main CPU. But software also plays an even

greater role in general digital application, since an ever growing fraction of these ap-

plications are now being implemented as embedded systems. Embedded systems are

characterized by the fact that their functionality is divided between hardware and a

software component. The software component usually consists of application-specific

software running on a dedicated processor, while the hardware component usually

consists of application-specific circuits. In light of the above, there is a clear need

for considering the power consumption in systems from the point of view of software.

Software impacts the system power consumption at various levels of the design. At

the highest level, this is determined by the way functionality is partitioned between

hardware and software. The choice of the algorithm and other higher level decisions

about the design of the software component can affect system power consumption in

a big way. The design of system software, the actual application source code, and

the process of translation into machine instructions - all of these determine the power

cost of the software component. In order to systematically analyze and quantify this

cost, however, it is important to start at the most fundamental level. This is at the

level of the individual instructions executing on the processor. Just as logic gates are

the fundamental units of computation in digital hardware circuits, instructions can be

thought of as the fundamental unit of software. This motivates the need for analyzing
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power consumption from the point of view of instructions. Accurate modeling and

analysis at this level is the essential capability needed to quantify the power costs

of higher abstractions of software, and to search the design space in software power

optimizations.

Instruction level analysis of a processor helps in the development of models for

power consumption of software executing on that processor. The ability to evaluate

software in terms of power consumption makes it feasible to search for low power

implementations of given programs. In addition, it can guide the development of

general tools and techniques for low power software. Several ideas in this regard as

motivated by the power analysis of the subject processors are also described.[2, 3]

As advance in computer technology continues, use of internet, 3G, 4G techniques

also increases and so Battery-powered devices such as mobile cellular phones, per-

sonal multimedia player, and personal digital assistants have recently become preva-

lent platforms to run image and video compression applications. Image and Video

compression applications require high computational complexity, which means bat-

tery powered devices need high operating clock rate and large battery. And so these

battery supported devices need techniques that reduces power requirement of the

devices.

And last but not least, as use of environment aware system, use of ”GREEN”

system and its use in technology increases. This study will help to advance the

technology in terms of power study.

1.3 Scope of Work

Software power analysis can help in reducing power consumption of battery supported

system and also there are other several additional applications of this analysis and it

is instructive to list the important ones here:

• The information provided by the analysis is useful in assigning an accurate

power cost to the software component of a system. For power constrained
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embedded systems, this can help in verifying if the overall system meets its

specified power budget.

• The most common way of specifying power consumption in processors is through

a single number - the average power consumption. Instruction level analysis pro-

vides additional resolution about power consumption that cannot be captured

through just this one number. This additional resolution can guide the careful

development of special programs that can be used as power benchmarks for

more meaningful comparisons between processors.

• The measurement based instruction level analysis methodology has the novel

strength that it does not require knowledge of the lower level details of the

processor. However, if micro-architectural details of the CPU are available,

they can be related to the results of the analysis. This can lead to more re-

fined models for software power consumption, as well as power models for the

micro-architecture that may potentially be more accurate than circuit or logic

simulation based models.

• The additional insight provided by an instruction-level power model also pro-

vides directions for modifications in processor design that lead to the most

effective overall power reduction. Instructions can be evaluated both in terms

of their power cost as well as frequency of occurrence in typical compiler or

even hand-generated code. This combined information can be used to priori-

tize instructions that should be re-implemented to be less expensive in terms of

power.

This paper describes that with power analysis of Embedded Block Coding for Op-

timized Truncation (EBCOT) ,we can decide power budget for embedded system of

EBCOT. And also Enable us to Design its specific SoC based VLSI chips that can be

efficiently work in Digital cameras.
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1.4 Thesis Organization

The rest of the thesis is organized as follows.

Chapter 2, Literature Survey, In it different power aware techniques at all level

is described. And software power consumption and estimation research is de-

scribed.

Chapter 3, JPEG2000 Architecture & Design, presents the JPEG2000 archi-

tecture and its basics.

chapter 4, EBCOT Design & Analysis,presents part of JPEG2000, EBCOT

architecture and its algorithm.

Chapter 5, Simulation Environment, describes the different simulator and cross

compiler for power analysis.

Chapter 6, Proposed Design, In it C programming power aware techniques and

EBCOT algorithm modification techniques for power aware are described.

Chapter 7, Results, In it experienced results are shown.

chapter 8, Conclusion and Future Scope concluding remarks and scope for

future work is presented.



Chapter 2

Literature Survey

2.1 General

Power is dissipated in various forms:

a. Interconnect Power

• Resistances and Parasitic Capacitances

• Transitions because of change in data results in charging and discharging

b. Memory power

• Depends on type of memory

• Depends on the number of access, the size of the memory (code and data),

the number of ports used.

c. CPU power

• Instruction fetch, decode and execution results in power consumption

• Depends on current withdrawn by each instruction

7
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Power is the basic constraint for the embedded environment and computer archi-

tecture.Power optimization can be done by mainly two approaches:

• Hardware Power Management

• Software Power Management

A lot research has been done in both Hardware and Software approaches. Power

optimization can be done at different levels as shown in Table I.

Levels Techniques for power reduction

System Design partitioning, Power Down
Algorithm Complexity, Concurrency, Locality, Regularity, Data representation
Architecture Voltage scaling, Parallelism, Instruction-set, Signal correlations
Circuit/logic Transistor Sizing, Logic optimization, Activity Driven Power Down,
Technology Threshold Reduction, Multi thresholds

Table I: Power Reduction Techniques

2.2 Power Optimization Techniques

a. At System Level

• Design partitioning

• Power Down

Detect and shut down unused units.

To reduce the power in synchronous designs, it is important to minimize

switching activity by powering down execution units when they are not

performing ”useful” operations. This is an Important concern since logic

modules can be switching and consuming power even when they are not

being actively utilized.
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• Scheduling:

Hardware allocation and task assignment.

• HW/SW co-design

b. At Algorithm Level

• The choice of an algorithm is the most highly leveraged decision in meeting

the power constraints. The power consumption is strongly correlated to of a

number of properties that a given algorithm may have.

• Some algorithmic properties which are critical for selection an algorithm for

low power design:

(1) Size measures includes quantities such as the number of nodes, the bit

width, the number of I/O operations, the number of operations, and the

number of memory accesses.

(2) Concurrency measures the number of operations and interconnect accesses

that can be executed concurrently.

(3) Temporality captures information about the lifetimes of variables in the

computation. A computation is considered to be temporally local if the

expected lifetimes of the variables are short. It is temporally dense if the

measured maximum expected number of variables alive at any time is large.

(4) Spatial locality characterizes the degree to which the algorithm has natural

clusters of computation, within which significant amounts of computation

can be done independently.

(5) Regularity captures the degree to which common patterns appear.

c. At Architecture Level

• The architectural level is the design entry point for the large majority of

digital designs and design decisions at this level can have dramatic impact on

the power budget design.



CHAPTER 2. LITERATURE SURVEY 10

• Perhaps the most important strategy for reducing power consumption involves

employing concurrent processing at the architecture level. This is a direct trade-

off of area and performance for power.

• Power Reduction Techniques.

• Low system clocks

High frequencies are generated with on-chip PLLs.

• High-level of integration (single chip)

Avoid off-chip components

• Power management: shutdown unused blocks

• Memory partitioning

Selectively enabled blocks

• Parallelism, pipelining

• Reduction of global busses

• Simplification of instruction coding and execution

• Component minimization

Arithmetic

Memories/registers

• Scheduling and allocation

• Data/number coding

• Voltage reduction

• To use this technique a designer should follow the next rules:

Repeat the data path hardware n times.

Use clock rate of 1/nT.

Use a multiplexer to produce the output stream.

The input and output stream should have the same throughput rate.
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• Depending on the data path architecture, a typical estimation of the volt-

age reduction of 40% can be achieved. Although the use of parallelism

leads to large power reduction, the penalty is increased area occupation.

• Parallel processing and pipelining

• Parallel processing can be an important technique for reducing power con-

sumption in CMOS systems.

