
ANALYSIS OF SELF-DESCRIBING GRIDDED
GEOSCIENCE DATA USING HIGH

PERFORMANCE CLUSTER COMPUTING

BY

NILAY SHAH

07MCE021

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

AHMEDABAD-382481

MAY 2009



Analysis of Self-describing Gridded Geoscience Data
Using High Performance Cluster Computing

Major Project

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology in Computer Science and Engineering

By

Nilay Shah

07MCE021

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

AHMEDABAD-382481

May 2009



Certificate

This is to certify that the Major Project entitled ”Analysis of Self-describing Gridded

Geoscience Data Using High Performance Cluster Computing” submitted by Nilay

Shah(07MCE021), towards the partial fulfillment of the requirements for the degree

of Master of Technology in Computer Science and Engineering of Nirma University of

Science and Technology, Ahmedabad is the record of work carried out by him under

my supervision and guidance. In my opinion, the submitted work has reached a level

required for being accepted for examination. The results embodied in this major

project, to the best of my knowledge, haven’t been submitted to any other university

or institution for award of any degree or diploma.

Dr. S.N. Pradhan Dr. Varun Sheel

Professor, Project Guide,

Department of Computer Engineering, Physical Research Laboratory,

Institute of Technology, Ahmedabad

Nirma University, Ahmedabad

Prof. D. J. Patel Dr. K. Kotecha

Professor and Head, Director,

Department of Computer Engineering, Institute of Technology,

Institute of Technology, Nirma University, Ahmedabad

Nirma University, Ahmedabad



iv

Abstract

Unidata’s netCDF data model, data access libraries, and machine independent for-

mat are widely used in the creation, access, and sharing of geoscience data. netCDF

is widely used in earth, ocean, and atmospheric sciences because of its simple data

model, ease of use, portability, and strong user support infrastructure.

The netCDF format provides a platform-independent binary representation for

self-describing data in a form that permits efficient access to a small subset of a large

data set, without first reading through all the preceding data. The format also allows

appending data along one dimension without copying the data set or redefining its

structure.

But a geoscience researcher cannot deal with programming environment, so to

develop such an interface which can make reading and writing netCDF data possible

for them is the scope of the project.

The interface needs to be implemented on high performance computing platforms

to deal with large data files which results into long delays or out of memory problem

while serial execution. Java is to be used as High Performance Computation Lan-

guage and JOMP for providing parallel programming interface.



v

Acknowledgements

I am deeply indebted to Dr Varun Sheel, Project Guide, Physical Research Lab-

oratory, Ahmedabad for his constant guidance and motivation. He has devoted sig-

nificant amount of his valuable time to plan and discuss the project work. Without

his experience and insights, it would have been very difficult to do quality work.

I would also like to thanks to Mr Jigar Rawal, Physical Research Laboratory,

Ahmedabad for his valuable support throughout the Project.

I would also like to thanks to Dr. S.N. Pradhan , Professor, Department of

Computer Engineering, Institute of Technology, Nirma University, Ahmedabad for

his valuablevaluable guidance and continual encouragement throughout the Major

project. I heartily thankful to him for his time to time suggestion and the clarity of

the concepts of the topic that helped me a lot during this study.

I like to give my special thanks to Prof. D.J.Patel, Head, Department of Computer

Engineering, Institute of Technology, Nirma University, Ahmedabad for his continual

kind words of encouragement and motivation throughout the Major Project. I am

also thankful to Dr. K Kotecha, Director, Institute of Technology for his kind support

in all respect during my study.

I am thankful to all faculty members of Department of Computer Engineering,

Nirma University, Ahmedabad for their special attention and suggestions towards the

project work.

The blessings of God and my family members makes the way for completion of

major project. I am very much grateful to them.

The friends, who always bear and motivate me throughout this course, I am

thankful to them.

- Nilay Shah

07MCE021



Contents

Certificate iii

Abstract iv

Acknowledgements v

List of Figures viii

1 Introduction 1
1.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Why NetCDF: . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 NetCDF Features: . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Scope Of Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Literature Survey 6
2.1 NetCDF 4 Architecture: . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 NetCDF Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Benefits of netCDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 The Binary Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 The Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 Using NetCDF4 with the Classic Data Model . . . . . . . . . . . . . 11
2.7 Commitment to Backward Compatibility . . . . . . . . . . . . . . . . 14
2.8 A Common Data Access Model for Geoscience Data . . . . . . . . . . 14
2.9 Limitations of netCDF . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.9.1 Compression and File Size . . . . . . . . . . . . . . . . . . . . 16
2.9.2 Indirect Access . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.9.3 Necessity for Conventions . . . . . . . . . . . . . . . . . . . . 17
2.9.4 Limitations of Data Model . . . . . . . . . . . . . . . . . . . . 17

2.10 Using Java as Scientific Language . . . . . . . . . . . . . . . . . . . . 18

vi



CONTENTS vii

3 Problem Definition and Existing Methodologies 20
3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Other Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Using Java as High Performance Computing Language 22
4.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Messaging System in Java . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.1 Using RMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.2 Using JNI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.3 Using Sockets Interface . . . . . . . . . . . . . . . . . . . . . . 27

4.3 JOMP: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.1 Introduction and Background . . . . . . . . . . . . . . . . . . 27
4.3.2 JOMP API Overview . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.3 The JOMP runtime library . . . . . . . . . . . . . . . . . . . 36
4.3.4 The JOMP Compiler . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.5 JOMP Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Implementation of System 42
5.1 Tools and Technology Used . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 JOMP Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2.1 Data Clauses Support . . . . . . . . . . . . . . . . . . . . . . 42
5.3 Features Covered in Implementation . . . . . . . . . . . . . . . . . . 46
5.4 Overview of the System . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Conclusion and Future Scope 52
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.2 Future Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

A Website References 54

References 55



List of Figures

2.1 NetCDF-4 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 NetCDF-4 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 A Common Data Access Model for Geoscience Data . . . . . . . . . . 15

4.1 Message Passing Java (MPJ) . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Java OpenMP (JOMP) . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Hello World JOMP program . . . . . . . . . . . . . . . . . . . . . . . 39
4.4 Resulting Hello World Java program . . . . . . . . . . . . . . . . . . 39

5.1 a fragment of the JOMP program . . . . . . . . . . . . . . . . . . . . 45
5.2 Resulting Java Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3 Compiling and running the source . . . . . . . . . . . . . . . . . . . . 48
5.4 Application fetching all variables from example.nc file . . . . . . . . . 49
5.5 Application fetching variable - rh from example.nc file . . . . . . . . . 50
5.6 Editing data value at location 1,1,1 of variable - rh . . . . . . . . . . 51

viii



Chapter 1

Introduction

1.1 General

NetCDF (network Common Data Form) is a set of software libraries and machine-

independent data formats that support the creation, access, and sharing of array-

oriented scientific data.

NetCDF (network Common Data Form) is a set of interfaces for array-oriented data

access and a freely-distributed collection of data access libraries for C, Fortran, C++,

Java, and other languages. The netCDF libraries support a machine-independent

format for representing scientific data. Together, the interfaces, libraries, and format

support the creation, access, and sharing of scientific data.

NetCDF Data is:

Self-Describing. A netCDF file includes information about the data it contains.

Portable. A netCDF file can be accessed by computers with different ways of storing

integers, characters, and floating-point numbers.

Direct-access. A small subset of a large dataset may be accessed efficiently, without

first reading through all the preceding data.

Appendable. Data may be appended to a properly structured netCDF file without

copying the dataset or redefining its structure.

1



CHAPTER 1. INTRODUCTION 2

Sharable. One writer and multiple readers may simultaneously access the same

netCDF file.

Archivable. Access to all earlier forms of netCDF data will be supported by current

and future versions of the software.

1.1.1 Why NetCDF:

Unidata’s netCDF (network Common Data Form) is a data model for array-oriented

scientific data access, a package of freely available software that implements the data

model, and a machine-independent data format. NetCDF supports the creation,

manipulation, and sharing of scientific data sets that are self-describing, portable,

directly accessible, and appendable.

