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Abstract

Digital image processing remains a challenging domain of programming for several rea-

sons. First the issue of digital image processing appeared relatively late in computer

history, it had to wait for the arrival of the first graphical operating systems to become

a true matter. Secondly, digital image processing requires the most careful optimiza-

tions and especially for real time applications. Image processing operations can be

roughly divided into three major categories, Image Compression, Image Enhancement

and Restoration, and Measurement Extraction. Image compression is familiar to most

people. It involves reducing the amount of memory needed to store a digital image.

Wavelet is the upcoming technology for the image compression which takes more com-

putations compare to the DCT based image compression. The TMS320C6000 series

includes three different type of DSP Chip family TMS320C62X, TMS320C64X and

TMS320C67X family. TMS320C64X is the fixed point DSPs while the TMS320C67X

is a floating point DSP. Both the TMS320C64XX and TMS320C67XX provides the

floating point execution but the TMS320C67X provides more efficient floating point

execution.
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Chapter 1

Introduction

1.1 General

Digital image processing remains a challenging domain of programming for several

reasons. First the issue of digital image processing appeared relatively late in com-

puter history, it had to wait for the arrival of the first graphical operating systems to

become a true matter. Secondly, digital image processing requires the most careful

optimizations and especially for real time applications. Comparing image process-

ing and audio processing is a good way to fix ideas. Let us consider the necessary

memory bandwidth for examining the pixels of a 320x240, 32 bits bitmap, 30 times a

second: 10 Mo/sec. Now with the same quality standard, an audio stereo wave real

time processing needs 44100 (samples per second) x 2 (bytes per sample per channel)

x 2 (channels) = 176Ko/sec, which is 50 times less. Obviously we will not be able to

use the same signal processing techniques in both audio and image. Finally, digital

image processing is by definition a two dimensions domain; this somehow complicates

things when elaborating digital filters.

Digital image processing is characterized by very high computational demands.

Although it can be handled by ”standard” computer hardware, such solution is not

viable for an embedded system, where dimensions of the computer system, power

1



CHAPTER 1. INTRODUCTION 2

consumption or data throughput are of concern. For these reasons, specialized hard-

ware solutions based on a digital signal processor (DSP) or a Field Programmable

Gate Array (FPGA) are usually used in embedded system.

Digital image processing is the use of computer algorithms to perform image

processing on digital images. As a subfield of digital signal processing, digital image

processing has many advantages over analog image processing; it allows a much wider

range of algorithms to be applied to the input data, and can avoid problems such as

the build-up of noise and signal distortion during processing.

Image processing operations can be roughly divided into three major categories,

Image Compression, Image Enhancement and Restoration, and Measurement Extrac-

tion. Image compression is familiar to most people. It involves reducing the amount

of memory needed to store a digital image.

The heart of any digital signal processing architecture is the Multiply-and Ac-

cumulate (MAC) unit. Most signal processing applications utilize a great deal of

multiplication: The MAC unit of a DSP accelerates this type of calculation by per-

forming the multiplication of two numbers and then adding the result to all of the

previous multiplications in what is called an ”accumulator”. Another key enabling

technology of DSPs is the ability to process several operations at the same time.

One way that DSPs can execute four operations at the same time is to use what

is known as Very Long Instruction Word (VLIW) architecture. A VLIW is a sin-

gle instruction that actually represent several operations. DSPs have typically been

used to implement many of these applications. Although DSPs are programmable

through software, the DSPs’ hardware architecture is not flexible. Therefore, DSPs

are limited by fixed hardware architecture such as bus performance bottlenecks, a

fixed number of MAC blocks, fixed memory, fixed hardware accelerator blocks and

fixed data widths. The DSPs’ fixed hardware architecture is not suitable for algo-

rithms that want to exploit parallelism in either data or instruction. Compressing an

image is significantly different than compressing raw binary data. Of course, general

purpose compression programs can be used to compress images, but the result is less
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than optimal. This is because images have certain statistical properties which can be

exploited by encoders specifically designed for them. Also, some of the finer details in

the image can be sacrificed for the sake of saving a little more bandwidth or storage

space. This also means that lossy compression techniques can be used in this area.

Lossless compression involves with compressing data which, when decompressed, will

be an exact replica of the original data. This is the case when binary data such as

executables, documents etc. are compressed. They need to be exactly reproduced

when decompressed. On the other hand, images (and music too) need not be repro-

duced ’exactly’. An approximation of the original image is enough for most purposes,

as long as the error between the original and the compressed image is tolerable.

1.2 Motivation

Image processing is a one of the fast developing research area of computer vision.

Faster image processing is very essential in current scenario for work automation .This

work is useful in developing the vision using the computerized analysis , object detec-

tion and classification of the images captured by the sensors for better interpretation

and analysis. Generally satellite images are of high resolution 4Kx4K, 16Kx16K and

higher resolutions. To support the processing of these images we require special pur-

pose processors like DSPs or ASPs specifically designed for these types of applications.

The change from the cine film to digital methods of image exchange and archival is

primarily motivated by the ease and flexibility of handling digital image information

instead of the film media. While preparing this step and developing standards for

digital image communication, one has to make absolutely sure that also the image

quality of coronary angiograms and ventriculograms is maintained or improved. Sim-

ilar requirements exist also in echocardiography. Regarding image quality, the most

critical step in going from the analog world (cine film or high definition live video in

the catheterization laboratory) to the digital world is the digitization of the signals.

For this step, the basic requirement of maintaining image quality is easily translated



CHAPTER 1. INTRODUCTION 4

into two basic quantitative parameters:

a. the rate of digital image data transfer or data rate (Megabit per second or

Mb/s)

b. and the total amount of digital storage required or data capacity (Megabyte or

MByte)

As a specific example, the spatial resolution of the cine film is generally assumed

to be equivalent to a digital matrix of at least 1000 by 1000 pixels, each with up to

256 gray levels (8 bit or one byte) of contrast information (see Syllabus Unit 1). The

following table derives from this principal parameter some examples for requirements

on digital image communication and archival in a catheterization laboratory with low

to medium volume.

Computer technology, however, provides flexible principles for processing large

amounts of information. Among the algorithms available is image data reduction

or image compression. The principal approach in data compression is the reduction

of the amount of image data (bits) while preserving information (image details).

This technology is a key enabling factor in many imaging and multimedia concepts

outside of medicine. So one has to ask if cardiology really will have to cope with

these enormous and totally uncommon requirements concerning digital data rates and

digital data capacity, or if image compression can also be applied without problems in

cardiac imaging. At a closer look one observes that ad hoc approaches to image data

compression have been applied in most digital imaging systems for the catheterization

laboratory all the time. An example is recording the x-ray images with a smaller

matrix of just 512 by 512 pixels (instead of the 1024 by 1024 pixel matrix often applied

for real-time displays). In order to objectively assess these and other techniques

of image data compression, some systematic knowledge of the tradeoffs implied in

different modes of image data reduction is mandatory.
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1.3 Scope Of Work

As the title suggests the goal of this dissertation focuses on the providing solution

for the image compression which is based on the wavelet which is the going beyond

the standard jpeg compression. Wavelet is the upcoming technology for the image

compression which takes more computations compare to the DCT based image com-

pression. The procedure for the thesis starts with the understanding what is wavelet

and DWT(Discrete wavelet Transform). Then the second step will be the selection of

the image processing algorithm, which includes the review of the all the algorithms

avaliable based on the wavelet transform to be reviewed. Then by selecting some

particular algorithm based upon some of the characteristics of the algorithm the im-

plementation of the algorithm takes place. The implementation of the algorithm will

be basically on the two platforms like MATLAB and the Code Composer Studio’s

targetted platform. The selection of the DSP processor to implement the algorithm

is also the issue be solved. Basically the TMS320C6000 series includes three different

type of DSP Chip family TMS320C62XX, TMS320C64XX and TMS320C67XX fam-

ily. TMS320C64XX is the fixed point DSPs while the TMS320C67XX is a floating

point DSP.

