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ABSTRACT 

 

3D segmentation is very important area of image processing. It is used in 

Medical Imagery, GIS (Geographical Information System) and Satellite Imagery 

etc. 

 

Segmentation refers to the process of partitioning a digital image into multiple 

regions. The goal of segmentation is to simplify and/or change the representation 

of an image into something that is more meaningful and easier to analyze. 

Image segmentation is typically used to locate objects and boundaries in images.  

 

This thesis work consists of algorithms to segment any type of noisy/blurred 

image, in this; the approach used for solving this problem is based on active 

contours. Active contour is a curve that moves towards the sought-for shape. It 

is controlled by internal and external force of the objects.  

 

It is based on Energy Minimization Algorithms. In this algorithm, based on 

energy, it recognizes the different objects in image and objects are differentiated 

on the basis of its boundary. 
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1.                  INTRODUCTION 

 

1.1 GENERAL 

 

Vision is the most advanced sense among the five senses of human beings, and 

plays the most important role in human perception. Although the sensitivity of 

human vision is limited within the visible band, imaging machines can operate on 

the images generated by sources that human vision cannot associate with. Thus, 

machine vision encompasses a wide and varied field of applications, even in 

areas where human vision cannot function, e.g. infrared (IR), ultraviolet (UV), X-

ray, magnetic resonance imaging (MRI), ultrasound.  

 

Although there is no clear distinction among image processing, image analysis, 

and computer vision, usually they are considered as hierarchies in the processing 

continuum.  

 

The low-level processing, which involves primitive operations such as noise 

filtering, contrast enhancement, and image sharpening, is considered as image 

processing. Note both its inputs and outputs are images.  

 

The mid-level processing, which involves segmentation and pattern classification, 

is considered as image analysis or image understanding [1]. Note its input 

generally is images, but its outputs are attributes extracted from those images, 

e.g. edges, contours, and the identity of individual objects. 

 

The high-level processing, which involves ‘making sense’ of an ensemble of 

recognized objects and performing the cognitive functions at the far end of the 

processing continuum, is considered as computer vision [1].  

 

1.1.1 Image Segmentation 

 

In most image analysis operations, pattern classifiers require individual objects 

to be separated from the image, so the description of those objects can be 

transformed into a suitable form for computer processing. Image segmentation is 
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a fundamental task, responsible for the separating operation. The function of 

segmentation is to partition an image into its constituent and disjoint sub-

regions, which are uniform according to their properties, e.g. intensity, color, and 

texture. Segmentation algorithms are generally based on either discontinuity 

among sub regions, i.e. edges, or uniformity within a sub-region [1]. 

 

The distinction between image segmentation and pattern classification is often 

not clear. The function of segmentation is simply to partition an image into 

multiple sub-regions, while the function of pattern classification is to identify the 

partitioned sub-regions. Thus, segmentation and pattern classification usually 

functions as separate and sequential processes. However, they might function as 

an integrated process depending on the image analysis problem and the 

performance of the segmentation method. In either way, segmentation critically 

affects the results of pattern classification, and often determines the eventual 

success or failure of the image analysis. 

 

Since segmentation is an important task in image analysis, it is involved in most 

image analysis applications, particularly those related to pattern classification, 

e.g. medical imaging, remote sensing, security surveillance, military target 

detection. The level to which segmentation is carried depends on the problem 

being solved. That is, segmentation should stop when the region of interest 

(ROI) in the application have been isolated. Due to this property of problem 

dependence, autonomous segmentation is one of the most difficult tasks in 

image analysis. Noise and mixed pixels caused by the poor resolution of sensor 

images make the segmentation problem even more difficult. In this work, Novel 

segmentation method using a variational framework, called active contours is 

presented. 

 

1.1.2 Active Contour  

 

Active contours are connectivity-preserving relaxation methods, applicable to the 

image segmentation problems. Active contours have been used for image 

segmentation and boundary tracking. The basic idea is to start with initial 

boundary shapes represented in a form of closed curves, i.e. contours, and 

iteratively modify them by applying shrink/expansion operations according to the 

2 
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constraints of the image. Those shrink/expansion operations, called contour 

evolution, are performed by the minimization of an energy function [4]. 

 

An advantage of active contours as image segmentation methods is that they 

partition an image into sub-regions with continuous boundaries, while the edge 

detectors based on threshold or local filtering, e.g. Canny or Sobel operator, 

often result in discontinuous boundaries. 

 

1.2 MOTIVATION 

 

One interpretation of Active contour is that they represent a top down, rather 

than bottom-up, approach to image segmentation and edge detection. Common 

techniques for edge detection are biased toward rectilinear objects. Edge 

detection typically uses the combination of two separate convolution filters: 

horizontal and vertical. The bias toward straight edges has been mitigated by 

other techniques such as the Generalized Hough Transform or template 

matching. Techniques such as these require an a priori description of the object 

shape to identify the object in imagery. Active contour promises a segmentation 

technique that does not bias the final shape description toward straight edges. 

They also perform this segmentation without a known or predetermined shape. 

Much of the motivation to use active contour in various applications arises from 

this ability. 

 

Another motivation for the use of active contour is the ability of these models to 

“fill in” edges where weak image gradients are present. The extreme case for this 

“filling in” phenomenon would be illusory contours. Consequently, the primary 

motivation for active contour usage is to capture non-rectilinear (curved) object 

boundaries and to be robust in the presences of weak edges. 

 

1.3 SCOPE OF WORK 

 

Active contour is a technique for tracing boundaries in an image. It is based on 

energy minimization concepts. This algorithm can detect objects whose 

boundaries are not necessarily defined by gradient. Gradient method is prevalent 

for finding the edges but this method can only detect sharp edges and fails in the 

3 
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case of smooth edges. It detected the objects and differentiates on the basis of 

its boundary.  

 

1.4 ORGANIZATION OF MAJOR PROJECT 

This thesis is organized as follow: 

• Chapter 2 tells about segmentation and basic techniques for segmentation. 

In this chapter all segmentation techniques are classified into three 

classes. Structural techniques, stochastic techniques, Hybrid techniques 

• Chapter 3 tells basic concepts of active contour and about its energy 

concepts. Internal energy image energy, concept of minimizes the energy. 

• Chapters 4 introduce level set and its segmentation method with edge 

stopping and with out edge stopping function.  

• Chapter 5 is the implementation of without edge stopping function. 

• Chapter 6 presents results on different images. 

4 



2.          SEGMENTATION 

 

2.1 INTRODUCTION 

 

Segmentation subdivides an image in to its constituent regions or objects. The level to 

which the subdivision is carried depends on the problem being solved. That is, 

segmentation should stop when the object of interest in an application have been 

isolated.  

Image segmentation algorithms generally are based on one of two basic properties of 

intensity values: 

Discontinuity and similarity 

 

In the first category, the approach is to partition an image based on abrupt changes in 

intensity, such as edges in an image. The principal approaches in the second category 

are based on partitioning an image into region that is similar according to a set of 

predefined criteria. Thresholding, region growing and splitting and merging are 

example of methods in the category [1]. 

 

A large number of algorithms for segmentation can be found in the literature. Due to 

the nature of the problem of segmentation, most of these algorithms are specific to a 

particular problem, thus, having little significance for most other problems  

All segmentation techniques are classified into three classes. 

1. Structural techniques 

2. Stochastic techniques 

3. Hybrid techniques 

 

2.2 STRUCTURE TECHNIQUES: 

 

Structural techniques try to find structural properties of the region to be segmented. 

Structural properties such as intersecting surfaces (edges in 2D) are detected in the 

volume and then combined to segment the region.  
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2.2.1 3-D Edge-Detection Techniques 

 

It is a type of detection of discontinuities. Edge detection techniques are those which 

aim at detecting edges or surfaces in the volume to perform segmentation. Edges are 

formed at the intersection of two regions with different intensities [2].  