• Pipelining does not share this advantage because it achieves Concurrency

by increasing the lock frequency, which limits the ability to scale the volt-

age.

• This is an interesting reversal because pipelining is simpler that Parallel

processing;

• Therefore, pipelining is traditionally the first choice to speed up Execu-

tion. In practice, the trade-off between pipelining and parallelism is not

so distinct:

• Replicating function units rather than pipelining them has the negative

effect of increasing area and wiring, which in turn can increase power

consumption.

• The degree to which designers can parallelize computations varies widely.

Although some computations are ”embarrassingly parallel,” they are usu-

ally characterized by identical operations on array data structures.

• Buses

• Buses are a significant source of power loss, especially interchip buses,

which are often very wide.

• A chip can expend 15 percent to 20

• One approach to limiting this swing is to encode the address lines into

a Gray code because address changes, particularly from cache refills, are
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often sequential, and counting in Gray code switch the least number of

signals.

• Transmitting the difference between successive address values achieves a

result similar to the Gray code.

• Compressing the information in address lines further reduces them.

• These techniques are best suited to interchip signaling because designers

can integrate the encoding into the bus controllers. At Circuit/Logic lev-

elCode compression results in significant instruction memory savings if the

system stores the program in compressed form and decompresses it on the

fly, typically on a cache miss. [4]

d. At Circuit/Logic level

• Clock gating

Widely used to turn off clock tree branches to latches or flip-flops whenever

they are not used. Until recently, developers considered gated clocks to be

a poor design practice because the clock tree gates can exacerbate clock

skew. More accurate timing analyzers and more flexible design tools have

made it possible to produce reliable designs with gated clocks

• Half-frequency and half-switching clocks

A half-frequency clock uses both edges of the clock to synchronize events

half the frequency of a conventional clock. Drawbacks: the latches are

more complex and occupy more area, and that the clock’s requirements

are more stringent. [4]

The half-swing clock swings only half of V dd. It increased the latch

design’s requirements and is difficult to use in systems with low V dd.
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However, lowering clock swing usually produces greater gains than clocking

on both edges.

• Choices between static versus dynamic topologies, conventional CMOS

versus pass-transistor logic styles and synchronous versus asynchronous

timing styles have to be made during the design of a circuit

• In static CMOS circuits, the component of power due to short circuit

current is about the 10% of the total power consumption. However, in

dynamic circuits does not appear this problem, since there is not any direct

dc path from supply voltage to ground. Only in domino-logic circuits there

is such a path, in order to reduce sharing, hence there is a small amount

of short-circuit power dissipation. [5]

• Asynchronous logic. Because the systems do not have a clock, they save

the considerable power that a clock tree requires.

• Optimizing switching activity (example from Rabaey: DIC).

e. At Transistor level

• Physical Capacitance: Three sources of capacitance: gate capacitance, dif-

fusion capacitance, and interconnects capacitance. If all three components

can be scaled down by the same factor, then the net power dissipation will

be scaled down as well.

• Transistor Sizing: To minimize the physical capacitance, all transistors

should be minimum size. Exceptions:

2.3 Software Power Consumption

The overall power dissipation of an embedded system does not only originate from the

application - specific hardware, but also from the CPU, the memory and the address
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and data buses when an embedded application is running on the platforms micro-

processor, microcontroller or digital signal processor. This above power dissipation is

referred to as software power dissipation. Obviously, the power is actually dissipated

in the processors hardware, but it is as a consequence of executing an application

program. There are a number of sources of power dissipation influenced by software

and contributing to the overall power dissipation of the system, which are explained

below. [6]

Bus Power

Busses in an embedded system consist of unidirectional address bus lines and instruc-

tion bus lines (opcodes to be executed) and bi-directional data bus lines. With these

groups of interconnecting lines, the communication of the CPU with the memory,

I/O circuits and peripheral modules is established. Each of the above lines can be

modeled as an RC transmission line, where R and C are the lines resistance and ca-

pacitance, respectively. Activation of a line prompts for the charging or discharging

of the capacitive load, depending on the previous value that this line had. For exam-

ple, a transition in an 8-bit data bus between words 00101011 and 11100111 implies

charging of 3 lines and discharging of 1 line. Usually, bus charging and discharging

of I/O lines can occur up to 80% of the software execution time.

Memory Power

Power dissipated by memory read and write accesses is usually one of the dominating

components (ranging from 10% - 25%) of the total software power dissipation for

mobile devices and portable computers. In the case of DSP applications, where a

significant amount of data is processed, this contribution can be substantially higher.

Memory power dissipation has a number of components, namely power dissipated in

the cell array, in the decode logic and sense amplifier as well as power dissipated due to

charging and discharging of the address or data lines capacitances. The type of access

is also significant in how much it contributes to the overall power dissipation. In the
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ARM microprocessor, which is considered in our system, CPU cycles are divided in

S-cycles, N-cycles, and I-cycles.

The S-cycles refer to sequential memory accesses, where the next word is returned

from the same buffer, dissipating a relatively small amount of power. Power dissipa-

tion in the address lines during sequential memory accesses is also small, due to the

fact that the address word changes only in one bit. If the last memory location of a

page is to be accessed though, more power has to be consumed in order to access the

next page.

The N-cycles refer to non-sequential memory accesses. In this kind of access, more

power is dissipated relative to sequential accesses because consecutive address words

are irrelevant, causing large activity in the address bus. In N-cycles usually different

pages have to be accessed, contributing to more power dissipation, as explained above.

Finally, the I-cycles refer to cycles that no memory access is involved, so no power

is dissipated in the memory system. One more significant contributor to the power

dissipated in the memory is the memory access patterns, affecting mainly the cache

hits and misses. The cache, residing closer to the CPU than main memory, dissipates

less power because the address and data lines are shorter and have less internal ca-

pacitance. Inappropriate memory access patterns lead to cache misses, consequently,

power expensive main memory accesses.

CPU Power

When instructions are executed in the CPU, they contribute significant power to the

overall power dissipation. The instructions can be divided into four broad categories:

• Load / Store instructions

• Branch instructions

• Type-1 Arithmetic instructions, such as addition, subtraction, shift etc.

• Type-2 Arithmetic instructions, such as multiplication and division.
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If we assume that the average power consumption to execute one instruction is Wj

, where j represents one of the categories mentioned above, and Ij is the number of

times this instruction is executed, we can easily derive the CPU power dissipation as:

PCPUα

∑
(Wj ∗ Ij)∑

Ij
(2.1)

The power dissipated when an arithmetic instruction is executed depends primar-

ily on the ALU or FPU data path that it instructed by software. Many different ways

of optimization exist in this context, as for example replacing a division by power of

two with corresponding right shifts. Finally, instruction scheduling is very important,

because unsuccessful scheduling can lead to pipeline stalls, which in turn consume a

considerable amount of power.

Other Power Dissipation Sources

There is a number of additional sources of power dissipation during software execution

that must be taken into account, as they contribute as an overhead to the overall power

dissipation. These sources are the clock distribution and the control logic and they

accompany code execution in each cycle. In it was shown that short code sequences in

a number of microcontrollers and DSPs always dissipated a smaller amount of power

than longer sequences. The program in longer code sequences, which demanded extra

execution cycles, took more time to execute so that the overhead was more than

that in shorter code sequences. Despite this problem, power management techniques

nowadays tend to eliminate such overhead by cleverly dealing with power dissipation

that does not have a direct contribution to the involved computational tasks.