Both the TMS320C64XX and TMS320C67XX provides the floating point execu-

tion but the TMS320C67XX provides more efficient floating point execution. As the

wavelet tranform will have so much of the calculation the target DSP must have a

heavy floating point support. So it will be better to choose the TMS320C67xx ar-

chitecture to implement the wavelet based image processing algorithms because it

demands the support for the floating point calculations.
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1.4 Thesis Organization

The rest of the thesis is organized as follows.

Chapter 2, Literature Survey , Literature Survey describes the Wavelets, DWT(Discrete

Wavelet Transform) and also showing internal details about the flow of the pro-

cess and the requirements of wavelets for the Image Processing. It also covers

the DSP processor background require for the project. It also shows the basics

about the Image Processing and Image compression.

Chapter 3, Image Compression and Algorithms, This chapter describes the basics

of the Image processing and Image compression. It also describes some of the

algorithms of the Image Compression. This chapter also descibes the wavelet

based image compression techniques and why they are used.

Chapter 4, Implementation, This Chapter includes the implementation of the Em-

bedded Image Compression(EZW) algorithm.

Chapter 5, Experimental Result and Analysis,

This chapter shows the experimental results obtained using the image compres-

sion algorithm implenmentation and further analysis of the results.

Chapter 6, Conclusion & Future Work, This chapter describes the future work to

be done in the thesis.



Chapter 2

Literature Survey

2.1 Introduction to Image Compression

2.1.1 Image Compression Technique

Compression takes an input X and generates a representation XC that hopefully re-

quires fewer bits. There is a reconstruction algorithm that operates on the compressed

representation XC to generate the reconstruction Y. Based on the requirements of re-

construction, data compression schemes can be divided into two broad classes. One

is lossless compression, in which Y is identical to X. Examples of lossless methods

are Run Length coding, Huffman coding, Lempel/Ziv algorithms, and Arithematic

coding. The other is lossy compression, which generally provides much higher com-

pression than lossless compression but allows Y to be different from X.

2.1.2 Loseless Compression Methods

If data have been losslessly compressed, the original data can be recovered exactly

from the compressed data. It is generally used for applications that cannot allow any

difference between the original and reconstructed data.

7
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Run Length Encoding

Run length encoding, sometimes called recurrence coding, is one of the simplest data

compression algorithms. It is effective for data sets that are comprised of long se-

quences of a single repeated character. For instance, text files with large runs of spaces

or tabs may compress well with this algorithm. Old versions of the arc compression

program used this method.

RLE finds runs of repeated characters in the input stream and replaces them

with a three-byte code. The code consists of a flag character, a count byte, and the

repeated characters. For instance, the string “AAAAAABBBBCCCCC” could be

more efficiently represented as “*A6*B4*C5”. That saves us six bytes. Of course,

since it does not make sense to represent runs less than three characters in length

with a code, none is used. Thus “AAAAAABBCCCDDDD” might be represented as

“*A6BBCCC*D4”. The flag byte is called a sentinel byte.

Huffman Coding

Huffman coding, developed by D.A. Huffman, is a classical data compression tech-

nique. It has been used in various compression applications, including image com-

pression. It uses the statistical property of characters in the source stream and then

produces respective codes for these characters. These codes are of variable code length

using an integral number of bits. The codes for characters having a higher frequency

of occurrence are shorter than those codes for characters having lower frequency. This

simple idea causes a reduction in the average code length, and thus the overall size

of compressed data is smaller than the original. Huffman coding is based on building

a binary tree that holds all characters in the source at its leaf nodes, and with their

corresponding characters’ probabilities at the side. The tree is built by going through

the following steps:

a. Each of the characters is initially laid out as leaf node; each leaf will eventually

be connected to the tree. The characters are ranked according to their weights,
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which represent the frequencies of their occurrences in the source.

b. Two nodes with the lowest weights are combined to form a new node, which

is a parent node of these two nodes. This parent node is then considered as a

representative of the two nodes with a weight equal to the sum of the weights

of two nodes. Moreover, one child, the left, is assigned a ”0” and the other, the

right child, is assigned a ”1”.

c. Nodes are then successively combined as above until a binary tree containing

all of nodes is created.

d. The code representing a given character can be determined by going from the

root of the tree to the leaf node representing the alphabet. The accumulation

of ”0” and ”1” symbols is the code of that character.

By using this procedure, the characters are naturally assigned codes that reflect

the frequency distribution. Highly frequent characters will be given short codes, and

infrequent characters will have long codes. Therefore, the average code length will be

reduced. If the count of characters is very biased to some particular characters, the

reduction will be very significant.

Lempel-Ziv-Welch(LZW) Encoding

This original approach is given by J. Ziv and A. Lempel in 1977. T. Welch’s refine-

ments to the algorithm were published in 1984. LZW compression replaces strings of

characters with single codes. It does not do any analysis of the incoming text. Instead,

it just adds every new string of characters it sees to a table of strings. Compression

occurs when a single code is output instead of a string of characters.

The code that the LZW algorithm outputs can be of any arbitrary length, but

it must have more bits in it than a single character. The first 256 codes (when

using eight bit characters) are by default assigned to the standard character set. The

remaining codes are assigned to strings as the algorithm proceeds.
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There are three best-known applications of LZW:

• UNIX Compress (file compression)

• GIF (image compression)

Arithmetic Coding

Arithmetic coding is also a kind of statistical coding algorithm similar to Huffman

coding. However, it uses a different approach to utilize symbol probabilities, and

performs better than Huffman coding. In Huffman coding, optimal codeword length

is obtained when the symbol probabilities are of the form 1
2

x
, where x is an integer.

This is because Huffman coding assigns code with an integral number of bits. This

form of symbol probabilities is rare in practice. Arithmetic coding is a statistical

coding method that solves this problem. The code form is not restricted to an integral

number of bits. It can assign a code as a fraction of a bit. Therefore, when the symbol

probabilities are more arbitrary, arithmetic coding has a better compression ratio than

Huffman coding. In brief, this is can be considered as grouping input symbols and

coding them into one long code. Therefore, different symbols can share a bit from

the long code.

Although arithmetic coding is more powerful than Huffman coding in compression

ratio, arithmetic coding requires more computational power and memory. Huffman

coding is more attractive than arithmetic coding when simplicity is the major concern.

2.1.3 Lossy Compression Methods

Lossy compression techniques involve some loss of information, and data cannot be

recovered or reconstructed exactly. In some applications, exact reconstruction is

not necessary. For example, it is acceptable that a reconstructed video signal is

different from the original as long as the differences do not result in annoying artifacts.

However, we can generally obtain higher compression ratios than is possible with

lossless compression.
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Vector Quantization

Vector Quantization (VQ) is a lossy compression method. It uses a codebook con-

taining pixel patterns with corresponding indexes on each of them. The main idea

of VQ is to represent arrays of pixels by an index in the codebook. In this way,

compression is achieved because the size of the index is usually a small fraction of

that of the block of pixels. The main advantages of VQ are the simplicity of its idea

and the possible efficient implementation of the decoder. Moreover, VQ is theoret-

ically an efficient method for image compression, and superior performance will be

gained for large vectors. However, in order to use large vectors, VQ becomes complex

and requires many computational resources (e.g. memory, computations per pixel)

in order to efficiently construct and search a codebook. More research on reducing

this complexity has to be done in order to make VQ a practical image compression

method with superior quality.

Predictive Coding

Predictive coding has been used extensively in image compression. Predictive image

coding algorithms are used primarily to exploit the correlation between adjacent

pixels. They predict the value of a given pixel based on the values of the surrounding

pixels. Due to the correlation property among adjacent pixels in image, the use

of a predictor can reduce the amount of information bits to represent image. This

type of lossy image compression technique is not as competitive as transform coding

techniques used in modern lossy image compression, because predictive techniques

have inferior compression ratios and worse reconstructed image quality than those of

transform coding.