Edge detection techniques in three dimensions work in two stages: 

1. Local edges are detected by using some form of differentiation. 

2. These local edges are grouped together to form boundary contours that separate 

the desired region voxels from other voxels. 

 

One advantage of edge detection techniques is that they work very well on datasets 

with good contrast between different regions. The edges are detected perfectly and 

can be verified visually. 

 

These algorithms do not perform well on datasets with low contrast between regions. 

These algorithms are also susceptible to noise. In most of the cases, these algorithms 

are not used on their own for segmentation, but coupled with other segmentation 

algorithms to solve a particular segmentation problem. 

 

Basic formula: An ideal edge has the properties of the model shown in Fig 2.1. An ideal 

edge according to this model is a set of connected pixels (in the vertical direction 

here), each of which is located at an orthogonal step transition in gray level (as shown 

by the horizontal profile in the figure). Edges are more closely modeled as having a 

“ramp like” profile, such as the one shown in Fig 2.2. The slope of the ramp is 

inversely proportional to the degree of blurring in the edge [1]. 

 

 

  Fig. 2.1Model of an ideal digital edge      Fig. 2.2.Model of a ramp digital edge 

The first derivative is positive at the point of transition into and out of the ramp as 

move from left to right along the profile; it is constant for the point in the ramp; and is 

6 
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zero in areas of constant gray level. The second derivative is positive at the transition 

associated with the dark side of the edge, negative at the transition associated with 

the light side of the edge, and zero along the ramp and in areas of constant gray level. 

From these observations, it can be concluded that the magnitude of the first derivative 

can be used to detect the presence of an edge at a point in an image. Similarly, the 

sign of the second derivative can be used to determine whether an edge pixel lies on 

the dark or light side of an edge. 

Gray level profile 

First derivative

Second derivative 

    Fig. 2.3 first and second derivatives of gray level profile. 

 

Tw a operties of the second derivative around an edo dditional pr ge can be noted:  

)  It produce two values for every edge in an image; 

point of the edge. 

the

 

n Filter:  

or 2D images :  

u[: ; : ; :] =  

 

(1

(2)  An imaginary straight line joining the extreme positive and negative values of 

secondary derivative would cross zero near the mid 

This zero point crossing property of the second derivative is quite useful for locating 

 centers of thick edges. 

 

2.2.2 Filters: 

Gaussia

F

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−
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1
1
1

   Ga
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For 3D images:  

  Gau[: ; : ; 1]= 
⎥
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⎦

⎤
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Sobel filter : 

For 2D images: 

Sob[: ; : ; :] = 

For 3D images 

  shx[1 ; : ; :] = 

shx[2 ; : ; :]= ⎢
⎢
⎡

0       0        
0       0        
0       0        

0
0
0

 

shx[3 ; : ; :] = 
⎤
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⎣
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  shy[: ; 1 ; :] = 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−

1-      2     1- 
0       0       0 
1-      2      1

   

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1       2       1  
2      4       2  
1      2        1  

 

⎥
⎥
⎥

⎦

⎤

⎢⎣

⎥⎦
⎥
⎥

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1       2       1  
2      4       2  
1      2        1  

 

8 



Chapter 2.                                                       Segmentation 

shy[: ; 2 ; :] = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0       0        
0       0        
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  shz[: ; : ; 1] = ⎢
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2.2.3 Morpholog ues 
 

Mathematical morphology uses set transformations for image analysis. It extracts the 

via the concept of structuring elements (SE). 

he SE encodes the primitive shape information. The shape is described as a set of 

Dilation: With A and B as sets in Z , the dilation of A by B, denoted 

⎥
⎥
⎥

⎦

⎤

⎢⎣      1  

shz[: ; : ; 2] = 
⎥
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⎦

⎤
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0       0        
0       0        
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shz[: ; : ; 3] = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1-     2-     1-
2-     4-    2-
 1-      2-    1-

 

ical Techniq

impact of a particular shape on images 

T

vectors referenced to a particular point, the center [1]. During morphological 

operations, the center scans the whole image and the matching shape information is 

used to define the transformation. The transformed image is thus a function of the SE 

distribution in the whole image. The two most fundamental transforms in 

mathematical morphology are erosion and dilation. These can be defined on the basis 

of the above assumptions as 

 
2 BA⊕  

 
    ⊕ BA ≠= AzBz I)'(|{ Ø}      ----(2.1) 

hifting this 

on of A by B then is th

B and A overlap by at least one element.  

 

This equation is based on obtaining the reflection of B about its origin and s

reflection by z. The dilati e set of all displacements, z, such that 
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Erosion: For sets A and B in Z  the erosion of A by B, denoted A Θ B is defined as 

 
     A Θ B = })(|{ AzBz ⊆      ---- (2.2) 
 

2

 words, this equation indicates that the erosion of A by B is the set of all points z 

such that, translated by z, is contained in A.  

orphological operations are generally simple to understand and implement. At the 

to the number of times is given. Thus, 

ese algorithms generally require some external criteria to control them. These 

curves, surfaces or solids defined within an image or volume 

omain and they deform under the influence of external and internal forces. In the 

adigm, the data apply forces (external forces) to the 

eformable model and as a result the model moves towards the data, while internal 

dynamic equation:  

   

In

 

M

same time, these are generally difficult to control. For example, it is difficult to control 

the dilation operation unless the upper limit 

th

operations also have a risk of changing the morphology of the input datasets. It is 

well known that a series of dilations followed by erode operations leads to loss of high 

frequencies (for example, folds in a colon), and fills holes. Similarly a series of erodes 

followed by dilations can introduce holes and high frequencies. These algorithms 

should be avoided when accuracy is the primary concern and there is a risk of loss of 

important data. As with edge detectors, morphological operations are not 

segmentation algorithms by themselves but they are generally an integral part of a 

segmentation pipeline. 

 

2.2.4 Deformable Models 

 

Deformable models are 

d

physics-based modeling par

d

forces keep the model smooth during deformation [3].  

 

Mathematically, a deformable model moves according to its dynamic equations and 

seeks the minimum of a given energy function. The deformation of a typical 2-D 

deformable model can be characterized by the following 

 

t
tsX

t
tsX

ext ssFF
∂

∂
+

∂
∂ ),(),(

int 2

2

 

=+ )()( γμ      -----(2.3) 
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Where X(s,t) = (x(s, t),y(s, t)) is a parametric representation of the position of the 

model at a given time t, and µ(s) and )(sγ  are parameters representing the mass 

density and damping density of the model, respectively. Equation (2.3) causes the 

odel to move according to the direction and magnitude of the forces on the right 

g a

ased deformable models can be divided into three categories: energy 

.2.4.1 Energy minimizing snakes 

eformable contours that are useful in several image analysis tasks. Using energy 

f this approach is to find a parametric model that 

inimizes the weighted sum of internal energy and potential energy. The internal 

think of energy minimization as a static problem, a potent 

pproach to computing the local minima of functional is to construct a dynamical 

unctional and allow the system to evolve to 

quilibrium. Equilibrium is achieved when the internal and external forces balance and 

 

m

hand side.  

Internal force represents internal stretchin nd blending forces. The most commonly 

used external forces are computed as the gradient of an edge map. 

 

Physically b

minimizing snakes, dynamic deformable models, and probabilistic deformable models. 

 

2

 

Snakes [4] are the most popular form of deformable models. Snakes are planar 

d

minimization formulation, the goal o

m

energy specifies the tension or the smoothness of the surface of the model. The 

potential energy is defined over the volume domain and typical possesses local 

minima at the edges occurring at object boundaries. Minimizing the total energy 

yields internal and potential forces. As a result, these are attracted to image features 

such as lines and edges. 