2.4 Software Power Estimation

The methodology proposed by Vivek Tiwari et al[1, 2, 3]. has been adopted as starting

point for analysis of software power estimation. In spite of importance of estimation
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at this level of abstraction, previous work exists for analyzing power consumption

from the point of view of software. In [1, 2] the authors show that the choice of the

algorithm and other high level decisions about the design of the software component

can affect system power consumption in a big way. They propose an instruction level

power analysis technique based on a physical measurement that helps in formulating

instruction level power models that provide fundamental information needed to eval-

uate the power cost of an entire program. The basic components of each power model

are the same. The first component is a set of base costs for the instructions set. The

other components is the power cost of inter-instruction effects which involve more

than one instruction. The base cost of an instruction can be thought of as the cost

associated with the basic processing needed to execute the instruction. Experiments

to determine this cost requires a program containing a loop consisting of several in-

stances of the given instruction. The average current drawn during the execution

of this loop is measured by an ameter inserted in series with the power supply and

the CPU. The simple characterization with a base cost does not take into account

the power consumption due to the change of circuit state when a sequence of two

different instruction is executed. The difference between the measured current and

the average base costs of the two instructions is defined as the circuit state overhead

for the pair. For a sequence consisting of a mix of instructions, using the base costs of

instructions almost always underestimates the actual cost. Adding in the average the

circuit state overhead for each pair of consecutive instructions leads to a much closer

estimate. The basic idea to determine this power contribution is to write programs

where these effects occur repeatedly.
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Definition of Power and Energy

Average Power:

Pavg = Iavg ∗ Vcc (2.2)

Energy :

E = Pavg ∗ T (2.3)

T = N ∗ t (2.4)

E = Iavg ∗ Vcc ∗ t (2.5)

Pavg : Average power

Iavg : Average current

Vcc : Supply voltage

E : Energy consumption

T : Time taken

N : Number of cycles

t : Cycle time

MOV DX, [BX] Power = 1.15 W

MOV AX, CX Energy = 8.6 ∗ 10− 8 J

MOV AX, DX

Programenergycost =
∑

i

(Basei ∗Ni) +
∑
i,j

(Ovhdi,j ∗Ni) +
∑

k

Energyk (2.6)

Ni : Number of times instruction i is executed

Basei : Base energy cost of i

Ovhdi,j : Circuit state overhead when i, j are adjacent

Energyk : Energy overhead of stalls, cache misses

Program power cost = Energy cost / execution time



Chapter 3

JPEG2000 Architecture & Design

3.1 Image Compression Basics

Uncompressed multimedia (graphics, audio and video) data requires considerable

storage capacity and transmission bandwidth. Despite rapid progress in mass-storage

density, processor speeds, and digital communication system performance, demand

for data storage capacity and data-transmission bandwidth continues to outstrip the

capabilities of available technologies. The recent growth of data intensive multimedia-

based web applications have not only sustained the need for more efficient ways to

encode signals and images but have made compression of such signals central to

storage and communication technology.

For still image compression, the ‘Joint Photographic Experts Group’ or JPEG

standard has been established by ISO (International Standards Organization) and

IEC (International Electro-Technical Commission). The performance of these coders

generally degrades at low bit-rates mainly because of the underlying block-based

Discrete Cosine Transform (DCT) scheme. More recently, the wavelet transform

has emerged as a cutting edge technology, within the field of image compression.

Wavelet-based coding provides substantial improvements in picture quality at higher

compression ratios.

19
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Over the past few years, a variety of powerful and sophisticated wavelet-based

schemes for image compression, as discussed later, have been developed and im-

plemented. Because of the many advantages, the top contenders in the upcoming

JPEG-2000 standard are all wavelet-based compression algorithms.

A typical lossy image compression system is shown in Fig. 3.1. It consists of

three closely connected components namely (a) Source Encoder (b) Quantizer, and

(c) Entropy Encoder. Compression is accomplished by applying a linear transform

to decorrelate the image data, quantizing the resulting transform coefficients, and

entropy coding the quantized values.

Figure 3.1: A Typical Lossy Signal/Image Encoder

The goal of this article is two-fold. First, for readers new to compression, we

briefly review some basic concepts on image compression and present a short overview

of the DCT-based JPEG standard and the more popular wavelet-based image coding

schemes. Second, for more advanced readers, we mention a few sophisticated, modern,

and popular wavelet-based techniques including one we are currently pursuing. The

goal of the upcoming JPEG-2000 image compression standard, which is going to

be wavelet-based, is briefly presented. For those who are curious, a number of useful

references are given. There is also abundance of information about image compression

on the Internet. Background
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3.2 JPEG2000

JPEG 2000 is an initiative that will provide an image coding system using compression

techniques based on the use of wavelet technology.

Wavelet theory [7]is also a form of mathematical transformation, similar to the

FT in that it takes a signal in time domain, and represents it in frequency domain.

Wavelet functions are distinguished from other transformations in that they not only

dissect signals into their component frequencies, they also vary the scale at which the

component frequencies are analyzed. Therefore wavelets, as component pieces used

to analyze a signal, are limited in space. In other words, they have definite stopping

points along the axis of a graph–they do not repeat to infinity like a sine or cosine

wave does. As a result, working with wavelets produces functions and operators that

are ”sparse” (small), which makes wavelets excellently suited for applications such

as data compression and noise reduction in signals. The ability to vary the scale of

the function as it addresses different frequencies also makes wavelets better suited to

signals with spikes or discontinuities than traditional transformations such as the FT.

JPEG 2000 is a new standard for image coding published by the JPEG committee

(ISO/IEC JTC 1/SC 29/WG 1) at the turn of the millennium. It is still being

enhanced. The core, defined in Part 1 of the standard (ISO/IEC 15444 1), is built

around the relatively new technologies of wavelet-based compression and bit-plane

coding. It enables scalability with respect to five different defined image progression

orders. The idea is similar to progressive JPEG, but the packetised structure of a

JPEG 2000 codestream makes it possible to convert between different progression

orders by the systematic reordering of packets, without any low-level decoding.

JPEG 2000 refers to all parts of the standard: [8]

The parts are:

◦ Part 1, Core coding system (intended as royalty and license-fee free - NB NOT

patent-free)

◦ Part 2, Extensions (adds more features and sophistication to the core)
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◦ Part 3, Motion JPEG 2000

◦ Part 4, Conformance

◦ Part 5, Reference software (Java and C implementations are available)

◦ Part 6, Compound image file format (document imaging, for pre-press and fax-like

applications, etc.)

◦ Part 7 has been abandoned

◦ Part 8, JPSEC (security aspects)

◦ Part 9, JPIP (interactive protocols and API)

◦ Part 10, JP3D (volumetric imaging)

◦ Part 11, JPWL (wireless applications)

◦ Part 12, ISO Base Media File Format (common with MPEG-4)

As part of part5 there are C and Java implementation of JPEG2000 are available.

And they are the acceptable standard of JPEG2000 and widely used.

• C implementation of JPEG2000 [9]

• Java implementation of JPEG2000 [10]

3.3 JPEG2000 overview

The JPEG2000 is composed of several main procedures such as DC level shifting,

component transform, discrete wavelet transform, quantization and EBCOT (Context

modeling, arithmetic coder and rate-distortion), as shown in Figure 3.2
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Figure 3.2: The JPEG2000 encoding block diagram
[11]

Each block shown in Figure 3.2 is depicted below.

• DC Shift & Component Transform

An image is usually composed of many components, for example, the R, G, B

for color image. Each component is encoded by the DC shift coding so that

the samples are changed from unsigned numbers to signed numbers. If the

input image consists the color component, the reversible component transform

(RCT) and the irreversible component transform (ICT) are enabled to improve

the compression efficiency. [12]

• Discrete Wavelet Transform

DWT transfers the image information from spatial domain to frequency domain

thus the spatial correlation can be removed by DWT. There are two modes for

DWT in JPEG2000. The integer (5, 3) filter applied in DWT is used to enable

the lossless compression. Another one is for the default mode, DWT with the

Daubechies (9, 7) filter, for the lossy compression. DWT is to separate high

frequency part and low frequency part from vertical and horizontal directions
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Figure 3.3: Codec structure. The structure of the (a) encoder and (b) decode

of an image respectively. [12]

• Scalar Quantization

After DWT operated, the image coefficients is quantized to achieve the target

bit-rate or distortion. Notice that the quantization operation causes the dis-

tortion for reconstruction image hence the quantization operation is adopted

in lossy compression only.The quantization is used to adjust compression ra-

tio by reducing the accuracy resolution. By the way, the compression ratio in

JPEG2000 also can be controlled by EBCOT so that the quantization operation

can be skipped. [12]

• Embedded Block Coding with Optimized Truncation

EBCOT [13] is the entropy coder for JPEG2000 and detailed discussed in the

following chapter. Comparing with the other wavelet-based entropy coding

algorithms, such as the well know EZW and SPIHT , EBCOT provides better

compression performance. The EBCOT coder divides each subband coefficient

into code blocks.[13] Each code block is coded separately into a block based
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embedded bit-stream, i.e. it doesn’t need to consult other code blocks. The

transformed coefficients of a code block are coded bit-plane by bit-plane from

most significant bit-plane (MSB) to least significant bit-plane (LSB) instead of

coefficient by coefficient with three passes called Significance Propagation Pass

(Pass1), Magnitude Refinement Pass (Pass2), and Clean-Up Pass (Pass3). The

arithmetic coder outputs are the sub-bit-streams of each compressed code block

data. The rate-distortion block is designed to achieve progressive transmission

and rate-distortion control.