Fractal Compression

The application of fractals in image compression started with M.F. Barnsley and A.

Jacquin. Fractal image compression is a process to find a small set of mathematical
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equations that can describe the image. By sending the parameters of these equations

to the decoder, we can reconstruct the original image.

In general, the theory of fractal compression is based on the contraction mapping

theorem in the mathematics of metric spaces. The Partitioned Iterated Function Sys-

tem (PIFS), which is essentially a set of contraction mappings, is formed by analysing

the image. Those mappings can exploit the redundancy that is commonly present

in most images. This redundancy is related to the similarity of an image with it-

self, that is, part A of a certain image is similar to another part B of the image, by

doing an arbitrary number of contractive transformations that can bring A and B

together. These contractive transformations are actually common geometrical opera-

tions such as rotation, scaling, skewing and shifting. By applying the resulting PIFS

on an initially blank image iteratively, we can completely regenerate the original im-

age at the decoder. Since the PIFS often consists of a small number of parameters, a

huge compression ratio (e.g. 500 to 1000 times) can be achieved by representing the

original image using these parameters. However, fractal image compression has its

disadvantages. Because fractal image compression usually involves a large amount of

matching and geometric operations, it is time consuming. The coding process is so

asymmetrical that encoding of an image takes much longer time than decoding.

Transform Based Image Compression. The basic encoding method for transform

based compression works as follows:

a. Image transform

Divide the source image into blocks and apply the transformations to the blocks.

b. Parameter quantization

The data generated by the transformation are quantized to reduce the amount

of information. This step represents the information within the new domain

by reducing the amount of data. Quantization is in most cases not a reversible

operation because of its lossy property.

c. Encoding
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Encode the results of the quantization. This last step can be error free by using

Run Length encoding or Huffman coding. It can also be lossy if it optimizes

the representation of the information to further reduce the bit rate.

Transform based compression is one of the most useful applications. Combined

with other compression techniques, this technique allows the efficient transmission,

storage, and display of images that otherwise would be impractical.

DCT-based Transform Coding

The Discrete Cosine Transform (DCT) was first applied to image compression in

the work by Ahmed, Natarajan, and Rao. It is a popular transform used by the

JPEG (Joint Photographic Experts Group) image compression standard for lossy

compression of images. Since it is used so frequently, DCT is often referred to in the

literature as JPEG-DCT, DCT used in JPEG.

JPEG-DCT is a transform coding method comprising four steps. The source

image is first partitioned into sub-blocks of size 8x8 pixels in dimension. Then each

block is transformed from spatial domain to frequency domain using a 2-D DCT basis

function. The resulting frequency coefficients are quantized and finally output to a

lossless entropy coder. DCT is an efficient image compression method since it can

decorrelate pixels in the image (since the cosine basis is orthogonal) and compact

most image energy to a few transformed coefficients. Moreover, DCT coefficients

can be lossily quantized according to some human visual characteristics. Therefore,

the JPEG image file format is very efficient. This makes it very popular, especially

in the World Wide Web. However, JPEG may be replaced by wavelet-based image

compression algorithms, which have better compression performance.
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2.2 Wavelet Transform

Wavelets are functions defined over a finite interval. The basic idea of the wavelet

transform is to represent an arbitrary function (x) as a linear combination of a set

of such wavelets or basis functions. These basis functions are obtained from a single

prototype wavelet called the mother wavelet by dilations (scaling) and translations

(shifts).

The purpose of wavelet transform is to change the data from time-space domain

to time-frequency domain which makes better compression results. The simplest form

of wavelets, the Haar wavelet function ?? is defined as:

ψ(x) =


1 if 0 ≤ x < 1

2

−1 if 1
2
≤ x < 1

0 otherwise

Figure 2.1: Haar Wavelet

The following is a simple example to show how to perform Haar wavelet transform

on four sample numbers. Assume we have four numbers

x(0) = 1.2, x(1) = 1.0, x(2) = −1.0, x(3) = −1.2

Let us perform Haar wavelet transform on these four numbers.
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
y(0)

y(1)

y(2)

y(3)

 =


1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1




x(0)

x(1)

x(2)

x(3)

 =


2.2

0.2

−2.2

0.2


Notice we can always do inverse transform from x to y:


x(0)

x(1)

x(2)

x(3)

 = 1
2


1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1




y(0)

y(1)

y(2)

y(3)


If 0.2 is below our quantization threshold, it will be replaced by 0. Then, recon-

structed x will be [1.1, 1.1, -1.1, -1.1]. After first transform, we keep y(1) and y(3) at

the finest level and iterate the transform on y(0) and y(2) again. z(0) = y(0)+y(2) = 0

and z(2) = y(0)− y(2) = 4.4.

Those four numbers become [ 0, 0.2, 4.4, 0.2 ]. After quantization, they could be

[0, 0, 4, 0], which are much easier to be compressed.

2.2.1 Why to use Wavelet Based Compression

As discussed earlier, for image compression, loss of some information is acceptable.

Among all of the above lossy compression methods, vector quantization requires many

computational resources for large vectors; fractal compression is time consuming for

coding; predictive coding has inferior compression ratio and worse reconstructed im-

age quality than those of transform based coding. So, transform based compression

methods are generally best for image compression. For transform based compression,

JPEG compression schemes based on DCT (Discrete Cosine Transform) have some

advantages such as simplicity, satisfactory performance, and availability of special

purpose hardware for implementation. However, because the input image is blocked,

correlation across the block boundaries cannot be eliminated.
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Over the past ten years, the wavelet transform has been widely used in signal pro-

cessing research, particularly, in image compression. In many applications, wavelet-

based schemes achieve better performance than other coding schemes like the one

based on DCT. Since there is no need to block the input image and its basis func-

tions have variable length, wavelet based coding schemes can avoid blocking artifacts.

Wavelet based coding also facilitates progressive transmission of images.

2.2.2 Comparison of Wavelet Properties

The following table shows the property comparison of three kinds of wavelets.

Property Haar Daubechie Biorthogonal Spline
Explicit Function Yes No Yes
Orthogonal Yes Yes No
Symmetric Yes No Yes
Continuous No Yes Yes
Compacted support Yes Yes Yes
Maximum regularity for order L No No Yes
Shortest scaling function for order L Yes No Yes

Table I: Property Comparison of Three Kinds of Wavelets

Haar and Daubechies wavelets have orthogonality, which has some nice features.

a. The scaling function and wavelet function are the same for both forward and

inverse transform.

b. The correlations in the signal between different subspaces are removed.

Among the three kinds of wavelets, the Haar wavelet transform is the simplest one

to implement, and it is the fastest. The major disadvantage of the Haar wavelet is

its discontinuity, which makes it difficult to simulate a continuous signal. Daubechie

found the first continuous orthogonal compact support wavelet. Note that this family
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of wavelets is not symmetric. The advantage of symmetry is that the corresponding

wavelet transform can be implemented using mirror boundary conditions that reduces

boundary artifacts. That is why we introduce the biorthogonal spline wavelet. For

the biorthogonal spline wavelet, the scaling function is a B-spline. The B-spline

of degree N is the shortest possible scaling function of order N-1 and B-splines are

the smoothest scaling functions for a filter of a given length. Because splines are

piecewise polynomial, they are easy to manipulate. For example, it is simple to get

spline derivatives and integrals.

2.3 TMS320C6000 DSP Family

2.3.1 Introduction

The TMS320C6000 platform of digital signal processors (DSPs) is part of the TMS320

family of DSPs. The TMS320C62x (’C62x) devices are fixed-point DSPs in the

TMS320C6000 platform. The TMS320C67x (’C67x) devices are floating-point DSPs

in the TMS320C6000 platform. The TMS320C62x and TMS320C67x are code com-

patible and both feature the VelociTI architecture.