 

2.2.4.2 Dynamic deformable models 

 

Although it is natural to 

a

system that is governed by the f

e

the contour comes to rest. This leads to dynamic deformable models that unify the 

description of shape and motion, making it possible to quantify not just static shape, 

but also shape evolving through time. 
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2.2.4.3 Deformable models in segmentation 

 

Deformable surface models are also used for segmentation. Initialized a deformable 

odel near the region-of-interest and allowed it to deform into place. Users could 

en manually fine-tune the fitting by using interactive capabilities of the models. The 

images analysis was the application of 

eformable contour models, such as snakes, to segment structures in 2D images [6]. 

ing smooth 3D 

urfaces. In one of the initial work on segmentation using 3D deformable surfaces, 

oses the balloon expansion, and a term that maintains the topology of 

e model by constraining each vertex to remain close to the centroid of its neighbors. 

m

th

first uses of deformable models in medical 

d

To segment 3D medical datasets, each 2D slice was segmented separately. Once a 2D 

slice was segmented, the contour of that slice was used as a reference contour for 

neighboring slices. This reference contour was then deformed into place in those 

slices. This process was repeated for all the 2D slices. The resulting sequence of 2D 

contours was then connected to form a continuous 3D surface model. 

 

The 3D segmentation process described above is both laborious and requires a post-

processing step to connect the sequence of 2D contours into a continuous surface. In 

addition, the reconstructed surface can have various inconsistencies. A true 3D 

segmentation technique could overcome all these shortcomings giv

s

Miller [7] constructed a balloon by approximating a sphere using polygons. He then 

geometrically deformed this balloon until its surface conformed to the object surface 

in 3D image.  

 

The segmentation process is formulated as the minimization of a cost function, which 

is a weighted sum of three terms: a deformation potential that expands the model 

vertices towards the object boundary, an image term that identifies features such as 

edges and opp

th

Deformable models have the advantage that they offer a coherent and consistent 

mathematical description and are robust to noise and boundary gaps due to their 

incorporation of a smoothness constraint. Another advantage is that the offer sub-

voxel accuracy for the boundary representation that may be important to a number of 

applications. A very important advantage of these models from the point of view of 

medical imaging is that these models are capable of accommodating the often 

significant variability of biological structures over time and across different individuals.  

12 
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A disadvantage is that they require manual interaction to place an initial model in the 

dataset. 

 

2.3 STOCHASTIC TECHNIQUES 

 

The Stochastic techniques algorithms performs segmentation by statistical analysis 

nly, these algorithms do not take into account any structural information.  

.3.1 Thresholding Approaches  

1]. In this 

chnique a single value called threshold is used to create a binary partition of voxel 

s greater than the threshold are grouped together 

to one class and those with intensities below the threshold are grouped together into 

o

 

2

 

Thresholding is probably the simplest of the segmentation techniques [

te

intensities. All voxels with intensitie

in

another class. Use of a single threshold thus results in a binary segmented volume. 

This technique can be extended to using multiple thresholds, where a region is defined 

by two thresholds, a lower threshold and an upper threshold. Each voxel of the input 

volume then belongs to one of the regions based on its intensity. This technique is 

known as multi thresholding. In Figure 2.4 we showed histogram of a volume. To apply 

thresholding, Two thresholds T1 and T2 as shown. We then get three distinct regions 

as seen from the histogram. 

 

Fig. 2.4 Histogram of a volume with two thresholds T1 and T2 dividing the histogram in three regions. 

 

Although simple, this technique is very effective in getting segmentation done in 

volume with a very good contrast between regions. This is generally use  as the first 

step  

d

towards segmentation of a volume. The main drawback of this technique is that

13 
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the results are too tightly coupled with the thresholds used. Any change in the 

 seek to partition 

 feature space derived from the volume using data with known labels. A feature 

ional feature vector made from features at each 

oxel. The features could include the voxel intensity, the gradient at the voxel, the 

other hand, use of the same 

aining set for a large number of scans can lead to biased results which do not take 

 

threshold values can give a different segmented region. The thresholds are usually 

generated interactively by using visual feedback. Some automatic methods do exist 

with varying degree of success to automate the process of finding correct thresholds. 

Another drawback which is a direct consequence of the previous one is that the 

technique is very sensitive to noise and intensity in homogeneities.  

 

2.3.2 Classification Techniques 

 

Classification techniques are pattern recognition techniques [8] that

a

space is the range of an N-dimens

v

distance of the voxel from the volume boundary and so on. Mathematically, a feature 

space can be the range space of any function of the volume. Classifiers belong to the 

supervised category as they require training data that are pre segmented (either 

manually or by other method). The pre-segmented data is then used as reference to 

carry out automatic segmentation on new data. The simplest form of a classifier is the 

nearest neighbor classifier, where each pixel or voxel is classified in the same class as 

the training datum with the closest intensity. The k-nearest neighbor (kNN) classifier 

is the generalization of this approach, where the pixel is classified according to the 

majority of the k closest training data. Another example of a similar classifier is the 

Parzen window, where the classification is made according to the majority vote within 

a predefined window of the feature space centered at the unlabeled voxel (mapped to 

feature space). Both these classifiers are non-parametric since they don't make any 

assumption about the statistical structure of the data. 

 

Disadvantage of classifier technique is the manual interaction for obtaining training 

data. Training sets can be acquired from each volume that requires segmentation, but 

this can be time consuming and laborious. On the 

tr

into account anatomical and physiological variability between different subjects. 

 

 

14 
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2.3.3 Clustering Algorithms 

 

These are clustering-based techniques [9] which use characteristics of the voxel and 

s immediate neighborhood to do clustering. Clustering can be loosely defined as the 

rocess of grouping objects into groups, whose members show similar properties. In 

he data voxels and the “groups" are the segmented 

gions. “Similar properties" could be any property the data voxel posses, like the 

 

s in the case of classification, voxel properties such as intensity, gradient, 

lustering, 

ader clustering, spatial clustering, etc.) is then applied to each voxel in the feature 

it

p

our case these “objects" are t

re

density, gradient, color (for a color dataset) etc. Clustering-based segmentation is 

similar to the classifier methods, with the exception that these do not use any training 

data. These techniques thus come under the unsupervised class of algorithms for 

segmentation. These algorithms overcome the need for a training data by iterating 

between segmenting the volume and characterizing the properties of each class. We 

could say that clustering-based algorithms train themselves using the available data. 

The various clustering algorithms available today can be grouped into two broad 

categories:  

 

1. Hierarchical methods: These methods include those techniques where the input 

data is not partitioned into clusters in a single step. A series of successive fusions of

data are performed until each cluster of size greater than one is composed of smaller 

clusters. 

 

2. Non-Hierarchical methods: In these methods, the desired number of clusters is 

known or assumed at the beginning of the clustering process. The end result is such 

that each data voxel gets assigned to exactly one cluster in this algorithm.  

 

A

neighborhood information etc. are used to form an N-dimensional feature vector for 

each voxel. Each class of the region is assumed to form a distinct cluster in the N-

dimensional feature space. A suitable clustering algorithm, (K-means c

le

space. The resultant clusters in the feature space are then mapped to spatial domains 

to give the desired regions [9].  

 

 

 

15 



Chapter 2.                                                       Segmentation 

2.3.3.1 K-means clustering 

 

This algorithm takes as input a set of N dimensional vectors without any prior 

nowledge about the set. After processing, the algorithm forms K disjoint nonempty 

ubsets such that each subset minimizes some measure of dissimilarity. By 

each subset locally, the algorithm will globally yield an 

ptimal dissimilarity of all subsets. The dissimilarity for a voxel is its distance from the 

subset xi, and s is the 

imensionality of xi. A function u: X → [0; 1] is defined, which assigns to each xi in X 

in the fuzzy set u. The function u is called a fuzzy subset of 

. The goal is to partition X by means of fuzzy sets. A fuzzy c-partition is defined as  

y. 