A data model specifies data components, relationships, and operations, indepen-

dent of any particular programming language. The components of a netCDF data

set are its variables, dimensions, and attributes. Each variable has a name, a shape

determined by its dimensions, a type, some attributes, and values. Variable attributes

represent ancillary information, such as units and special values used for missing data.

Operations on netCDF components include creation, renaming, inquiring, writing,

and reading.

The netCDF software includes interfaces for C, Fortran, C++, perl, and Java.

Utilities are available for displaying the structure and contents of a netCDF data set,

as well as for generating a netCDF data set from a simple text representation.

The netCDF format provides a platform-independent binary representation for

self-describing data in a form that permits efficient access to a small subset of a large

data set, without first reading through all the preceding data. The format also allows

appending data along one dimension without copying the data set or redefining its



CHAPTER 1. INTRODUCTION 3

structure.

Since Unidata developed netCDF, other groups and projects in the geosciences

have adopted the netCDF interfaces and format, and its use has also spread to other

disciplines.

1.1.2 NetCDF Features:

• Multiple unlimited dimensions

• Portable structured types

• String type

• Additional numeric types

• Variable-length types for ragged arrays

• Unicode names

• Efficient dynamic schema changes

• Multidimensional tiling (chunking)

• Per variable compression

• Parallel I/O

• Nested scopes using Groups

1.2 Motivation

Geoscience Data Files are available to geoscience researchers from various sources,

but reading, visualization and writing a file for them is not easier.



CHAPTER 1. INTRODUCTION 4

Although various software tools are available for viewing netCDF file data, but

then also reading particular variable, then modification in original data and then

writing netCDF file using high performance cluster computing is an important task

for any research scientist which is not available in any tool.

This project will develop an interface for geoscience researchers, by which they

can do all the geoscience data analysis tasks.

1.3 Scope Of Work

The scope of work starts with Study of NetCDF file data model and all the task

related to accessing the file via programming interface. Choosing a particular pro-

gramming language as Java and then, developing an interface to read, write, modify

netCDF files. The interface should be able to read and edit any variables, attributes

and data of any netCDF file.

Finding the best possible way to implement parallel programming interface using

language Java. And implementation of the interface on High Performance Cluster

Computing using JOMP for providing parallel programming interface.

1.4 Thesis Organization

The rest of the thesis is organized as follows.

Chapter 2, Literature Survey, describes study of NetCDF file structure and its

features. It also describes using Java as scientific language.

Chapter 3, Problem Definition and Existing Methodologies, describes what is the



CHAPTER 1. INTRODUCTION 5

need for the system to be developed and who will be benefited by the system.

Chapter 4, Using Java as High Performance Computing Language, describes what

are the possible ways to use java as HPC language and finding the best way out

of it.

Chapter 5, Implementation of System, describes system implementation with fea-

tures and how it works.

Finally, in chapter 6 concluding remarks and scope for future work is presented.



Chapter 2

Literature Survey

2.1 NetCDF 4 Architecture:

NetCDF-4 uses HDF5 for storage, high performance.

• Parallel I/O.

• Chunking for efficient access in different orders.

• Conversion using ”reader makes right approach”.

Provides simple netCDF interface to subset of HDF5. Also supports netCDF clas-

sic and 64-bit formats. netCDF-4 Architecture is shown in figure 2.1. [4]

2.2 NetCDF Usage

Since netCDF was made available in 1989, the popularity of the interface and format

has continued to grow. Now widely used in the atmospheric sciences, it is one of only

a handful of data-access interfaces and formats that are used across diverse scientific

disciplines. For example, as part of the Distributed Ocean Data System (DODS),

developers have implemented a client-server-based distributed system for access to

6



CHAPTER 2. LITERATURE SURVEY 7

Figure 2.1: NetCDF-4 Architecture

oceanographic data over the Internet that supports use of the netCDF interface for

clients. Descriptions of some of other projects and groups that are now using netCDF

are available from Unidata.

NetCDF data may now be accessed from over 20 packages of freely available soft-

ware, including DDI, DODS, EPIC, FAN, FERRET, GMT, GrADS, HDF interface,

LinkWinds, SciAn, and Zebra. Access to netCDF data is also available from com-

mercial or licensed packages for data analysis and visualization, including IBM Data

Explorer, IDL, GEMPAK, MATLAB, PPLUS, PV-Wave, PolyPaint+, and NCAR

Graphics.

The unexpectedly widespread use of netCDF means that any future changes to the

data model, interfaces, or format must be planned and implemented with great care.

Backward compatibility with existing software and data archives is very important

to netCDF users and must be part of future development plans.



CHAPTER 2. LITERATURE SURVEY 8

2.3 Benefits of netCDF

Benefits of using netCDF or other similar higher-level data-access interfaces for portable

and self-describing data include:

• Sharing common data files among different applications, written in different

languages, running on different computer architectures;

• Reduction of programming effort spent interpreting application- or machine-

specific formats;

• Incorporation of metadata with the data, reducing possibilities for misinterpret-

ing the data;

• Accessing small subsets of data efficiently from large data sets;

• Making programs immune to changes caused by the addition of new variables

or other additions to the data schema; and

• Raising the level of data issues to structure and content rather than format.

2.4 The Binary Formats

By ”binary formats” we mean the layout of bytes on the disk. NetCDF-4.0 supports

three binary data formats:

• classic - the original netCDF binary data format

• 64-bit offset - the variant format which allows for much larger data files

• netCDF-4 - the HDF5-based format, with netCDF-specific constraints and con-

ventions.

Additionally there is one ”virtual” format: netCDF-4 classic model. This format

is obtained by passing the classic model flag when creating the netCDF-4 data file.



CHAPTER 2. LITERATURE SURVEY 9

Such a file will use the netCDF-4 format restricted to the classic netCDF data model.

Such files can be accessed by existing programs that are linked to the netCDF-4 li-

brary.

The Programming APIs and Libraries

• By ”programming APIs and Libraries” we mean the software that makes netCDF

available in various computer programming languages.

• The language APIs are implemented in two distinct core libraries: the original

C library and the independent Java library. The Fortran and C++ APIs call

the C library functions. All other APIs not in a Java environment are based on

the C library.

• NetCDF-4 has been fully implemented in the C library; implementation in the

Java library is underway.

2.5 The Data Model

By ”data model” we mean the way scientific data is conceptually modeled with a

set of objects, operations, and rules that determine how the data is represented and

accessed.

The classic model, as shown in figure 2.2, of netCDF represents data as a set of multi-

dimensional arrays, with sharable dimensions, and additional metadata attached to

individual arrays or the entire file. In netCDF terminology, the data arrays are vari-

ables, which may share dimensions, and may have attached attributes. Attributes

may also be attached to the file as a whole. One dimension may be of unlimited

length, so data may be efficiently appended to variables along that dimension. Vari-

ables and attributes have one of six primitive data types: char, byte, short, int, float,

or double.



CHAPTER 2. LITERATURE SURVEY 10

Figure 2.2: NetCDF-4 Data Model

NetCDF-4 expands this model to include elements from the HDF5 data model, in-

cluding hierarchical grouping, additional primitive data types, and user defined data

types.

The new data model is a superset of the existing data model. With the addition

of a nameless ”root group” in every netCDF file, the classic model fits within the

netCDF-4 model. [4]



CHAPTER 2. LITERATURE SURVEY 11

2.6 Using NetCDF4 with the Classic Data Model

NetCDF-4 brings many new features to users within the classic netCDF model. By

confining themselves to the classic model, data producers ensure that their data

files can be read by any existing netCDF software which has been relinked with the

netCDF-4 library.

For example, the use of a compound type in a file requires the netCDF-4 data model,

but reading compressed data does not.

One advantage of only using features that conform to the classic data model is that

existing code that reads, analyzes, or visualizes the data will continue to work. No

code changes are needed for such programs, and they can transparently use netCDF-4

features such as large file and object sizes, compression, control of endianness, reading

chunked data, and parallel I/O, without modification of existing code.

