
POWER AWARE SCHEDULING FOR
ADHOC SENSOR NETWORK NODES

BY

ANKIT R. THAKKAR

07MCE022

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

AHMEDABAD-382481

May 2009

POWER AWARE SCHEDULING FOR
ADHOC SENSOR NETWORK NODES

Major Project

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology in Computer Science and Engineering

By

ANKIT R. THAKKAR

07MCE022

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

AHMEDABAD-382481

May 2009

iii

Certificate

This is to certify that the Major Project entitled ”Power Aware Scheduling For Adhoc

Sensor Network Nodes” submitted by Ankit R. Thakkar (07MCE022), towards the

partial fulfillment of the requirements for the degree of Master of Technology in

Computer Science and Engineering of Nirma University of Science and Technology,

Ahmedabad is the record of work carried out by him under my supervision and

guidance. In my opinion, the submitted work has reached a level required for being

accepted for examination. The results embodied in this major project, to the best

of my knowledge, haven’t been submitted to any other university or institution for

award of any degree or diploma.

Dr. S.N. Pradhan Prof. D. J. Patel

Guide and Professor, Professor and Head,

Department of Computer Engineering, Department of Computer Engineering,

Institute of Technology, Institute of Technology,

Nirma University, Ahmedabad Nirma University, Ahmedabad

Dr K Kotecha

Director,

Institute of Technology,

Nirma University, Ahmedabad

iv

Abstract

Adhoc Sensor Networks are being considered for many novel applications. This thesis

investigates into the power aware scheduling aspects of adhoc sensor networks with

a real time test-bed environment. This will include the Periodic and Aperiodic Task

Scheduling Issues, as well as power consumption by sensor nodes.

The architecture configured for the project work has been put forward with intricately

defined requirements for each component. Texas Instruments’s low power micropro-

cessor, MSP430 is used to implement Modified Maximum Urgency First (MMUF),

priority based scheduling algorithm to schedule periodic and aperiodic tasks generated

by the MicroC/OS-II operating system or interrupt received by the MSP430. Aperi-

odic tasks always given higher priority compare to periodic tasks. The scheduler is

configured to run on the MicroC/OS-II Real Time Operating System (RTOS). Out

of the two Real Time Operating Systems for sensors (TinyOS and MicroC/OS-II),

which were studied, MicroC/OS-II was selected for the project work, due to its ex-

tensibility, robustness and priority scheduling. Out of the five scheduling algorithms

(RM, EDF, MLF, MUF and MMUF), which were studied, MMUF was selected for

the project work, because it doesn’t allow critical task to miss deadline. As com-

pared to conventional Real Time Operating Systems for sensors, which are generally

not open systems, MicroC/OS-II can be used as an Operating System for sensors and

can be extended to implement new scheduling algorithms, which can be integrated

and tested in real time working environment.

Another aspect of the project work is user priority based scheduling of the tasks.

This is because; the Adhoc Sensor Network based Applications must adhere to strin-

gent real-time constraints and Power Aware requirements. Therefore, a user priority

based, Modified Maximum Urgency First (MMUF) is developed to orchestrate and

guarantee the timely interaction between such applications. In this context, a kernel

v

level module is developed to switch the MSP430 into Low Power Mode (LPM) to

reduce the power consumption by the sensors, when no user task is active.

vi

Acknowledgements

With immense pleasure, I would like to present this report on the dissertation work

related to ”Power Aware Scheduling For Adhoc Sensor Network Nodes”. I am very

thankful to all those who helped me for the successful completion of the first phase

of the dissertation and for providing valuable guidance throughout the project work.

I would first of all like to offer thanks to Dr. S. N. Pradhan, Guide & Programme

Co-ordinator M.Tech. CS&E, Institute of Technology, Nirma University, Ahmedabad

whose keen interest and excellent knowledge base helped me to finalize the topic of

the dissertation work. His constant support and interest in the subject equipped me

with a great understanding of different aspects of the required architecture for the

project work. He has shown keen interest in this dissertation work right from begin-

ning and has been a great motivating factor in outlining the flow of my work.

My sincere thanks and gratitude to Prof. D.J. Patel, Professor and Head, Computer

Engineering Department, Institute of Technology, Nirma University, Ahmedabad for

his continual kind words of encouragement and motivation throughout the Disserta-

tion work.

I am thankful to Nirma University for providing all kind of required resources. I

would like to thank The Almighty, my family, especially my wife, for supporting and

encouraging me in all possible ways. I would also like to thank all my friends who

have directly or indirectly helped in making this dissertation work successful.

- Ankit R. Thakkar

07MCE022

vii

Abbreviation Notation and Nomenclature

ACLK . Auxiliary Clock

ADC .Analog-to-Digital Converter

BOR . Brown-Out

BSL . Bootstrap Loader

DAC . Digital-to-Analog Converter

DCO . Digitally Controlled Oscillator

dst . Destination

EDF . Earliest Deadline First

FLL .Frequency Locked Loop

GIE . General Interrupt Enable

INT(N/2) . Integer portion of N/2

I/O . Input/Output

ISR . Interrupt Service Routine

LSB . Least-Significant Bit

LSD . Least-Significant Digit

LPM . Low-Power Mode

MAB . Memory Address Bus

MCLK . Master Clock

MDB . Memory Data Bus

MLF . Maximum Laxity First

MSB .Most-Significant Bit

MSD .Most-Significant Digit

MMUF . Modified Maximum Urgency First

MUF . Maximum Urgency First

NMI . Non-Maskable Interrupt

PC . Program Counter

POR .Power-On Reset

viii

PUC . Power-Up Clear

RM . Rate Monotonic

SCG .System Clock Generator

SFR . Special Function Register

SMCLK . Sub-System Master Clock

SP . Stack Pointer

SR . Status Register

src . Source

TOS . Top-of-Stack

WDT . Watchdog Timer

Contents

Certificate iii

Abstract iv

Acknowledgements vi

Abbreviation Notation and Nomenclature vii

List of Tables xii

List of Figures xiv

1 Introduction 1
1.1 Background . 2
1.2 Objective of Study . 3
1.3 Scope of Work . 4
1.4 Thesis Organization . 5

2 MSP430 Features 6
2.1 Features and Capabilities . 7
2.2 Interrupt Processing . 8

2.2.1 Interrupt Control Bits in Special-Function Registers (SFRs) . 10
2.3 Operating Modes . 11

2.3.1 Low-Power Modes 0 and 1 (LPM0 and LPM1) 14
2.3.2 Low-Power Modes 2 and 3 (LPM2 and LPM3) 15
2.3.3 Low-Power Mode 4 (LPM4) 16
2.3.4 Basic Hints for Low-Power Applications 16

2.4 Summary . 17

3 Real Time Operating System for Sensor 18
3.1 Critical Sections . 18
3.2 Task States . 19
3.3 Task Control Blocks (OS TCB) . 20
3.4 OS TCBInit() . 24

ix

CONTENTS x

3.5 Ready List . 24
3.5.1 Making a task ready to run 25
3.5.2 Removing a task from the ready list 26
3.5.3 Finding the highest priority task 27

3.6 Task Scheduling . 28
3.7 Task Level Context Switch, OS TASK SW() 30
3.8 Locking and Unlocking the Scheduler 30
3.9 Starting Multitasking . 32
3.10 Creating a Task, OSTaskCreate() . 33
3.11 Summary . 35

4 Scheduling Algorithms for Sensor Nodes 36
4.1 Introduction . 36
4.2 Rate Monotonic Algorithm (RM) . 37
4.3 Earliest-Deadline-First Scheduling Algorithm (EDF) 38
4.4 Minimum-Laxity-First Scheduling Algorithm (MLF) 38
4.5 Maximum-Urgency-First scheduling algorithm (MUF) 39
4.6 Modified Maximum-Urgency-First scheduling algorithm (MMUF) . . 43
4.7 Summary . 46

5 Problem Definition and Existing Methodologies 47
5.1 Problem Definition . 47
5.2 Existing Methodologies . 48

5.2.1 Method One . 48
5.2.2 Method Two . 48
5.2.3 Method Three . 48

5.3 Summary . 49

6 The Proposed Algorithm 50
6.1 The Algorithm . 50
6.2 Summary . 51

7 Implementation 53
7.1 Implementation Environment . 53

7.1.1 Porting of MicroC/OS-II on MSP430 IAR Embedded Work-
bench IDE . 54

7.1.2 Data structures used to implement MMUF 54
7.2 Results . 56

7.2.1 Case 1: All tasks are periodic 57
7.2.2 Case 2: All tasks are periodic except one. Aperiodic task never

becomes ready. 61
7.2.3 Case 3: All tasks are periodic except one. Aperiodic task be-

comes ready once only. 64

CONTENTS xi

7.2.4 Case 4: New task will be added to the task list on the reception
of the interrupt. 64

7.2.5 Analysis of Results . 68
7.3 Summary . 70

8 Conclusion and Future Scope 73
8.1 Conclusion . 73
8.2 Future Scope . 74

A Architectural Overview of MSP430X44X 75
A.1 Introduction . 75
A.2 Central Processing Unit . 76
A.3 Program Memory . 77
A.4 Data Memory . 77
A.5 Operation Control . 78
A.6 Peripherals . 78

B Peripheral Modules and Address Allocation 79
B.1 Introduction . 79

B.1.1 Peripheral Modules - Address Allocation 80

References 84

Index 85

List of Tables

I Low-Power Mode Logic Chart . 14

I OSMapTbl[] . 26

I Example of Task Set . 44

I Functions contained in OS CPU A.S43 54
II Functions contained in OS CPU.C . 54
III Description about MMUF DATA . 55
IV Function contained in MMUF.C . 56

I Peripheral File Address Map-Word Modules 81
II Peripheral File Address Map-Byte Modules 82

xii

List of Figures

2.1 Interrupt Processing . 9
2.2 Return From Interrupt . 10
2.3 Status Register (SR) . 10
2.4 Interrupt Control Bits in SFRs . 11

3.1 Task States . 20
3.2 List of free OS TCB . 23
3.3 Relationship between OSRdyGrp and OSRdyTbl 25

4.1 Example comparing RM, EDF, and MUF algorithms 41
4.2 Scheme to encode n-bit urgency value for MUF 43
4.3 Schedule generated by the MUF scheduling algorithm 44

6.1 Implementation of MMUF on MicroC/OS-II using MSP430 52

7.1 Simulation Input: All Six Tasks are Periodic 58
7.2 Schedule Generated by MMUF : All Six Tasks are Periodic 58
7.3 Status of the MicroC/OS-II : All Six Tasks are Periodic 59
7.4 Task list status at T = 40 : All are periodic 59
7.5 Simulation Input: Five tasks are Periodic and one is Aperiodic 62
7.6 Schedule Generated by MMUF : Five tasks are Periodic and one is

Aperiodic . 62
7.7 Status of the MicroC/OS-II : Five tasks are Periodic and one is Ape-

riodic . 63
7.8 Task list status at T = 40 : Five tasks are Periodic and one is Aperiodic 63
7.9 Schedule Generated by MMUF : Five tasks are Periodic and one is

Aperiodic . 64
7.10 Status of the MicroC/OS-II : Five tasks are Periodic and one is Ape-

riodic . 65
7.11 Task list status at T = 40 : Five tasks are Periodic and one is Aperiodic 65
7.12 Simulation Input: Three tasks are Periodic and one is Aperiodic.

Among periodic, one task - Task 2, is created with the reception of
interrupt. 66

xiii

LIST OF FIGURES xiv

7.13 Schedule Generated by MMUF : Three tasks are Periodic and one is
Aperiodic.Among periodic, one task - Task 2, is not created because
interrupt is not received. 66

7.14 Status of the MicroC/OS-II : Three tasks are Periodic and one is Aperi-
odic.Among periodic, one task - Task 2, is not created because interrupt
is not received. 67

7.15 Task list status at T = 40 : Two Tasks are Periodic and one is Aperi-
odic. Third periodic task, Task 2, is not created due to the UARTRX0
interrupt is not received. 67

7.16 Schedule Generated by MMUF : Three tasks are Periodic and one is
Aperiodic . 68

7.17 Status of the MicroC/OS-II : Three tasks are Periodic and one is Ape-
riodic . 69

7.18 Task list status at T = 40 : Three tasks are Periodic and one is Aperiodic 69
7.19 Nominal Power Consumption for CASE 1,2 & 3 up to T=40 71
7.20 Maximum Power Consumption for CASE 1,2 & 3 up to T=40 72
7.21 Power Saved for CASE 1,2 & 3 up to T=40 72

A.1 MSP430 System Configuration . 76

B.1 Memory Map of Basic Address Space 80
B.2 Example of RAM/Peripheral Organization 81
B.3 Special Function Register Address Map 83

Chapter 1

Introduction

The dissertation work related to ’Power aware scheduling for adhoc sensor network

nodes’ demands the selection of Real Time Operating System (RTOS) for sensors,

selection of scheduling algorithm and selection of the micro-controller. This requires

to be done very meticulously, in order to meet the real time demands of the sensor

nodes. The proposed architecture is inspired from a Texas Instrument’s MSP430

based application. The system includes one MPS430 micro-controller, on which op-

erating system and scheduling algorithm runs. The user can set the task-set, which

can be a mixture of periodic and aperiodic tasks, can be generated by the reception

of the interrupt by MSP430. This task-set is schedule by the scheduler to meet the

real time and power aware demands of the user or application. MSP430 remains in

the low power mode to reduce the power consumption by the sensor node, when no

user task is active. This requirement is handled by the MicroC/OS-II, Real Time

Operation System (RTOS) for sensor nodes. Whenever any interrupt is received by

the MSP430 or any of the user task becomes active, MSP430 comes out from the low

power mode within 6 µs. Most of the results derived are for single sensor node by

scheduling periodic, aperiodic tasks which can be generated as per the user require-

ments and/or when interrupt is received. Also, it is assumed that aperiodic task has

higher priority compared to periodic tasks.