EBCOT is the main base algorithm and followed in JPEG2000 as a block coder.

From Table I it is sure that the main bottleneck of JPEG2000 is EBCOT, mainly

tire-1. So here in this thesis performance analysis of EBCOT is described.

operation Single Component(sec) RGB Component(sec)

Intercomponent transform 14.12
Intracomponent transform 26.38 23.97
Quantization 6.42 5.04

EBCOT Tier 1 52.26 43.85

pass 1 14.82 12.39
pass 2 7 5.63
pass 3 16.09 13.77
arithmatic encoder 14.35 12.06

EBCOT Tier 2 14.95 13.01

layer formation 9.52 7.95
marker insertion 5.43 5.06

Table I: Run time profile for JPEG2000(Image 1792 x 1200,5 wavelet decomposi-
tion,profile at PIII-733 128M RAM,visual C++ and windows ME)*
[14]
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EBCOT Design & Analysis

4.1 Introduction

JPEG2000 entropy coder is EBCOT (Embedded Block Coding with Optimal Trun-

cation Points) contextual coder. It is a bit-plane block coder i.e. it codes the wavelet

coefficients by blocks.It codes the wavelet coefficients by blocks.On each bit-plane,

there are three coding passes: a pass of Significance Propagation, a pass of Magni-

tude Refinement and a Cleanup pass. Four coding primitives are used: the RL(Run-

Length) primitive, the ZC (Zero Coding) primitive, the MR (Magnitude Refinement)

and the SC (Sign Coding) primitive. Here is an example how those coding passes are

jointly used with the coding primitives.

4.2 Embedded Block Coding with Optimized Trun-

cation(EBCOT)

The entropy coding for JPEG2000 encoding system is a bitplane-based coding, em-

bedded block coding with optimized truncation (EBCOT). The EBCOT algorithm

consists of two major steps: EBCOT block coding and rate-distortion optimization,

i.e. the tier1 and tier2 in Figure 4.1, and the block coding also include two part,

26
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context modeling and arithmetic coding. The EBCOT coder divides each subband

coefficient into code blocks. Each code block is coded separately into a block-based

embedded bitstream, i.e. it doesnt need to refer other code blocks. The tier2 coder

organizes the bitstream to form a full-featured JPEG2000 bitstream.

Figure 4.1: Two tiered coding in EBCOT

The context modeling, the first stage of EBCOT tier-1 coding, partitions the

quantizer indices for each subband into code-blocks. It scans these quantizer indices

in code-block bitplane by bitplane then generates a context-decision pair Figure 4.2to

arithmetic coder (MQ coder).

Figure 4.2: CX-D pair in EBCOT
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4.3 EBCOT Algorithm and Analysis

Tier- 1 of EBCOT utilizes context-based arithmetic coding method to encode each

code block into independent embedded bit-stream. Tier-1 coder can be viewed as two

parts: Context Formation (CF) and Arithmetic Encoder (AE).[14] CF scans all pixels

in code block in a specific order, and generates corresponding contexts for each bit.

AE encodes the code block data according to their. contexts. EBCOT encodes the

quantized wavelet coeficients bitplane by bitplane from MSB to LSB. Eveiy 4 rows

in a bitplane are called a stripe, and each pass in every bitplane scans in order stripe

by stripe. Then in every stripe, data are scanned column by coluinn. Every column

is composed of 4 bits. So the scanning hierarchy of a code block is bitplane, pass,

stripe, column, bit, as shown in Fig. 4.3.

Figure 4.3: Scanning order of context formation in every pass

Contexts for all bits are generated according to their neighbors using four coding

methods. Before CF, the quantized wavelet coefficients are separated into sign and

magnitude (in 1s compliment). A pixel is called significant after the first 1 bit is

met while encoding magnitude part from MSB to LSB, and insignificant before the

first 1 bit appears. The context of each bit is determined by significant situations

of its neighbors. There are four coding methods to generate context for each bit

in a code block: Zero Coding, Run-Length Coding, Sign Coding, and Magnitude

Refinement.Every bitplane is encoded using 3 passes in turn. Each pixel in a bitplane

is encoded in one of 3 passes. Pass 1 is Significant Propagation Pass. Pixels having at
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least one significant neighbor are coded in this pass. Pass 2 is Magnitude-Refinement

Pass. All significant pixels are coded in this pass. Pass 3 is Clean-up Pass. Pixels not

coded in first two passes are coded in this pass. While coding a bitplane, every pixel

is checked once in all 3 passes to detennine if this pixel should be coded. In Taubmans

architecture, a straightforward method is used. Every single bit is checked and (or)

coded in all 3 passes, which cost total 3 clocks. Coding a 64x64 code block with 8-bit

precision will take 64x64 8 cl3oc ks. That makes tier- 1 coder become bottleneck of

PEG-2000 system design.

4.3.1 Concepts for Bitplane, Scanning order and Significant

The key idea of EBCOT coding is bitplane scanning, as presented in Figure 4.4, rather

than coefficient scanning. Every bitplane takes three passes. The coefficient-bits

scanning order in each pass is stripe-based method with stripe height of 4 compared

with zigzag scan adopted in JPEG. An example code-block scan pattern of a code-

block with size 8 x n is shown in Figure 4.5.

Figure 4.4: The bitplane views for quantized coefficients with code block size n x n
[12]
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Figure 4.5: Context modeling scanning sequence for one bitplane in each pass
[12]

Besides, the EBCOT algorithm starts coding process when the first non-zero bit-

plane met and skips the all- zero bitplane. The number of skipped bitplanes is record

in the packet header.In the EBCOT context modeling, the significant bit is employed

in the pass and coding decision. A sample became significant when the first 1 of

magnitude bit is found, and this concept is illustrated in Figure 4.6, and the sign bit

is coded instantly after the first significant bit coded.

Figure 4.6: An example for the significant state transition
[12]
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4.3.2 Fractional Bitplanes Coding: Three Coding Passes

To achieve the EBCOT coding algorithm, the coefficients in a code block must be

encoded from the most significant bitplane (MSB) to the least significant bitplane

(LSB) in the one of three coding passes. They are Significant Propagation Pass

(Pass1), Magnitude Refinement Pass (Pass2) and Cleanup Pass (Pass3) in sequence.

Figure 4.7 illustrates the concept of fractional bitplanes coding.

Figure 4.7: Fractional bitplanes coding
[12]

Significance Propagation Pass (Pass1)

This coding pass focuses on the coefficient-bits that are insignificant but have at least

one of eight neighbors being significant, as shown in Figure 4.8. In another words,

the most proper coefficients becoming significant are searched and encoded in Pass1.

In Pass1 stage, the zero coding and sign coding operations are used.
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Figure 4.8: The current coding bit and its eight neighbors
[12]

Magnitude Refinement Pass (Pass2)

The coefficients-bits that have become significant and are not coded during coding

Pass1, i.e. the coefficients-bits have become significant in previous bitplane, are found

and coded in Pass2. The coding operation in Pass2 is magnitude refinement coding.