For example, data producers can use zlib compression when writing out data files.

Since this is transparent to the reader, the programs that read the data do not need

to be modified to expand the data. That happens without any help from the reader.

In many cases, users may wish to use netCDF-4 data files without adding any of

the model-expanding features. As a convenience netCDF-4 includes the CLASSIC-

MODEL flag. When a file is created with this flag, the rules of the classic netCDF

model are strictly enforced in that file. This remains a property of the file, and the

file may never contain user-defined types, groups, or any other objects that are not

part of the classic netCDF data model.[7]

Large File and Object Size:

NetCDF-4 files may contain larger objects than classic netCDF or even 64-bit offset

netCDF files. For example, variables that do not use the unlimited dimension cannot

be larger than about 4 GiBytes in 64-bit offset netCDF files, but there is no such

limit with netCDF-4 files on 64- bit platforms.



CHAPTER 2. LITERATURE SURVEY 12

Compression and Shuffle Filters:

NetCDF-4 uses the zlib library to allow data to be compressed and uncompressed

as it is written and read. The data writer must set the appropriate flags, and the

data will be compressed as it is written. Data readers do not have to be aware that

the data are compressed, because the expansion of the data as it read is completely

transparent.

The shuffle filter does not compress the data, but may assist with the compression of

integer data. The shuffle algorithm changes the byte order in the data stream; when

used with integers that are all close together, this results in a better compression

ratio. There is no benefit from using the shuffle filter without also using compression.

Data compression and shuffling may be set on a pervariable basis. That is, the zlib

compression flag (from 0,no compression, to 9, maximum compression) can be set

independently for each variable. In our tests we notice that setting the deflate higher

than one takes more time, but has little benefit.

Control of Endianness:

In netCDF classic format files (and 64-bit offset format files), numeric data are stored

in big-endian format. On little-endian platforms, netCDF is converted to big-endian

when the data are written, and converted back to littleendian when read from the

file.

In netCDF-4 files, the user has direct control over the endianness of the each data

variable. The default is to write the data in the native endianness of the machine.

This is useful in cases where the data are to be read on the same machine, or machines

of similar architecture.

However, in some cases the data may be produced on a machine of one native en-

dianness, and read on a machine of the other endianness. In these cases, the data

writer may wish to optimize for the reader by explicitly setting the endianness of the

variable.

In our tests, the endianness of the data only affected read rates significantly when

disk caches were in full use, and the data were read from the disk cache. In this



CHAPTER 2. LITERATURE SURVEY 13

case, data with a native endianness were read noticeably faster. However, when disks

caches were cleared, the endianness of the data does not affect the read rate much.

Apparently the disk speed is slow enough without caching that the CPU has plenty

of time to swap the bytes of the data while waiting for the disk. When the data are

available in cache, the I/O rate is much faster, and then the cost of the byte swapping

becomes noticeable.

For high-performance applications in which netCDF file reading is a bottleneck and

access patterns allow disk caching to be used effectively, users should consider writing

variables in the file with the endianness of the target platform. Higher-performance

disk systems may also serve the data fast enough for its endianness to matter.

Chunking:

NetCDF-4 files may be written as chunked data, each chunk representing a multidi-

mensional tile of the same size. That is, the data are written as chunks of a given

size, specified by the user when the variable is created and before any data is written.

Compressed variables must be chunked, and each chunk is compressed or uncom-

pressed independently.

Chunking has important performance ramifications. Both file size and I/O rates are

affected by chunk sizes, and choosing very small chunk sizes can be disastrous for

performance. The following graph shows the file sizes of the radar 2D sample data

for a variety of chunk sizes.

Chunk sizes should be chosen to yield an amount of data that can be comfortably

handled by disk buffers. Chunk sizes that are too small or too large result in poor

performance or overly large data files. Since compression and expansion work on

individual chunks, specifying too large a chunk size may cause a large portion of a

file to be uncompressed when reading only a small subset of the data.

One heuristic for data providers to use is square chunks about one megabyte in size.

Chunk sizes should also be chosen so that a whole number multiple of the chunk

completely fills the dimension.

Users will also experience better performance by using contiguous storage for vari-



CHAPTER 2. LITERATURE SURVEY 14

ables of fixed size, if data are accessed sequentially.

Parallel I/O:

NetCDF-4 supports parallel I/O on platforms that support MPI (the Message Pass-

ing library). Parallel I/O in netCDF-4 only works on netCDF-4 data files.

NetCDF-4 users may use special functions to open or create files, to which they can

write data in parallel, and from which they can read data in parallel. Parallel data

reads can result in significant performance improvements in some high-performance

computing applications. Equivalent wrapper functions for the Fortran APIs are pro-

vided in the netCDF distribution.

Recent testing on TeraGrid machines showed clear performance gains with parallel

I/O, on parallel file systems with low processor counts.[7]

2.7 Commitment to Backward Compatibility

NetCDF-4 provides both read and write access to all earlier forms of netCDF data.

Existing C, Fortran, and Java netCDF programs will continue to work after recom-

piling and relinking.

Future versions of netCDF will continue to support both data access compatibility

and API compatibility.

2.8 A Common Data Access Model for Geoscience

Data

An effort to provide useful mappings among NetCDF, HDF, and OpeNDAP data

abstractions as shown in figure 2.3

Intended to enhance interoperability.

Lets scientists do science instead of data management.



CHAPTER 2. LITERATURE SURVEY 15

Figure 2.3: A Common Data Access Model for Geoscience Data

Lets data providers and application developers work more independently.

Raises level of discourse about data objects, conventions, coordinate systems, and

data management.

Demonstrated in NetCDF-Java 2.2, which can access netCDF, HDF5, OpeNDAP,

GRIB1, GRIB2, NEXRAD, NIDS, DORADE, DMSP, GINI, ... data through a sin-

gle interface!

NetCDF-4.0 C interface implements data access layer.



CHAPTER 2. LITERATURE SURVEY 16

2.9 Limitations of netCDF

While the netCDF data model is widely applicable to data that can be organized into

a collection of named scalar or array variables with named attributes, there are some

important limitations to the model and its implementation in software. Some of these

limitations are inherent in the trade-offs among conflicting requirements that netCDF

embodies, but we plan to address other limitations in the next version of the software.

2.9.1 Compression and File Size

Currently, netCDF offers a limited number of external numeric data types: 8-, 16-,

32-bit integers, or 32- or 64-bit floating-point numbers. This limited set of sizes may

use file space inefficiently. For example, arrays of 9-bit values must be stored in 16-bit

short integers. Storing arrays of 1- or 2-bit values in 8-bit values is even less optimal.

With the current netCDF file format, no more than 2 gigabytes of data can be stored

in a single netCDF file. This limitation is a result of 32-bit offsets currently used for

storing positions within a file.

2.9.2 Indirect Access

Currently, if data in one netCDF file is also needed with another file, the data must

either be copied, or an application must know about the location of the data in mul-

tiple files. There are no interfaces for defining variables in one file that point to other

variables or variable data cross-sections in other files. This limits data sharing, and

may even require maintaining multiple copies of data that is used in several files.

If it were possible to use a link variable to point to a specified cross-section of data

in one or more other files, data could be shared by reference, without copying it. For

example, an image loop could be represented by a small file containing a link variable

pointing to image data in other files. To an application reading the link variable, it



CHAPTER 2. LITERATURE SURVEY 17

would appear as if the image data were in the file.

2.9.3 Necessity for Conventions

The extent to which data can be completely self-describing is limited: there is always

some assumed context without which sharing and archiving data would be imprac-

tical. NetCDF permits storing meaningful names for variables, dimensions, and at-

tributes; units of measure in a form that can be used in computations; text strings

for attribute values that apply to an entire data set; and simple kinds of coordinate

system information. But for more complex kinds of metadata (for example, the in-

formation necessary to provide accurate georeferencing of data on unusual grids or

from satellite images), it is often necessary to develop conventions.