1

CHAPTER 1. INTRODUCTION 2

1.1 Background

Adhoc sensor based network has proven itself to be an efficient and effective medium

for information communication. Recently there have been many developments in

technologies, which have made sensor nodes to consume very less power to extend

their life. The prominent developments can be grouped in five parts.

First, the newer better protocols. While addressing the shortcomings of ancestors,

newer protocols also provide novel ways for delivering better services between sensor

nodes.

Second, the development of newer hardware technologies delivered faster processing

powers that enabled faster data processing, the core requirement of sensor applica-

tions. Faster CPUs/MPUs, smaller & faster RAMs, ROMs made it possible to handle

the sensor application data in real-time environments.

Thirdly, the alternate mediums. The existence of alternate mediums provided the

platform for wider reach. Wireless technology, the mobile communications have grown

to 4G age, providing the right set of Quality of Service for the sensor data communi-

cation.

Fourth, the newer RTOS. The development of excellent RTOS for sensors greatly

supported the cause. TinyOS, FreeRTOS, MicroC/OS-II and many others could pro-

vide great flexibility to configure and shrink the component of RTOS, as per the

requirement of the application, which reduces the requirement of RAM & ROM to

deliver the desired performance and power consumption requirements of the sensors.

Fifth, the improving real time scheduling algorithms. The development of newer

real time scheduling algorithms to support real-time requirements of the sensor ap-

CHAPTER 1. INTRODUCTION 3

plication. So, the critical tasks doesn’t miss their respective deadlines.

The ball is rolling, but there are still many challenges to be met. The adhoc sen-

sor network with its demanding Quality of Service and reducing power consumption,

have always been providing the thrust/need for further developments. The periodic

task set, aperiodic task set, critical task set, non-critical task set, task set containing

mixture of all these types of task, environmental issues, response times as well as effi-

cient handling of task through scheduler(s), compatibility issues among sensor nodes,

protocols & to reduce power consumption by the sensors are few related ongoing areas

of active research.

1.2 Objective of Study

Apart from the above mentioned goals and vision, this report addresses the specific

aspect of power aware scheduling of mixed task set. The experimental setup has been

created on a computer, with software based sensor node. Hence, the objective of the

dissertation work can be summarized as:

Create mixed task set on a real time operating system and schedule them. The

scheduling strategies should look into user priorities, real time requirement and power

aware aspect related issues.

Study and selection of micro-controller unit (MCU) and configure them for the project

work. Study related to design for sensor nodes and power aware requirements, have

also been made.

The next objective is, study, selection and porting of RTOS on the selected micro-

controller. The RTOS must small in size, support mixture of task set, switch the

MCU between active and Low Power Mode (LMP) state and be modifiable to meet

CHAPTER 1. INTRODUCTION 4

requirements.

The next objective is, study, selection and implementation of scheduling algorithm on

the selected RTOS. The scheduling algorithm must be preemptive, support mixture

of task set, support user priorities and meet the real-time requirements of the sensor

application.

The next objective is, to test the performance of the scheduler in scheduling of mixed

task set, with the ported RTOS on the experimental test-bed to meet the real-time

requirements. For this purpose, periodic and aperiodic tasks are generated using

startup task of RTOS and through interrupts.

Finally, the objective is to measure the power consumption done by the MCU, with

the ported RTOS on the experimental test-bed while meeting the real-time require-

ments.

1.3 Scope of Work

The experimental setup, prepared for the dissertation work, includes a simulator

installed on a single computer in a Computer Lab. A part of the work is study and

selection of micro-controller which can be used for the design of the senors. Texas

Instrument’s MSP430 is a very low power micro-controller and it can support five

different low power modes. This is relatively a very new micro-controller and is like a

boon for the design of the sensor fraternity. Thus study and porting of MicroC/OS-

II, RTOS on MSP430 also become part of the thesis. Out of the various real-time

scheduling algorithms, the thesis work includes a detailed implementation of MMUF

in real time kernel MicroC/OS-II on MSP430 with and without using Low Power

Modes (LPMs) and compare power consumption done by the MSP430.

CHAPTER 1. INTRODUCTION 5

1.4 Thesis Organization

The rest of the thesis is organized as follows.

Chapter 2, MSP430 Features, describes the features and capabilities of the MSP430

and various low power modes it can support. It also outlines the basic hints for

low power applications.

Chapter 3, Real Time Operating System for Sensor, describes MicroC/OS-II, which

is a real time operating system. It also describes various kernel structures used

in design of MicroC/OS-II.

Chapter 4, Real Time Scheduling Algorithms, describes various real-time scheduling

algorithms and one which suites the needs for the sensor nodes.

Chapter 5, Problem Definition and Existing Methodologies, presents the problem

definition and describes the existing methodologies to reduce power consump-

tion in sensor nodes.

In chapter 6, The Proposed Algorithm, a new algorithm for performing the schedul-

ing is presented. The algorithm suggests a new way of assigning priorities to task

so critical tasks doesn’t misses their respective deadlines. Also, this algorithms

finds out when to switch micro-controller in LPM3.

Chapter 7, Simulation Methodologies and Performance Evaluation, describes in

brief the procedure followed, to carry out the simulation. The simulation results

along with the performance analysis of the proposed algorithm are presented.

Finally, in chapter 8 concluding remarks and scope for future work is presented.

Chapter 2

MSP430 Features

This chapter outlines the features and capabilities of the Texas Instruments (TI)

MSP430x4xx family of micro-controllers. The MSP430 employs a von-Neumann ar-

chitecture; therefore, all memory and peripherals are in one address space. The

MSP430 devices constitute a family of ultra low-power, 16-bit RISC micro-controllers

with an advanced architecture and extensive peripheral set. The architecture uses ad-

vanced timing and design features, as well as a highly orthogonal structure, to deliver

a processor that is both powerful and flexible. The MSP430 consumes less than 300

µA in active mode operating at 1 MHz in a typical 3-V system and can wake up from

standby mode to fully synchronized operation in less than 6 µs. These exceptionally-

low current requirements, combined with the fast wake-up time, enable a user to

build a system with minimum current consumption and maximum battery life. Ad-

ditionally, the MSP430 family has an abundant mix of peripherals and memory sizes

enabling true system-on-a-chip designs. The peripherals include a 12-bit A/D, slope

A/D, timers (some with capture/compare registers and PWM output capability), an

LCD driver, on-chip clock generation, a hardware multiplier, USART, a Watchdog

Timer, GPIO, and others.

6

CHAPTER 2. MSP430 FEATURES 7

2.1 Features and Capabilities

The TI MSP430x4xx family of controllers has the following features and capabilities:

• Ultralow-power architecture:

– 0.1 - 300-µA nominal operating current at 1 MHz

– 1.8-3.6-V operation

– 6-µs wake-up from standby mode

– Extensive interrupt capability relieves need for polling

• Flexible and powerful processing capabilities:

– Seven source-address modes

– Four destination-address modes

– Only 27 core instructions

– Prioritized, nested interrupts

– No interrupt or subroutine level limits

– Large register file

– Ram execution capability

– Efficient table processing

– Fast hex-to-decimal conversion

The 44x device family includes:

• MSP430F447: 32-KB flash memory, 1-KB RAM

• MSP430F448: 48-KB flash memory, 2-KB RAM

• MSP430F449: 60-KB flash memory, 2-KB RAM

CHAPTER 2. MSP430 FEATURES 8

2.2 Interrupt Processing

The MSP430 programmable interrupt structure allows flexible on-chip and external

interrupt configurations to meet real-time interrupt-driven system requirements. In-

terrupts may be initiated by the processor’s operating conditions such as watchdog

overflow; or by peripheral modules or external events. Each interrupt source can be

disabled individually by an interrupt enable bit, or all maskable interrupts can be

disabled by the general interrupt enable (GIE) bit in the status register.

Whenever an interrupt is requested and the appropriate interrupt enable bit and

general interrupt enable (GIE) bit are set, the interrupt service routine becomes ac-

tive as follows:

• CPU active: The currently executing instruction is completed.

• CPU stopped: The low-power modes are terminated.

• The program counter pointing to the next instruction is pushed onto the stack.

• The status register is pushed onto the stack.

• The interrupt with the highest priority is selected if multiple interrupts occurred

during the last instruction and are pending for service.

• The appropriate interrupt request flag resets automatically on singlesource flags.

Multiple source flags remain set for servicing by software.

• The GIE bit is reset; the CPUOff bit, the OscOff bit, and the SCG1 bit are

cleared; the status bits V, N, Z, and C are reset. SCG0 is left unchanged, and

loop control remains in the previous operating condition.

• The content of the appropriate interrupt vector is loaded into the program

counter: the program continues with the interrupt handling routine at that

address.

CHAPTER 2. MSP430 FEATURES 9

The interrupt latency is six cycles, starting with the acceptance of an interrupt re-

quest, and lasting until the start of execution of the appropriate interrupt-service

routine first instruction, as shown in Figure 2.1. The interrupt handling routine

Figure 2.1: Interrupt Processing

terminates with the instruction:

RETI (return from an interrupt service routine)

which performs the following actions:

a. The status register with all previous settings pops from the stack. All previous

settings of GIE, CPUOFF, etc. are now in effect, regardless of the settings

utilized during the interrupt service routine.

b. The program counter pops from the stack and begins execution at the point

where it was interrupted.

The return from the interrupt is illustrated in Figure 2.2

A RETI instruction takes five cycles. Interrupt nesting is activated if the GIE bit is

set inside the interrupt handling routine. The GIE bit is located in status register

SR/R2, which is included in the CPU as shown in Figure 2.3.

CHAPTER 2. MSP430 FEATURES 10

Figure 2.2: Return From Interrupt

Figure 2.3: Status Register (SR)

Apart from the GIE bit, other sources of interrupt requests can be enabled/disabled

individually or in groups. The interrupt enable flags are located together within

two addresses of the special-function registers (SFRs). The program-flow conditions

on interrupt requests can be easily adjusted using the interrupt enable masks. The

hardware serves the highest priority within the empowered interrupt source.

2.2.1 Interrupt Control Bits in Special-Function Registers

(SFRs)

Most of the interrupt control bits, interrupt flags, and interrupt enable bits are col-

lected in SFRs under a few addresses, as shown in Figure 2.4. The SFRs are located in

the lower address range and are implemented in byte format. SFRs must be accessed

using byte instructions.

CHAPTER 2. MSP430 FEATURES 11

Figure 2.4: Interrupt Control Bits in SFRs

2.3 Operating Modes

The MSP430 family was developed for ultralow-power applications and uses different

levels of operating modes. The MSP430 operating modes, shown in Figure 2.3, give

advanced support to various requirements for ultra-low power and ultralow-energy

consumption. This support is combined with an intelligent management of opera-

tions during the different module and CPU states. An interrupt event wakes the

system from each of the various operating modes and the RETI instruction returns

operation to the mode that was selected before the interrupt event.

There are four bits that control the CPU and the system clock generator: CPUOff,

OscOff, SCG0, and SCG1. These four bits support discontinuous active mode (AM)

requests, to limit the time period of the full operating mode, and are located in the

status register. The major advantage of including the operating mode bits in the sta-

tus register is that the present state of the operating condition is saved onto the stack

during an interrupt service request. As long as the stored status register information

CHAPTER 2. MSP430 FEATURES 12

is not altered, the processor continues (after RETI) with the same operating mode as

before the interrupt event. Another program flow may be selected by manipulating

the data stored on the stack or the stack pointer. Being able to access the stack and

stack pointer with the instruction set allows the program structures to be individually

optimized, as illustrated in the following program flow:

• Enter interrupt routine

The interrupt routine is entered and processed if an enabled interrupt awakens

the MSP430:

– The SR and PC are stored on the stack, with the content present at the

interrupt event.

– Subsequently, the operation mode control bits OscOff, SCG1, and CPUOff

are cleared automatically in the status register.

• Return from interrupt

– Return with low-power mode bits set. When returning from the inter-

rupt, the program counter points to the next instruction. The instruction

pointed to is not executed, since the restored low-power mode stops CPU

activity.