Clean Up Pass (Pass3)

These remained coefficients rejected by pass1 and 2 are coded in Pass3. In this pass,

the zero coding, sign coding and run- length coding operations are used. Notice that

only Pass3 codes the first non- zero bitplane because the coefficients are all insignif-

icant in the beginning. Compared with other non-zero bitplanes, each coefficient-bit

in a bitplane is coded by one of three coding passes. This coding property causes the

context modeling to waste the most time on checking and skipping the redundant

bits. The EBCOT context modeling being the bottleneck for the JPEG2000 system

is expected.
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4.4 Four Types Coding Operations

As introduced before, the EBCOT context modeling assigns the coefficients-bits a

context with different coding operations depending on the pass type and the signifi-

cant state of eight neighbor-bits. The eight immediate neighbor-bits as illustrated in

Figure 2.13 can be classed with horizontal set (neighbor 4, 5), vertical set (neighbor

2, 7) and diagonal set (neighbor 1, 3, 6 and 8). We now introduce the four different

coding operations for context modeling.

• Zero Coding (ZC)

Zero coding is used in Pass1 and Pass3 coding. If the coefficient-bit is insignificant,

ZC uses on of 9 different contexts in Table I assigning to the coefficient-bit depending

on the significant state of immediate neighbors. Note that if the current coding

coefficient-bit lies beyond the boundary of code block, its neighbors are taken as

insignificant for context assignment. This is due to reduce the dependence between

different code blocks.

In Table I ΣH, ΣV, and ΣD are represented as the sum of significant neighbors

in horizontal, vertical, and diagonal directions, as shown in Figure 4.8. table

ΣH ΣV ΣD ΣH ΣV ΣD ΣH + ΣV ΣD Context Label

2 x x x 2 x x ≥3 8
1 ≥1 x ≥1 1 x ≥1 2 7
1 0 ≥1 0 1 ≥1 0 2 6
1 0 0 0 1 0 ≥2 1 5
0 2 x 2 0 x 1 1 4
0 1 x 1 0 x 0 1 3
0 0 ≥2 0 0 ≥2 ≥2 0 2
0 0 1 0 0 1 1 0 1
0 0 0 0 0 0 0 0 0

Table I: Context assignment table for zero coding
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• Sign Coding (SC)

Sign coding is used in Pass1 and Pass3, which the same as ZC. When a coefficient

switches from insignificant to significant, SC operation turns on and the sign bit for

the coefficient is coded to one of 5 different contexts. The decision of contexts in SC

is depend upon the sign and the significance of the horizontal and vertical neighbors

as presented in Table II and Table III. Notices that SC is operated at most once for

each coefficient. Referring to Table II, the XOR bit is employed to generate the

Sign Contribution Significant, (+) Significant, (-) Insignificant

Significant, (+) 1 0 1
Significant, (-) 0 -1 -1
Insignificant -1 -1 0

Table II: Sign contribution of the horizontal and vertical neighbors for sign coding

Horizontal Contribution Vertical Contribution Context Label XOR bit

1 1 13 0
1 0 12 0
1 -1 11 0
0 1 10 0
0 0 9 0
0 -1 10 1
-1 1 11 1
-1 0 12 1
-1 -1 13 1

Table III: Context assignment table for sign coding

output D of EBCOT context modeling, as defined in Equation (4.1).

D = sign bit⊕ bit (4.1)



CHAPTER 4. EBCOT DESIGN & ANALYSIS 35

• Magnitude Refinement (MR)

The magnitude refine operation is utilized in Pass2 coding. Based on the signifi-

cant state for 8 neighbors and whether or not the coefficients are first refining, MR

assigns one of 3 contexts in Table IV to the coefficients-bits that have been significant

in previous bitplanes.

ΣH + ΣV + ΣD First refinement for this coefficient Context Label

x FALSE 16
≥1 TRUE 15
0 TRUE 14

Table IV: Context assignment table for magnitude refinement

• Run-Length Coding (RLC)

Run-length coding is operated in Pass3 coding. It is enabled when the following

conditions are true.

• Four consecutive coefficients in the same stripe are insignificant.

• The neighbors for the consecutive four coefficients must be insignificant, too.

The coefficients-bits relate to RLC is illustrated in Figure 4.9. Compared RLC with

ZC, they are used to code the insignificant coefficients-bits but the RLC assigns one

context to four coefficients-bits.

Figure 4.9: Current coding bits and their neighbors for RLC operation
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Simulation Environment

5.1 The SimpleScalar Tool Set

The SimpleScalar tool set is a system software infrastructure used to build modeling

applications for program performance analysis, detailed microarchitectural modeling,

and hardware-software co-verification. Using the SimpleScalar tools, users can build

modeling applications that simulate real programs running on a range of modern pro-

cessors and systems. The tool set includes sample simulators ranging from a fast func-

tional simulator to a detailed, dynamically scheduled processor model that supports

non-blocking caches, speculative execution, and state-of-the-art branch prediction.

The SimpleScalar tools are used widely for research and instruction, for example,

in 2000 more than one third of all papers published in top computer architecture

conferences used the SimpleScalar tools to evaluate their designs. In addition to sim-

ulators, the SimpleScalar tool set includes performance visualization tools, statistical

analysis resources, and debug and verification infrastructure. [15] SimpleScalar [16]

simulators can emulate the Alpha, PISA, ARM, and x86 instruction sets. The tool set

includes a machine definition infrastructure that permits most architectural details

to be separated from simulator implementations. All of the simulators distributed

with the current release of SimpleScalar can run programs from any of the above

36
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listed instruction sets. Complex instruction set emulation (e.g., x86) can be imple-

mented with or without microcode, making the SimpleScalar tools particularly useful

for modeling CISC instruction sets. The PISA instruction set (a.k.a. the portable

instruction set architecture) is a simple MIPS-like instruction set maintained primar-

ily for instructional use. A GNU GCC-based cross-compiler and pre-built libraries

are also available for this target. The PISA target is particularly useful for computer

engineering instruction as the tools can be built on a wide range of host platforms,

including Linux/x86, Win2000, SPARC Solaris, and others. SimpleScalar builds on

most 32-bit and 64-bit flavors of UNIX and Windows NT-based operating systems.

The internal software architecture of the tool set includes a host interface module,

permitting fast porting to other host platforms. The host interface module permits

cross-endian emulation, thus it is possible to use emulate a target on a host platform

with a different endian, e.g., running Alpha ISA emulation on a SPARC Solaris host

platform. Most SimpleScalar users and developers (including SimpleScalar LLC) [16]

use SimpleScalar on Linux/x86.

The type of simulator varies from fast functional simulators to detailed processor

model simulators that are able to simulate caches, branch predictors, and many other

features of modern processors. Since SimpleScalar can emulate the ARM instruction

set, and because its reliability is in very high levels (in 2000 more than one third of

all papers published in top computer architecture conferences used the SimpleScalar

tools to evaluate their designs), it appears ideal for emulating the ARM processor in

our case.

5.2 Sim-Panalyzer Tool

The Sim-Panalyzer [17] tool on the other hand is an infrastructure for micro-architectural

power simulation. It is broken out into several components that model distinct parts

of a computer: cache power models; datapath and execution unit power models; clock

tree power models; and I/O power models. These power models can be configured
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into an augmented SimpleScalar simulator that will then produce power consumption

figures. It is positioned above the ”sim-outorder” component of the SimpleScalar sim-

ulator. The Sim-Panalyzer program contains components that model specific parts

of the ARM processor. Sim-Panalyzer focuses efficiently on basic micro-architectural

blocks and provides power information over a wide range of power dissipation sources,

such as caches, clock trees, external I/O, on-chip memories and datapath and execu-

tion blocks. For micro-architectural blocks, the basic method to calculate the power

dissipation is by multiplying the appropriate switching capacitance by the number of

micro-architectural accesses. For external I/O accesses, a transaction model counts

the I/O pin switches in a cycle accurate way. Moreover, support for more sophis-

ticated and accurate power models is provided through libraries, containing basic

building blocks for the embedded logic simulator and ability to extract switching

capacitance for CMOS gates. The logic simulator accumulates the switching capac-

itance of internal nodes into a switching capacitance estimation of each functional

block’s node.