The VelociTI architecture is a high-performance, advanced, very-long-instruction-

word (VLIW) architecture developed by Texas Instruments, making these DSPs excel-

lent choices for multi channel and multifunction applications. VelociTI, together with

the development tool set and evaluation tools, provides faster development time and

higher performance for embedded DSP applications through increased instruction-

level parallelism. With performance of up to 2000 million instructions per second

(MIPS) at 250 MHz and a complete set of development tools, the TMS320C6000 DSPs

offer cost-effective solutions to high-performance DSP programming challenges. The

TMS320C6000 development tools include a new C compiler, an assembly optimizer

that simplifies programming and scheduling, and a Windows debugger interface.

The TMS320DSP family consists of fixed-point, floating-point, and multiproces-
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sor digital signal processors (DSPs). TMS320DSPs have an architecture designed

specifically for real-time signal processing.

With a performance of up to 6000 million instructions per second (MIPS) and

an efficient C compiler, the TMS320C6000 DSPs [4] give system architects unlim-

ited possibilities to differentiate their products. High performance, ease of use, and

affordable pricing make the C6000 generation the ideal solution for multifunction

applications, such as, 3-D transformations, Image compression/transmission, Image

enhancement, Pattern recognition, Robot vision, etc. The newest member of the

C6000 family, the C64x, brings the highest level of performance for processing data

in this era of data convergence. At clock rates of 600 MHz and greater, the C64x can

process information at a rate of 4800-6400 MIPS. In addition to clock rate, more work

can be done each cycle with the VelociTI architecture. These extensions include new

instructions to accelerate performance in key applications and extend the parallelism

of the architecture. Increased clock rate and increased CPU throughput are only part

of the solution. Processing data at these extremely high rates increases the need for

I/O bandwidth.

Three flexible Multi-channel Buffered Serial Ports can each supply 100Mbits/sec

each of additional throughput. The internal DMA engine can provide over 2Gbytes/sec

of I/O bandwidth with 64 independent channels. The C64x goes beyond a core

and peripheral set to bring the maximum level of performance for processing digital

data quickly. The tight coupling of the CPU architecture and the compiler help to

maximize processor throughput. The RISC like instruction set and extensive use of

pipelining allow many instructions to be scheduled and executed in parallel. The key

extensions made to the ’C62x architecture that allow the ’C64x to perform more work

each clock cycle include wider data paths, a larger register file, greater orthogonality

and new instructions that support packed data processing.

The TMS320C6000 DSPs give system architects unlimited possibilities to differ-

entiate their products. High performance, ease of use, and affordable pricing make

the TMS320C6000 platform the ideal solution for multichannel, multifunction appli-



CHAPTER 2. LITERATURE SURVEY 19

cations, such as:

• Pooled modems

• Wireless local loop base stations

• Beam-forming base stations

• Remote access servers (RAS)

• Digital subscriber loop (DSL) systems

• Cable modems

• Multichannel telephony systems

• Virtual reality 3-D graphics

• Speech recognition

• Audio

• Radar

• Atmospheric modeling

• Finite element analysis

• Imaging (examples: fingerprint recognition, ultrasound, and MRI)

The TMS320C6000 platform is also an ideal solution for exciting new applications;

for example:

• Personalized home security with face and hand/fingerprint recognition

• Advanced cruise control with global positioning systems (GPS) navigation and

accident avoidance

• Remote medical diagnostics
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2.3.2 TMS320C67x Series DSP

The C6000 devices execute up to eight 32-bit instructions per cycle. The C67x CPU

consists of 32 general-purpose 32-bit registers and eight functional units. These eight

functional units contain:

• Two Multipliers

• Six ALUs

The C6000 generation has a complete set of optimized development tools, includ-

ing an efficient C compiler, an assembly optimizer for simplified assembly-language

programming and scheduling, and a Windows based debugger interface for visibility

into source code execution characteristics. A hardware emulation board, compati-

ble with the TI XDS510 and XDS56 emulator interface, is also available. This tool

complies with IEEE Standard 1149.1?1990, IEEE Standard Test Access Port and

Boundary-Scan Architecture. Features of the C6000 devices include:

• Advanced VLIW CPU with eight functional units, including two multipliers

and six arithmetic units

• Executes up to eight instructions per cycle for up to ten times the performance

of typical DSPs

• Allows designers to develop highly effective RISC-like code for fast development

time

• Instruction packing

• Gives code size equivalence for eight instructions executed serially or in parallel

• Reduces code size, program fetches, and power consumption

• Conditional execution of all instructions

• Reduces costly branching
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• Increases parallelism for higher sustained performance

• Efficient code execution on independent functional units

• Industry’s most efficient C compiler on DSP benchmark suite

• Industry’s first assembly optimizer for fast development and improved paral-

lelization

• 8/16/32-bit data support, providing efficient memory support for a variety of

applications

• 40-bit arithmetic options add extra precision for vocoders and other computa-

tionally intensive applications

• Saturation and normalization provide support for key arithmetic operations

• Field manipulation and instruction extract, set, clear, and bit counting support

common operation found in control and data manipulation applications.

The C67x devices include these additional features:

• Hardware support for single-precision (32-bit) and double-precision (64-bit)

IEEE floating-point operations.

• 32 32-bit integer multiply with 32-bit or 64-bit result.

In addition to the features of the C67x device, the C67x+ device is enhanced

for code size improvement and floating-point performance. These additional features

include:

• Execute packets can span fetch packets.

• Register file size is increased to 64 registers (32 in each datapath).

• Floating-point addition and subtraction capability in the .S unit.
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• Mixed-precision multiply instructions.

• 32-KByte instruction cache that supports execution from both on-chip RAM

and ROM as well as from external memory through a VBUSP-based external

memory interface (EMIF).

• Unified memory controller features support for flat on-chip data RAM and ROM

organizations for zero wait-state accesses from both load store unit of the CPU.

The memory controller supports different banking organizations for RAM and

ROM arrays. The memory controller also supports VBUSP interfaces (two

master and one slave) for transfer of data from the system peripherals to and

from the CPU and internal memory. A VBUSP based DMA controller can

interface to the CPU for programmable bulk transfers through the VBUSP

slave port.

2.3.3 TMS320C67x DSP Architecture

Figure 2.2 is the block diagram for the C67x DSP. The C6000 devices come with

program memory, which, on some devices, can be used as a program cache. The

devices also have varying sizes of data memory. Peripherals such as a direct memory

access (DMA) controller, power-down logic, and external memory interface (EMIF)

usually come with the CPU, while peripherals such as serial ports and host ports are

on only certain devices.

Central Processing Unit(CPU)

The C67x CPU, in Figure 2.2, is common to all the C62x/C64x/C67x [1] devices.

The CPU contains:

• Program fetch unit

• Instruction dispatch unit
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Figure 2.2: TMS320C67x DSP Block Diagram

• Instruction decode unit

• Two data paths, each with four functional units

• 32 32-bit registers

• Control registers

• Control logic

• Test, emulation, and interrupt logic

The program fetch, instruction dispatch, and instruction decode units can deliver

up to eight 32-bit instructions to the functional units every CPU clock cycle. The

processing of instructions occurs in each of the two data paths (A and B), each of

which contains four functional units (.L, .S, .M, and .D) and 16 32-bit general-purpose

registers. A control register file provides the means to configure and control various

processor operations.
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Internal Memory

The C67x DSP has a 32-bit, byte-addressable address space. Internal (on-chip) mem-

ory is organized in separate data and program spaces. When off-chip memory is used,

these spaces are unified on most devices to a single memory space via the external

memory interface (EMIF). The C67x DSP has two 32-bit internal ports to access

internal data memory. The C67x [2] DSP has a single internal port to access internal

program memory, with an instruction-fetch width of 256 bits.