– Return with low-power mode bits reset. When returning from the inter-

rupt, the program continues at the address following the instruction that

set the OscOff or CPUOff-bit in the status register. To use this mode,

the interrupt service routine must reset the OscOff, CPUOff, SCGO, and

SCG1 bits on the stack. Then, when the SR contents are popped from the

stack upon RETI, the operating mode will be active mode (AM).

The software can configure five operating modes:

• Active mode AM; SCG1=0, SCG0=0, OscOff=0, CPUOff=0: CPU clocks are

active

CHAPTER 2. MSP430 FEATURES 13

• Low-power mode 0 (LPM0); SCG1=0, SCG0=0, OscOff=0, CPUOff=1:

CPU is disabled

’44x: ACLK and SMCLK remain active. MCLK is disabled Loop control for

MCLK remains active

• Low-power mode 1 (LPM1); SCG1=0, SCG0=1, OscOff=0, CPUOff=1:

CPU is disabled

Loop control for MCLK is disabled

’44x: ACLK and SMCLK remain active.

MCLK is disabled

• Low-power mode 2 (LPM2); SCG1=1, SCG0=0, OscOff=0, CPUOff=1:

CPU is disabled

MCLK and loop control for MCLK are disabled

DCO’s dc-generator remains enabled

ACLK remains active

• Low-power mode 3 (LPM3); SCG1=1, SCG0=1, OscOff=0, CPUOff=1:

CPU is disabled

MCLK and loop control for MCLK are disabled

DCO oscillator is disabled

DCO’s dc-generator is disabled

ACLK remains active

• Low-power mode 4 (LPM4); SCG1=X, SCG0=X, OscOff=1, CPUOff=1:

CPU is disabled

ACLK is disabled

MCLK and loop control for MCLK are disabled

DCO oscillator is disabled

DCO’s dc-generator is disabled

Crystal oscillator is stopped

CHAPTER 2. MSP430 FEATURES 14

Table I: Low-Power Mode Logic Chart

SCG1 SCG0 OscOff CPUOff
LPM0 0 0 0 1
LPM1 0 1 0 1
LPM2 1 0 0 1
LPM3 1 1 0 1
LPM4 X X 1 1

2.3.1 Low-Power Modes 0 and 1 (LPM0 and LPM1)

Low-power mode 0 or 1 is selected if bit CPUOff in the status register is set. Im-

mediately after the bit is set the CPU stops operation, and the normal operation

of the system core stops. The operation of the CPU halts and all internal bus ac-

tivities stop until an interrupt request or reset occurs. The system clock generator

continues operation, and the clock signals MCLK/SMCLK and ACLK stay active de-

pending on the state of the other three status register bits, SCG0, SCG1, and OscOff.

The peripherals are enabled or disabled according with their individual control regis-

ter settings, and with the module enable registers in the SFRs. All I/O port pins and

RAM/registers are unchanged. Wake-up is possible through all enabled interrupts.

The following are examples of entering and exiting LPM0. The method shown is

applicable to all low-power modes.

The following example describes entering into low-power mode 0.

;===Main program flow with switch to CPUOff Mode==============

BIS #18h,SR ;Enter LPM0 + enable general interrupt GIE

;(CPUOff=1, GIE=1). The PC is incremented

;during execution of this instruction and

;points to the consecutive program step.

CHAPTER 2. MSP430 FEATURES 15

...... ;The program continues here if the CPUOff

;bit is reset during the interrupt service

;routine. Otherwise, the PC retains its

;value and the processor returns to LPM0.

The following example describes clearing low-power mode 0.

;===Interrupt service routine=================================

;CPU is active while handling interrupts

BIC #10h,0(SP) ;Clears the CPUOff bit in the SR contents

;that were stored on the stack.

RETI ;RETI restores the CPU to the active state

;because the SR values that are stored on

;the stack were manipulated. This occurs

;because the SR is pushed onto the stack

;upon an interrupt, then restored from the

;stack after the RETI instruction.

2.3.2 Low-Power Modes 2 and 3 (LPM2 and LPM3)

Low-power mode 2 or 3 is selected if bits CPUOff and SCG1 in the status register

are set. Immediately after the bits are set, CPU, and MCLK operations halt and all

internal bus activities stop until an interrupt request or reset occurs.

Peripherals that operate with the MCLK signal are inactive because the clock signal

is inactive. Peripherals that operate with the ACLK signal are active or inactive ac-

cording with the individual control registers and the module enable bits in the SFRs.

All I/O port pins and the RAM/registers are unchanged. Wake-up is possible by

enabled interrupts coming from active peripherals or RST/NMI.

CHAPTER 2. MSP430 FEATURES 16

2.3.3 Low-Power Mode 4 (LPM4)

In low-power mode 4 all activities cease; only the RAM contents, I/O ports, and

registers are maintained. Wake-up is only possible by enabled external interrupts.

Before activating LPM4, the software should consider the system conditions during

the low-power mode period. The two most important conditions are environmental

(that is, temperature effect on the DCO), and the clocked operation conditions.

The environment defines whether the value of the frequency integrator should be

held or corrected. A correction should be made when ambient conditions are antici-

pated to change drastically enough to increase or decrease the system frequency while

the device is in LPM4.

2.3.4 Basic Hints for Low-Power Applications

There are some basic practices to follow when current consumption is a critical part

of a system application:

• Switch off analog circuitry when possible.

• Switch off the MCLK source for the CPU when not required. Use interrupts to

activate the CPU. Program execution starts in less than 6 µs.

• Select the lowest possible operating frequency for the individual peripheral mod-

ule. Disable unused peripherals.

• Select the weakest drive capability if an LCD is used or switch the drive off.

• Tie all unused inputs to an applicable voltage level.

CHAPTER 2. MSP430 FEATURES 17

2.4 Summary

This chapter describes features, interrupt processing and various Low Power Modes

(LPMs) of MSP430. For more detail about MSP430F449 refer to [1], Appendix - A

and Appendix - B.

Chapter 3

Real Time Operating System for

Sensor

This chapter describes the topics those are required to be taken into the consideration,

while designing the Kernel for the real-time system. Since, in sensor nodes, RT tasks

must meet their respective deadline, scheduling in sensor nodes can be considered as

a real time system. Since, sensors are very small in size, memory available to them

is also very less. So, we can say that the, operating system in sensors should support

real time architecture and should be small in size.

3.1 Critical Sections

All real-time kernels needs to disable interrupts in order to access critical section of

code and to re-enable interrupts when done. OS ENTER CRITICAL() and

OS EXIT CRITICAL() are the two macros used to disable and enabled the interrupts

and these two are always used in pair.

The way to implement OS ENTER CRITICAL() is to save the interrupt status on to

the stack and then disable interrupts. OS EXIT CRITICAL() is simply implemented

by restoring the interrupt status from the stack. The pseudo code for these macros

18

CHAPTER 3. REAL TIME OPERATING SYSTEM FOR SENSOR 19

is:

#define OS_ENTER_CRITICAL()

asm(" PUSH SR ")

asm(" DINT ")

#define OS_EXIT_CRITICAL()

asm(" POP SR ")

The PUSH SR instruction pushes the processor status register (SR) onto the stack.

The DINT instruction stands for disable interrupts. Finally, the POP SR instruction

is used to restore the original state of the status register (SR) from the stack.

3.2 Task States

At any given time task is in one of the five states as shown in the Figure 3.1.

The Task Dormant state correspond to a task that resides in the program space but

has been not made available to OS. A task is made available to OS by either calling

OSTaskCreate(). This calls simply provides the starting address of your task to OS,

the priority you want to assign to the task, the stack limit of the task, the starting

address of the stack etc. A task can return to the dormant state by simply calling

OSTaskDel().

When multiple task are ready to run only the highest priority task is allowed to

run and remaining task are thus kept in a queue of ready to run state. If a task is

in a running state and an interrupt occurs, then CPU is given to the ISR and when

ISR completes its execution CPU is allocated to the same task or other high priority

task depending upon the type of the kernel and action carried out by the ISR.

CHAPTER 3. REAL TIME OPERATING SYSTEM FOR SENSOR 20

Figure 3.1: Task States

3.3 Task Control Blocks (OS TCB)

When a task is created, it is assigned a task control block, OS TCB. A task control

block is a data structure that is used by OS to maintain the state of the task when

it is preempted. When the task regains the control of the CPU, the TCB allows the

task to resume execution exactly where it is left off. All OS TCB resides in RAM.

typedef struct os_tcb{

OS_STK *OSTCBStkPtr;

OS_STK *OSTCBStkBottom;

INT32U OSTCBStkSize;

INT16U OSTCBId;

struct os_tcb *OSTCBNext;

struct os_tcb *OSTCBPrev;

CHAPTER 3. REAL TIME OPERATING SYSTEM FOR SENSOR 21

INT16U OSTCBDly;

INT8U OSTCBStat;

INT8U OSTCBPrio;

INT8U OSTCBX;

INT8U OSTCBY;

INT8U OSTCBBitX;

INT8U OSTCBBitY;

#if OS_TASK_DEL_EN > 0

BOOLEAN OSTCBDelReq;

#endif

}OS_TCB;

OSTCBStkPtr

contains a pointer to the current top-of-stack for the task.

OSTCBStkBottom

is a pointer to the bottom of the task’s stack. If the processor’s stack grows from high

to low memory locations then OSTCBStkBottom points at the lowest valid memory

location for the stack. Similarly, if the processor’s stack grows from low to high mem-

ory locations, then OSTCBStkBottom points at the highest valid stack address.

OSTCBStkSize

holds the size of the stack in number of elements instead of bytes.

CHAPTER 3. REAL TIME OPERATING SYSTEM FOR SENSOR 22

OSTCBId

is used to hold an identifier for the task.

OSTCBNext and OSTCBPrev

are used to doubly link OS TCBs.

OSTCBDly

is used when a task needs to be delayed for a certain number of clock ticks or the

task needs to be pend for an event to occur with a timeout. When this variable is 0,

the task is not delayed or has no timeout when waiting for an event.

OSTCBStat

contains the status of the task. When OSTCBStat is OS STAT READY, the task is

ready to run.

OSTCBPrio

contains the task priority. A high priority task has low OSTCBPrio value.

OSTCBX, OSTCBY, OSTCBBitX and OSTCBBitY

are used to accelerate the process of making a task ready to run or make a task

wait for an event. The values for these field are computed when the task is created

or when the task priority is changed.

CHAPTER 3. REAL TIME OPERATING SYSTEM FOR SENSOR 23

.OSTCBY = priority >> 3;

.OSTCBBitY = OSMapTbl[priority>>3];

.OSTCBX = priority & 0X07;

.OSTCBBitX = OSMapTbl[priority & 0X07];

OSTCBDelReq

is a boolean used to indicate weather or not a task has requested that the current

task be deleted. This field is present in the OS TCB only when OS TASK DEL EN

in OS CFG.H is set to 1.

Figure 3.2: List of free OS TCB

The minimum number of tasks(OS MAX TASKS) that an application can have is

specified in OS CFG.H and it is assumed to be 64. It determines the number of

OS TCBs allocated for your application. All OS TCB are placed in OSTCBTbl[].

When a task is created, the OS TCB to which OSTCBFreeList points is assigned to

the task, and OSTCBFreeList is adjusted to point to the next OS TCB in the chain.

When the task is deleted, its OS TCB is returned to the list of free OS TCBs.

CHAPTER 3. REAL TIME OPERATING SYSTEM FOR SENSOR 24

3.4 OS TCBInit()

An OS TCB is initialized by the function OS TCBInit(), when a task is created.

OS TCBInit() is called by OSTaskCreate(). OS TCBInit() receives five arguments.

a. prio is the task prioroty.

b. ptos is a pointer to the top of stack after the stack frame has been build by

OSTaskStkInit() and is stored in the .OSTCBStkPtr field of the OS TCB().

c. pbos is a pointer to the bottom of the stack and is stored in the .OSTCBStk-

Bottom field of the OS TCB.

d. id is the task identifier and is saved in the OSTCBId field.

e. stk size is the total size of the stack and is saved in the .OSTCBStkSize filed of

the OS TCB.

3.5 Ready List

Each task is assigned a unique priority level between 0 and OS lowest PRIO, inclusive.

Task priority OS lowest PRIO is always assigned to the idle task when OS is initialize.

Each task ready to run is placed in a ready list consisting of two variables,OSRdyGrp

and OSRdyTbl[]. Task pointers are grouped (eight tasks per group) in OSRdyGrp.

Each bit in OSRdyGrp indicates when a task in a group is ready to run. When a task

is ready to run, it also sets its corresponding bit in the ready table, OSRdyTbl[]. The

relationship between OSRdyGrp and OSRdyTbl[] is shown in the Figure 3.3 and is

given by the following rules:

• Bit 0 in OSRdyGrp is 1 when any bit in OSRdyTbl[0] is 1.

• Bit 1 in OSRdyGrp is 1 when any bit in OSRdyTbl[1] is 1.

• Bit 2 in OSRdyGrp is 1 when any bit in OSRdyTbl[2] is 1.