Specific additions to the netCDF data model might make some of these conventions

unnecessary or allow some forms of metadata to be represented in a uniform and

compact way. For example, adding explicit georeferencing to the netCDF data model

would simplify elaborate georeferencing conventions at the cost of complicating the

model. The problem is finding an appropriate trade-off between the richness of the

model and its generality (i.e., its ability to encompass many kinds of data). A data

model tailored to capture the shared context among researchers within one discipline

may not be appropriate for sharing or combining data from multiple disciplines.

2.9.4 Limitations of Data Model

The netCDF data model does not support nested data structures such as trees, nested

arrays, or other recursive structures, primarily because the current Fortran interface

must be able to read and write any netCDF data set. Through use of indirection and

conventions it is possible to represent some kinds of nested structures, but the result

falls short of the netCDF goal of self-describing data.



CHAPTER 2. LITERATURE SURVEY 18

Another limitation of the current model is that only one unlimited (changeable) di-

mension is permitted for each netCDF data set. Multiple variables can share an un-

limited dimension, but then they must all grow together. Hence the netCDF model

does not permit variables with several unlimited dimensions or the use of multiple

unlimited dimensions in different variables within the same file. Hence variables that

have non-rectangular shapes (for example, ragged arrays) cannot be represented con-

veniently.

2.10 Using Java as Scientific Language

Java has yet to make a signicant impact in the field of traditional scientific computing.

However, there are a number of reasons why it may do so in the not too distant future.

The most obvious benefits are those of portability and ease of software engineering.

The former will be particularly important when grid computing comes of age, as a

user may not know when they submit it what architecture their job will run on. Us-

ing Java is not without its problems: perhaps the prime concern for scientific users

is performance, though the latest Java compilers are making rapid advances in this

field, and are able to run typical scientific kernels at 30-70% of Fortran performance.

It is, of course, possible to write shared memory parallel programs using Javas

native threads model. However, a directive system has a number of advantages over

the native threads approach. Firstly, the resulting code is much closer to a sequential

version of the same program. Indeed, with a little care, it is possible to write an [10,

OpenMP] program which compiles and runs correctly when the directives are ignored.

This makes subsequent development and maintenance of the code significantly easier.

It is also to be hoped that, with the increasing familiarity of programmers with [10,

OpenMP], parallel programming in Java will become a more attractive proposition.



CHAPTER 2. LITERATURE SURVEY 19

Another problem with using Java native threads is that for maximum efficiency on

shared memory parallel architectures, it is necessary both to use exactly one thread

per processor and to keep these threads running during the whole lifetime of the

parallel program. To achieve this, it is necessary to have a runtime library which

dispatches tasks to threads, and provides efficient synchronization between threads.

In particular a fast barrier is crucial to the efficiency of many shared memory par-

allel programs. Such barriers are not trivial to implement and are not supplied by

the java.lang.Thread class. Similarly, loop self-scheduling algorithms require careful

implementationin a directive system this functionality is also supplied by the runtime

library.

Other approaches to providing parallel extensions to Java include JavaParty, HP-

Java, Titanium and SPAR Java. However, these are designed principally for dis-

tributed systems, and unlike our proposal, involve genuine language extensions. The

current implementations of Titanium and SPAR are via compilation to C, and not

Java.



Chapter 3

Problem Definition and Existing

Methodologies

3.1 Problem Definition

NetCDF files browsers, which can only read data of NetCDF file, are widely available.

But an application which can read, edit and re-create NetCDF files as per require-

ments of geoscience researchers community is not available.

Various Data Providers of the world are providing data in NetCDF file. Now if

any one who want to change the existing data values or want to do anything other

than reading NetCDF file, must be technical to the programming language, which is

not possible if data analyzer is a geoscience researchers who is expert of his domain,

not programming language.

So, the application which can read, edit and re-create NetCDF file with a simple

user interface to end-user is needed.

NetCDF file can contains several years of data values, so it will be so large that

serial execution of the application will result into lots of delay or out of memory

problem. So, the application needs to be implemented on high performance cluster

computing.

20



CHAPTER 3. PROBLEM DEFINITION AND EXISTING METHODOLOGIES21

3.2 Other Methodologies

NetCDF data may be accessed from over 20 packages of freely available software, in-

cluding DDI, DODS, EPIC, FAN, FERRET, GMT, GrADS, HDF interface, LinkWinds,

SciAn, and Zebra. But none of this tool is providing editing and re-creating NetCDF

File. Access to netCDF data is also available from commercial or licensed packages

for data analysis and visualization, including IBM Data Explorer, IDL, GEMPAK,

MATLAB, PPLUS, PV-Wave, PolyPaint+, and NCAR Graphics.



Chapter 4

Using Java as High Performance

Computing Language

4.1 General

Java offers a number of benefits as a language for High Performance Computing

(HPC). For example, Java offers a high level of platform independence not observed

with traditional HPC languages. This is an advantage in an area where the lifetime

of application codes exceeds that of most machines. In addition, the object-oriented

nature of Java facilitates code re-use and reduces development time. However, there

are a number of outstanding issues surrounding the use of Java for HPC, principally:

performance, numerical concerns and lack of standardized parallel programming mod-

els.

There is a wide variety of interfaces and language extensions for parallel and dis-

tributed programming in Java. Both [9, Java threads] and Remote Method Invoca-

tion (RMI) are part of the Java specification. [9, Java threads], although principally

designed for concurrent, rather than parallel, programming can successfully be used

on shared memory multiprocessors. RMI is not well suited to parallel programming,

both due to its programming paradigm and its high overheads.

22



CHAPTER 4. USING JAVA AS HIGH PERFORMANCE COMPUTING LANGUAGE23

The two interfaces which we have used are MPJ and JOMP. These are prototype

specifications of Java counterparts to MPI and [10, OpenMP] respectively. We have

chosen these interfaces due to the familiarity and widespread use of their Fortran and

C predecessors, and the fact that neither requires extension to the core Java language.

It should be noted that neither is yet standardized, and so may be subject to change

in the future.

[2, MPJ], as shown in figure 4.1, consists of a class library providing an interface

for message passing, similar to the MPI interface for C and Fortran. Most of the

functionality found in MPI is supported, and messages may consist of arrays of ei-

ther basic types or of objects. Existing implementations such as [8, mpiJava] use the

Java Native Interface (JNI) mechanism to call existing MPI libraries written in C.

However, research efforts are underway to provide pure Java implementations using

sockets or VIA.

[3, JOMP], as shown in figure 4.2, is a specification of directives (embedded in

standard Java as comments), runtime properties and a class library similar to the

OpenMP interface for C and Fortran. The existing implementation uses a source-to-

source translator (itself written in Java) to convert the directives to calls to a runtime

library, which in turns uses the standard [9, Java threads] interface. The system is

pure Java, and therefore transparently portable. Other approaches to providing par-

allel programming interfaces for Java include JavaParty , [1, HPJava] , Titanium and

SPAR Java. These are also in the research phase and, in addition, require genuine

language extensions.

4.2 Messaging System in Java

Three approaches to build messaging systems in Java, using:



CHAPTER 4. USING JAVA AS HIGH PERFORMANCE COMPUTING LANGUAGE24

Figure 4.1: Message Passing Java (MPJ)



CHAPTER 4. USING JAVA AS HIGH PERFORMANCE COMPUTING LANGUAGE25

Figure 4.2: Java OpenMP (JOMP)



CHAPTER 4. USING JAVA AS HIGH PERFORMANCE COMPUTING LANGUAGE26

RMI (Remote Method Invocation):

An API of Java that allows execution of remote objects,

Meant for client server interaction,

Transfers primitive datatypes as objects.

JNI (Java Native Interface):

An interface that allows to invoke C (and other languages) from Java,

Not truly portable,

Additional copying between Java and C.

Sockets interface:

Java standard I/O package,

Java New I/O package.

4.2.1 Using RMI

JMPI (University of Massachusetts):

It gives poor performance because of RMI. KaRMI was used instead of RMI which

runs on Myrinet.

CCJ (Vrije University Amsterdam):

It supports the transfer of objects as well as basic datatypes. It gives poor performance

because of RMI.