. No fuzzy subset is all of X. 

ich cannot be classified into the previous two categories, 

section segmentation techniques based on finding the 

gion directly [1]. 

nt the entire image region. R is partitions into n sub 

gions, R1, R2 , R3,……, Rn. such that 

k

s

minimizing dissimilarity of 

o

mean of each of the classes in the feature space. The mean for each class is 

computed iteratively. The voxel is added to the cluster whose mean is the nearest to 

the voxel (meaning least dissimilarity between the voxel and the cluster's mean).  

The algorithm has a time complexity O(RKN), where K is the number of desired 

clusters, and R is the number of iterations until it converges. 

 

2.3.3.2 Fuzzy clustering 

 

The input to the algorithm is a finite data set X = x1; x2;...;xn, each xi єX is a feature 

vector; xi = (xi1; xi2;….;xis) where xij is the jth feature of 

d

its grade of membership 

X

c X n matrix U such that: 

 

1. Each row Ui represents the ith fuzzy subset of X. 

2. Each column Uj exhibits the membership grades of datum j in every fuzzy subset. 

3. The membership grades of each datum in all fuzzy subsets add up to 1. 

4. No fuzzy subset is empt

5

 

2.4 HYBRID APPROACHES 

 

Segmentation algorithms, wh

are discussed here. In this 

re

Basic formulation: let R represe

re

16 
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a)

gion, i=1,2,3…n. 

P  for i≠j 

Here, P(R ) is a logical predicate defined over the points in set Ri and Ø is the null set. 

Condition (a) indicates that the segmentation must be complete; that is, every pixel 

 a region. Condition (b) requires that points in a region must be connected 

some prede ondition (c) indicates that the region must be disjoint. 

ition (d) deals with the properties that must be satisfied by the pixels in 

 connected region from a 3D volume based on some pre-defined 

onnecting criterion. These criteria can be as simple as the voxel intensity. In the 

owing requires a seed point to start with. From the seed 

oint, the algorithm grows till the connecting criteria are satisfied. As with 

o a pyramidal grid structure of regions, with each region 

U 1=i
n

b) Ri is a connected re

RRi =  

c) =RjRiI  Ø for all I and j, i≠j. 

d) TRUERiP =)(  for i=1,2…n. 

FALSERjRi =)( Ue) 

i

must be in

in fined sense. C

Cond

segmented region. Condition (e) indicated that regions Ri and Rj are different in the 

sense of predicate P. 

 

2.4.1 Region Growing 

 

This is probably the simplest among the hybrid techniques. Region growing is a 

technique to extract a

c

simplest form, region gr

p

thresholding, region growing is simple, but not often used for segmentation by itself. 

More often than not, region growing forms a part of a segmentation pipeline for a 

particular approach. It is often used as the primary. The primary disadvantage of this 

algorithm is that it requires seed points which generally mean manual interaction. 

Thus for each region to be segmented, a seed point is needed. Region growing can 

also be sensitive to noise and partial volume effect causing the extracted region to 

have holes or disconnections. Some recent work has been reported which tries to 

alleviate these problems. 

 

2.4.2 Split and Merge 

 

This algorithm is similar to region growing algorithm. This algorithm requires the input 

data to be organized int

17 
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organized in group of eight. Any region can be split into eight sub regions and the 

s can be merged into a single larger region. As in region 

rowing, the criteria for merging (growing for region-growing) could be anything. It 

rge these 

ficial Neural Networks 

l networks (ANN) [10] based 

pproaches tried to partially overcome these drawbacks. ANNs are massively parallel 

nodes that simulate biological learning. Each node 

 an ANN is capable of performing elementary computation. Learning is achieved 

Ns are available. These 

ed that ANNs can successfully exploit and integrate different kinds 

ion contained in medical images. His experiments demonstrated 

e approach, but at the expense of generality. ANNs are 

idely used in segmentation as a classifier, where the weights are determined using 

training data, and the ANN is then used to segment new data. ANNs can also be used 

appropriate eight region

g

could be as simple as voxel intensity or some condition checking based on the output 

of some previous segmentation stage. Let us assume that the criterion is P.  

The algorithm can be written down in two steps as follows: 

1. Pick a region R in the grid structure. If P(R) is false, split the region into sub 

regions. If for eight regions R1;R2; :::;R8, C(R1UR2U…..UR8) = TRUE, merge into 

single region. When no regions can be merged, stop. 

2. If there are neighboring regions Ri and Rj such that P(Ri U Rj)=TRUE, me

regions. 

 

The big advantage of this method over region growing is that no seed points are 

needed and hence no manual interaction is needed. 

 

2.4.3 Arti

 

Conventional segmentation algorithms based on structural knowledge often require 

considerable user expertise. The Artificial neura

a

networks of processing elements or 

in

through the adaptation of weights assigned to the connections between nodes.  

The main features of ANNs which the segmentation algorithms try to use are: 

1. Learning from examples and generalizing that knowledge 

2. Noise rejection 

3. Fault tolerance 

4. Optimum seeking behavior 

 

Three architectures for image segmentation based on AN

architectures show

of a priori informat

robustness and sensitivity of th

w

18 
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in an unsupervised fashion as a clustering method, as well as for deformable models. 

Since the ANNs are tightly interconnected, spatial information can be easily 

incorporated into its classification procedures. Although ANNs are inherently parallel, 

their processing is usually simulated on a standard serial computer, thus reducing this 

potential computational advantage. 
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3.              ACTIVE CONTOUR 

 

3.1 INTRODUCTION 

 

In the late eighties it was suggested that it should be possible to follow edges in 

images by suggesting a curve (e.g., the circumference of an object) in an image, 

and then letting the curve itself move to a suitable shape and position. This curve 

should have physical properties like elasticity and rigidity, and also be attracted 

by edges in the image. Such curves are called active contours, deformable 

models or snakes and have become popular especially in medical image analysis 

[12]. 

 

For the contour to be attracted to edges in the image an energy image or 

attractor image is created, which has high values where the original image has 

edges and low values otherwise. The attractor image gives the contour a 

potential energy by summing the energy in the points the contour passes. The 

contour itself has an internal energy level determined by its shape (elasticity and 

rigidity) and by minimizing the total energy one aims at a smooth contour that 

follows the original image’s edges well [11]. 

 

Fitting active contours to shapes in images is an interactive process. The 

operator must suggest an initial contour, which is quite close to the intended 

shape. The contour will then be attracted to features in the image extracted by 

creating an attractor image. 

 

3.1.1 Open and closed contours 

 

The contour can be either a closed or an open curve. If the contour is open, one 

should take care to modify the contour’s definition of its energy so that the end-

points will not move in the same way as the other points (avoiding the contour 

dragging itself into itself and vanishing). 
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3.2 THE ENERGY OF THE CONTOUR 

 

The energy depends on the shape of the contour (internal energy) and on its 

positioning on the image according to  

 

                          ------ (3.1) (v)E(v,f)imageEE(v,f) int+=

 

These energies influence all points along the contour with internal forces and an 

image force. When all forces are balanced, the total energy is minimum. 

 

3.2.1 Internal Energy 

 

The internal energy of the contour depends on the shape of the contour and the 

parameter functions α(s) and β(s) and is defined as  

 

          ( )dsv"(s)β(s).v'(s)α(s).E ∫ +=
22

int         ------- (3.2) 

 

The first term, |v’(s)|2 will have larger values if there is a large gap between 

successive points on the contour and minimizing it will minimize the total length 

of the contour. The second term, |v”(s) |2, will be larger where the contour is 

bending and requires the contour to be as smooth as possible. This term is 

weighted by parameter functions, and so α(s) determines the elasticity of the 

contour, and β(s) determines the rigidity [12, 13]. 

 

If α(s) equals zero at some points then discontinuities are allowed there, and 

where β(s) equals zero, discontinuous curvature such as corners are allowed. 