CHAPTER 3. REAL TIME OPERATING SYSTEM FOR SENSOR 25

• Bit 3 in OSRdyGrp is 1 when any bit in OSRdyTbl[3] is 1.

• Bit 4 in OSRdyGrp is 1 when any bit in OSRdyTbl[4] is 1.

• Bit 5 in OSRdyGrp is 1 when any bit in OSRdyTbl[5] is 1.

• Bit 6 in OSRdyGrp is 1 when any bit in OSRdyTbl[6] is 1.

• Bit 7 in OSRdyGrp is 1 when any bit in OSRdyTbl[7] is 1.

Figure 3.3: Relationship between OSRdyGrp and OSRdyTbl

3.5.1 Making a task ready to run

To determine which priority (and thus which task) will run next, the scheduler in OS

determines the lowest priority number that has its bit set in OSRdyTbl[].

The following code is used to place a task in the ready list. prio is the task priority.

OSRdyGrp |= OSMapTbl[prio >> 3];

CHAPTER 3. REAL TIME OPERATING SYSTEM FOR SENSOR 26

OSRdyTbl[prio>>3] |= OSMapTbl[prio & 0X07];

As we can see from the figure, the lower three bits of the task’s priority are used to

determine the bit position in OSRdyTbl[], and next three most significant bits are

used to determine index into OSRdyTbl[]. OSMapTbl[] is in ROM and is used to

equate index (0 to 7) to a bit mask. The OSMapTbl[] is as follows:

Table I: OSMapTbl[]

Index Bit Masks(Binary)
0 00000001
1 00000010
2 00000100
3 00001000
4 00010000
5 00100000
6 01000000
7 10000000

3.5.2 Removing a task from the ready list

if((OSRdyTbl[Prio >>3] &= ~OSMapTbl[prio & 0X07])==0)

OSRdyGrp &= ~OSMapTbl[prio>>3];

The above code clears the ready bit of the task in the OSRdyTbl[] and clears the bit

into the OSRdyGrp only if all the tasks in the group are not ready to run, that is,

all bits in the

OSRdyTbl[prio>> 3]

are 0.

CHAPTER 3. REAL TIME OPERATING SYSTEM FOR SENSOR 27

3.5.3 Finding the highest priority task

y = OSUnMapTbl[OSRdyGrp];

x = OSUnMapTbl[OSRdyTbl[y]];

prio = (y << 3)+x;

The above code finds the highest priority task among all the ready tasks, which are

ready to run. The table lookup method is performed speedup the operation. The

OSUnMapTbl[256] is a priority resolution table.

INT8U const OSUnMapTbl[] = {

0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x00 to 0x0F*/

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x10 to 0x1F*/

5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x20 to 0x2F*/

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x30 to 0x3F*/

6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x40 to 0x4F*/

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x50 to 0x5F*/

5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x60 to 0x6F*/

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x70 to 0x7F*/

7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x80 to 0x8F*/

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x90 to 0x9F*/

CHAPTER 3. REAL TIME OPERATING SYSTEM FOR SENSOR 28

5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0xA0 to 0xAF*/

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0xB0 to 0xBF*/

6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0xC0 to 0xCF*/

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0xD0 to 0xDF*/

5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0xE0 to 0xEF*/

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0 /* 0xF0 to 0xFF*/

};

For example, if OSRdyGrp contains 01101000(binary) or 0X68, then the table lookup

OSUnMapTbl[OSRdyGrp] yields a value of 3, which is coorespond to bit 3 in OSRdy-

Grp. Note that the bit positions are assumed to start on the right with bit 0 being the

right most bit. Similarly, if OSRdyTbl[3] contains 11100100(Binary) or 0XE4, then

OSUnMapTbl[OSRdyTbl[3]] returns in a value of 2(int 2). The Task priority prio, is

then 26 (i.e., 3 * 8 +2). Getting a pointer to the OS TCB for the corresponding task

is done by indexing into the OSTCBPrioTbl[] using task’s priority.

3.6 Task Scheduling

MUF always execute highest priority task ready to run. The determination of which

task has the highest priority, thus which task will be next to run, is determined by

the scheduler. Task level scheduling is done by OS Sched(). ISR level scheduling is

handled by OSInitExit(). The code for OS Sched() is as below.

Code for Task Scheduler

CHAPTER 3. REAL TIME OPERATING SYSTEM FOR SENSOR 29

void OS_Sched(){

INT8U y;

OS_ENTER_CRITICAL();

if((OSIntNesting == 0) && (OSLockNesting == 0)){

y=OSUnMapTbl[OSRdyGrp];

OSPrioHighRdy=(INT8U)((y << 3)+OSUnMapTbl[OSRdyTbl[y]]);

if(OSPrioHighRdy != OSPrioCur){

OSTCBHighRdy=OSTCBPrioTbl[OSPrioHighRdy];

OSCtxSwCtr++;

OS_TASk_SW();

}

}

OS_EXIT_CRITICAL();

}

A context switch consists of saving the processor register on the stack of the task

being suspended and restoring the register of the higher priority task from its stack.

In a micro-OS, the stack frame for a ready task always looks as if an interrupt has

just occurred and all processor register were saved on to it. In other words, all

micro-OS has to do to run a ready task is restore all processor register from the

task’s stack and execute a return from the interrupt. To switch context, I thought

to use OS TASK SW() to simulate interrupt. Most processor provides a software

interrupt of TRAP instruction to accomplish this task. The ISR or trap handler

must vector to the assembly language function OSCtxSw(). OSCtxSw() expects

to have OSTCBHighRdy point to the OS TCB of the task to be switch in and to

have OSTcbCur point to the OS TCB of the task being suspended. OS TASk SW()

CHAPTER 3. REAL TIME OPERATING SYSTEM FOR SENSOR 30

suspends the execution of the current task and start execution of the more important

task.

All of the code in OS Sched() is considered a critical section. Interrupts are disabled

to prevent ISR from setting the ready bit of one or more tasks during the process of

finding the highest priority task ready to run.

3.7 Task Level Context Switch, OS TASK SW()

As discussed in the previous section, after the scheduler has determine that a more

important task needs to run, OS TASK SW() is called to perform a context switch.

The context of a task is generally the contents of all of the CPU registers. The context

switch code simple needs to save the register value of the task being preempted and

load into the CPU the value of the registers for the task to resume.

Context-switch psuedocode

void OSCtxSw(void){

PUSH R1,R2,R3,R4,...,R15 on to the current stack;

OSTCBCur->OSTCBStkPtr = SP;

OSTCBCur = OSTCBHighRdy;

SP = OSTCBHighRdy->OSTCBStkPtr;

POP R15,...,R4,R3,R2 and R1 from the new stack;

ASM(RETI)

}

3.8 Locking and Unlocking the Scheduler

The OSScheLock() function is used to prevent the task reshceduling until its coun-

terpart, OSSchedUnlock(), is called. The task that calls OSScheLock() keeps control

CHAPTER 3. REAL TIME OPERATING SYSTEM FOR SENSOR 31

of the CPU even though other higher priority task are ready to run. Interrupts are

still recognized and serviced (assuming interrupts are enabled). OSSchedLock() and

OSSchedUnlock must be used in pairs. The variable OSLockNesting keeps track of

the number of times OSSchedLock() has been called. Nested functions can thus con-

tain critical code that other tasks cannot access. I thought to allows nesting up to

255 levels deep. Scheduling is re-enabled when OSLockNesting is 0. OSSchedLock()

and OSSchedUnlock() must be used with caution because it affects response time of

the system.

Locking the Scheduler

void OSScheLock(void){

if(OSRunning == TRUE){ (1)

OS_ENTER_CRITICAL();

if(OSLockNesting < 255){ (2)

OSLockNesting++;

}

OS_EXIT_CRITICAL();

}

}

(1) It only make sense to lock the scheduler if multitasking has started (i.e. OSStart()

was called).

(2) Before incrementing OSLockNesting, we need to make sure that we have not ex-

ceeded the allowable number of the nesting levels.

Unlocking the Scheduler

void OSSchedUnlock(void){

CHAPTER 3. REAL TIME OPERATING SYSTEM FOR SENSOR 32

if(OSRunning == TRUE){ (1)

OS_ENTER_CRITICAL();

if(OSLockNesting > 0){ (2)

OSLockNesting--; (3)

if((OSLockNesting ==0) && (OSInitNesting == 0)){

OS_EXIT_CRITICAL();

OS_Sched(); (4)

} else{

OS_EXIT_CRITICAL();

}

}else{

OS_EXIT_CRITICAL();

}

}

}

(1) It only make sense to unlock the scheduler only if multitasking has started.

(2) We make sure OSLockNesting is not already 0. If it were, it would be an indication

that you called OSSchedUnlock() too many times. In other words, you would not have

the same number of OSSchedLock() as OSSchedUnlock().

(3)OSLockNesting is decremented.

(4)We only want to allow the scheduler to execute when all nesting function are

complete. OSSchedUnlock() is called from a task because event could have made

higher priority task ready to run while scheduling was locked.

3.9 Starting Multitasking

Code for Starting Multitasking

CHAPTER 3. REAL TIME OPERATING SYSTEM FOR SENSOR 33

void OSStart(void){

INT8U y;

INT8U x;

if(OSRunning == FALSE){

y = OSUnMapTbl[OSRdyGrp];

x = OSUnMapTbl[OSRdyTbl[y]];

OSPrioHighRdy = (INT8U)((y << 3)+ x);

OSPrioCur = OSPrioHighRdy;

OSTCBHighRdy = OSTCbPrioTbl[OSTCBHighRdy]; (1)

OSTCBCur = OSTCBHighRdy;

OSSartHighRdy(); (2)

}

}

(1)When called OSStart() finds the OS TCB() (from the ready list) of the highest

priority task that you have created.

(2)Then OSStart() calls OSStartHighRdy(). Basically, OSStartHighRdy()restores

the CPU registers by popping them off the task’s stack and then executing return

from the interrupt instruction, which forces the CPU to execute your task’s code.

Note that OSStartHighRdy() never returns to OSStart().

3.10 Creating a Task, OSTaskCreate()

To create a task, you required to pass its address and other arguments to OSTaskCre-

ate() function. A task can be created prior to the start of the multitasking or by

another task. The code for the OSTaskCreate() is shown below. OSTaskCreate()

requires four arguments: task is pointer to the task code, pdata is a pointer to the

CHAPTER 3. REAL TIME OPERATING SYSTEM FOR SENSOR 34

arguments that is passed to the task when it starts executing, ptos is a pointer to the

top of stack that is assigned to the task and prio is the desired task priority.

INT8U OSTaskCreate(void(*task)(void *pd), void *pdata, OS_STK

*ptos,INT8U prio){

void *psp;

INT8U err;

#if OS_ARG_CHK_EN > 0

if(Prio > OS_LOWEST_PRIO){

return (OS_PRIO_INVALID);

}

#endif

OS_ENTER_CRITICAL();

if(OSTCBPrioTbl[prio] == (OS_TCB*)0){

OSTCBPrioTbl[prio] = (OS_TCB*)1;

OS_EXIT_CRITICAL();

psp=(void*)OSTaskStkInit(task, pdata, ptos, 0);

err=OS_TCBInit(prio, psp, (void*)0, 0, 0, (void *)0, 0);

if(err == OS_NO_ERR){

OS_ENTER_CRITICAL();

OSTaskCtr++;

OS_EXIT_CRITICAL();

if(OSRunning == TRUE){

OS_Sched();

CHAPTER 3. REAL TIME OPERATING SYSTEM FOR SENSOR 35

}

}else {

OS_ENTER_CRITICAL();

OSTCBPrioTbl[prio] = (OS_TCB*)0

OS_EXIT_CRITICAL();

}

return(err);

OS_EXIT_CRITICAL();

return(OS_PRIO_EXIST);

}

}

3.11 Summary

The presented, kernel structures for MicroC/OS-II are described here are the ones

that used for current research work. More details about the MicroC/OS-II can found

at [2].

Chapter 4

Scheduling Algorithms for Sensor

Nodes

This chapter describes, selection of scheduling algorithm for sensor nodes. Since

sensor has most of the task real-time, in order to find best algorithm among the RT

algorithms. I have considered RM, EDF and MUF and shown that how MUF is better

than RM or EDF. Then, I have considered MMUF, which reduces the deficiency of

MUF by considering the case in which critical task misses its respective deadline if

scheduled with MUF, but if same is scheduled with MMUF critical task never misses

its respective deadline. Also, number of context switches are also reduced by MMUF

[3].

4.1 Introduction

Sensor-based Adhoc Networks are dynamic in nature and having limited battery

power, selection of the scheduling algorithm is a very important task. Scheduling

algorithm has to meet respective deadlines for critical task and it should be energy

efficient.

Here I have given the comparison of RM, EDF, MUF and MMUF algorithm. MLF

36

CHAPTER 4. SCHEDULING ALGORITHMS FOR SENSOR NODES 37

is explained because it is a part of MUF.