5.3 Compilation of Sim-Panalyzer

Untar ”sim-panalyzer-2.0.3.tar.gz” into your install directory. The source code can be

downloaded from the website.[17] Sim-Panalyzer has currently been compiled using

gcc 3.2. Other gcc versions have not been tested thoroughly. ’make sim-panalyzer’

generates a binary for the simulator. Go to the root directory for each version

’./Implementations/targetmachine/sim-panalyzer2.0.3’ and execute this command.

This should generate the executable file ’sim-panalyzer’. [18]

5.4 How to run the simulator

Sim-Panalyzer has created a separate script file that parses the cmd file. The format

for a cmd file is similar to a Microsoft Windows ini file. The configuration variables
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are divided into sections and are parse through these sections to generate an appro-

priate configuration for our simulator. An example of a cmd file is shown in Figure

5.1. Power configurations can be given as follows below. [18]

Figure 5.1: Example of cmd file
[18]

The [Component] section that is shown in the beginning of Figure 5.1 represents

the components that are intended for power analysis. Currently the components that

are supported are Caches, Branch Target Buffers, Branch Predictors, Register files,

Clock Trees and Random Logic. Based on the chosen components in the [Component]
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section, the configuration variables are defined in the following subsections. For ex-

ample, the [AIO], which configures the address IO pads, has the parameters frequency

for the bus frequency, IO voltage to describe the supply voltage for the IO pad, Buffer

ratio for buffer sizing, microstrip length for modeling the PCB, and finally external

load to model the load that is connected to this IO. test arm.cmd is located in the

source code, is the template command files that can be used as a reference.

It is important to note that in the cmd file, we assume capacitance to be in pF,

time unit to be in ps, frequency to be in MHz, and voltage to be in V. The power

configurations are then integrated with the architectural configurations and create a

single configuration file. Power configuration templates are also provided for these

microprocessors in the ./cmd files/directory. The typical method for executing Sim-

Panalyzer would be executing the /gen cfg < target machine > .plscript and then

using the generated output file as the configuration file for Sim-Panalyzer.

$gen cfg < target machine > .pl < architectural config filename >

< PA cmd filename >

$sim− panalyzer − config < configurationfilename >< executingprogram >

< programparameters >

5.5 Estimation Procedure

This Section explains the estimation procedure for a Sample Source Code. After

building the cross compiler, the command line argument required in order to compile

a C application (for example hello.c) for the ARM is the following: [18]

$ arm-unknown-linux-gnu-g++ -static -o hello hello.c

After building the Sim-panalyzer tool, the following command is outputting the

power dissipation report of the hello.cpp application:

$ sim-panalyzer -config hello.cfg hello
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The -config defines the name of the configuration file that contains architecture

specific information for the ARM processor, such as the operating frequency, supply

voltage etc. This configuration file is generated from a script provided by the Sim-

Panalyzer tool, that parses a command file. The command file that we use in order to

generate the configuration file is the default command file provided by Sim-Panalyzer.

[15]

5.6 ARM-LINUX Cross compiler

Since Sim-panalyzer can work only on arm elf binaries,we n Since the target architec-

ture for our experiments is the ARM architecture, the inputs to the Sim-Panalyzer

tool for program emulation and power dissipation calculation must be ARM bina-

ries. In this case, a cross-compiler kit targeting the ARM should be built on a Linux

platform in order to acquire an ARM executable from C code. A cross compiler is

a compiler capable of creating executable code for a platform other than the one on

which the cross compiler runs. Since Sim-panalyzer can work only on arm elf bina-

ries,we need to use the cross-compiler capable of elf binary and for that GNUARM

cross compiler is used. [19]

The Crosstool is a collection of scripts to build and test several versions of gcc

and glibc for most architecture supported by glibc.

5.7 SimItARM Simulator

Simit-ARM 3.0 is an instruction-set simulator that runs both system-level and user-

level ARM programs within an operating system running on a non-ARM processor by

simulating a single-processor memory space and the logical operation of the processor

upon it.Simit-ARM reads ELF32 little-endian ARM binaries. [20]

Simit-ARM has build in interpreter called ”ema” and Dynamic-compiled Simula-

tor called ”ema jit”. Simit-ARM gives the result in terms of system time and CPU
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time. Also it gives ”total number of instruction” of the ARM program. So it can be

useful for Instruction calculation of the ARM program.

5.7.1 SimIt-ARM features:

Full system simulation SimIt-ARM supports the ARM v5 architecture, including the

memory management unit and some fundamental I/O devices. High simulation speed

On a Pentium D 2.8GHz desktop, the interpreter runs at above 30MIPS.

Built-in debugger The ’-d’ flag enables a light-weight debugging interface, allowing

one to step through a program and to observe register/memory values.

Modular design SimIt-ARM is developed in C++. All simulation states are packaged

in C++ classes. Therefore it is easy to create multiple simulator objects for modeling

multiprocessor targets.



Chapter 6

The Proposed Design

6.1 Efficient C Programming Techniques for ARM

There are many factors that determine the performance of a program. The choice

of hardware can mean the difference between a few MIPS and a few hundred. Good

data structures and algorithms are essential, and bookshelves have been written on

this topic. A good compiler is also essential. One should evaluate the features and

optimization capabilities of a compiler before spending too much time working with

it

This section explains different optimization techniques that would be useful for

writing efficient C programming for ARM processors. This techniques will speed up

execution time and produce low density C code. [21]

6.1.1 BASIC C VARIABLE TYPES

ARM (Advanced RISC machine) is a 32 bit RISC processor.Because of their power

saving features,ARM CPUs are dominant in the embedded systems where low power

is a critical design goal. The ARM ANCI C compiler is capable of generating high

quality machine code. The ARM architecture is RISC load/store architecture. In

other words you must load values from memory into registers before acting on them.

43
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Most ARM data processing operations are 32-bit only. For this reason, you should

use a 32-bit data type, int or long, for local variables wherever possible. Avoid using

char and short as local variable types, even if you are manipulating an 8-bit or 16-bit

value. For the types char and short the compiler needs to reduce the size of the local

variable to 8 or 16 bits after each assignment. This is called sign-extending for signed

variables and zero-extending for unsigned variables. It is implemented by shifting

the register left by 24 or 16 bits, followed by a signed or unsigned shift right by the

same amount, taking two instructions (zero-extension of an unsigned char takes one

instruction).

We should use unsigned int instead of int if we know the value will never be

negative. Some processors can handle unsigned integer arithmetic considerably faster

than signed (this is also good practice, and helps make for self-documenting code).

So, the best declaration for an int variable in a tight loop would be:

register unsigned int variable name;

6.1.2 Global variables

Global variables are never allocated to registers. Global variables can be changed by

assigning them indirectly using a pointer, or by a function call. Hence, the compiler

cannot cache the value of a global variable in a register, resulting in extra (often

unnecessary) loads and stores when globals are used. We should therefore not use

global variables inside critical loops. If a function uses global variables heavily, it

is beneficial to copy those global variables into local variables so that they can be

assigned to registers. This is possible only if those global variables are not used by

any of the functions which are called.

6.1.3 Local variables

Where possible, it is best to avoid using char and short as local variables. For the

types char and short, the compiler needs to reduce the size of the local variable to
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8 or 16 bits after each assignment. This is called sign-extending for signed variables

and zero extending for unsigned variables. It is implemented by shifting the register

left by 24 or 16 bits, followed by a signed or unsigned shift right by the same amount,

taking two instructions (zero-extension of an unsigned char takes one instruction).

These shifts can be avoided by using int and unsigned int for local variables. This is

particularly important for calculations which first load data into local variables and

then process the data inside the local variables. Even if data is input and output as

8- or 16-bit quantities, it is worth considering processing them as 32-bit quantities.

6.1.4 Function Argument Types

The char or short type function arguments and return values introduce extra casts.