4.2.2 Using JNI

mpiJava (Indiana University + UoP):

It is moving towards the MPJ API specification, well-supported and widely used. It

uses JNI and native MPI as the communication medium.



CHAPTER 4. USING JAVA AS HIGH PERFORMANCE COMPUTING LANGUAGE27

JavaMPI (University of Westminster):

It is no longer active as it uses Native Method Interface NMI.

M-JavaMPI (The University of Hong Kong):

It supports process migration using JVMDI (JVM Debug Interface).

4.2.3 Using Sockets Interface

MPJava (University of Maryland):

It is based on Java NIO. It has no runtime infrastructure.

MPP (University of Bergen):

It is based on Java NIO and it is subset of MPI functionality.

4.3 JOMP:

4.3.1 Introduction and Background

OpenMP Essentials

The OpenMP Application Program Interface is a standard for user-directed, shared-

memory parallel programming. At the time of writing, [6, OpenMP] standards exist

for C and C++, and for Fortran.

The OpenMP programmer supplements his code with directives, which instruct an

OpenMP- aware compiler to take certain actions. Some directives indicate pieces of

code to be executed in parallel by a team of threads. Others indicate pieces of work

capable of concurrent execution.

Yet others provide synchronization constructs, such as barriers and critical regions.

OpenMP is unusual among such systems in that directives may be orphaned work-

sharing and synchronization directives may appear in functions which are capable of



CHAPTER 4. USING JAVA AS HIGH PERFORMANCE COMPUTING LANGUAGE28

being called from within either parallel or serial regions, and must bind to the appro-

priate enclosing constructs at runtime.

The directives are specified in such a way that they will be ignored by a compiler

without OpenMP support. This makes it easy to write portable code which exploits

parallelism where available but runs sequentially where necessary.

In practice, OpenMP is sometimes implemented not directly by the compiler, but

rather by a preprocessor. Such a preprocessor transforms the OpenMP directives

into native constructs of the language, employing library and system calls as appro-

priate to provide parallelism.

Java Native Threads Essentials

Java supports parallelism through its native threads model.[9]

A thread may be created by declaring an instance of the library class java.lang.Thread,

and started by calling its start() method. The threads constructor takes as a param-

eter an object which implements the Runnable interface, the run() method of which

is executed by the new thread. Alternatively, the Thread class may be extended to

implement the Runnable interface itself, in which case its own run() method is used.

A thread runs until it nishes its task, and any thread may wait for another thread to

terminate, using the join() method.

4.3.2 JOMP API Overview

Format of Directives

Since the Java language has no standard form for compiler-specic directives, we adopt

the approach used by the OpenMP Fortran specification and embed the directives as

comments. This has the benefit of allowing the code to function correctly as normal

Java: in this sense it is not an extension to the language. Another approach would be



CHAPTER 4. USING JAVA AS HIGH PERFORMANCE COMPUTING LANGUAGE29

to use as directives method calls which could be linked to a dummy library. However,

this places unpleasant restrictions on the syntactic form of the directives.

A JOMP directive takes the form:

//omp <directive> <clauses>

[//omp <clauses>]

.....

Directives are case sensitive. Some directives stand alone, as statements, while

others act upon the immediately following Java code block. A directive should be

terminated with a line break. Directives may only appear within a method body.

Note that directives may be orphanedwork-sharing and synchronization directives

may appear in the dynamic extent of a parallel region of code, note just in its lexical

extent.

The only directive

The only construct allows conditional compilation. It takes the form:

//omp only <statement>

The relevant statement will be executed only when the program has been compiled

with an JOMP-aware compiler.

The parallel construct

The parallel directive takes the form:

//omp parallel [if(<cond>)]

//omp [default (shared|none)]

//omp [shared(<vars>)]

//omp [private(<vars>)]

//omp [firstprivate(<vars>)]



CHAPTER 4. USING JAVA AS HIGH PERFORMANCE COMPUTING LANGUAGE30

//omp [reduction(<operation>:<vars>)]

<code block>

When a thread encounters such a directive, it creates a new thread team if the boolean

expression in the if clause evaluates to true. If no if clause is present, the thread team

is unconditionally created. Each thread in the new team executes the immediately

following code block in parallel.

At the end of the parallel block, the master thread waits for all other threads to finish

executing the block, before continuing with execution alone.

The default, shared, private, firstprivate and reduction clauses function in the same

way as in the C/C++ standard. The variables may be basic types, or references to

arrays or objects, except in the case of the reduction clause, where the variables must

be scalars or arrays of basic types.

Note that declaring an object to be private causes a new object to be allocated (and

initialized with default values) on each thread. Declaring an array to be private causes

only a new reference to be created on each thread. Declaring an object or array to

be firstprivate causes a new object or array to be allocated on each thread, which is

cloned from the existing object or array.

The for and ordered directives

The for directive specifies that the iterations of a loop may be divided between threads

and executed concurrently. The for directive takes the form:

//omp for [nowait]

//omp [private(<vars>)]

//omp [firstprivate(<vars>)]

//omp [lastprivate(<vars>)]

//omp [reduction(<operator>:<vars>)]

//omp [schedule(<mode>,[chunk-size])]

//omp [ordered]



CHAPTER 4. USING JAVA AS HIGH PERFORMANCE COMPUTING LANGUAGE31

<for loop>

As in C/C++, the form of the loop is restricted to so that the iteration count can

be determined before the loop is executed. The semantics of this directive and its

clauses are equivalent to their C/C++ counterparts.

The scheduling mode is one of static, dynamic, guided or runtime. The ordered

directive is used to specify that a block of code within the loop body must be executed

for each iteration in the order that it would have been during serial execution. It takes

the form:

//omp ordered

<code block>

The sections and section directives

The sections directive is used to specify a number of sections of code which may be

executed concurrently. A sections directive takes the form:

//omp sections [nowait]

//omp [private(<vars>)]

//omp [firstprivate(<vars>)]

//omp [lastprivate(<vars>)]

//omp [reduction(<operator>:<vars>)]

{

//omp section

<code block>

[//omp section

<code block>]...

}

The sections are allocated to threads in the order specified, on a first-come-first-served

basis. Thus, code in one section may safely wait (but not necessarily busy-wait) for

some condition which is caused by a previous section without fear of deadlock.



CHAPTER 4. USING JAVA AS HIGH PERFORMANCE COMPUTING LANGUAGE32

The single directive

The single directive is used to denote a piece of code which must be executed exactly

once by some member of a thread team. A single directive takes the form:

//omp single [nowait]

//omp [private(<vars>)]

//omp [firstprivate(<vars>)]

<code block>

A single block within the dynamic extent of a parallel region will be executed only

by the first thread of the team to encounter the directive.

The master directive

The master directive is used to denote a piece of code which is to be executed only by

the master thread (thread number 0) of a team. A master directive takes the form:

//omp master

<code block>

Unlike the single directive, there is no implied barrier at either the beginning or the

end of a master construct.

The critical directive

The critical directive is used to denote a piece of code which must not be executed

by different threads at the same time. It takes the form:

//omp critical [name]

<block>

Only one thread may execute a critical region with a given name at any one time.

Critical regions with no name specified are treated as having the same (null) name.

Upon encountering a critical directive, a thread waits until a lock is available on the

name, before executing the associated code block. Finally, the lock is released.



CHAPTER 4. USING JAVA AS HIGH PERFORMANCE COMPUTING LANGUAGE33

The barrier directive

The barrier directive causes each thread to wait until all threads in the current team

have reached the barrier. It takes the form:

//omp barrier

To prevent deadlock either all of the threads in a team or none of them must reach

the barrier.

Combined parallel and work-sharing directives

For brevity, two syntactic shorthands are provided for commonly used combinations

of directives. The parallel for directive defines a parallel region containing only a

single for construct. Similarly, the parallel sections directive defines a parallel region

containing only a single sections construct.

Nesting of Directives

The work-sharing directives for, sections and single may not be dynamically nested

inside one another. Other nestings are permitted, subject to other stated restrictions

concerning what combinations of threads may or may not encounter a construct.