4.2 Rate Monotonic Algorithm (RM)

The Rate Monotonic Algorithm is a fixed priority scheduling algorithm, which consists

of assigning the highest priority to the highest frequency task in the system, and the

lowest priority to the lowest frequency tasks. At any time the scheduler chooses

to execute the task with the highest priority. By specifying the period and the

computational time required by the task, the behavior of the system can categories

apriori.

One problem with the RM is that the schedulers bound is less than 100%. The

schedulable bound of a task set is defined as the maximum CPU utilization for which

the set of the tasks can be guaranteed to meet their deadlines.The CPU utilization

of task Pi is computed as the ratio of worst-case computing time Ci to the period Ti.

The total utilization Un for n tasks is calculated as follows[4]:

Un =
n∑

i=1

Ci

Ti

(4.1)

Main problem with the RM is that it does not support dynamically changing priority

very well, a feature required by the some sensor based control system. For example,

a task set with three tasks, P1, P2 and P3 with periods T1=30ms, T2=50ms and

T3=100ms has the following fixed priority assignment (from highest to lowest): P1,

P2, P3. Suppose period of P1 changes to 75ms. Under the RM algorithm we would

require that the priority of each task can be reassigned to the order P2,P1, P3, which

violates the condition that the priorities are static.

The problems with RM encourage the use of dynamic priority algorithms.Although

many such algorithms exist, I restrict my attention in this thesis to EDF and MLF.

CHAPTER 4. SCHEDULING ALGORITHMS FOR SENSOR NODES 38

4.3 Earliest-Deadline-First Scheduling Algorithm

(EDF)

As the name implies, the earliest-deadline-first algorithm uses the deadline of a task

as its priority. The task with the earliest deadline has the highest priority, while the

task with the latest deadline has the lowest priority. One advantage of this algorithm

is that the schedulable bound is 100% for all task sets. Secondly, because priorities

are dynamic, the periods of tasks can be changed at any time.

A major problem with the EDF algorithm is that there is no way to guarantee which

tasks will fail in a transient overload situation. In many systems, although the av-

erage case utilization is less than 100%, it is possible that the worst-case utilization

is above 100%, leaving the possibility of one or more tasks failing. In such cases, it

is desirable to control which tasks should fail and which one succeeds during such a

transient overload. In the RM algorithm, low priority tasks will always be the first

to fail. However, no such priority assignment exists with EDF, and thus there is no

control of which task fails during a transient overload. As a result, it is possible that

a very critical task may fail at the expense of a lesser important task.

4.4 Minimum-Laxity-First Scheduling Algorithm

(MLF)

The minimum-laxity-first algorithm assigns a laxity to each task in a system, then

selects the task with the minimum laxity to execute next. Laxity is defined as follows:

laxity = deadline− current time− CPU time needed (4.2)

Laxity is a measure of the flexibility available for scheduling a task. A laxity of tl

means that even if the task is delayed by time units, it will still meet its deadline. A

CHAPTER 4. SCHEDULING ALGORITHMS FOR SENSOR NODES 39

laxity of zero means that the task must begin to execute now or it will risk failing to

meet its deadline. The main difference between MLF and EDF is that MLF takes into

consideration the execution time of a task, which EDF does not do. Like EDF, MLF

has a 100% schedulable bound, but there is no way to control which are guaranteed

to execute during a transient overload.

4.5 Maximum-Urgency-First scheduling algorithm

(MUF)

MUF algorithm, which allows the control of task failures during transient overload,

while maintaining the flexibility of a dynamic scheduler, and 100% schedulable bound

for the critical set.The maximum-urgency-first scheduling algorithm is a combination

of fixed and dynamic priority scheduling, also called mixed priority scheduling. With

this algorithm, each task is given an urgency. The urgency of a task is defined as a

combination of two fixed priorities, and a dynamic priority. One of the fixed priorities,

called the criticality, has higher precedence over the dynamic priority. The other fixed

priority, which we call user priority, has lower precedence than the dynamic priority.

The dynamic priority is inversely proportional to the laxity of a task.

The MUF algorithm consists of two parts. The first part is the assignment of the

criticality and user priority, which is done apriori. The second part involves the

actions of the MUF scheduler during run-time The steps in assigning the criticality

and user priority are the following:

a. As with RM, order the tasks from shortest period to longest period.

b. Define the critical set as the first N tasks such that the total worst-case CPU

utilization does not exceed 100%. These will be the tasks that do not fail, even

during a transient overload of the system. If a critical task does not fall within

CHAPTER 4. SCHEDULING ALGORITHMS FOR SENSOR NODES 40

the critical set, then period transformation, as used with RM, can also be used

here.

c. Assign high criticality to all tasks in the critical set, and low criticality to all

other tasks.

d. Optionally assign a unique user priority to every task in the system.

The static priorities are defined once, and do not change during execution. The dy-

namic priority of each task is assigned at run-time, inversely proportional to the laxity

of the task. Before its cycle, each task must specify its desired start time, deadline

time, and worst-case execution time.

Whenever a task is added to the ready queue, a reschedule operation is performed.

The MUF scheduler is used to determine which task is to be selected for execution,

using the following algorithm:

a. Select the task with the highest criticalness.

b. If two or more tasks share highest criticalness, then select the task with the

highest dynamic priority (i.e. minimum laxity). Only tasks with pending dead-

lines have a non-zero dynamic priority. Tasks with no deadlines have a dynamic

priority of zero.

c. If two or more tasks share highest criticalness, and have equal dynamic priority,

then the task among them with the highest user priority is selected.

d. If there are still two or more tasks that share highest criticalness, dynamic pri-

ority, and highest user priority, then they are serviced in a first-come-firstserve

manner.

The optional assignment of unique user priorities for each task ensures that the sched-

uler never reaches step d, thus providing a deterministic scheduling algorithm.

CHAPTER 4. SCHEDULING ALGORITHMS FOR SENSOR NODES 41

Figure 4.1: Example comparing RM, EDF, and MUF algorithms

CHAPTER 4. SCHEDULING ALGORITHMS FOR SENSOR NODES 42

To demonstrate the advantage of MUF over RM and EDF, consider the task set shown

in Figure 4.1. We assume that the deadline of each task is the beginning of the next

cycle. Four tasks are defined, with a total worst-case utilization of over 100%, thus

in the worst-case, missed deadlines are inevitable.Figure 4.1(a) shows the schedule

produced by a static priority scheduler when priorities are assigned using the RM

algorithm. In this case, only P1 and P2 are in the critical set, and are guaranteed not

to miss deadlines. Expectably, both P3 and P4 miss their deadlines. When using the

EDF algorithm, as in Figure 4.1(b), tasks P1 and P2 fail. However, any task may

have failed, since with EDF there is no way to predict the failure of tasks during a

transient overload of the system. With the MUF algorithm, all tasks in the critical

set are guaranteed not to miss deadlines. In our example, the combined worst-case

utilization of P1, P2, and P3 is less than 100%, and thus they form the critical set.

Only task P4 can miss deadlines, because it is not in the critical set. Figure 4.1(c)

shows the schedule produced by the MUF scheduler. Note the improvement over

RM: because of a higher schedulable bound for the critical set, task P3 is also in the

critical set and thus does not miss any deadlines. Also, unlike EDF, we are able to

control that the only task that may fail is P4.

The choice of using MLF to calculate the dynamic priority instead of EDF enables

the scheduler to detect missed deadlines. There are three failures which the MUF

scheduler can detect:

a. A task has not completed its cycle when the deadline time has been reached;

b. A task was given as much CPU time as was requested in the worst-case, yet it

still did not meet its deadline;

c. The task will not meet its deadline because the minimum CPU time requested

cannot be granted. This case also requires that the minimum amount of CPU

time required by a task is specified.

CHAPTER 4. SCHEDULING ALGORITHMS FOR SENSOR NODES 43

The first case is the standard notion of a missed deadline. The second case will detect

bad worst-case estimates of execution time. The third case allows the MUF scheduler

to make the most of its CPU time, and it will not start executing a task if that task

has no possibility to finish before its deadline, thus providing the early detection of

missed deadlines. Instead, the CPU time can be reclaimed for ensuring that other

tasks do not miss deadlines, or to call alternate, shorter threads of execution.

The implementation of the urgency value for the MUF is shown in the Figure 4.2

Figure 4.2: Scheme to encode n-bit urgency value for MUF

4.6 Modified Maximum-Urgency-First scheduling

algorithm (MMUF)

Although MUF is an efficient algorithm, it has a major disadvantage. Since the

rescheduling operation is performed whenever a task is arrived to the ready queue,

there is the possibility of failing a critical task in certain situations. In these situa-

tions, a task with minimum laxity may be selected whose remaining execution time is

greater than remaining time to another tasks laxity. This problem is due to perform-

ing the rescheduling operation whenever a new task is added to the ready queue. The

scheduling should be performed at any given instant and the scheduler will choose the

highest priority task to run among all available tasks. Therefore, the schedule should

be produced in such a way that the task having the highest priority always be running.

Consider two tasks, T1 and T2, shown in Table I. Figure 4.3 shows the schedule

CHAPTER 4. SCHEDULING ALGORITHMS FOR SENSOR NODES 44

which is produced by the MUF algorithm for the task set in Table I.

Table I: Example of Task Set

Remaining Execution Time Deadline Remaining Time to Laxity
T1 4 6 2
T2 1 4 3

Figure 4.3: Schedule generated by the MUF scheduling algorithm

As it is shown in Figure 4.3 the MUF will select the task with minimum laxity

(T1) at time zero. The remaining execution time of task T1 is greater than remain-

ing time to T2’s laxity. This selection will cause task T2 to miss its deadline.

The modified maximum urgency first algorithm we propose in this paper is a modified

version of MUF algorithm which resolves the mentioned MUF algorithms deficiency.

In addition it has some extra advantages which will be explained later

The modifications are as follows: With this algorithm, we use a unique importance

parameter, instead of using tasks request intervals, to create the critical set. The

importance parameter is a fixed priority which can be defined as user priority or any

other optional parameter which expresses the degree of the tasks criticalness. It is

trivial that the task with the shortest request period is not necessarily the most im-

portant one. Furthermore, using the importance parameter, it is not needed to use

CHAPTER 4. SCHEDULING ALGORITHMS FOR SENSOR NODES 45

period transformation, as it is done in MUF algorithm. With the MMUF algorithm,

either EDF or MLLF can be used to define the dynamic priority. Another optimiza-

tion made in this algorithm is the elimination of unnecessary context switches which

in turn reduced the overall system overhead. This is done firstly by using MLLF

instead of LLF and secondly, by letting the currently running task to keep running

while there are some other tasks with the same priority.

The MMUF algorithm consists of two phases with the following details:

Phase 1: In this phase fixed priorities are defined only once as follows. These

fixed priorities will not change during execution time.

a. Order the tasks from the most importance to the least importance

b. Add the first N tasks to the critical set such that the total CPU load factor

does not exceed 100%

Phase 2: This phase calculates the dynamic priorities at every scheduling event and

selects the task to be executed next.

a. If there is at least one critical task in the ready queue

(1) Select the critical task with the earliest deadline (EDF algorithm) if there

is no tie

(2) If there are two or more critical tasks with the same earliest deadline

i. If any of these critical tasks is already running select it to continue

running

ii. Otherwise, select the critical task with the highest importance

b. If there is no critical task in the ready queue

(1) Select the task with earliest deadline (EDF algorithm) if there is no tie

CHAPTER 4. SCHEDULING ALGORITHMS FOR SENSOR NODES 46

(2) If there are two or more tasks with the same earliest deadline

i. If any of these tasks is already running select it to continue running

ii. Otherwise, select the task with the highest importance

4.7 Summary

The presented, modified version of MUF scheduling algorithm called MMUF which

resolves the deficiency of the MUF algorithm in which a critical task may miss its

deadline in certain situations. Moreover, some additional optimizations are applied

in the MMUF algorithm. The performance of the MMUF was compared to MUF

algorithm and showed to be superior [3]. It usually has less task preemption and

hence, less related overhead. It also leads to less failed non-critical tasks in overloaded

situations in which the CPU load factor is greater than 100% [3].

Chapter 5

Problem Definition and Existing

Methodologies

In the previous chapters, we have seen various ways to save power for sensor nodes

from hardware point of view, kernel point of view and scheduling algorithm point of

view.

5.1 Problem Definition

In previous chapters (Chapter 2, Chapter 3 and Chapter 4), we have seen the

various ways to save the power in the sensor nodes. By switching MSP430 into the

various Low Power Modes (LPMs) can reduce a huge amount of the power consump-

tion. MicroC/OS-II is a real-time operating system, which can freely available for

education purpose and it has various configuration modes to be set by the user as per

the application requirements, in order to reduce the size and load time for the Ker-

nel. MMUF - the real time scheduling algorithm can reduces the amount of context

switching between the task and meets the respective deadline of the critical task. In

this work, an effort is being made in the area to put all these things together to get the

best result. The intention is to improve the power consumption of the sensor nodes,

so that the total power consumption by each sensor node can be reduced to extend

47

CHAPTER 5. PROBLEM DEFINITION AND EXISTING METHODOLOGIES48

their lives. Also, the intention is to extend MMUF algorithm to support Aperiodic

tasks.