Memory and Peripheral Options

A variety of memory and peripheral options are available for the C6000 platform:

• Large on-chip RAM, up to 7M bits

• Program cache

• 2-level caches

• 32-bit external memory interface supports SDRAM, SBSRAM, SRAM, and

other asynchronous memories for a broad range of external memory require-

ments and maximum system performance.

• DMA Controller (C6701 DSP only) transfers data between address ranges in

the memory map without intervention by the CPU. The DMA controller has

four programmable channels and a fifth auxiliary channel.

• EDMA Controller performs the same functions as the DMA controller. The

EDMA has 16 programmable channels, as well as a RAM space to hold multiple

configurations for future transfers.

• HPI is a parallel port through which a host processor can directly access the

CPU’s memory space. The host device has ease of access because it is the master

of the interface. The host and the CPU can exchange information via internal
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or external memory. In addition, the host has direct access to memory-mapped

peripherals.

• Expansion bus is a replacement for the HPI, as well as an expansion of the

EMIF. The expansion provides two distinct areas of functionality (host port

and I/O port) which can co-exist in a system. The host port of the expansion

bus can operate in either asynchronous slave mode, similar to the HPI, or in

synchronous master/slave mode. This allows the device to interface to a variety

of host bus protocols. Synchronous FIFOs and asynchronous peripheral I/O

devices may interface to the expansion bus.

• McBSP (multichannel buffered serial port) is based on the standard serial port

interface found on the TMS320C2000 and TMS320C5000 devices. In addition,

the port can buffer serial samples in memory automatically with the aid of the

DMA/EDNA controller. It also has multichannel capability compatible with

the T1, E1, SCSA, and MVIP networking standards.

• Timers in the C6000 devices are two 32-bit general-purpose timers used for

these functions:

– Time events

– Count events

– Generate pulses

– Interrupt the CPU

– Send synchronization events to the DMA/EDMA controller.

• Power-down logic allows reduced clocking to reduce power consumption. Most

of the operating power of CMOS logic dissipates during circuit switching from

one logic state to another. By preventing some or all of the chip’s logic from

switching, you can realize significant power savings without losing any data or

operational context.
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Memory System

The memory system of the TMS320C67x implements a modified Harvard archi-

tecture, providing separate address spaces for instruction and data memory. The

TMS320C67x fetches instructions using a 32-bit address bus and 256-bit data bus.

Each data path accesses data using a 32-bit address bus and a 64-bit data bus.

Together, these data buses can perform two 64-bit loads, two 32-bit stores, or a 64-

bit load and a 32-bit store to or from on-chip memory per instruction cycle. The

TMS320C67x allows up to two data move instructions to be executed in parallel with

other instructions. The TMS320C6701 contains 64 Kbytes of program RAM and 64

Kbytes of data RAM. The program memory can be configured to act as an instruc-

tion cache. The TMS320C6711 and TMS320C6712 use the same two-level on-chip

cache memory architecture as the fixed-point TMS320C6211. The TMS320C6711

and TMS320C6712 each contain two 4 Kbyte level-one caches, one for data and one

for instructions. The level-one caches are fed by a unified 64 Kbyte level-two memory.

The level-two memory can be configured as SRAM, as a cache, or as a partitioned

combination of the two. The TMS320C6713 on-chip memory configuration is similar

to that of the TMS320C6711 and TMS320C6712, except that it contains a larger 256

Kbyte level-two memory.

Addressing

The TMS320C67x supports register-direct and register-indirect addressing modes and

immediate data. In register-indirect addressing mode, the address register modifica-

tion options include pre-increment/decrement by a short (5bit) immediate or by the

contents of any general-purpose register, and post-increment/decrement by a short

immediate or by the contents of any general-purpose register. The TMS320C67x sup-

ports modulo addressing. Up to eight registers (four from each register file) can be

configured to operate under modulo addressing. The TMS320C67x does not support

bit-reversed addressing.
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Pipeline

The TMS320C67x pipeline consists of 16 stages. The pipeline is non-interlocked and

is significantly deeper than those of other commercially available DSP processors.

Instructions are always fetched eight at a time via the 256-bit instruction bus. This

group of eight instructions is called a ”fetch packet.” However, the TMS320C67x

cannot always execute eight instructions in parallel. The group of instructions to

be executed in parallel is called an ”execution packet.” Because the TMS320C67x

supports variable-length execution packets (and thus can execute from one to eight

instructions in parallel), a single fetch packet may contain several execution packets.

The processor does not check execution packets for resource contention. Consequently,

hand-written assembly code may introduce resource conflicts that produce unwanted

behavior.

All branches on the TMS320C67x are delayed branches with five delay slots. Most

fixed-point instructions on the TMS320C67x have a latency of one cycle. The branch,

fixed-point multiply, and load instructions produce results only after several cycles.

Latencies for floating point operations range from one to ten cycles.

Instruction Set

The TMS320C62x uses an opcode- operand assembly language format where each

instruction has an opcode field for the operation and an operand field for one to

four operands. In addition, three optional fields can be used to indicate parallel

execution, conditional execution, and the targeted execution unit. If the target ex-

ecution unit field is omitted from the instruction, the assembler attempts to select

an appropriate execution unit. All instructions on the TMS320C67x can be executed

conditionally. Five designated general-purpose registers can be used as condition reg-

isters. The TMS320C67x does not support hardware looping, so all loops must be

implemented in software. However, the parallel architecture of the processor allows

the implementation of software loops with virtually no overhead. Due to its simple,
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RISC-like instructions, 32-bit instruction width, and uniform register sets, the instruc-

tion set of the TMS320C67x is extremely regular and straightforward. Because the

TMS320C67x is a highly parallel architecture, obtaining maximum performance often

requires the programmer to schedule instructions carefully. This can be a challenge

because the TMS320C67x has a complex architecture and long, variable instruction

latencies. Texas Instruments’ assembly optimizer tools and C compiler simplify code

development by automating the scheduling and parallelization processes, but these

tools do not always result in optimal code.

Benchmark Performance

The BDTI BenchmarksTM are a set of DSP software functions that BDTI has in-

dependently designed to provide an objective basis for comparing processor perfor-

mance characteristics such as speed and memory use for DSP applications. The

BDTI Benchmark functions are implemented in optimized assembly language to al-

low a realistic assessment of processors’ signal processing performance. The resulting

software is then verified for functional correctness, opti-mality, and adherence to the

BDTI Benchmark specifications. Benchmark performance results are obtained either

through manual analysis and careful, detailed simulation, or by measurement on sam-

ple devices. BDTI’s reports such as Buyer’s Guide to DSP Processors and the Inside

series of reports include extensive BDTI Benchmark results used to evaluate the DSP

performance of a set of processors. For each benchmark, BDTI typically reports cycle

counts, execution time, a cost-performance metric, an energy-efficiency metric, and

memory usage. In this section, we present sample execution time, cost-performance,

energy consumption, and memory usage results taken from BDTI’s library of bench-

mark results for the TMS320C67x and two other floating-point processors: the Analog

Devices ADSP-2116x and the Renesas (formerly Hitachi) SH775x, which is based on

the SH-4 core.

Execution Time:
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Execution time results in this report were obtained assuming instructions and

data are preloaded in caches where applicable. Processor speeds are for the fastest

available chips as of mid-2003. Figure 2.3 shows execution time results on BDTI’s

256-point FFT benchmark for the fastest member of each processor family. The 225

MHz TMS320C6713 is over 30% faster on this benchmark than either the 100 MHz

ADSP-21161N or the 240 MHz SH7750R. The TMS320C6713 achieves this speed

through a combination of a high clock rate and a high degree of parallelism.