Library Methods

JOMP provides direct equivalents of all except one of the user-accessible library rou-

tines defined in the OpenMP C/C++ standard, implemented as static members of

the class jomp.runtime.OMP. This includes both simple and nested locks. The ex-

ceptional routine is the equivalent of omp get num procs, because the number of

processors is not available through any standard Java library call. This information

could be obtained by making a Java Native Interface call to a system routine, but

this would prevent the library from being pure Java. Since the routine is little used,

this does not appear to be worthwhile.



CHAPTER 4. USING JAVA AS HIGH PERFORMANCE COMPUTING LANGUAGE34

getNumThreads() returns the number of threads in the team executing the current

parallel region, or 1 if called from a serial region of the program. setNumThreads(n)

sets to n the number of threads to be used to execute parallel regions. It has effect

only when called from within a serial region of the program.

getMaxThreads() returns the maximum number of threads which will in future be

used to execute a parallel region, assuming no intervening calls to setNumThreads().

getThreadNum() returns the number of the calling thread, within its team. The

master thread of the team is thread 0. If called from a serial region, it always returns

0.

inParallel() returns true if called from within the dynamic extent of a parallel

region, even if the current team contains only one thread. It returns false if called

from within a serial region.

setDynamic() enables or disables automatic adjustment of the number of threads.

getDynamic() returns true if dynamic adjustment of the number of threads is

supported by the OMP implementation and currently enabled. Otherwise, it returns

false.

setNested() enables or disables nested parallelism.

getNested() returns true if nested parallelism is supported by the OMP imple-

mentation and currently enabled. Otherwise, it returns false.

The Lock and NestLock classes

Two types of locks are provided in the library. The class jomp.runtime.Lock imple-

ments a simple mutual exclusion lock, while the class jomp.runtime.NestLock imple-

ments a nested lock. Each class implements the same three methods.

The set() method attempts to acquire exclusive ownership of the lock. If the lock

is held by another thread, then the calling thread blocks until it is released. The

unset() method releases ownership of a lock. No check is made that the releasing

thread actually owns the lock.

The test() method tests if it is possible to acquire the lock immediately, without

blocking. If it is possible, then the lock is acquired, and the value true returned. If it



CHAPTER 4. USING JAVA AS HIGH PERFORMANCE COMPUTING LANGUAGE35

is not possible, then the value false is returned, with the lock not acquired.

The two lock classes differ in their behavior if an attempt is made to acquire a

lock by the thread which already owns it. In this case, the simple Lock class will

deadlock, but the NestLock class will succeed in reacquiring the lock. Such a lock

will be released for acquisition by other threads only when it has been released as

many times as it was acquired.

Environment

Equivalents are provide for all four environment variables defined in the C/C++

standard. They are implemented as Java system properties, which can be set as

command line arguments when the Java Virtual Machine is invoked.

The jomp.schedule property specifies the scheduling strategy, and optional chunk

size, to be used for loops with the runtime scheduling option. The form of its value

is the same as that used for the parameter to a schedule clause. The jomp.threads

property specifies the number of threads to use for execution of parallel regions.

The jomp.dynamic property takes the value true or false to enable or disable

respectively dynamic adjustment of the number of threads. The jomp.nested property

takes the value true or false to enable or disable respectively nested parallelism.

Differences from C/C++ standard

The main differences from the C/C++ standard are as follows:

• The threadprivate directive, and hence the copyin clause, are not supported.

Java has no global variables, as such. The only data to which such a concept

might be applied are static class members, but this is both unattractive and

difficult to implement.

• The atomic directive is not supported. The kind of optimizations which the di-

rective is designed to facilitate (for example, atomic updates of array elements)



CHAPTER 4. USING JAVA AS HIGH PERFORMANCE COMPUTING LANGUAGE36

require access to atomic test-and-set instructions which are not readily avail-

able in Java. The atomic directive would merely be a synonym for the critical

directive.

• The flush directive is not supported, since it also requires access to special in-

structions. Provided that variables used for synchronization are declared as

volatile, this should not be a problem. However, it is not clear how the ambi-

guities in the Java memory model specification affect this issue.

• Array reductions are permitted.

• There is no function to return the number of processors.

4.3.3 The JOMP runtime library

As well as the user-accessible methods, the package jomp.runtime contains a library

of classes and routines used by compiler-generated code. The core of the library is the

OMP class. As well as the user-accessible methods, this class contains the routines

used by the compiler to implement parallelism in terms of Javas native threads model.

The BusyThread and BusyTask classes are used for thread-management purposes.

Tasks to be executed in parallel are instances of the class BusyTask. They have a

single method, go(), which takes as a parameter the number (within its team) of the

executing thread. All threads except the master are instances of the class BusyThread,

which extends Thread and has a BusyTask reference as a member. Each non-master

thread executes a loop, in which it reaches a global barrier, executes its task, and

then reaches the barrier again. The loop may be terminated (after the first barrier

call) on the setting of a ag by the master thread.

The barrier is provided by the Barrier class which implements a static 4-way

tournament barrier for an arbitrary number of threads. This is a lock-free algorithm

whose correctness cannot be formally guaranteed under the current specification of

the Java memory model. However, we have observed no such problems in practice.



CHAPTER 4. USING JAVA AS HIGH PERFORMANCE COMPUTING LANGUAGE37

This class is also used for the barrier directive and implied barriers in other directives.

Critical sections are implemented as synchronized blocks. The OMP class stores a

hash table of lock objects in order to implement named critical sections.

The Reducer class is used to implement the reduction clause. It provides methods

for the different reduction operators on different types, and uses the same tournament

algorithm as the Barrier class. Work sharing is facilitated by the Ticketer class. For

sections and ordered directives a Ticketer object issues integer tickets, in sequence.

To support the for directive, a Ticketer object issues loop chunks according to the

different loop scheduling schemes. The Orderer class is used to implement the ordered

construct. It stores, and controls access to, the next iteration of a loop to be executed.

Nested parallelism is not currently supported, as is generally the case in current

implementations of the OpenMP C/C++ and Fortran specifications. If the doPar-

allel() method is called by a thread in parallel mode, thread-specific data is copied,

the thread is reconfigured to be in its own team of size one, and the task is executed.

Finally, the original values of the thread specific data are restored.The setNested()

method does nothing, and the getNested() method always returns false.

4.3.4 The JOMP Compiler

The JOMP Compiler is built around a Java 1.1 parser provided as an example with

the JavaCC utility. JavaCC comes supplied with a grammar to parse a Java 1.1

program into a tree, and an UnparseVisitor class, which unparses the tree to produce

code. The bulk of the compiler is implemented in the OMPVisitor class, which ex-

tends the UnparseVisitor class, overriding various methods which unparse particular

nonterminals. Because JavaCC is itself written in Java, and outputs Java source,

the JOMP system is fully portable, and requires only a JVM installation in order to

run it. These overriding methods output modified code, which includes calls to the

runtime library to implement appropriate parallelism.

Upon encountering a parallel directive within a method, the compiler creates a



CHAPTER 4. USING JAVA AS HIGH PERFORMANCE COMPUTING LANGUAGE38

new class. If the default(shared) clause is specified, an inner class (within the class

containing the current method) is created. If the method containing the parallel

directive is static then the new inner class is also static. If default(none) is used,

then a separate class within the same compilation unit is created. For each variable

declared to be shared, the class contains a field of the same type signature and name.

For each variable declared to be firstprivate or reduction, the class contains a field of

the same type signature and a local name.

The new class has a single method, go, which takes a parameter indicating an

absolute thread identifier. For each variable declared to be private, firstprivate or

reduction, the go() method declares a local variable with the same name and type

signature. The local firstprivate variables are initialized from the corresponding field

in the containing class, while the local private variables have default initialization.

The local reduction variables are initialized with the appropriate default value for the

reduction operator. Private objects are allocated using the default constructor. The

main body of the go() method contains the code to be executed in parallel.