5.2 Existing Methodologies

5.2.1 Method One

The first method, relates to save the power from the hardware point of view i.e.

select the lowest power consumption micro-controller unit in the design of the sensor

nodes. The chosen micro-controller, MSP430, is a world’s lowest power consumption

micro-controller[5]. Details about its architecture, various low power modes that it

can support and guidelines for the low power application can be found in (Chapter

2, Appendix A, Appendix B, [1], [5] and [6].

5.2.2 Method Two

The real-time operating system which can be configured as per the requirement and

must be small in size. Due to reduction in the size of the RTOS, the power required to

load the RTOS is also reduced. Some details about the MicroC/OS-II and its kernel

structures is explained in Chapter 3. More details about the MicroC/OS-II can be

found at [2] and [7].

5.2.3 Method Three

The real-time scheduling algorithm, which schedules the critical tasks in a way such

that critical tasks can meet their respective deadline. Also, it must reduce the context

switching between the task in order to meet the desired goal. By reducing the con-

text switching, CPU utilization and Memory/Stack read/write can be reduce, which

in turn save the power consumption done by scheduler. The brief about real-time

scheduling algorithms is explained in Chapter 4 and more details can be found at

[3],[4] and [8].

CHAPTER 5. PROBLEM DEFINITION AND EXISTING METHODOLOGIES49

5.3 Summary

This chapter presented work already done to solve the problem described in section

5.1. Methods described in section 5.2, are the various innovations done in the different

direction to save the power consumption. Method 5.2.1, saves the power from the

hardware point of view. Method 5.2.2,saves the power from the Operating System

point of view and Method 5.2.3 saves the power from the scheduler point of view.

Chapter 6

The Proposed Algorithm

The proposed algorithm Algorithm 6.1, combines the idea presented in 5.2.1, 5.2.2

and 5.2.3. Thus, the proposed algorithm is more efficient than the any of the methods

parented in section 5.2. The proposed algorithm is as follows:

6.1 The Algorithm

Algorithm 6.1 The Proposed Algorithm

1 Initialize Operating System which does all necessary initialization and creates the idle

task with the lowest priority

2 Create Startup task with assigned user priority

3 Start Multitasking

4 Execute the code for Startup task

5 When new task creation function is called with the user priority, startup time, worst

case execution time, periodicity for periodic task and Maximum Interrupt latency for

Aperiodic task then

6 if new task is Aperiodic then convert it to periodic by setting periodicity = Maxi-

mum Interrupt latency (Periodicity) + CPU Time Needed

7 insert new task into the task linked list and sort task list according to user priority

8 create a task list Critical of first N tasks such that total CPU utilization is ≤

50

CHAPTER 6. THE PROPOSED ALGORITHM 51

100%. Set criticality bit of all the tasks which falls into task list Critical and reset

criticality bit for all other tasks which falls into task list Non-Critical.

9 Rearrange the task list Critical and Non-Critical by sorting them according to

earliest deadline.

10 Delay the newly created task until OSTime = startup time.

11 if new task is aperiodic then set its status to Ready + Suspend.

12 Execute the scheduler to select highest priority task.

13 If highest priority task = Idle task then

14 switch micro-controller to Low Power Mode 3.

15 else

16 if micro-controller in Low Power Mode 3 then

17 exit from the Low Power Mode 3

18 execute the highest priority task.

repeat steps 12-18 with each tick interrupt

repeat steps 5-18 when new task creation function is called

The flow chart for above algorithm is shown in Figure 6.1.

6.2 Summary

This chapter describes, the algorithm and its flow chart to implement power aware

scheduling on MicroC/OS-II using MSP430 which can support both periodic and

aperiodic tasks. Also, this algorithm takes care of switching MSP430 into LPM3

when only idle task is active.

CHAPTER 6. THE PROPOSED ALGORITHM 52

Figure 6.1: Implementation of MMUF on MicroC/OS-II using MSP430

Chapter 7

Implementation

To implement MMUF on MicroC/OS-II and MSP430, first it is required to port

MicroC/OS-II on MSP430. For this, first install ”MSP430 IAR Embedded Work-

bench IDE” as per steps found in [9]. Download MicroC/OS-II from [7] and mod-

ify OS CPU.H, OS CPU A.S43 and OS CPU.C to port it on MSP430 [2]. Create

necessary data structures to implement MMUF and do necessary modification in

MicroC/OS-II to support power aware scheduling using MSP430.

Assumption : Aperiodic Tasks always assigned higher priority by the user over

periodic tasks.

7.1 Implementation Environment

Regarding how to install and use ”MSP430 IAR Embedded Workbench IDE” will be

found from [9]. To port MicroC/OS-II on ”MSP430 IAR Embedded Workbench IDE”

requires to modify three kernel files listed above. OS CPU.H contains the function

prototypes and data types definition. OS CPU A.S43 contains the kernel functions

in assembly routine for the faster execution. OS CPU.C contains the hook function

to extend the functionality of MicroC/OS-II in C syntax.

53

CHAPTER 7. IMPLEMENTATION 54

7.1.1 Porting of MicroC/OS-II on MSP430 IAR Embedded

Workbench IDE

OS CPU.H contains the definition for OS ENTER CRITICAL and OS EXIT CRITICAL

functions. OS CPU A.S43 contains the function/Macro in assembly routine as listed

in Table I.

Table I: Functions contained in OS CPU A.S43

Macro/Function Name Purpose
PUSHALL Save all registers
POPALL Restores all registers
OSStartHighRdy Starts highest priority task which is ready to run
OSCtxSw Task level context switch
OSIntCtxSw Interrupt level context switch
WDT ISR Watch dog interrupt level service routine
USARTX0 ISR USART0 Transmit Interrupt Service Routine
USARTR0 ISR USART0 Receive Interrupt Service Routine

OS CPU.C contains the hook functions written in C syntax as listed in Table II

Table II: Functions contained in OS CPU.C

Function Name Purpose
OSTaskStkInit To initialization of the task stack
OSTaskIdleHook To switch CPU in Low Power Mode when only Idle task is running
OSTCBInitHook To initialize OSTCB with user specified data
OSTimeTickHook To extend the functionality of OSTimeTick

7.1.2 Data structures used to implement MMUF

To implement MMUF on MicroC/OS-II using MSP430, two files are needed MMUF.H

and MMUF.C. These two files are taken into the consideration during compilation of

the application only when OS MUF EN is set into OS configuration file OS CFG.H

Otherwise the MicroC/OS-II can run its default scheduler which comes with it.

CHAPTER 7. IMPLEMENTATION 55

MMUF.H contains the data structure mmuf data of type MMUF DATA which is

described below.

typedef struct mmuf_data {

INT16U StartTime;

INT16U Period;

INT16U CPUTimeNeeded;

INT16U CPUTimeUsed;

BOOLEAN Critical;

INT16U Cntr;

INT16U OriginalPrio;

BOOLEAN IsPeriodic;

INT8U *TaskName;

}MMUF_DATA;

The purpose of each field is listed in Table III It also contains the signature of the

Table III: Description about MMUF DATA

Field Name Purpose
StartTime Specifies the start time of the task
Period Specifies the periodicity for the periodic task

For aperiodic task period refers to Maximum
Interrupt Latency for that task and is set by
period = period + CPUTimeNeeded

CPUTimeNeeded Specifies the worst case execution time of the task
CPUTimeUsed Specifies the CPU Time Used by the task

and it is always reset to zero when task completes its execution.
Critical Set by the OS and specifies criticality of the task.
Cntr Set by the OS and indicates how many times task has

completed its execution
OriginalPrio Priority of the task specified by the User when submitted to OS
IsPeriodic Specified by the user; indicates that task is periodic or Aperiodic.
TaskName Contains Name of the task given by the user.

functions listed in Table IV and its definitions contained in MMUF.C

CHAPTER 7. IMPLEMENTATION 56

Table IV: Function contained in MMUF.C

Function Signature Purpose
void Increment Time(void) To increment time of the task
void SetCritical (void) To set criticality of the task
void SET APERIODIC TASK EN(void) To enable Aperiodic tasks
void SetEDF (void) To sort the task according to EDF
void MUFPrio (void) To change the state of the task from

ready to delay/ready + Suspend
when task completes its execution.

MMUF.H also contains defined constant named OS CRITICAL, OS NON CRITICAL,

OS A PERIODIC and OS PERIODIC which indicates task is critical or non-critical

and periodic or aperiodic.

If user wants that MMUF can support Aperiodic tasks then he/she has to set

MAX APERIODIC TASK PRIO to some value say n then maximum n Aperiodic

tasks, user can create with their priorities lies in the interval [0,n). Also, user has to

specify MAX INTERRUPT LATENCY for Aperiodic tasks by setting some value to

Period field. Aperiodic Tasks can be converted to periodic tasks by using the formula

referred in 7.1

Period = Period + CPUTimeNeeded (7.1)

MAX APERIODIC TASK PRIO defined constant can be found in Application Con-

figuration file APP CFG.H.

7.2 Results

Various simulation runs were conducted for different set of parameters as mentioned

in the following cases. Here, performance is tested with a task list containing six

different tasks for total 40 ticks.

CHAPTER 7. IMPLEMENTATION 57

7.2.1 Case 1: All tasks are periodic

Tasks are created with the input parameters mentioned in Figure 7.1 and schedule

generated by MMUF is shown in Figure 7.2. At T = 40, status of the MicroC/OS-II

is shown in Figure 7.3 and task list status is shown in Figure 7.4.

The first frame in the Figure 7.3 shows the green emoticon indicating that MicroC/OS-

II is running. When it is not running then it shows the emoticon in the red color. In

the same frame at the right most side, V2.86 is shown, which is the version number

of the MicroC/OS-II. In the same figure the second frame named Statistics:Ready, is

shows the statistics of the OS in terms of CPU Usage, Number of Tasks, Idle Counter

and number of context switching done up to the ticks mentioned in the right most

bottom frame. The frame below it named Timers, shows the statistics about the

number of timers used, idle and timer time. MicroC/OS-II, V2.86, allows maximum

16 timers. Timers are used to periodically call back a function when time specified

in the timer expires [2]. The frame named Nesting, contains the information about

the interrupt and multi-task lock. The interrupt indicates the number of interrupts

received but yet not serviced [2]. The multi-task lock when set to 1, the scheduler is

locked and when reset it indicates that scheduler is unlocked. Whenever scheduler is

locked, the task which is in execution, continues to execute even though high priority

task becomes ready [2].

Figure 7.4 contains the various columns which indicates the status of the task at

T=40. 7.4,

First Column the one of the task names is pointed by a sign >, which indicates

the task selected by the scheduler at T = 40.

Name specifies the name of the task assigned by the user or the kernel it self.

Ref The order in which the task is created and internally used by the kernel.

Prio Priority of the task at time T = 40.

CHAPTER 7. IMPLEMENTATION 58

Figure 7.1: Simulation Input: All Six Tasks are Periodic

Figure 7.2: Schedule Generated by MMUF : All Six Tasks are Periodic

CHAPTER 7. IMPLEMENTATION 59

Figure 7.3: Status of the MicroC/OS-II : All Six Tasks are Periodic

Figure 7.4: Task list status at T = 40 : All are periodic

CHAPTER 7. IMPLEMENTATION 60

State State of the task at time T = 40. Dly indicates delayed task, Ready indicates

ready task, Sem indicates a task waiting on semaphore.

Dly Amount of time (in ticks) the task has been delayed (if the State column indi-

cates ’Dly’) or, the amount of time left that the task will be waiting for either

the semaphore, the mutex, the event flag group, the mailbox or the queue (if

the State column indicates an object type). The value is 0 if the task will wait

forever for one of the objects. (.OSTCBDly).

Waiting On Name of the object (if any) for which the task is waiting. This can

be either an Event Flag Group or an Event (Semaphore, Mutex, Mailbox, or

Queue).

Msg Message sent by a Task to other task.

Ctx Sw Number of times the task was ’switched-in’. This counter can be reset to

0 by selecting Reset Counters from the context menu, or by clicking the Reset

Counters button in the Status window. This counter is only available if you

set the configuration constant OS TASK PROFILE EN to 1 which should be

done when you are using the kernel awareness feature of C/OS-II. (.OSTCBC-

txSwCtr).

Stk Ptr Current value of the task’s stack pointer (in hexadecimal)..

Max% Maximum stack space used by the task expressed as a percentage. For ex-

ample, a value of 47% means that, during execution of the task, the total stack

space used never exceeded 47%. This value is reset to 0 by the Reset StkUsed

feature of the context menu..

Cur% Current stack usage of the task expressed as a percentage. For example, a

value of 39% means that the stack pointer is currently located 39

Max Maximum stack space used by the task (in bytes). This value is reset to 0 by

the Reset StkUsed feature of the context menu. (.OSTCBStkUsed)

CHAPTER 7. IMPLEMENTATION 61

Cur Current stack usage of the task (in bytes).

Size Number of bytes allocated for the task stack.