Figure 2.3: 256-point FFT Benchmark Execution times (lower is better)

The TMS320C6713 could be even faster if it supported floating-point SIMD in-

structions like those supported by the ADSP-21161N and the SH7750R. For example,

the ADSP-21161N can compute both the sum and the difference of two operands with

a single instruction. The TMS320C6713 is also held back by the long latencies of its

floating-point arithmetic instructions (for example, four cycles for single-precision ad-

ditions and multiplications). As mentioned above, the ADSP-21161N has instructions

that accelerate the FFT butterfly. However, the ADSP-21161N has a relatively low
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clock speed, so it cannot keep up with the TMS320C6713. The SH7750R is also quite

fast at processing the FFT butterfly. However, the SH7750R spends many cycles

loading coefficients between FFT butterflies. Consequently, the SH7750R is much

slower than the TMS320C6713 on this benchmark.

Cost-Performance

Figure 2.4 shows cost-performance results for the most cost-effective member of

each processor family. To create the cost-performance metric, the FFT execution

time is multiplied by the cost of the processor in 10,000-unit quantities as of mid-

2003. Based on this analysis, the 150 MHz TMS320C6712C is the most cost-effective

processor considered here. It is over 35% more cost-effective than either the 100 MHz

ADSP-21161N or the 200 MHz SH7750R. It should be noted that included on-chip

memory and peripherals can be a significant factor in overall cost. These factors are

not considered in the cost-performance metric used here.

Figure 2.4: Cost Execution Time Product for 256-point FFT(lower is better)
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Energy Efficiency

Figure 2.5: Energy Consumption for 256-point FFT(lower is better)

Figure 2.5 shows energy consumption results for the most energy-efficient member of

each processor family. To estimate the energy consumption metric, the FFT execution

time is multiplied by the typical power consumption of the processor. Figure 2.5 lists

the typical power consumption for each processor below the processor name. The 200

MHz TMS320C6713 is about 30% faster than the 100 MHz ADSP-21161N, and it

consumes about 25% less power than the ADSP-21161N. Consequently, it consumes

about half as much energy as the ADSP-21161N. The 200 MHz TMS320C6713 is

also about 30% faster than the 200 MHz SH7750R, but it consumes over two times

more power than the SH7750R. Hence, the TMS320C6713 consumes about 50% more

energy than the SH7750R.
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Memory Use

Execution speed is often the primary metric used to compare processors. How-

ever, a processor’s memory usage is also important. For example, the memory re-

quirements of an application can have a significant impact on overall system cost.

In addition, processors may experience significant performance degradation when in-

structions and data do not fit in on-chip memory. Because of these and other factors,

memory efficiency is an important metric in processor selection. For each of the BDTI

Benchmarks, BDTI measures each processor’s program, constant data, non-constant

data, and total memory use.
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Image Compression Algorithms

As our use of and reliance on computers continues to grow, so too does our need

for efficient ways of storing large amounts of data. For example, someone with a

web page or online catalog - that uses dozens or perhaps hundreds of images - will

more than likely need to use some form of image compression to store those images.

This is because the amount of space required to hold unadulterated images can be

prohibitively large in terms of cost. Fortunately, there are several methods of image

compression available today. These fall into two general categories: lossless and lossy

image compression.

3.1 JPEG Image Compression

The JPEG process is a widely used form of lossy image compression that centers

around the Discrete Cosine Transform. The DCT works by separating images into

parts of differing frequencies. During a step called quantization, where part of com-

pression actually occurs, the less important frequencies are discarded, hence the use

of the term ”lossy.” Then, only the most important frequencies that remain are used

retrieve the image in the decompression process. As a result, reconstructed images

contain some distortion; but as we shall soon see, these levels of distortion can be

adjusted during the compression stage. The JPEG method is used for both color and

33
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black-and-white images [3].

3.1.1 Overview

This is the general scenario how the JPEG Compression works.

a. The image is broken into 8x8 blocks of pixels.

b. Working from left to right, top to bottom, the DCT is applied to each block.

c. Each block is compressed through quantization.

d. The array of compressed blocks that constitute the image is stored in a drasti-

cally reduced amount of space.

e. When desired, the image is reconstructed through decompression, a process that

uses the Inverse Discrete Cosine Transform (IDCT).

3.1.2 The DCT Equation

D(i, j) =
1√
2N

C(i)C(j)
N−1∑
x=0

N−1∑
y=0

p(x, y) cos[
(2x+ 1)iπ

2N
] cos[

(2y + 1)iπ

2N
] (3.1)

C(u) =
1√
2
ifu = 0; 1ifu > 0; (3.2)

p(x,y) is the x,yth element of the image represented by the matrix p. N is the

size of the block that the DCT is done on. The equation calculates one entry (i,jth)

of the transformed image from the pixel values of the original image matrix. For the

standard 8X8 block that JPEG compression uses, N equals 8 and x and y range from

0 to 7. Therefore D(i,j) would be as in Equation 3.3.

D(i, j) =
1

4
C(i)C(j)

7∑
x=0

7∑
y=0

p(x, y) cos[
(2x+ 1)iπ

16
] cos[

(2y + 1)iπ

16
] (3.3)
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Because the DCT uses cosine functions, the resulting matrix depends on the hor-

izontal, diagonal, and vertical frequencies. Therefore an image black with a lot of

change in frequency has a very random looking resulting matrix, while an image ma-

trix of just one color, has a resulting matrix of a large value for the first element and

zeroes for the other elements.

3.1.3 The DCT Matrix

To get the matrix from Equation 3.1 we will use the following equation,

Ti,j =
1√
N

if i = 0;

√
2

N
cos

(2j + 1)iπ

2N
if i > 0; (3.4)

For an 8x8 block it results in this matrix:

T =

.3536 .3536 .3536 .3536 .3536 .3536 .3536 .3536

.4904 .4157 .2778 .0975 -.0975 -.2778 -.4157 -.4904

.4619 .1913 -.1913 -.4619 -.4619 -.1913 .1913 .4619

.4157 -.0975 -.4904 -.2778 .2778 .4904 .0975 -.4157

.3536 -.3536 -.3536 .3536 .3536 -.3536 -.3536 .3536

.2778 -.4904 .0975 .4157 -.4157 -.0975 .4904 -.2778

.1913 -.4619 .4619 -.1913 -.1913 .4619 -.4619 .1913

.0975 -.2778 .4157 -.4904 .4904 -.4157 .2778 -.0975

The first row (i = 1) of the matrix has all the entries equal to 1√
8

as expected

from Equation 3.4. The columns of T form an orthonormal set, so T is an orthogonal

matrix. When doing the inverse DCT the orthogonality of T is important, as the

inverse of T is 7 which is easy to calculate.
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3.1.4 DCT on a 8X8 Block

Before we begin, it should be noted that the pixel values of a black-and-white image

range from 0 to 255 in steps of 1, where pure black is represented by 0, and pure

white by 255. Thus it can be seen how a photo, illustration, etc. can be accurately

represented by these 256 shades of gray.

Since an image comprises hundreds or even thousands of 8x8 blocks of pixels, the

following description of what happens to one 8x8 block is a microcosm of the JPEG

process; what is done to one block of image pixels is done to all of them, in the order

earlier specified. Now, let’s start with a block of image-pixel values.

Original Image Block:

154 123 123 123 123 123 123 126

192 180 136 154 154 154 136 110

254 198 154 154 180 154 123 123

239 180 136 180 180 166 123 123

180 154 136 167 166 149 136 136

128 136 123 136 154 180 198 154

123 105 110 149 136 136 180 166

110 136 123 123 123 136 154 136

Because the DCT is designed to work on pixel values ranging from -128 to 127, the

original block is ”leveled off” by subtracting 128 from each entry. This results in the

following matrix.
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M =

26 -5 -5 -5 -5 -5 -5 8

64 52 8 26 26 26 8 -18

126 70 26 26 52 26 -5 -5

111 52 8 52 52 38 -5 -5

52 26 8 39 38 21 8 8

0 8 -5 8 26 52 70 26

-5 23 -18 21 8 8 52 38

-18 8 -5 -5 -5 8 26 8

Now the DCT (Discrete Cosine Transform) is performed using following equation.