In place of the parallel construct itself, code is inserted to declare a new instance

of the compiler created class, and to initialize the fields within it from the appropriate

variables. The OMP.doParallel() method is used to execute the go method of the inner

class in parallel. Finally, any values necessary are copied from class fields, back into

local variables. Figures 4.3 and 4.4 illustrate this process for a trivial Hello World

program. work sharing and synchronization directives are implemented by adding

code which utilizes calls to the runtime library described in above Section.

4.3.5 JOMP Issues

In this section, we briefly outline some of the outstanding issues which have yet to be

resolved, and which require more work.



CHAPTER 4. USING JAVA AS HIGH PERFORMANCE COMPUTING LANGUAGE39

import jomp.runtime.*;

public class Hello {

public static void main (String argv[]) {

int myid;

//omp parallel private(myid)

{

myid = OMP.getThreadNum();

System.out.println("Hello from " + myid);

}

}

}

Figure 4.3: Hello World JOMP program

import jomp.runtime.*;

public class Hello {

public static void main (String argv[]) {

int myid;

__omp_class_0 __omp_obj_0 = new __omp_class_0();

try {

jomp.runtime.OMP.doParallel(__omp_obj_0);

}

catch(Throwable __omp_exception) {

System.err.println("OMP Warning: exception

in parallel region");

}

}

private static class __omp_class_0

extends jomp.runtime.BusyTask {

public void go(int __omp_me) throws Throwable {

int myid;

myid = OMP.getThreadNum();

System.out.println("Hello from " + myid);

}

}

}

Figure 4.4: Resulting Hello World Java program



CHAPTER 4. USING JAVA AS HIGH PERFORMANCE COMPUTING LANGUAGE40

Exception Handling

Exceptions are an important feature of the Java language, and it is worth considering

how they will be handled by an OpenMP implementation. Exceptions are present in

C++, but they are less widely used than in Java and the C++ OpenMP specification

ignores the issue, thus providing no guidance.

The case of interest is that where an exception is thrown by some thread within

a parallel construct, but not caught inside it. If an exception thrown from within

the dynamic extent of a parallel region, but not caught within it, the most natural

behavior would be for parallel execution to terminate immediately, and the exception

to be thrown on in the enclosing serial region by the master thread.

This has been attempted in the JOMP preprocessor and library. The throws clause

on the parallel directive is used to specify classes of exception which may be thrown

from within the dynamic extent of the parallel construct, but not caught inside it.

In practice, though, the desired behavior proves very difficult to implement. It is

necessary that the thread throwing the exception has some way of interrupting the

master thread. Unfortunately, no mechanism is provided in the Java language for in-

terrupting a running thread. The Thread.interrupt() method only actually interrupts

if the target thread is waiting. If it is running, it merely sets a ag.

Even more complex issues arise when an exception is thrown by one thread within

a synchronization or work-sharing construct, and caught outside this construct but

inside the dynamically enclosing parallel region.

Flush and the Java Memory Model

The Java memory model specification is very complex. At the time of writing there

are some doubts about whether it says what the authors intended, and whether it is

correctly implemented by the majority of existing compilers.

For these reasons, and for want of time, We have refrained from considering in

detail the memory model. In particular, We have not implemented the flush directive,



CHAPTER 4. USING JAVA AS HIGH PERFORMANCE COMPUTING LANGUAGE41

or given consideration to whether there need to be implicit flush operations after or

during certain constructs.

At some point, preferably when the issues raised by have been satisfactorily re-

solved, more investigation of this matter would be helpful.

Error Handling

The current JOMP preprocessor has no error handling worth speaking of. Many

directive errors and virtually all errors in the underlying code cause an exit with a

stack dump. In practice, it is necessary to ensure that a program compiles correctly

with the sequential compiler before attempting to run the JOMP preprocessor on it.

Efficiency Issues

While some thought has been given to the efficiency of the mechanisms used in the

runtime library and the code generated by the preprocessor, the time available has

not permitted extensive comparison of alternative approaches. Significant savings

could almost certainly be made by improvements in this area.



Chapter 5

Implementation of System

5.1 Tools and Technology Used

For implementation of the project, Java has been used as High Performance Compu-

tation Language.

JOMP has been used for providing parallel programming interface.

NetCDF-Java libraries (from Unidata’s site) are used for implementation of NetCDF

file access and other functionality implementation.[5]

5.2 JOMP Implementation

5.2.1 Data Clauses Support

The current JOMP implementation is in some sense very primitive. The preprocessor

neither performs a full semantic analysis, nor keeps a track of package, classes, vari-

ables and its names, with a single exception of local variables. It doesnt even keep a

track of the current class fields. It simply works with one compile unit at a time, and

relies on a programmer to provide all necessary information. The restriction on the

use of list in data scope attribute clauses is an immediate consequence of this fact.

To be able to handle correctly all the private, firstprivate, lastprivate, shared and re-

42



CHAPTER 5. IMPLEMENTATION OF SYSTEM 43

duction variables under these circumstances, some non-standard constructions were

introduced. These are described in the following two sections together with some

examples, which hopefully make the thing more clear.

In the final implementation, these problems could be solved in a much more straight-

forward way, assuming that we have a fully enabled compiler.

parallel directive

Upon encountering a parallel directive within a method, the compiler creates a new

class. If the default(shared) clause is specified, an inner class (within the class con-

taining the current method) is created. If the method containing the parallel directive

is static then the new inner class is also static. If default(none) is used, then a sepa-

rate class within the same compilation unit is created. For each variable declared to

be shared, the class contains a fields of the same type signature and name. For each

variable declared to be firstprivate or reduction, the class contains a field of the same

type signature and a local name.

The new class has a single method, go, which takes a parameter indicating an absolute

thread identifier. For each variable declared to be private, firstprivate or reduction,

the go() method declares a local variable with the same name and type signature.

The local firstprivate variables are initialized from the corresponding field in the con-

taining class, while the local private variables have default initialization. The local

reduction variables are initialized with the appropriate default value for the reduction

operator. Private objects are allocated using the default constructor. The main body

of the go() method contains the code to be executed in parallel.

In place of the parallel construct itself, code is inserted to declare a new instance of

the compiler created class, and to initialize the fields within it from the appropriate

variables. The OMP.doParallel() method is used to execute the go method of the

inner class in parallel. Finally, any values necessary are copied from class fields back

into local variables.

A very simple Hello World example to illustrate this process is shown in Figures 4.3



CHAPTER 5. IMPLEMENTATION OF SYSTEM 44

and 4.4.

Work-sharing directives

Upon encountering the for, sections, or single directive, a new Block is created. For

each variable declared to be firstprivate, a local variable fp-”varname” is declared

and initialized by the value of the original variable. For each variable declared to be

lastprivate, a local variable lp-”varname” is declared. For each variable declared to be

reduction, a local variable rd-”varname” is declared. These newly created variables

are used to communicate the values of variables to the enclosing block. In the case

of the for and sections directives, the amLast boolean variable is declared to hold

information, whether the current thread is the one performing the sequentially last

iteration of the loop, or the sequentially last section.

Inside the newly allocated block, a new Block is created. For each variable declared to

be firstprivate, private, lastprivate, or reduction, a new variable with the same name is

declared. Variables declared to be reduction are initialized by the appropriate value.

private and lastprivate variables are initialized by calling the default constructor in

the case of class type variables, and uninitialized in the case of primitive or array

type variables. firstprivate variables are initialized by the appropriate value from the

fp copy of the original variable. A clone() method is called to initialize class or array

type variables.

Next, a code to actually handle the appropriate work-sharing directive is inserted. At

the end of the inner block appropriate local variable (lp-”varname” or rd-”varname”)

is updated for every lastprivate and reduction variable.

After the end of the inner block, a code to update the global copies of lastprivate

and reduction variables is inserted. lastprivate variables are updated only by the

thread with the variable amLast set to TRUE. Reduction variables are updated by

the master thread of the team. Finally, the outer block is closed.

Figures 5.1 and 5.2 illustrate this process for a simple parallel loop.