 

3.2.2 Image energy 

 

The image energy depends on how the contour is positioned on an attractor 

image p, and it is defined as 

     ∫−= sp(v(s),f)dEimage           ------ (3.3) 
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Where                      ------ (3.4) 2f(x)||p(x,f) ∇=

 

3.2.3 Minimize the energy 

 

Minimizing the energy Equation (3.1) is equivalent to solving the corresponding 

Euler-Lagrange-equation   

 
              ----- (3.5) p(v,f)β.vα.v'' )( −∇=− 4

 
This simply means that the internal forces shall balance the image force.  

In practice one does not study the contour at all points. Instead, the contour is 

represented by a vector v  of control points . The control points must not be 

separated by more than a few pixels to prevent the contour from bypassing 

attractive but small areas in the image. It is the purpose of the elasticity force to 

keep the control points equidistant. Control points v

jv

j the derivatives in Equation 

(3.5) can be approximated as 

 

     11 2 +− +−≈ jjjj vvv"v            ----- (3.6) 

 
           -----(3.7) 2112

4 464 ++−− +−+−≈ jjjjj
)(

j vvvvvv
 

Using these expressions Equation (3.5) can be written as 

 

      0=∇+ ,f)vp(vA      -----(3.8) 

 

Where A is the matrix given by Equation (3.6) and Equation (3.7) and insertion 

of α and β. A contour can then be calculated with iterations according to Euler’s 

method as 

   ,f)vp(vvA)(I kkk ∇+=+ +1            ------ (3.9) 

 

3.3 THE CONTOUR-FITTING PROCESS 

 

To find a suitably shaped and positioned contour three main steps are executed 

[11] 
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Step 1: Suggesting an initial contour: To make the contour attract to the shape 

in the image to which one wants to fit the contour, an initial suggestion should be 

given. A 2D contour is simply represented by a vector of control points where 

neighboring control points are represented by neighboring elements in the 

vector. When segmenting a 2D image, the representation is straightforward; a 

vector of control points. 

 

Step 2: Calculating the attractor image: The original image has to be filtered to 

create the attractor image according to Equation (3.4). The attractor image is 

then filtered with gradient filters to create the image force . The image is 

filtered with two edge detecting filters (detecting edges in different directions) 

and in two scales. The results are added, normalized, and squared, 

 

Step 3: Iterate: The suggested contour is iterated according to Equation (3.9). 

The iteration will proceed until it eventually gives a stable contour or until the 

user interrupts the iteration. 

 

3.4 THE ATTRACTOR IMAGE 

 

As mentioned earlier the original attractor image was given by 

 

                ---- (3.10) 2f(x)||p(x,f) ∇=

 

And the image force on the contour v at a point s ε [0 1] is given by . 

This attractor image has some limitations: 

)),(( fsvp∇

• It is only sensitive to edges, not to lines. That implies that the contour will be 

attracted to points on either side of a line. This is not always a problem, but in 

some applications it certainly is. 

• In 3D, it is sensitive to lines as well as to planes. When trying to segment a 

volume in a 3D image.  

 

The first problem is quite easily solved by taking the magnitude of an orientation 

estimate on the original image. 

 23
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To solve the second problem it is suitable to create a local estimate of the 

probability of linear and planar structures. 

 

3.4.1 Attracting to local orientation in 2d images 

 

By filtering an image with edge and line detectors in four directions, it is possible 

to estimate the orientation vector as follows:  

If the convolution kernel  is a horizontal line detecting filter kernel and 

 is a horizontal edge detecting filter kernel, then  

)(xqline

)(xqedge

 

    )(x)|i(f*q)(x)|(f*q(x,f)q edgeline +=1          ----- (3.11) 

 

is an estimate of the dominance of local horizontal orientation in the image f. 

Combining q1 with a “vertical estimate” q3, one can get a more secure estimate 

in q1-q3, since vertical and horizontal orientation are regarded as opposites. This 

is an estimate of the local one-dimensionality of the neighborhood, i.e., that the 

neighborhood contains structure oriented horizontally only (a negative value 

means that the neighborhood is dominated by vertical structure). Using q1, q3 

and their rotations by Π/4 q2 and q4 the orientation vector can be created as 

     z=                 ------ (3.12) ⎥
⎦

⎤
⎢
⎣

⎡

42

31

qq
qq

  - 

  - 

An estimate of the local magnitude of orientation can be calculated as the norm 

of z, which equals 

    ∑
=

+−=
4

1
4231

22 2
k

k )qqq(qqz          ----- (3.13)  

 

Using this norm 

 

     
2z(x,f)p(x,f) =            -----(3.14) 

 

as the attractor image will cause the contour to be attracted to oriented structure 

invariantly to phase, i.e., to lines as well as to edges. it is not really necessary 

with four complex filters; in two dimensions it is quite enough using three filters 
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detecting lines/edges in directions separated by Π/3. The norm can then be 

calculated as 

 

    ∑
=

++−=
3

1
323121

22

k
k qqqqqqqz           -----(3.15) 

 

3.4.2 Attracting to planar structure in 3d images 

 

Let Orientation tensor T, whose eigen system describes the local variation of the 

signal (or the local energy distribution in the Fourier domain) and therefore also 

the orientation. Calling T’s eigenvalues λ1, λ2, λ3 where λ1, λ2, λ3 and the 

corresponding eigenvectors e1, e2 and e3, there are (in 3D) three characteristic. 

cases: 

• Plane case: λ1>> λ2 ≅ λ3 ≅ 0 

The signal varies mainly in one direction, e1, i.e the spatial neighborhood 

describes a planar structure, with e1 as normal vector (the plane is spanned by 

e2 and e3). The energy in the Fourier domain is mainly distributed along a line in 

the direction of e1. 

• Line case: λ 1≅ λ 2 >> λ 3≅ 0 

The energy in the Fourier domain is distributed on a plane spanned by e1 and e2. 

The spatial neighborhood is (nearly) constant in the same direction and describes 

a linear structure along e3. 

• Isotropic case: λ1 ≅ λ 2≅ λ 3 

The neighborhood has no orientation, i.e it varies equally in all directions. 

 
Using a certainty estimate as attractor 

The spectrum theorem states that orientation  

 

             ----- (3.16) TTT .e.eλ.e.eλ.e.eλT 333222111 ++=

 

And since  the norm TT eeee 3322 ⊥ )(TΔ , can be calculated as 

 

    TT .e.eλ.e.eλTTΔ(T) 3332221 +=−=         ----- (3.17) 
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)(TΔ  will be close to zero in the presence of planar structure, and computation of 

Equation. in each point in the image creates an attractor image that will attract 

the contour to planar structures in the image. 

 

Δ (T) will also be close to zero when all eigen values are small. Consequently is 

very sensitive to noise on low-energy parts of the image, and therefore a division 

by λ1 is suitable.  

The attractor image can then be expressed as  

 

    )))ues (T(x,f(eigen val-Δ(x,f)P λΔ =           ----- (3.18) 

Where 

      

1

32

λ
λλ

λΔλ
+

=)(  

 

3.4.3 Creating the attractor image 

 

As indicated above, several steps are required to create the attractor image and 

the resulting image force. The sequence of these steps is described below (a 3D 

image is assumed).  

1. Tensor filtering: Filter the image with at least six edge/line detectors and 

create the orientation tensor. 

 

 2. Averaging: The tensor field usually needs some averaging (low-pass-filtering) 

to reduce randomness of the orientation caused by noise. An ordinary or 

Gaussian kernel is used.  

 

3. Computing eigenvalues: Compute the eigenvalues of the tensor field and sort 

them in decreasing order. 

 

4. Detecting planar structure: Compute the energy according to Equation (3.18). 

 

5. Thresholding: The parts of the original image without dominant local 

orientation, e.g black background, will (especially in the presence of noise) 

contribute to the calculated attractor, however with quite low values. It is, 
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though, preferable to set all these points to zero. This will straighten out the 

contour where crossing such regions, since the contour will there only be under 

the influence of the internal forces (elasticity and rigidity).  