D = TMT ′ (3.5)

In Equation 3.5 matrix M is first multiplied on the left by the DCT matrix T from

the previous section; this transforms the rows. The columns are then transformed

by multiplying on the right by the transpose of the DCT matrix. This yields the

following matrix.

D =

162.3 40.6 20.0 72.3 30.3 12.5 -19.7 -11.5

30.5 108.4 10.5 32.3 27.7 -15.5 18.4 -2.0

-94.1 -60.1 12.3 -43.4 -31.3 6.1 -3.3 7.1

30.5 108.4 10.5 32.3 27.7 -15.5 18.4 -2.0

-94.1 -60.1 12.3 -43.4 -31.3 6.1 -3.3 7.1

30.5 108.4 10.5 32.3 27.7 -15.5 18.4 -2.0

-94.1 -60.1 12.3 -43.4 -31.3 6.1 -3.3 7.1

30.5 108.4 10.5 32.3 27.7 -15.5 18.4 -2.0

This block matrix now consists of 64 DCT coefficients, Cy, where i and j range from

0 to 7. The top-left coefficient, C00, correlates to the low frequencies of the original

image block. As we move away from C00 in all directions, the DCT coefficients

correlate to higher and higher frequencies of the image block, where C77 corresponds
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to the highest frequency. It is important to note that the human eye is most sensitive

to low frequencies, and results from the quantization step will reflect this fact.

3.1.5 Quantization

The 8x8 block of DCT coefficients is now ready for compression by quantization. A

remarkable and highly useful feature of the JPEG process is that in this step, varying

levels of image compression and quality are obtainable through selection of specific

quantization matrices. This enables the user to decide on quality levels ranging from

1 to 100, where 1 gives the poorest image quality and highest compression, while 100

gives the best quality and lowest compression. As a result, the quality/compression

ratio can be tailored to suit different needs. Subjective experiments involving the

human visual system have resulted in the JPEG standard quantization matrix. With

a quality level of 50, this matrix renders both high compression and excellent decom-

pressed image quality.

Q50 =

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

If, however, another level of quality and compression is desired, scalar multiples of

the JPEG standard quantization matrix may be used. For a quality level greater than

50 (less compression, higher image quality), the standard quantization matrix is mul-

tiplied by (100-quality level)/50. For a quality level less than 50 (more compression,

lower image quality), the standard quantization matrix is multiplied by 50/quality

level. The scaled quantization matrix is then rounded and clipped to have positive
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integer values ranging from 1 to 255.

Quantization is achieved by dividing each element in the transformed image ma-

trix’ by the corresponding element in the quantization matrix, and then rounding to

the nearest integer value. For the following step, quantization matrix Q50 is used.

Ci,j = round(Di,j/Qi,j) (3.6)

Recall that the coefficients situated near the upper-left corner correspond to the

lower frequencies - to which the human eye is most sensitive - of the image block. In

addition, the zeros represent the less important, higher frequencies that have been

discarded, giving rise to the lossy part of compression. As mentioned earlier, only

the remaining nonzero coefficients will be used to reconstruct the image. It is also

interesting to note the effect of different quantization matrices; use of Q10 would give

C significantly more zeros, while Q90 would result in very few zeros.

3.1.6 Coding

The quantized matrix C is now ready for the final step of compression. Before stor-

age, all coefficients of C are converted by an encoder to a stream of binary data

(01101011...). In-depth coverage of the coding process is beyond the scope of this

article. However, we can point out one key aspect that the reader is sure to appreci-

ate. After quantization, it is quite common for most of the coefficients to equal zero.

JPEG takes advantage of this by encoding quantized coefficients in the zig-zag se-

quence shown in Figure 2.1. The advantage lies in the consolidation of relatively large

runs of zeros, which compress very well. The sequence in Figure 1(4x4) continues for

the entire 8x8 block.
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Figure 3.1: Coding in JPEG Algorithm

3.1.7 Decompression

Reconstruction of our image begins by decoding the bit stream representing the quan-

tized matrix C. Each element of C is then multiplied by the corresponding element

of the quantization matrix originally used.

Ri,j = Qi,j ∗ Ci,j (3.7)

R =

160 44 20 80 24 0 0 0

36 108 14 38 26 0 0 0

-98 -65 16 -48 -40 0 0 0

-42 -85 0 -29 0 0 0 0

-36 22 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
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The IDCT is next applied to matrix 5, which is rounded to the nearest integer.

Finally, 128 is added to each element of that result, giving us the decompressed JPEG

version 1 of our original 8x8 image block M.

N = round(T
′RT )+128(3.8)

3.2 Embedded Zerotree Wavelet Algorithm

The embedded zerotree wavelet algorithm (EZW) [4] is a simple, yet remarkable

effective, image compression algorithm, having the property that the bits in the bit

stream are generated in order of importance, yielding a fully embedded code. Using

an embedded coding algorithm, an encoder can terminate the encoding at any point

thereby allowing a target rate or target distortion metric to be met exactly. Also,

given a bit stream, the decoder can cease decoding at any point in the bit stream and

still produce exactly the same image that would have been encoded at the bit rate

corresponding to the truncated stream. In addition to producing a fully embedded

bit stream, EZW consistently produces compression results that are competitive with

virtually all known compression algorithms.

3.2.1 Zerotree Data Structure

A wavelet coefficient x is said to be insignificant with respect to a given threshold T

if |x| < T . The zerotree is based on the hypothesis that if a wavelet coefficient at a

coarse scale is insignificant with respect to a threshold, then all wavelet coefficients

of the same orientation in the same spatial location at the finer scale are likely to be

insignificant with respect to the same threshold. More specifically, in a hierarchical

subband system, with the exception of the highest frequency subbands, ever coefficient

at a given scale can be related to a set of coefficients at the next finer scale of similar

orientation. The coefficient at the coarse scale is called the parent, and all coefficients

corresponding to the same spatial location at the next finer scale of similar orientation
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are called children. Similar, we can define the concepts descendants and ancestors.

The data structure of the zerotree can be visualized in Figure 3.2. Given a threshold

T to determine whether or not a coefficient is significant, a coefficient x is said to

be an element of a zerotree for the threshold T if itself and all of its descendents are

insignificant with respect to the threshold T. Therefore, given a threshold, any wavelet

coefficient could be represented in one of the four data types: zerotree root (ZRT),

isolated zero (IZ) (it is insignificant but its descendant is not), positive significant

(POS) and negative significant (NEG)[5].

Figure 3.2: Coefficients are coded in a zerotree structure and scanned in a left-to-right
order

3.2.2 Dominant Pass

Shapiro’s algorithm creates rooted trees using a pixel of the LL subband for the

root of each tree and a specific order of similarly positioned pixels from the other

subbands for children. There are two types of passes performed: a dominant pass and

a subordinate pass. The dominant pass finds pixel values above a certain threshold,
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and the subordinate pass quantizes all significant pixel values found in this and all

previous dominant passes previous.

A dominant pass checks all trees for significant pixel values with respect to a

certain threshold. The initial threshold is chosen to be one-half of the maximum

magnitude of all pixel values. Subsequent dominant pass thresholds are always one-

half the previous pass threshold. When an insignificant pixel value is found, and a

check of all it’s children reveals that they too are insignificant, then it is possible to

encode that pixel and all it’s children with one symbol, a zerotree root, in place of a

symbol for that pixel and a symbol for each of that pixel’s children, thus achieving

compression. Pixel values found to be significant in the dominant pass are encoded

with the symbol positive, for a value greater than zero, or negative, for a value less

than zero, then those pixel values are added to a subordinate list for quantization, and

the pixel value in the subband is then set to zero for the next dominant pass. Pixel

values found to be insignificant in the dominant pass but with significant children are

coded as isolated zeros. So, the dominant passes map pixel values to a four symbol

alphabet which can then be further encoded by using an adaptive arithmetic coder.