Starts @ Address of the beginning of the stack. If the stack, on the processor you

are using, grows downwards (i.e. OS STK GROWTH set to 1 in OS CPU.H)

then this indicates the highest address that the stack pointer can take, otherwise

(i.e. OS STK GROWTH set to 0), this indicates the lowest address the stack

pointer can take. (.OSTCBStkBase)

ends @ Address of the end of the stack. If the stack, on the processor you are

using, grows downwards (i.e. OS STK GROWTH set to 1 in OS CPU.H) then

this indicates the lowest address that the stack pointer can take, otherwise

(i.e. OS STK GROWTH set to 0), this indicates the highest address the stack

pointer can take.

For more detail about the Micrium, Inc. MicroC/OS-II Kernel Awareness for C-SPY

refer to [10]

7.2.2 Case 2: All tasks are periodic except one. Aperiodic

task never becomes ready.

Tasks are created with the input parameters mentioned in Figure 7.5 and schedule

generated by MMUF is shown in Figure 7.6. At T = 40, status of the MicroC/OS-II

is shown in Figure 7.7 and task list status is shown in Figure 7.8. In this simulation

Task 3 is aperiodic. It is created and remains in the Ready + Suspend state until

it receives UART0TX (UART0 Transmit) Interrupt.

CHAPTER 7. IMPLEMENTATION 62

Figure 7.5: Simulation Input: Five tasks are Periodic and one is Aperiodic

Figure 7.6: Schedule Generated by MMUF : Five tasks are Periodic and one is Ape-
riodic

CHAPTER 7. IMPLEMENTATION 63

Figure 7.7: Status of the MicroC/OS-II : Five tasks are Periodic and one is Aperiodic

Figure 7.8: Task list status at T = 40 : Five tasks are Periodic and one is Aperiodic

CHAPTER 7. IMPLEMENTATION 64

7.2.3 Case 3: All tasks are periodic except one. Aperiodic

task becomes ready once only.

Tasks are created with the input parameters mentioned in Figure 7.5 and schedule

generated by MMUF is shown in Figure 7.9. At T = 40, status of the MicroC/OS-II

is shown in Figure 7.10 and task list status is shown in Figure 7.11. In this simulation

Task 3 is aperiodic. It is created and remains in the Ready + Suspend state until

it receives UART0TX (UART0 Transmit) Interrupt. At T = 2, MSP430 generates

interrupt which makes Task 3 ready. So, at T =3, a context switching occurs, and

Task 3 is selected by the scheduler since it is the highest priority task among all the

ready tasks.

Figure 7.9: Schedule Generated by MMUF : Five tasks are Periodic and one is Ape-
riodic

7.2.4 Case 4: New task will be added to the task list on the

reception of the interrupt.

Tasks are created with the input parameters mentioned in Figure 7.12 and schedule

generated by MMUF is shown in Figure 7.13. At T = 40, status of the MicroC/OS-II

is shown in Figure 7.14 and task list status is shown in Figure 7.15. In this simulation

CHAPTER 7. IMPLEMENTATION 65

Figure 7.10: Status of the MicroC/OS-II : Five tasks are Periodic and one is Aperiodic

Figure 7.11: Task list status at T = 40 : Five tasks are Periodic and one is Aperiodic

CHAPTER 7. IMPLEMENTATION 66

Task 3 is aperiodic. It is created and remains in the Ready + Suspend state until

it receives UART0TX (UART0 Transmit) Interrupt. Here, Task 2 is created on the

reception of the UART0RX (UART0 Receive) Interrupt if it is not created before.

Figure 7.12: Simulation Input: Three tasks are Periodic and one is Aperiodic. Among
periodic, one task - Task 2, is created with the reception of interrupt.

Figure 7.13: Schedule Generated by MMUF : Three tasks are Periodic and one is
Aperiodic.Among periodic, one task - Task 2, is not created because interrupt is not
received.

Now as shown in Figure 7.16, UART0RX interrupt is received at T = 4. So, Task

2 is created and periodically scheduled. Since, here total CPU Usage is 126%, only

critical tasks i.e. Start Up, Task 1 and Task 2 never misses their respective deadlines.

CHAPTER 7. IMPLEMENTATION 67

Figure 7.14: Status of the MicroC/OS-II : Three tasks are Periodic and one is Ape-
riodic.Among periodic, one task - Task 2, is not created because interrupt is not
received.

Figure 7.15: Task list status at T = 40 : Two Tasks are Periodic and one is Aperiodic.
Third periodic task, Task 2, is not created due to the UARTRX0 interrupt is not
received.

CHAPTER 7. IMPLEMENTATION 68

As per the input mentioned in 7.12, task 4 must be scheduled for at most 1 tick for

every five tick. But, as seen from the Figure 7.16, task 4 scheduled only for 1 tick

upto 10 ticks. This is because after the creation of the task 2, task 4 does not remains

critical task.

Figure 7.16: Schedule Generated by MMUF : Three tasks are Periodic and one is
Aperiodic

7.2.5 Analysis of Results

From the scheduling graphs (Figure 7.2,Figure 7.6, Figure 7.9, Figure 7.13 and Figure

7.16), it is verified that no critical task will miss its respective deadline. Also, when

idle task idle task is selected by the schedule, it switches MSP430 in LPM3. The

nominal and maximum power consumption done by MSP430F449 is shown in Figure

7.19 and Figure 7.20 respectively, when operating voltage VCC is 2.2V and 3V and

environment temperature is between -40 to 80 ◦ C [6]. Also power saved for cases

7.2.1, 7.2.2 and 7.2.3 is shown in Figure 7.21. So, power consumption by the Micro-

controller is reduced drastically as many time idle task is selected by scheduler because

no other task is ready for execution. Here, MMUF takes care of the critical tasks and

CHAPTER 7. IMPLEMENTATION 69

Figure 7.17: Status of the MicroC/OS-II : Three tasks are Periodic and one is Ape-
riodic

Figure 7.18: Task list status at T = 40 : Three tasks are Periodic and one is Aperiodic

CHAPTER 7. IMPLEMENTATION 70

selects idle task when no other task is active and switch the MSP430F449 to LPM3

to save the power, which indirectly extend the life of the sensor nodes.

7.3 Summary

This chapter describes how to set up the implementation environment for the thesis

work. It also describes the various cases 7.2.1, 7.2.2, 7.2.3 and 7.2.4 and detailed

analysis of the result. From the result, it is concluded that no critical task will miss

its respective deadline. It is also concluded that the algorithm presented in Section

6.1 is power aware and it is best suited for the design of the adhoc sensor nodes using

MicroC/OS-II - Real Time Kernel and MSP430F449.

CHAPTER 7. IMPLEMENTATION 71

Figure 7.19: Nominal Power Consumption for CASE 1,2 & 3 up to T=40

CHAPTER 7. IMPLEMENTATION 72

Figure 7.20: Maximum Power Consumption for CASE 1,2 & 3 up to T=40

Figure 7.21: Power Saved for CASE 1,2 & 3 up to T=40

Chapter 8

Conclusion and Future Scope

8.1 Conclusion

In this dissertation, I have proposed a method to implement power aware scheduling

for adhoc sensor nodes. It doesn’t allow critical tasks to miss its respective deadlines.

Also, the proposed method supports aperiodic task under the assumption mentioned

in Assumption 7. This method also reduces the number of context switching com-

pared to RM, EDF, MLF or MUF [3]. Aperiodic tasks are converted into the periodic

tasks by adding maximum interrupt latency to CPUTimeNeeded by the task. When-

ever aperiodic task is created, it is converted into the periodic task and immediately

its state is changed to (Ready + Suspend) state. As soon as the interrupt is received

by the Kernel for an aperiodic task, interrupt service routine made the appropriate

aperiodic task Ready and as per the assumption mentioned in 7, it is scheduled with-

out missing its respective deadline.

Since Idle task has assigned the lowest priority by the Kernel, it is selected by

the scheduler only when no other task is in ready state. So, Idle task switches the

MSP430F449 into LPM3 to save the power. Whenever any interrupt is received by

the MSP430F449 or any other task becomes ready except Idle Task, MicroC/OS-II

73

CHAPTER 8. CONCLUSION AND FUTURE SCOPE 74

switches the MSP430F449 into active mode within < 6µs. So, response time is very

small to react the interrupt.

Limitation: Here, MicroC/OS-II version 2.86 is used which can support maximum

128 tasks. Among 128 tasks 3 priorities are reserved for Idle Task, Statistical

Task and to swap the priorities between two tasks. So, maximum 125 tasks are

supported by each sensor node.

From the results we can see that goal of thesis - ”Power Aware Scheduling For Adhoc

Sensor Nodes” is achieved.

It may be noted that power can be saved by switching MSP430F449 into LMP3

only when CPU is idle i.e. Idle task is scheduled. So, as the CPU load increases,

the amount of time for which MSP430F449 remains into LMP3 reduces and power

consumption done by sensor node increases.

8.2 Future Scope

In future, the idea presented over here can be extended by creating adhoc network

of the sensor nodes which are made of MSP430F449. Also, some low power RF

transreceiver can be used to reduce the required power for communicate with other

nodes in the network. Also, some new protocol can be designed or may be existing

one can be used, to periodically turn off some nodes from the group of nodes which

monitors the same region.

Appendix A

Architectural Overview of

MSP430X44X

This section describes the basic functions of an MSP430-based system.

The MSP430 devices contain the following main elements:

• Central processing unit

• Program memory

• Data memory

• Operation control

• Peripheral modules

• Oscillator and clock generator

A.1 Introduction

The architecture of the MSP430 family is based on a memory-to-memory architec-

ture, a common address space for all functional blocks, and a reduced instruction set

applicable to all functional blocks as illustrated in Figure A.1

75

APPENDIX A. ARCHITECTURAL OVERVIEW OF MSP430X44X 76

Figure A.1: MSP430 System Configuration

A.2 Central Processing Unit

The CPU incorporates a reduced and highly transparent instruction set and a highly

orthogonal design. It consists of a 16-bit arithmetic logic unit (ALU), 16 registers,

and instruction control logic. Four of these registers are used for special purposes.

These are the program counter (PC), the stack pointer (SP), the status register (SR),

and the constant generator (CGx). All registers, except the constant-generator reg-

isters R3/CG2 and part of R2/CG1, can be accessed using the complete instruction

set. The constant generator supplies instruction constants, and is not used for data

storage. The addressing mode used on CG1 separates the data from the constants.

The CPU control over the program counter, the status register, and the stack pointer

(with the reduced instruction set) allows the development of applications with sophis-

ticated addressing modes and software algorithms.

APPENDIX A. ARCHITECTURAL OVERVIEW OF MSP430X44X 77

A.3 Program Memory

Instruction fetches from program memory are always 16-bit accesses, whereas data

memory can be accessed using word (16-bit) or byte (8-bit) instructions. Any access

uses the 16-bit memory data bus (MDB) and as many of the least-significant address

lines of the memory address bus (MAB) as required to access the memory locations.

Blocks of memory are automatically selected through module-enable signals. This

technique reduces overall current consumption. Program memory is integrated as

programmable or mask-programmed memory.

In addition to program code, data may also be placed in the code memory section of

the memory map and may be accessed using word or byte instructions; this is useful

for data tables, for example. This unique feature gives the MSP430 an advantage

over other microcontrollers because the data tables do not have to be copied to RAM

for usage.

Sixteen words of memory are reserved for reset and interrupt vectors at the top

of the 64-kilobytes address space from 0FFFFh down to 0FFE0h.

A.4 Data Memory

The data memory is connected to the CPU through the same two buses as the pro-

gram memory (flash): the memory address bus (MAB) and the memory data bus

(MDB). The data memory can be accessed with full (word) data width or with re-

duced (byte) data width.

Additionally, because the RAM and flash are connected to the CPU via the same

busses, program code can be loaded into and executed from RAM. This is another

unique feature of the MSP430 devices, and provides valuable, easy-to-use debugging

APPENDIX A. ARCHITECTURAL OVERVIEW OF MSP430X44X 78

capability.

A.5 Operation Control

The operation of the different MSP430 members is controlled mainly by the informa-

tion stored in the special-function registers (SFRs). The different bits in the SFRs

enable interrupts, provide information about the status of interrupt flags, and define

the operating modes of the peripherals. Total current consumption can be reduced

by disabling peripherals that are not needed during an operation.

A.6 Peripherals

Peripheral modules are connected to the CPU through the MAB, the MDB, and the

interrupt service and request lines. The MAB is usually a 5-bit bus for most of the

peripherals. The MDB is an 8-bit or 16-bit bus. Most of the peripherals operate

in byte format. Modules with an 8-bit data bus are connected by bus-conversion

circuitry to the 16-bit CPU. The data exchange with these modules must be handled

with byte instructions. The SFRs are also handled with byte instructions.

Appendix B

Peripheral Modules and Address

Allocation

It has code memory, data memory, and peripherals in one address space. As a result,

the same instructions are used for code, data, or peripheral accesses. Also, code may

be executed from RAM.