These increase code size and decrease performance. It is more efficient to use the int

type for function arguments and return values, even if you are only passing an 8-bit

value. [22]

6.1.5 Using Aliases

Consider the following example -

void func1( int *data )

{

int i;

for(i=0; i<10; i++)

{

anyfunc( *data, i);

}

}

Even though *data may never change, the compiler does not know that anyfunc ()

did not alter it, and so the program must read it from memory each time it is used

- it may be an alias for some other variable that is altered elsewhere. If we know it
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won’t be altered, we could code it like this instead:

void func1( int *data )

{

int i;

int localdata;

localdata = *data;

for(i=0; i<10; i++)

{

anyfunc ( localdata, i);

}

}

This gives the compiler better opportunity for optimization.

6.1.6 REGISTER ALLOCATION

The most important optimization supported by the ARM compilers is called register

allocation. This is a process where the compiler allocates variables to ARM registers,

rather than to memory. This has the advantage that those variables can be accessed

quickly whenever needed, without needing instructions to transfer them from/to mem-

ory. As a result of register allocation, most variables are kept in registers, resulting

in dramatic improvement in code size and performance. When there are more local

variables than available registers, the compiler stores the excess variables on the pro-

cessor stack. These variables are called spilled or swapped out variables since they

are written out to memory [22]. Spilled variables are slow to access compared to

variables allocated to registers. If the compiler does need to swap out variables, then

it chooses which variables to swap out based on frequency of use. To implement a

function efficiently, you need to minimize the number of spilled variables and ensure

that the most important and frequently accessed variables are stored in registers.

The C compiler can assign 14 variables to registers without spillage. Some compilers
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use a fixed register such as r12 for intermediate scratch working and do not assign

variables to this register. Therefore, try to limit the number of local variables in the

internal loop of functions to 12. The compiler should be able to allocate these to

ARM registers. [22]

6.1.7 Use of access types

For global data, use the static keyword (or C++ anonymous namespaces) whenever

possible. In some cases, static allows a compiler to deduce things about the access

patterns to a variable. The static keyword also ”hides” the data, which is generally a

good thing from a programming practices standpoint. Declaring a function as static

is also helpful in many cases.

6.1.8 Other tips

• Minimize the use of global variables.

• Declare anything within a file (external to functions) as static, unless it is intended

to be global.

• Use word-size variables if you can, as the machine can work with these better (in-

stead of char, short, double, bit fields etc.).

• Don’t use recursion. Recursion can be very elegant and neat, but creates many

more function calls which can become a large overhead.

• Avoid the sqrt() square root function in loops - calculating square roots is very

CPU intensive.

• Use Single dimension arrays as they are faster than multi-dimension arrays.

• Compilers can often optimize a whole file - avoid splitting off closely related func-

tions into separate files, the compiler will do better if it can see both of them together

(it might be able to inline the code, for example).

• Single precision math may be faster than double precision - there is often a compiler

switch for this.
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• Addition is quicker than multiplication - use val + val + val instead of val * 3.

puts() is quicker than printf(), although less Flexible.

• Use #defined macros instead of commonly used tiny functions - sometimes the

bulk of CPU usage can be tracked down to a small external function being called

thousands of times in a tight loop. Replacing it with a macro to perform the same

job will remove the overhead of all those function calls, and allow the compiler to be

more aggressive in its optimization.

• Binary/unformatted file access is faster than formatted access, as the machine does

not have to convert between human-readable ASCII and machine-readable binary. If

you don’t actually need to read the data in a file yourself, consider making it a binary

file.

6.2 EBCOT Modifications

The reason of EBCOT Tier-1 occupying highest computation is that the operations

are bit-level processing. This study exploit parallel and pipelined architecture to

accelerate the operations and reduce power consumption. There are three factors

affecting parallelism of CF: 1) scanning order, 2) checking neighbors, and 3) changing

state. Within a stripe, all bits are scanned in a specific order. The context of a bit

is generated by checking states of its neighborhood bits. However, the state of the

coded bit can change and affect later coding results, as shown in Figure. 6.1.
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Figure 6.1: Scanning order

Observation shows the data dependency of sixteen bits and depict a DFG, as

shown in Figure. 6.2. And from that the 16-bit parallel architecture is proposed.

Since its delay is ten, not sixteen, times than sample-based architecture, can use

little voltage to achieve the identical throughput. Estimate shows that the 16-bit

parallel architecture can save power consumption compared with the sample-based

architecture.

Figure 6.2: Data dependency within sixteen bits

By alleviating the frequency of memory access and utilization of efficient memory

bandwidth, power consumption can also be reduced as well. Here the memory-saving

algorithm [23] and proposed memory arrangement for 16-bit parallel context generat-
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ing are followd. Every eight bits are grouped as word, and words are placed in three

memories in an interleaving format, as shown in Figure. 6.3. During memory access,

the order of memory data depends on the stripe. When want to code Stripe n, the

data order is (C, A, B). After memory arrangement, we can utilize efficient memory

bandwidth.

Figure 6.3: Memory arrangement

Figure 6.4: Context window and memory bandwidth

Here use of nine 8-bit shift registers for the context window, as shown in Fig-

ure. 6.4. The shaded samples represent the sixteen coding bits, and their neighbors



CHAPTER 6. THE PROPOSED DESIGN 51

should be included as well. The context window can reuse data locally. The memory

bandwidth is twenty-four bits.

Although 16-bit parallel context generating can reduce cycles, there still are many

wasted cycles.For that The stripes skipping method can be applied. This strategy

is easier to implement for 16-bit parallel processing than other multiple-column-

skipping. Moreover, multiple-columns kipping incurs a little memory overhead, but

the memory requirement of stripe-skipping is less. This strategy just use three 16-bit

registers to record the coding condition of all stripes in three passes enough. This

memory organization and access method can lead us to reduce the instruction count

and so will help to reduce total number of instruction and so that will lead to save

the power by maintaining the same quality of the image without affecting the PSNR

and MSE for the image. But if the in the stripe skipping method if certain limit of

strike skip is not followed then it will results in degraded performance in terms of

PSNR and image quality deteriorates.
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Results

7.1 Experienced Result

In this chapter, the results based on the so far discussed theory and methodology of

Chapters 3, 4, 5 and 6 are introduced. The power dissipation values for the software

implementation are presented. These values were derived using the estimation pro-

cedure described in Chapter 6. The research work carried out in this thesis mainly

concentrate on Optimizing EBCOT part of JPEG2000. Table I shows the power

analysis of the different part of JPEG2000. From the Table I , among the component

JPEG2000 Modules Lossy Compression Lossless Compression

DWT 20.1% 12.2%
Quantization 5.5% 5.8%
EBCOT 70.4% 77.1%
Coefficient Bit Modeling 51.8% 55.0%
Arithmetic Coding 6.9% 8.2%
Rate Distortion Control 11.7% 13.9%
Others 4.0% 4.9%

Total 100% 100%

Table I: Complexity estimation (execution time) for JPEG2000 encoder*
[14]
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of JPEG2000 the most time consuming part is EBCOT which takes around 70% of

the total execution time.

7.1.1 By SimIt-ARM

The ebcot arm binary file which have been generated in the gnuarm cross compiler

.Using ”./build/bin/ema” command where ema is the execution command which will

execute the ebcot program on the ARM simulator environment and give output and

required user time,system time,simulation speed and total instruction required for

executing the ARM binary file.

[root@mtech− 12SimIt− ARM − 3.0]# ./build/bin/ema test/ebcot

ema: Simulation starts ...

ema: Program exited normally.

Total user time : 56 sec.

Total system time: 0.000 sec.

Simulation speed : 6.402e+07 inst/sec.

Total instructions : 1065347

After applying the efficient C programming techniques and applying the modification

in EBCOT which applies the stripe skipping method suggested in section 6.2 we get,

[root@mtech− 12SimIt− ARM − 3.0]# ./build/bin/ema test/ebcot modified

ema: Simulation starts ...

ema: Program exited normally.