3.2.3 Subordinate Pass

After each dominant pass, a subordinate pass is then performed on the subordinate list

which contains all pixel values previously found to be significant. The subordinate

pass performs pixel value quantization which achieves compression by telling the

decoder with a symbol roughly what the pixel value is instead of exactly what the

pixel value is. Since the initial threshold is one-half the maximum magnitude of all

pixel values for the first dominant pass, then in the first subordinate pass only two

ranges are specified in which a significant pixel value could lie: the upper half of

the range between the maximum pixel value and the initial threshold, or the lower

half of the same range. A pixel value in the upper half of the range gets coded with

the symbol upper (for upper part of the range), while a pixel value in the lower half
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gets coded with the symbol lower. A pixel value found to be in a particular range

is quantized, from the decoders viewpoint, to the midpoint of that range. Upon

subsequent subordinate passes the threshold has been cut in half and so there are

twice as many ranges as the last subordinate pass plus two new ranges corresponding

to the new lower threshold. By reading the subordinate symbol corresponding to

a significant pixel and knowing the threshold, the decoder is able to determine the

range in which the pixel lies and reconstructs the pixel value to the midpoint of that

range. Thus from the decoders viewpoint the rough estimate of a significant pixel’s

value is getting more refined and accurate as more subordinate passes are made. So,

the subordinate passes quantize pixel values to a two symbol alphabet which then

get encoded by using an adaptive arithmetic coder as described by Witten, Neal, and

Cleary, thus achieving compression.

3.2.4 Working

A very direct approach is to simply transmit the values of the coefficients in decreasing

order, but this is not very efficient. This way a lot of bits are spend on the coefficient

values and we do not use the fact that we know that the coefficients are in decreasing

order. A better approach is to use a threshold and only signal to the decoder if the

values are larger or smaller than the threshold. If we also transmit the threshold to the

decoder, it can reconstruct already quite a lot. To arrive at a perfect reconstruction

we repeat the process after lowering the threshold, until the threshold has become

smaller than the smallest coefficient we wanted to transmit. We can make this process

much more efficient by subtracting the threshold from the values that were larger than

the threshold. This results in a bit stream with increasing accuracy and which can

be perfectly reconstructed by the decoder. If we use a predetermined sequence of

thresholds then we do not have to transmit them to the decoder and thus save us

some bandwidth. If the predetermined sequence is a sequence of powers of two it is

called bitplane coding since the thresholds in this case correspond to the bits in the
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binary representation of the coefficients. EZW encoding as described in [Sha93] uses

this type of coefficient value encoding. One important thing is however still missing:

the transmission of the coefficient positions. Indeed, without this information the

decoder will not be able to reconstruct the encoded signal (although it can perfectly

reconstruct the transmitted bit stream). It is in the encoding of the positions where

the efficient encoders are separated from the inefficient ones. As mentioned before,

EZW encoding uses a predefined scan order to encode the position of the wavelet

coefficients (see figure 2.3). Through the use of zerotrees many positions are encoded

implicitly. Several scan orders are possible (see figure 3), as long as the lower subbands

are completely scanned before going on to the higher subbands. In [Sha93] a raster

scan order is used, while in [Alg95] some other scan orders are mentioned. The scan

order seems to be of some influence of the final compression result.

Figure 3.3: The Relation between Wavelet Coefficients in different subbands(left),
how to scan them (upper right) and the result of using zerotree(lower right) sym-
bols(T) in the coding process

There are two types of scanning procedures namely

• Raster Scan

• Mortan Scan

The difference in approach between the two procedures is illustrated by the fol-

lowing diagram.
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Figure 3.4: The Relation between Wavelet Coefficients in different subbands(left),
how to scan them (upper right) and the result of using zerotree(lower right) sym-
bols(T) in the coding process

3.2.5 Algorithm

• Image is read from the file and converted to gray scale.

• Wavelet transform is applied to the gray scaled image according to the size of

image using Decompositionorder = log2(size(originalimage))

• Generate wavelet coefficients

• Convert wavelet coefficients to matrix format

• Encode wavelet coefficients using EZW algorithm

Encoding stops when final threshold value is achieved, the procedure is discussed

in below diagram

Huffman coding algorithm is applied to the EZW bit stream to achieve the final

compressed image.
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Figure 3.5: Algorithm

Figure 3.6: Wavelet Co-efficient scanning order



Chapter 4

Implementation & Results

4.1 EZW Implementation with Matlab

The Embedded Zerotree Wavelet (EZW) algorithm is implemented with the Matlab

and the Wavelet Toolbox.The procedure of the implementation is as following.

• reading the gray scale images (256 X 256)

• defining wavelet dcomposition order

Decompositionorder = log(size(originalimage))

• Discrete wavelet transform to generate wavelet co-efficient

• EZW Encoding

• Huffman Encoding

• Huffman Decoding

• EZW Decoding using the same threshold in Encoding

• Inverse DWT

• Writing the Reconstructed Image

48
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4.2 Image Compression Comparision Parameters

Following are the well known parameters for the image compression algorithm com-

parision.

• Compression Ratio

• PSNR

• Execution Time

• Size of compressed Image

• Bit per Pixel (bpp)

4.2.1 PSNR Ratio

• The PSNR is most commonly used as a measure of quality of reconstruction of

lossy image compression.

• The signal in this case is the original data, and the noise is the error introduced

by compression.

• It is most easily defined via themean squared error(MSE)

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

||I(i, j)−K(i, j)||2 (4.1)

PSNR = 10 ∗ log10(
MAX2

I

MSE
) = 20 ∗ log10(

MAXI√
MSE

) (4.2)
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4.3 Result

4.3.1 Lena Image

– Threshold = 25

Bitrate = 0.71 bpp PSNR = 27.65

– Threshold = 50

Bitrate = 0.31 bpp PSNR = 26.21

4.3.2 Cameraman Image

– Threshold = 25

Bitrate = 0.71 bpp PSNR = 27.65

– Threshold = 50

Bitrate = 0.31 bpp PSNR = 26.21

4.3.3 Peppers Image

– Threshold = 25

Bitrate = 0.71 bpp PSNR = 27.65

– Threshold = 50

Bitrate = 0.31 bpp PSNR = 26.21
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Figure 4.1: Original Lena Image

4.4 Result Analysis

As from the result it is clear that for the lower initial threshold at the encoding

the bitrate of the reconstructed image is larger compare to the larger initial

threshold at the encoding. i.e. for the lena image if the initial threshold = 25

then the bitrate = 0.71 bpp and for initial threshold = 50 the bitrate = 0.31

bpp. From the original images and the reconstructed images we can see that

for the lower initial threshold at encoding the reconstructed image is more clear

compare to the higher initial threshold at the encoding in the EZW Algorithm.
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Figure 4.2: Reconstructed Lena Image with Threshold = 25

Figure 4.3: Reconstructed Lena Image with Threshold = 50
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Figure 4.4: Original Cameraman Image

Figure 4.5: Reconstructed Cameraman Image with Threshold = 25
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Figure 4.6: Reconstructed Cameraman Image with Threshold = 50

Figure 4.7: Original Peppers Image
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Figure 4.8: Reconstructed Peppers Image with Threshold = 25

Figure 4.9: Reconstructed Peppers Image with Threshold = 50



Chapter 5

Conclusion & Future Work

5.1 Conclusion

This work has proposed the wavelet based image comrpression technique. Wavelet

is the new technology in the image processing and image compression. Using

Discrete Wavelet Transform (DWT) in the image compression gives better result

compare to the Discrete Fourier Transform(DFT). In this thesis the Embedded

Zerotree Wavelet(EZW) algorithm is implemented. The EZW is the efficient

algorithm among the wavelet image compression algorithms.

5.2 Future Scope

The future scope of the thesis goes in the direction of the better image com-

pression using the wavelets. The JPEG2000 standard is the next generation

image compression standard which includes the wavelet computations. So us-

ing the concepts of the EZW algorithm and wavelets the implementation of the

JPEG2000 is possible.
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