 

6. Gradient filtering: Computing the 3D-gradient of the attractor image will result 

in the image force used when iterating the contour. The image force is a 

function, i.e., every “pixel” in the 3D-image is a three-element vector.  

 

3.5 REPRESENTATION IN THREE DIMENSIONS 

 

3.5.1 The 3D Contour  

 

A 3D contour is typically described by a function v:[0,1]X[0,1]→R3. The contour 

is placed on an image f: R3 →R and is moved by iteration in the same way as in 

the 2D case. The simplest way to create an active contour in 3D is by using 

repeated 2D contours. This method is often used since it is also quite intuitive in 

many applications with image sequences. The major drawback is that it is 

impossible to vary the distance between the control points in the third dimension, 

so that exactly one point per pixel (in the third dimension) is required. In some 

applications one does not even care about elasticity and rigidity in the third 

dimension and calculates a number of independent contours on separate images. 

This, of course, can result in very unpleasant contours, e.g., if a piece of a line 

through the image sequence is missing in one or some images. 

 

3.5.2 The Energy Of The Contour 

 

In 3D the image force is defined in the same way as in 2D, but the internal 

energy has to be calculated in a slightly different way, To calculate the internal 

energy in 3D, some additional parameter functions are required, and the energy 

is now defined as (with v = v(s, r)) 

 

  )dsdrvβvβvβv'αv'(αE ''
srsr

''
rrr

''
sssrrss

22222
++++= ∫int   ----- (3.19) 
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Where αs and αr determine the elasticity along the s- and r-axis respectively, βs 

and βr determine the corresponding rigidities and βsr determines the resistance to 

twist. 

 

3.5.3 Representation 

 

A 2D contour is simply represented by a vector of control points where 

neighboring control points are represented by neighboring elements in the 

vector. In 3D, the contour is most easily represented by a matrix of control 

points.  

 

Representing the contour with a polyhedron: To create a sphere-like contour, 

problem is control points will then be placed on the sphere in a quite irregular 

manner (with regard to their mutual distances), and there is no obvious way to 

modify eq.1 to fit this topology. Consequently the mesh-representation is not 

suitable for spherical contours - instead it is preferable to place the control points 

regularly on a sphere, i.e., to let the control points be the vertices of a regular 

polyhedron (in case of eight control points, they should be placed like the corners 

of a cube). A solution is to create a quasi-regular polyhedron with equal 

distances between each vertex and its neighbors. Such polyhedron can be 

created recursively from an icosahedron, see Figure 3.1, using the following 

algorithm: 

1. Place a new vertex at the midpoint of each edge. 

2. Remove the old edges and create new edges between all vertices with a 

mutual distance that equals half of the distance between the old vertices. 

3. Project the new vertices on the circum sphere of the polyhedron. 

 

The original twelve vertices have five neighbors while all new vertices will have 

six neighbors. The number of faces, edges and vertices (Fn, En and Vn where n is 

the number of recursions) grow quite quickly. The original polyhedron P0 has got 

the characteristics (F0 E0 V0) = (20 30 12), and the characteristics of polyhedra 

Pn is calculated recursively (directly from the algorithm) as 

                  

11

11

1

32
4

−−

−−

−
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=
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nnn
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EEE
FF

------ (3.20) 
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  Figure 3.1 The icosahedron, one of the five Platonic polyhedra. 

Expanding En as 

  
1233

122

33322
3322

−−−−

−−−

∗+∗+∗+∗∗=

∗+∗+∗∗=

nnnnn

nnnn

FFFEE
FFEE

))((

)(
         ------ (3.21) 

 

 

 

Makes it obvious that En can be written as a closed expression: 
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         ------ (3.22) 

 

In a similar way 

 

                    

n
n

n
n

n
n

V

E

F

4102
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                 ----- (3.23) 
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   Figure 3.2 The icosahedron and its first three expansions. 

 

For example, P3 and P4 have 642 and 2562 vertices respectively, which could be 

suitable amounts in practical applications. The four first polyhedra (P0 through 

P3) are illustrated in Figure 3.2. 

 

3.5.4 The Internal Forces Independent of Representation 

 

Elasticity can be regarded as a dragging force from each of the neighboring 

control points, i.e., the elasticity force in a control point is simply the vector from 

the control point to the average of the neighboring control points (Figure 3.3). 

 

     

    Figure 3.3 The elasticity force of the control points.  

Rigidity can be regarded as the force from a control point to a point linearly 

“predicted” by the two “earlier” points, as shown in Figure 3.4, i.e., the vector 
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from vj-2 to vj-1 is added to vj-1, and vj is forced towards the resulting point. This 

means that the rigidity force in a point vj is . The “prediction” can be made in all 

directions and be generalized to higher dimensionality. 

 

     

    Figure 3.4 The rigidity force of the control points. 
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4.          ACTIVE CONTOUR USING LEVEL SETS 
    FOR SEGMENTATION 
 

4.1 LEVEL SET METHOD 

 

The level set method is a numerical technique for tracking interfaces and shapes. 

The advantage of the level set method is that one can perform numerical 

computations involving curves and surface on a fixed Cartesian grid without 

having to parameterize these objects (this is called the Eulerian approach). Also, 

the level set method makes it very easy to follow shapes which change topology, 

for example when a shape splits in two, develops holes, or the reverse of these 

operations [13] 

 

4.1.1 Mathematical Formulation 

 

Let Ω be a bounded open subset of R2, with ∂Ω as its boundary. Then a two 

dimensional image u0 can be defined as u0: Ω→ R. In this case Ω is just a fixed 

rectangular grid. Now consider the evolving curve C in Ω, as the boundary of an 

open subset ω of Ω. In other words, ω of Ω and C is the boundary of ω (C =∂ω). 

 

The main idea is to embed this propagating curve as the zero level set of a 

higher dimensional function Φ. A function is defined as follows: 

 

     d)φ(x,y,t ±== 0              ---- (4.1) 

 

Where d is the distance from (x, y) to ∂ω at t = 0, and the plus (minus) sign is 

chosen if the point (x; y) is outside (inside) the subset ω [14].  

 

Now, the goal is to produce an equation for the evolution of the curve. Evolving 

the curve in the direction of its normal amounts to solving the partial differential 

equation: 

    (x,y)Φ)(x,y,, ΦF
t
Φ

00 =Φ∇=
∂
∂

                     ---- (4.2) 
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Where the set {(x, y), Φ0(x, y) =0} defines the initial contour, and F is the speed 

of propagation. For certain forms of the speed function F, this reduces to a 

standard Hamilton-Jacobi equation. There are several major advantages to this 

formulation. The first is that Φ(x, y, t) always remains a function as long as F is 

smooth. As the surface Φ evolves, the curve C may break, merge, and change 

topology. 

 

Another advantage is that geometric properties of the curve are easily 

determined from a particular level set of the surface Φ. For example, the normal 

vector for any point on the curve C is given by: 

 

     Φn ∇=  

 

And the curvature K is obtained from the divergence of the gradient of the unit 

normal vector to the front: 

  

   
2
3

22

22 2

)Φ(Φ

ΦΦΦΦΦΦΦ
Φ
ΦdivK

yx

xyyxyyxyxx

+

+−
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∇
∇

=   ----- (4.3) 

 

Finally, another advantage is that this system is able to evolve curves in 

dimensions higher than two. The above formulae can be easily extended to deal 

with higher dimensions. This is useful in propagating a curve to segment volume 

data. 

 

4.2 ACTIVE CONTOURS WITH EDGE STOPPING 
 

The goal now is to define a speed function F from the data. 

 F = FA + FG.  