Total user time : 54 sec.

Total system time: 0.000 sec.

Simulation speed : 6.402e+07 inst/sec.

Total instructions : 1032103



CHAPTER 7. RESULTS 54

7.1.2 By Sim-panalyzer

The average power consumed by a microprocessor while running a certain program

is given by: P = I x Vcc, where P is the average power, I is the average current and

Vcc is the supply voltage. Since power is the rate at which energy is consumed, the

energy consumed by a program is given by: E = P x T, where T is the execution

time of the program. This in turn is given by: T = N x Υ, where N is the number of

clock cycles taken by the program and Υ is the clock period. In common usage, the

terms power consumption and energy consumption are often interchanged. However,

it is important to distinguish between the two when we talk of either of these in the

context of programs running on wireless systems. Since wireless systems run on the

limited energy available in a battery. Therefore, the energy consumed by the system

or by the software running on it, determines the length of the battery life. Energy

consumption is thus the focus of attention.

The Sim-Panalyzer tool output gives the average power dissipation for the com-

ponents listed in the cmd file. The components for which power dissipation is given

as follows:

Address Input-Output (AIO): AIO which configures the address IO pads, has

the parameters frequency for the bus frequency, IO voltage to describe the supply

voltage for the IO pad, Buffer ratio for buffer sizing, micro strip length for modeling

the PCB, and finally external load to model the load that is connected to this IO.

Data Input-Output (DIO): DIO, similar to AIO configures the data IO pads, has

the parameters similar to AIO i.e. frequency, IO voltage, Buffer ratio, micro strip

length and external load.

Instruction Register File (IRF): IRF configures the instruction register bank

where the parameter Capacitance is used.

Instruction Level 1 (IL1) Cache: IL1 cache configures the instruction level 1

cache that has the parameters number of bitlines for the bit lines, number of word-

lines for the word lines in the cache and Capacitance that consumes energy in IL1
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cache.

Data Level 1 (DL1) Cache: DL1 cache configures for data level 1 cache has

parameters similar to IL1 cache i.e. number of bitlines, number of wordlines and

Capacitance.

Instruction Table Look-aside Buffer (ITLB): ITLB configures parameters num-

ber of bitlines, number of wordlines and Capacitance.

Data Table Look-aside Buffer (DTLB): DTLB also configures parameters num-

ber of bitlines, number of wordlines and Capacitance.

EBCOT
Average Power Dissipation in Component Standard Modified

AIO 1.7893 1.7818
DIO 7.2137 7.0208
IRF 0.6618 0.6482
IL1 Cache 2.1658 2.1610
DL1 Cache 1.2492 1.2401
ITLB 1.0180 1.0980
DTLB 0.7150 0.7090
Clock 3.0210 3.0210
ALU 0.0022 0.0022
Micro-arch 4.3250 4.3015

Table II: Average Power Dissipation for EBCOT on StrongARM-1110

Unit Standard Modified

Average Power (W) 22.16 21.98
Instruction Committed 465740 452414
Instruction Executed 1064352 1031037
Cycles Per Instruction 1.5512 1.5851
Clock Frequency (MHz) 43.47 43.47

Table III: Average Power Consumption for EBCOT on StrongARM-1110
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Table II gives the average power dissipation for the different component for the

EBCOT on Intels StrongARM-1110 processor. And Table III gives the average power

consumption of the same EBCOT. By using the optimization techniques discussed in

Chapter 6 for efficient C programming for ARM and EBCOT, gives the modified ver-

sion of EBCOT. By using the methodology explained in Chapter 6 a small reduction

in the power consumption is achieved and a small change is achieved in the number

of instruction executed. The use of decrementing loop, reduction in number of local

variables, and properly assigning the data types to the variable helped to reduce this

number of instructions.

By analyzing the results ,it is sure that the main concern in terms of the power

consumption of the EBCOT algorithm is the memory and its access pattern.And so

the main component of power consumption is DIO due to high access of stripes in each

pass of EBCOT. Also simulation shows that the number of instruction for EBCOT

is too high and so total number of cycle count is high. Due to the stripe-skipping

method sometimes AIO access exceeds than that of standard algorithm. So in stripe-

skipping method skip bound should be selected such that it will not increases the

AIO access.



Chapter 8

Conclusion and Future Scope

8.1 Conclusion

The basic concepts and characteristics of JPEG200 algorithms and Embedded Block

Coding for Optimized Truncation(EBCOT ) are introduced.The reduction in the

power consumption is an important issue in modern embedded systems and is the

main concern in the study; therefore, any method that provides a way to reduce this

consumption must be studied,evaluated. The work accomplished shows how power

aware EBCOT system has to be made in embedded environment. In this work, a

framework for analyzing the power consumption of EBCOT algorithm is presented.

Among the JPEG2000 compression architecture EBCOT is the main source of com-

putation time and power.So EBCOT becomes the bottleneck.As the power cost of any

algorithm is depending on the total number of instruction and the memory operation

,in the study C programming optimization techniques and memory access pattern is

applied on EBCOT. From the results shown in Figure 8.1 it can be seen that the

total instruction count reduces to about 1% and power consumption to 0.75%. But

significant reduction in total instruction count and power consumption will not be

achieved due to the high memory access count. So if the memory organization and

architecture has been changed or specially efficient VLSI designed SoC can provide
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significant power efficient and Also in this proposed design

Embedded System lifetime is severly constrained by the available energy sources so

Figure 8.1: (a). Comparison in terms of Total Instruction and Clock Count (b).
Comparison in terms of Power

naive and power-oblivious operation is not appropriate. System software techniques

and efficient C programming techniques are more general, and hence have broader

applicability than application-specific techniques, but application specific techniques

can be still more effective. Since the particular mix of storing, compression compu-

tation, and restorage is usually quite application-specific, with different applications

demonstrating dramatically different mixes, power profiles can vary widely. System

software can provide only general solutions to power management but if the system

can expose appropriate power management interfaces or implement power optimiza-

tions, as many of the techniques presented in this study do, then applications can

influence or control system components and reduce power without having to be ex-

plicitly power-aware.
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8.2 Future Scope

By analysis of the result,the efficient C programming techniques will result in re-

duction of instruction in a small amount. Also the proposed EBCOT modification

will lead to change in memory architecture. The more efficient way of reducing the

power is to design EBCOT memory architecture and design specialized efficient VLSI

design or implement a specialized EBCOT SoCs. The specialized design hardware

architecture of EBCOT may enhance the performance and can reduce the power by a

significant amount. Hardware implementation of Specialized designed EBCOT tier-1

architecture will lead to a good and very efficient implementation which can save

power in quite a good manner.



Appendix A

SimpleScalar Simulator

A.1 SimpleScalar Tool set

Figure A.1: SimpleScalar tool set overview

The SimpleScalar architecture is derived from the MIPS-IV ISA. The tool suite

defines both little-endian and big-endian versions of the architecture to improve porta-

bility (the version used on a given host machine is the one that matches the endianness
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of the host). The semantics of the SimpleScalar ISA are a superset of MIPS with the

following notable differences and additions:

• There are no architected delay slots: loads, stores, and control transfers do not

execute the succeeding instruction.

• Loads and stores support two addressing modesfor all data typesin addition to

those found in the MIPS architecture. These are: indexed (register+register),

and auto-increment/ decrement.

• A square-root instruction, which implements both singleand double-precision

floating point square roots.

• An extended 64-bit instruction encoding.

SimpleScalar has different sub modules that can be use to analyze the different pa-

rameter of the architectural component

• Sim-Fast

• Sim-Safe

• Sim-Profile

• Sim-Cache/Sim-Cheetah

• Sim-Outorder



Appendix B

List of Useful Web sites

• GNUARM Crosscompiler : A cross compiler for ARM

http://www.gnuarm.com

• SimIt-ARM Simulator

http://www.simitarm.com

• The SimpleScalar-Arm Power Modelling Project (Sim-panalyzer)

http://www.eecs.umich.com/~panalyzer

• SimpleScalar LLC

http://www.simplescalar.com
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