CHAPTER 5. IMPLEMENTATION OF SYSTEM 45

//omp for firstprivate(i) private(j) lastprivate (k) reduction(+:l)

for(int m=0; m<100;m++)

...

Figure 5.1: a fragment of the JOMP program

{ // OMP FOR BLOCK BEGINS

// copy of firstprivate variables, initialised

int _cp_i = i;

// copy of lastprivate variables

int _cp_k;

// variables to hold result of reduction

int _cp_l;

boolean amLast=false;

{ // Inner loop

// firstprivate variables + init

int i = (int) _cp_i;

// [last]private variables

int j;

int k;

// reduction variables + init to default

int l = 0;

... code to handle the parallel loop ...

// copy lastprivate variables out

if (amLast) {

_cp_k = k;

}

}

// set global from lastprivate variables

if (amLast) {

k = _cp_k;

}

// set global from reduction variables

if (jomp.runtime.OMP.getThreadNum(__omp_me) == 0) {

l+= _cp_l;

}

} // OMP FOR BLOCK ENDS

Figure 5.2: Resulting Java Code



CHAPTER 5. IMPLEMENTATION OF SYSTEM 46

critical directive

Nested locks are no longer used to implement the critical directive. Instead of this, the

structured block associated with the directive is enclosed in a synchronized statement.

Locks passed as a parameter are held in a static hash table and the getLockByName

method is used to get a reference to the lock associated with a given name, creating

it if necessary.

ordered directive

The implementation of the Orderer class was changed to get better performance.

There are two new arrays: Locks[ ] and Iters[ ], with one element per every thread in

a team. Every Iters[i] variable holds a number of the next iteration to be performed

by the thread i. This information is used in order to notify only the thread which is

to perform the sequentially next iteration. The Locks[ ] array is used to synchronize

the access to the Iters[ ] array elements.

5.3 Features Covered in Implementation

The system is providing an interface to analyst the data of NetCDF files, which is

widely used in geoscientific community.

Interface can read any NetCDF File Variables, Attributes, Dimensions and Data

by the system. Editing data of existing NetCDF File is also possible through appli-

cation system. Interface can change any particular data or particular range of data

as per requirements. For analysis purpose averaging of weekly, monthly or annually

data is also possible.

5.4 Overview of the System

Application is using NetCDF-4 Java library to access NetCDF file and using JOMP

for parallel programming interface.



CHAPTER 5. IMPLEMENTATION OF SYSTEM 47

As we have implemented JOMP we need to first compile the source using JOMP

Compiler and then, a Java Source will be generated. Then we will compile and run

using java compiler and interpreter as shown in figure 5.3

Now Firstly when application loads, application will read all the variables avail-

able in the NetCDF file as shown in figure 5.4

Then, Fetching a particular variable e.g. Relative Humidity (rh) as shown in fig-

ure 5.5

Editing a data value at particular location can be done as shown in figure 5.6

Merging two or more than two netCDF file and accessing its data simultaneously

can also be possible by the application.

Thus, Reading and writing operation has been done with JOMP faster than the

serial execution of the same program. While dealing with the large data files it shows

major performance speed up during execution.



CHAPTER 5. IMPLEMENTATION OF SYSTEM 48

Figure 5.3: Compiling and running the source



CHAPTER 5. IMPLEMENTATION OF SYSTEM 49

Figure 5.4: Application fetching all variables from example.nc file



CHAPTER 5. IMPLEMENTATION OF SYSTEM 50

Figure 5.5: Application fetching variable - rh from example.nc file



CHAPTER 5. IMPLEMENTATION OF SYSTEM 51

Figure 5.6: Editing data value at location 1,1,1 of variable - rh



Chapter 6

Conclusion and Future Scope

6.1 Conclusion

The application interface for accessing geoscientific file and analyzing its data has

been developed which can help geoscience researchers to easily interact with it. For

development of the application using high performance computing, Java is used as

high performance computation language and JOMP is used for providing Parallel

Programming Interface.

We have used an OpenMP-like interface for Java which enables a high level ap-

proach to shared memory parallel programming. A prototype compiler and runtime

library which implement most of the interface have been described, showing that the

approach is feasible. Only minor changes from the OpenMP C/C++ specification

are required, and the implementation of both the runtime library and the compiler

are shown to be relatively straightforward. Initial analysis shows that the resulting

code scales well, with little overhead compared to a hand-coded Java threads version.

Low-level synchronization overheads have been measured and are for the most part,

tolerable.

For data intensive cluster, execution time for parallel execution will be less than

serial execution. Loading variable data and modification of data become faster than

52



CHAPTER 6. CONCLUSION AND FUTURE SCOPE 53

before.

6.2 Future Scope

Further work includes Creating a new NetCDF file by joining two existing NetCDF

file (by means of its variables) can be possible.

Interface performance has been checked through only Sun’s JDK, so performance

analysis of other vendors can be done.



Appendix A

Website References

netCDF4: http://www.unidata.ucar.edu/software/netcdf/netcdf-4

netCDF: http://www.unidata.ucar.edu/software/netcdf

HDF5: http://www.hdfgroup.org/HDF5

HDF5: http://hdfeos.org/workshops/ws06/presentations/Pourmal/HDF5-IO-Perf.pdf

Unidata: http://www.unidata.ucar.edu

54



References

[1] G. Fox X. Li B. Carpenter, G. Zhang and Y. Wen. Hpjava: Data parallel
extensions to java. In Concurrency: Practice and Experience, 1998.

[2] M.A. Baker and D.B. Carpenter. Mpj: A proposed java message-passing api and
environment for high performance computing. Second Java Workshop at IPDPS,
Cancun, Mexico, LNCS, Springer Verlag, Heidelberg, Germany, pages 552–559,
2000.

[3] J. M. Bull and M. E. Kambites. Jomp an openmp-like interface for java. In The
ACM 2000 Java Grande Conference, pages 44–53, June 2000.

[4] Edward Hartnett and R. K. Rew. Experience with an enhanced netcdf data
model and interface for scientific data access. UCAR, Boulder, CO.

[5] M. D. Westhead D. S. Henty J. M. Bull, L. A. Smith and R. A. Davey. A
methodology for benchmarking java grande applications. In ACM 1999 Java
Grande Conference, pages 81–88, 1999.

[6] Mark Kambites. Java openmp.

[7] W. Liao A. Choudhary R. Ross R. Thakur W. Gropp R. Latham A. Siegel B.
Gallagher M. Zingale Li, J. Parallel netcdf: A high-performance scientific i/o
interface. ACM, 2003.

[8] G. Fox S.-H. Ko M. Baker, B. Carpenter and S Lim. mpijava: An object-
oriented java interface to mpi. In International Workshop on Java for Parallel
and Distributed Computing, IPPS/SPDP, April 1999.

[9] S. Oaks and H. Wong. Java Threads. O’Reilly.

[10] Openmp architecture review board, October 1998.

55


	Certificate
	Abstract
	Acknowledgements
	List of Figures
	Introduction
	General
	Why NetCDF:
	NetCDF Features:

	Motivation
	Scope Of Work
	Thesis Organization

	Literature Survey
	NetCDF 4 Architecture:
	NetCDF Usage
	Benefits of netCDF
	The Binary Formats
	The Data Model
	Using NetCDF4 with the Classic Data Model
	Commitment to Backward Compatibility
	A Common Data Access Model for Geoscience Data
	Limitations of netCDF
	Compression and File Size
	Indirect Access
	Necessity for Conventions
	Limitations of Data Model

	Using Java as Scientific Language

	Problem Definition and Existing Methodologies
	Problem Definition
	Other Methodologies

	Using Java as High Performance Computing Language
	General
	Messaging System in Java
	Using RMI
	Using JNI
	Using Sockets Interface

	JOMP:
	Introduction and Background
	JOMP API Overview
	The JOMP runtime library
	The JOMP Compiler
	JOMP Issues


	Implementation of System
	Tools and Technology Used
	JOMP Implementation
	Data Clauses Support

	Features Covered in Implementation
	Overview of the System

	Conclusion and Future Scope
	Conclusion
	Future Scope

	Website References
	References