FA represents a constant advection term that will force the curve to expand or 

contract uniformly based on its sign. This acts like the inflation force used in 

traditional snakes models. The second term FG depends on the geometry of the 

curve and acts to smooth out high curvature regions [14]. 
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However, A method is required to halt the evolution of the curve at object 

boundaries. Let assume that boundaries are defined by the gradient of image u0, 

then 

 

   1
1

1

0

0 ≥
∗∇+

= ,p
(x,y)u(x,y)G

)g(u p
σ

        ------- (4.4) 

 

Where  y)(x,uy)(x,G 0σ ∗  is simply the convolution of u0 with the Gaussian 

function 

     
σyx

σ eσG
42

1 22 +−−
=  

 

The function g(u0) has values that are close to zero in regions where the gradient 

of the image is high, and values that are closer to one in homogeneous regions. 

Another edge stopping function which falls to zero faster about the edges can be 

defined as: 

 

     (x,y)u(x,y)Gσe)g(u 0
0

∗∇−=               ------ (4.5) 

 

Multiply speed function F by this edge stopping function g. So Equation (4.2) can 

be rewritten to reflect the above changes: 

 

   ( ) (x,y)Φ)(x,y,,ΦFΦF)g(u
t
Φ

GA 00 0 =Φ∇+∇=
∂
∂

            ------ (4.6) 

 

Now for discretize Φ, differences scheme is used. Let Δt be the time step and (xi, 

yj) be the grid points for 1 ≤ i; j ≤ M. Let  be an approximation 

of Φ(x, y, t) with n≥0, Φ

),,(, tnyx ji
n

ji δΦ=Φ

0 = Φ0. Finite differences are described by the following 

notation: 

 

             ------ (4.7) 
i,ji,ji,j

y
i,ji,ji,j

y

i,j,jii,j
x

,jii,ji,j
x

ΦΦΦ     ΦΦΦ

ΦΦΦ     ΦΦΦ

−=Δ−=Δ

−=Δ−=Δ

++−−

++−−

11

11
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Take FA=1; use upwind schemes first introduced by Sethian [9] to 

estimate : || Φ∇AF

( ) ( ) ( ) ( )[ ]212222
0000 ,Φ,Φ,Φ,ΦΦF n

i,j
yn

i,j
yn

i,j
xn

i,j
x

A +−+− Δ+Δ+Δ+Δ=∇ minmaxminmax   ---- (4.8) 

 
The remainder force FG is based on the K. Multiply this by a small negative 

constant -є and approximate Φ∇  using central differences. So an estimate for 

Φ∇GF  is: 

   
2
1

2

11

2

11

22 ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−=∇ −+−+

n
i,j

n
i,j

n
,ji

n
,ji

G

ΦΦΦΦ
εKΦF   ---- (4.9) 

 

Although the level set equation of motion for Φ is defined over the entire domain, 

the image-based speed term has meaning only on the curve C. To remedy this, a 

speed function F’ required, which is globally defined. Let Q be a point on {Φ =c} 

where c≠ 0 (i.e. Q is not on the curve C), and let P be the closest point to Q such 

that P is on {Φ =0} (i.e. P is on the curve C). Then the speed at Q should take 

on the value of the speed at P. The edge-stopping function should be similarly 

extended to g’. From Equation (4.6) 

 
    )]ΦFΦ)(Ft[g'(uΦΦ '

G
'
A

n
i,j

n
i,j ∇+∇Δ−=+

0
1        ----- (4.10) 

ALGORITHM: 

Initialize Φ0 by Φ0, n=0 

For fixed number of iterations do 

 For each (xi, yj)є C do  

  Compute speed F’i,j by (4.8) and (4.9) 

  Multiply speed by F’i,j stopping function g’(u0) 

 End 

 For each (xi,yj)∉C do 

  Find point (x’,y’) є C closest to (xi,yj) 

  Extend speed and edge stopping function 

 End 

 Compute Φn+1 by (4.10) 

End 
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4.3 ACTIVE CONTOURS WITHOUT EDGES 
 

Assume that image u0 is formed by two regions of approximately constant 

intensities  and , and the object to be detected is represented by the region 

with value . If the boundary is given by C

1
0u 0

0u

iu0 0, then  inside Ciuu 00 ≈ 0 and 

outside Couu 00 ≈ 0. The following fitting energy 

  

   ∫ ∫ −+−=+
inside c outside c

dxcudxcu(c)F(c)F 2
20

2
1021     ----- (4.11) 

 

Where C is any variable curve, c1 and c2 are average of u0 inside and outside of C 

respectively. Consider Fig. 4.1. If the curve C is outside the object, then F1(c)>0, 

F2(c)≈0. If the curve is inside the object, then F1(c) ≈0, F2(c)>0. If the curve is 

both inside and outside the object, then F1(c)>0, F2(c) >0. However, if the curve 

C is exactly on our object boundary C0, then F1(c) ≈0, F2(c) ≈0 and our fitting 

term is minimized [15]. 

  

     F1(c) > 0  F1(c) > 0 F1(c) ≈ 0 F1(c) ≈ 0  
     F2(c) ≈ 0  F2(c) > 0 F2(c) > 0 F2(c) ≈ 0 

  

  Figure4.1 All possible cases in position of the curve. 

 

Adding some regularizing terms like the length of C and the area inside C, the 

energy function F(C; c1; c2) is given by 

 

 
∫ ∫ −+−+

+=

inside C outside C

p

dxcuλdxcu λ                   

ide C)ν(area insf C)μ(length o),cF(C,c
2

202
2

101

21
        ----- (4.12) 

              

Where 0,,0,0 21 >≥≥ λλνμ  are fixed parameters. So our goal is to find C,c1,c2 

such that F (C,c1,c2) is minimized. 
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This problem can be formulated using level sets as follows. In the level set 

method, C is represented by the zero level set of a Lipschitz function 

such that RR N →Φ :

 

  

( ){ }
( ){
( ){ }0

0
0

<∈=

>∈=

=∈=

x:ΦRxoutside C
x:ΦRxinside C

x:φRxC

N

N

N

}          ------ (4.13) 

 

Now consider the Heaviside function H, and the Dirac measure δ  

 

     and 
⎭
⎬
⎫

≤
≥

⎩
⎨
⎧

=
0
0

0
1

    if z
    if z

H(z) H(z)
dz
dδ(z) =  

The Heaviside function is positive inside our curve and zero elsewhere, so the 

area of the region is just the integral of the Heaviside function of ф. The gradient 

of the Heaviside function defines our curve, so integrating over this region gives 

the length of the curve. 

Using the standard definition for the Heaviside function H and the dirac measure 

δ,  

 

    ( ) ( )∫∫ Φ∇Φ=Φ∇=
Ω

dxdxHCoflength δ        ------ (4.14) 

 Area inside  thus ∫Ω= dxHC )(φ

    dxHcu  dxcu
Ωinside C

)(Φ−=− ∫∫
2

10
2

10         ----- (4.15) 

 

    { }∫∫ Φ−=−
Ωoutside C

dx-Hcu  dxcu )(12
10

2
20     ----- (4.16) 

Therefore 

 
( ) ( )( ) ( )

( ) ( ){ }∫∫
∫∫

−−+−+

+∇=
Ω

ΩΩ

Ω

p

dxΦHcuλdxΦHcuλ                

dxΦHvdxΦΦδμ,cΦ,cF

12
102

2
101

21
        ----- (4.17)

            

Minimizing the energy functional with respect to c1 and c2 gives 
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    ( )
( )
( )∫

∫=
Ω

Ω

dxΦH

dxΦHu
Φc

0
1           ------ (4.18) 

 

     ( )
( ){ }
( ){ }∫

∫
−

−
=

Ω

Ω

dxΦH

dxΦHu
Φc

1

10
2         ------- (4.19) 

Which correspond to the average value of u0 inside C and outside C respectively,  

Now deduce the Euler-Lagrange partial differential equation from Equation 

(4.17). 