B.1 Introduction

All of the physically separated memory areas (ROM, RAM, SFRs, and peripheral

modules) are mapped into the common address space, as shown in Figure B.1 for

the MSP430 family. The addressable memory space is 64KB. Future expansion is

possible. The memory data bus (MDB) is 16- or 8-bits wide. For those modules that

can be accessed with word data the width is always 16 bits. For the other modules,

the width is 8 bits, and they must be accessed using byte instructions only. The

program memory (ROM) and the data memory (RAM) can be accessed with byte or

word instructions.

79

APPENDIX B. PERIPHERAL MODULES AND ADDRESS ALLOCATION 80

Figure B.1: Memory Map of Basic Address Space

B.1.1 Peripheral Modules - Address Allocation

Some peripheral modules are accessible only with byte instructions, while others are

accessible only with word instructions. The address space from 0100 to 01FFh is

reserved for word modules, and the address space from 00h to 0FFh is reserved for

byte modules.

Peripheral modules that are mapped into the word address space must be accessed

using word instructions (for example, MOV R5,&WDTCTL). Peripheral modules

that are mapped into the byte address space must be accessed with byte instructions

(MOV.B #1,&TCCTL).

The addressing of both is through the absolute addressing mode or the 16-bit working

registers using the indexed, indirect, or indirect autoincrement addressing mode. See

Figure B.2 for the RAM/peripheral organization.

APPENDIX B. PERIPHERAL MODULES AND ADDRESS ALLOCATION 81

Figure B.2: Example of RAM/Peripheral Organization

Word Modules

Word modules are peripherals that are connected to the 16-bit MDB.

Word modules can be accessed with word or byte instructions. If byte instructions

are used, only even addresses are permissible, and the high byte of the result is always

0.

The peripheral file address space is organized into sixteen frames with each frame

representing eight words as described in Table I

Table I: Peripheral File Address Map-Word Modules

Address Description
1F0h - 1FFh Reserved
1E0h - 1EFh Reserved
1D0h - 1DFH Reserved
1C0h - 1CFH Reserved
1B0h - 1BFH Reserved
1A0h - 1AFH ADC12 control and interrupt
190h - 19FH Reserved
180h - 18FH Reserved
170h - 17FH Timer A
160h - 16FH Timer A
150h - 15FH ADC12 conversion memory
140h - 14FH ADC12 conversion memory
130h - 13FH Multiplier
120h - 12FH Watchdog Timer, flash control
110h - 11FH Reserved
100h - 10FH Reserved

APPENDIX B. PERIPHERAL MODULES AND ADDRESS ALLOCATION 82

Byte Modules

Byte modules are peripherals that are connected to the reduced (eight LSB) MDB.

Access to byte modules is always by byte instructions. The hardware in the periph-

eral byte modules takes the low byte (the LSBs) during a write operation.

Byte instructions operate on byte modules without any restrictions. Read access

to peripheral byte modules using word instructions results in unpredictable data in

the high byte. Word data is written into a byte module by writing the low byte to

the appropriate peripheral register and ignoring the high byte.

The peripheral file address space is organized into sixteen frames as described in

Table II.

Table II: Peripheral File Address Map-Byte Modules

Address Description
00F0h - 00FFh Reserved
00E0h - 00EFh Reserved
00D0h - 00DFh Reserved
00C0h - 00CFh Reserved
00B0h - 00BFh Reserved
00A0h - 00AFh LCD
0090h - 009Fh LCD
0080h - 008Fh ADC12 memory control
0070h - 007Fh USART0
0060h - 006Fh Reserved
0050h - 005Fh System clock generator, Comparator A, brownout/SVS
0040h - 004Fh Basic timer, 8-Bit Timer/Counter, Timer/Port
0030h - 003Fh Digital I/O port P5 and P6 control
0020h - 002Fh Digital I/O port P1 and P2 control
0010h - 001Fh Digital I/O port P3 and P4 control
0000h - 000Fh Special function

APPENDIX B. PERIPHERAL MODULES AND ADDRESS ALLOCATION 83

Figure B.3: Special Function Register Address Map

Peripheral Modules-Special Function Registers (SFRs)

The system configuration and the individual reaction of the peripheral modules to the

processor operation is configured in the SFRs as described in Figure B.3. The SFRs

are located in the lower address range, and are organized by bytes. SFRs must be

accessed using byte instructions only. The system power consumption is influenced

by the number of enabled modules and their functions. Disabling a module from the

actual operation mode reduces power consumption while other parts of the controller

remain fully active (unused pins must be tied appropriately or power consumption

will increase; see Basic Hints for Low Power Applications in Section 2.3.4

References

[1] T. Instruments, “Msp430x4xx - flash/rom lcd products from texas in-
struments.” Website, 2009. http://focus.ti.com/paramsearch/docs/

parametricsearch.tsp?familyId=914§ionId=95&tabId=1530&family=

mcu.

[2] J. J. Labrosse, MicroC/OS-II - The Real Time Kernel (Second Edition). 600
Harrison Street, San Francisco, CA 94107 USA: CMPBooks, 2002.

[3] S. T. Zargar, V. Salmani, and M. Naghibzadeh, “A modified maximum urgency
first scheduling algorithm for real-time tasks,” in World Academy Of Science,
Engineering And Technology Volume 9, NOVEMBER 2005.

[4] D. B. Stewart and P. K. Khosla, “Real-time scheduling of sensor-based con-
trol systems,” in Real-Time Programming, ed. by W. Halang and K. Ramam-
ritham,(Tarrytown, New York: Pergamon Press Inc.), July 1992.

[5] T. Intsruments, “Msp430 microcontroller (mcu), low power mixed signal proces-
sor,” 2009.

[6] T. Instruments, “Electrical charactristics of msp430f449.” Website, 2009. http:
//focus.ti.com/lit/ds/symlink/msp430f449.pdf.

[7] micrium, “Download microc/os-ii.” Website, 2009. http://www.micrium.com/

products/rtos/ucos-ii_download.html.

[8] W. Kalfa, “Proposal of an external processor scheduling in micro-kernel based
operating systems,” tech. rep., The Tenet Group, Computer Science Division,
Department of EECS, University of California, Berkeley, and International Com-
puter Science Institute. On sabbatical leave from Dresden University of Technol-
ogy, Germany, 1992.

[9] I. Systems, “Msp430 iar embedded workbench ide user guide.” Website, 2009.
ftp://ftp.iar.se/WWWfiles/msp430/guides/ou430-6.pdf.

[10] micrium, “Micrium, inc. microc/os-ii kernel awareness for c-spy.”
Website, 2009. http://www.micrium.com/downloads/support/

uCOS-II-KA-CSpy-UserGuide.pdf.

84

http://focus.ti.com/paramsearch/docs/parametricsearch.tsp?familyId=914§ionId=95&tabId=1530&family=mcu
http://focus.ti.com/paramsearch/docs/parametricsearch.tsp?familyId=914§ionId=95&tabId=1530&family=mcu
http://focus.ti.com/paramsearch/docs/parametricsearch.tsp?familyId=914§ionId=95&tabId=1530&family=mcu
http://focus.ti.com/lit/ds/symlink/msp430f449.pdf
http://focus.ti.com/lit/ds/symlink/msp430f449.pdf
http://www.micrium.com/products/rtos/ucos-ii_download.html
http://www.micrium.com/products/rtos/ucos-ii_download.html
ftp://ftp.iar.se/WWWfiles/msp430/guides/ou430-6.pdf
http://www.micrium.com/downloads/support/uCOS-II-KA-CSpy-UserGuide.pdf
http://www.micrium.com/downloads/support/uCOS-II-KA-CSpy-UserGuide.pdf

Index

Abbreviation Notation and Nomenclature,

vii

Abstract, iv

Acknowledgements, vi

Analysis of Results, 68

Architectural Overview of MSP430X44X,

75

Background, 2

Basic Hints for Low-Power Applications,

16

Byte Modules, 82

Case 1: All tasks are periodic, 57

Case 2: All tasks are periodic except one.

Aperiodic task never becomes ready.,

61

Case 3: All tasks are periodic except one.

Aperiodic task becomes ready once

only, 64

Case 4: New task will be added to the

task list on the reception of the

interrupt, 64

Central Processing Unit, 76

Certificate, iii

Creating a Task, OSTaskCreate(), 33

Critical Sections, 18

Data Memory, 77

Data structures used to implement MMUF,

54

Earliest-Deadline-First Scheduling Algo-

rithm, 38

Existing Methodologies, 48

Features and Capabilities, 7

Implementation, 53

Implementation Environment, 53

Interrupt Control Bits in Special-Function

Registers (SFRs), 10

Interrupt Processing, 8

Introduction, 1

Introduction about the scheduling algo-

rithms, 36

Introduction of Architectural Overview of

MSP430X44X, 75

Introduction of Peripheral Modules and

Address Allocation, 79

Locking and Unlocking the Scheduler, 30

85

INDEX 86

Low-Power Mode 4 (LPM4), 16

Low-Power Modes 0 and 1 (LPM0 and

LPM1), 14

Low-Power Modes 2 and 3 (LPM2 and

LPM3), 15

Making a task ready to run, 25

Maximum-Urgency-First scheduling algo-

rithm, 39

Method One, 48

Method Three, 48

Method Two, 48

Minimum-Laxity-First Algorithm, 38

Modified Maximum-Urgency-First schedul-

ing algorithm, 43

MSP430 Features, 6

Objective of Study, 3

Operating Modes, 11

Operation Control, 78

OS TCBInit(), 24

Peripheral Modules - Address Allocation,

80

Peripheral Modules and Address Alloca-

tion, 79

Peripheral Modules-Special Function Reg-

isters (SFRs), 83

Peripherals, 78

Porting of MicroC/OS-II on MSP430 IAR

Embedded Workbench IDE, 54

Problem Definition, 47

Problem Definition and Existing Method-

ologies, 47

Program Memory, 77

Rate Monotonic Algorithm, 37

Ready List, 24

Real Time Operating System for Sensor,

18

Results, 56

Scheduling Algorithms for Sensor Nodes,

36

Scope of Work, 4

Starting Multitasking, 32

Summary of Implementation, 70

Summary of MSP430 Features, 17

Summary of Problem Definition and Ex-

isting Methodologies, 49

Summary of Real Time Operating System

for Sensor, 35

Summary of scheduling algorithms for sen-

sor nodes, 46

Summary of the proposed algorithm, 51

Task Control Blocks (OS TCB), 20

Task Level Context Switch, OS TASK SW(),

30

Task Scheduling, 28

Task States, 19

The Algorithm, 50

INDEX 87

The Proposed Algorithm, 50

Thesis Organization, 5

Word Modules, 81

	Certificate
	Abstract
	Acknowledgements
	Abbreviation Notation and Nomenclature
	List of Tables
	List of Figures
	Introduction
	Background
	Objective of Study
	Scope of Work
	Thesis Organization

	MSP430 Features
	Features and Capabilities
	Interrupt Processing
	Interrupt Control Bits in Special-Function Registers (SFRs)

	Operating Modes
	Low-Power Modes 0 and 1 (LPM0 and LPM1)
	Low-Power Modes 2 and 3 (LPM2 and LPM3)
	Low-Power Mode 4 (LPM4)
	Basic Hints for Low-Power Applications

	Summary

	Real Time Operating System for Sensor
	Critical Sections
	Task States
	Task Control Blocks (OS_TCB)
	OS_TCBInit()
	Ready List
	Making a task ready to run
	Removing a task from the ready list
	Finding the highest priority task

	Task Scheduling
	Task Level Context Switch, OS_TASK_SW()
	Locking and Unlocking the Scheduler
	Starting Multitasking
	Creating a Task, OSTaskCreate()
	Summary

	Scheduling Algorithms for Sensor Nodes
	Introduction
	Rate Monotonic Algorithm (RM)
	Earliest-Deadline-First Scheduling Algorithm (EDF)
	Minimum-Laxity-First Scheduling Algorithm (MLF)
	Maximum-Urgency-First scheduling algorithm (MUF)
	Modified Maximum-Urgency-First scheduling algorithm (MMUF)
	Summary

	Problem Definition and Existing Methodologies
	Problem Definition
	Existing Methodologies
	Method One
	Method Two
	Method Three

	Summary

	The Proposed Algorithm
	The Algorithm
	Summary

	Implementation
	Implementation Environment
	Porting of MicroC/OS-II on MSP430 IAR Embedded Workbench IDE
	Data structures used to implement MMUF

	Results
	Case 1: All tasks are periodic
	Case 2: All tasks are periodic except one. Aperiodic task never becomes ready.
	Case 3: All tasks are periodic except one. Aperiodic task becomes ready once only.
	Case 4: New task will be added to the task list on the reception of the interrupt.
	Analysis of Results

	Summary

	Conclusion and Future Scope
	Conclusion
	Future Scope

	Architectural Overview of MSP430X44X
	Introduction
	Central Processing Unit
	Program Memory
	Data Memory
	Operation Control
	Peripherals

	Peripheral Modules and Address Allocation
	Introduction
	Peripheral Modules - Address Allocation

	References
	Index