 

  02
202

2
101 =−+−−−

Φ∇
Φ∇

Φ=
∂
Φ∂

])()()
||

( )[( ccuvdiv
t

μλλμδ ---- (4.20) 

 

For solving this partial differential equation, regularized H(z) and )(sδ   required  

 

    ⎟
⎠
⎞

⎜
⎝
⎛ += )

ε
z(

Π
(z)H e arctan

21
2
1

    

    )()()( '
22

1
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zHz ee +Π
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ε
εδ  

 

with the help of Equation (4.3), Equation (4.19) can be written as  

 

  ])()()[(
t

2
202

2
101

1

cucuvKn
e

nn

−+−−−Φ=
Δ

Φ−Φ +

λλμδ      ------ (4.21) 

 

Algorithm: 

Initialize Φ0  by Φ0, n=0 

For fixed number of iteration do 

 Compute c1 and c2 by Equation (4.18) and (4.19) 

 Compute curvature term K by Equation (4.3) 

 Compute Φn+1 by Equation (4.21)  

End 
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5.        IMPLEMENTATION OF ACTIVE CONTOUR 

        WITHOUT EDGE STOPPING  

 

5.1 INPUT: 

 

1. Select the image for segmentation. 

2. Choose a center point in image. 

3. Create a circle surrounding the interesting object. 

 

      
          Fig 5.1 Creation the circle  

5.2 FUNCTIONS 

 

5.2.1 Initphi  

 

Pass this image matrix to Initphi function. This function calculates the distance of 

each pixel from center point. And divide the whole image into two parts. One is 

outside the circle and second one inside the circle. It set positive sign for pixels 

outside the boundary and negative for pixels inside the boundary. It returns a 

matrix called “phi”. 

 

5.2.2 Isfront 

 

Input of Isfront function is “phi” matrix, output of Initphi function. This function 

returns a binary matrix whose value at each pixel represent whether the 

corresponding pixel in the phi is a front point or not. The function evaluate 
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consecutive value of matrix “phi” continually, and if there is any difference 

between sign then it represent as a front point.  

 

5.2.3 Createimage 

 

Image matrix and phi matrix are inputs of createimage function. It draws the 

segmented region in green overtop of image. The region is determined by finding 

the front points from phi.  

 

5.2.4 Calcenergy 

 

This function calculates the energy of inside and outside region of the circle. This 

function also calls heaviside function and dirac delta function.  

 

    ( )210uenergy cInside −=           ------ (5.1)  

 

    ( )220uenergy coutside −=          ------- (5.2) 

 

Where  

   ))_(())_(( 01 phiHsumsumphiHusumsumC ∗=         ------ (5.3) 

 

  ))min__(())min__(( 02 usphiHsumsumusphiHusumsumC ∗= ----- (5.4) 

 

H_phi is heaviside value of distance matrix and   

 

H_phi_minus = 1- H_phi  

 

After calculating inside and outside energy calculate total energy 

 

  outside*2 lambdainside*1 _ +−= lambdanutermenergy          ------ (5.5) 

 

Where lambda 1 =1 

Where lambda 2 =1 
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5.2.4 Heaviside step function 

 

This function takes the value of distance matrix and converts to range from 0 to 

1. So all values lies between 0 and 1. Distance matrix is passed in this function 

[A.2]. 

      
      Fig 5.2 PDF of heaviside function 

Representation of Heaviside step function 

 

  ))vartan()((. zavalue ∗Π+∗= 21150                      ----- (5.6) 

     

   ))varexp(exp( zvalue −−=     ----- (5.7) 

    

   ))varexp(( zvalue −+= 1
1     ----- (5.8) 

Where var =1, and z is distance matrix 
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If Equation (5.6) is chosen for heaviside function: 

 

Figure 5.3 Output by using equation (5.6)   (a)   Creation of circle (b) After one iteration 

If Equation (5.7) is chosen: 

 

Figure 5.4 Output by using equation (5.7)   (a)   Creation of circle (b) After one iteration 

If Equation (5.8) is chosen: 

 

Figure 5.5 Output by using equation (5.8)   (a)   Creation of circle (b) After one iteration 

So all three function are available for heaviside function. And for this project 

Equation (5.6) is chosen. 
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5.2.5 Dirac delta function 

 

Dirac function is use to Compute the derivative of the heaviside. 

 

 

     Fig 5.6 PDF of Dirac Delta function 

Representation of Dirac Delta function [A.3]: 

    )
(var

var()( 22
1

x
y

+
∗Π=                   ------ (5.9) 

 

   ( ) ⎥⎦
⎤

⎢⎣
⎡ −∗⎥

⎦

⎤
⎢
⎣

⎡
Π∗

= 2

21
var

)exp(
)var

xy            ----- (5.10) 

 

    ( )varsin)( x
xy ∗∗Π= 1           ----- (5.11) 

where var = 1 

If Equation (5.9) is chosen for Dirac delta function: 

 

Figure 5.7 Output by using equation (5.9)   (a) Creation of circle (b) After one iteration 
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If Equation (5.10) is chosen for Dirac delta function: 

 

 

Figure 5.8 Output by using equation (5.10)   (a) Creation of circle (b) After one iteration 

If Equation (5.11) is chosen for Dirac delta function: It gives an error. Because at 

some point x=0 (dividing by zero).  

 

That’s why Equation (5.9) is chose for it because with Equation (5.10) changes 

are very less and thus it will take lot of time to execute, and in Equation (5.11) it 

gives an error. 
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6.                             RESULTS 
 
6.1 RESULT 1 
 
6.1.1 step 1.Select the image 
 

   
    Fig 6.1 Input Image 1 

 
6.1.2 Step 2.Select center point and create the circle  
 

   

    Fig 6.2 Circle Created For Image 1 
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6.1.3 Result after 50 iteration 
 
 

   
    Fig 6.3 Output after 50 Iterations for Image 1  

 
 
6.1.4 After 110 iteration   
   

   
     Fig 6.4 Fully segmented Image 1 
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6.2 RESULT 2 
 
6.2.1 step 1. Select the image 
 

   
    Fig 6.5 Input Image 2 

 
6.2.2 Step 2. Select center and create circle  
 

  
    Fig 6.6 Circle Created For Image 2 
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6.2.3 Result after 70 iteration 
 

  
   fig 6.7 Output after 70 Iterations for Image 2 

  
6.2.4 Segmented image 
 

  
Fig 6.8  Fully segmented Image 2 
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6.3 RESULT 3 
 
6.3.1 Step 1. Select the image  
 

   
Fig 6.9 Input Image 2 

6.3.2 step 2. Select center and create circle 
 

   
Fig 6.10 Circle Created For Image 3 
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6.3.3 Result after 52 iteration 

 
Fig 6.11 Output after 52 Iterations for Image 3  

6.3.4 Segmented image 

 
Fig 6.12 Fully segmented Image 3 
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7.                      CONCLUSION 

 

Segmentation is an important part of image processing. It is used for dividing the 

image in constituent regions or objects. The system proposed uses active 

contour for the segmentation. It is used to trace the boundaries of objects in 

image. It is a curve that move toward the sought for shape. The system is based 

on energy minimization. When internal energy and image force becomes equal 

then energy will be minimum. It can also detect the smooth edges, which are not 

possible with gradient. This algorithm will terminate when difference between 

two consecutive images will less then a fixed threshold value. This threshold 

value depends on number of pixels on edges. 
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APPENDIX A                LIST OF USEFUL WEBSITES  
 

 

A.1.    Active contour model (snakes): 

 http://www.cs.sfu.ca/~stella/papers/blairthesis/main/node28.html 

 

A.2. Heaviside Step function

 mathworld.wolfram.com/HeavisideStepFunction.html 

 

A.3 Delta Function:  

 mathworld.wolfram.com/DeltaFunction.html 
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