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Abstract

The multicore processors, which are widely available in recent times, have great poten-

tial to achieve significant performance improvement of the Digital Image Processing

Algorithms. Due to the availability of inherent parallelism, large number of resources

and functionality on different cores of such multicore architecture, significant per-

formance gain can be obtained by implementing applications on it. But the major

challenge lies in programming and designing applications on such multicore architec-

ture to exploit the available resources and functionality to its fullest. These challenges

are addressed by developing two image processing algorithms with different compu-

tational load on Cell Broadband Engine - a hybrid multicore processor from Sony,

IBM and Toshiba. The performance analysis of different versions of two algorithms

is shown. The programming approach, designing strategies and drawbacks in devel-

opment of image processing algorithm on Cell Broadband Engine are addressed.



v

Acknowledgements

It gives me immense pleasure in expressing my sincere thanks and profound grat-

itude to Dr. S N Pradhan, Guide and P.G. Coordinator, Department of Computer

Science & Engineering, Institute of Technology, Nirma University, Ahmedabad, for

his valuable guidance and continual encouragement throughout the Major Project.

I am heartily thankful to him for his time to time suggestions and the clarity of

the concepts of the topic that helped me a lot during this study. I also thank Prof.

Vijay Ukani, Assistant Professor, Department of Computer Science & Engineering,

Institute of Technology, Nirma University, Ahmedabad, for his support and valuable

guidance in writing this Thesis using Latex.

I like to give my special thanks to Prof. D J Patel, Professor and Head, Depart-

ment of Computer Science & Engineering, Institute of Technology, Nirma University,

Ahmedabad, for his continual kind words of encouragement and motivation through-

out the Major Project. I am also thankful to Dr. K Kotecha, Director, Institute of

Technology, Ahmedabad, for his kind support in all respect during my study.

I am thankful to all faculty members of Department of Computer Science & En-

gineering, Nirma University, Ahmedabad, for their special attention and suggestions

towards the project work.

The blessings of God and my family members are always there with me to show

me the right path. I am very much grateful to them.

The friends, who always bear and motivate me throughout this course, I am thank-

ful to them. Special thanks to Mr. Viral Rathod for his generous help in creation

and editing of images in this thesis.



vi

Finally I want to thank the colleagues and experts of Cell BE Forums and bloggers

of other Fedora Forums for providing me with solutions when there was any confusion

during my entire study.

- Vijay P Bhatt

(07MCE023)



Contents

Certificate iii

Abstract iv

Acknowledgements v

Contents vii

List of Tables ix

List of Figures x

Abbreviations xii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Objective of this Study . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 General Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Scope of the Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Overview of Cell Broadband Engine 6
2.1 Cell Broadband Engine Architectural Overview . . . . . . . . . . . . 7

2.1.1 Cell Broadband Engine and Power, Memory, and Frequency
Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Cell Broadband Engine Programming Overview . . . . . . . . . . . . 14
2.2.1 PPE Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 SPE Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 SIMD Vectorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Overview of Cell SDK 3.0 22
3.1 IBM Full-System Simulator . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 The Callthru Utility . . . . . . . . . . . . . . . . . . . . . . . 27

vii



CONTENTS viii

3.2 Compiling and linking with the GNU tool chain . . . . . . . . . . . . 28

4 Implementation 30
4.1 Simple Averaging Filter . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Mean Normalized Digital Cross Correlation . . . . . . . . . . . . . . . 38
4.3 Optimization of Mean Normalized Digital

Cross Correlation Algorithm by Double
Buffering Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Results and Discussions 44
5.1 Simple Averaging Filter . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2 Programming Notes on Simple Averaging Filter . . . . . . . . . . . . 49
5.3 Mean Normalized Digital Cross Correlation . . . . . . . . . . . . . . . 51
5.4 Programming Notes on Mean Normalized Digital Cross Correlation . 54
5.5 Suggested Strategies for Designing Image Processing Algorithms on

Cell Broadband Engine . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.6 Shortcomings and Drawbacks in Implementing Image Processing Al-

gorithms on Cell Broadband Engine . . . . . . . . . . . . . . . . . . . 59

6 Conclusion and Future Scope 61
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2 Future Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A Vector/SIMD Multimedia Extension data types 63

B Generic SPU Intrinsics 65

References 67



List of Tables

I Formulated Computation Statistics of Simple Averaging Filter . . . . 36
II Computation Statistics of Simple Averaging Filter . . . . . . . . . . . 37

I Performance Measure of Simple Averaging Filter for Image Size: 256
x 256 and Mask Size: 7 x 7 . . . . . . . . . . . . . . . . . . . . . . . . 47

II Performance Measure of Simple Averaging Filter for Image Size: 1028
x 732 and Mask Size: 7 x 7 . . . . . . . . . . . . . . . . . . . . . . . . 47

III Performance Measure of Mean Normalized Cross Correlation for Search
Area: 424 x 432 and Window Area: 64 x 48 . . . . . . . . . . . . . . 53

I Vector/SIMD Multimedia Extension data types . . . . . . . . . . . . 64

I Generic SPU Intrinsics . . . . . . . . . . . . . . . . . . . . . . . . . . 66

ix



List of Figures

2.1 Architecture of Cell Broadband Engine . . . . . . . . . . . . . . . . . 7
2.2 PowerPC Processor Element (PPE) block diagram . . . . . . . . . . . 8
2.3 Synergistic Processor Element (SPE) block diagram . . . . . . . . . . 10
2.4 Big-endian byte and bit ordering . . . . . . . . . . . . . . . . . . . . 15
2.5 PPE User Register Set . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 SPE user-register set . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.7 Vector Addition Operation . . . . . . . . . . . . . . . . . . . . . . . . 20
2.8 Byte-Shuffle (Permute) Operation . . . . . . . . . . . . . . . . . . . . 21

3.1 Simulator Stack for the Cell Broadband Engine . . . . . . . . . . . . 25
3.2 Windows visible after starting the simulator GUI . . . . . . . . . . . 27

4.1 Parallel Stages Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Filtering in Spatial Domain . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 3 x 3 Mask of Simple Averaging Filter . . . . . . . . . . . . . . . . . 34
4.4 SIMDization of Simple Averaging Filter . . . . . . . . . . . . . . . . . 35
4.5 Digital Cross Correlation Process . . . . . . . . . . . . . . . . . . . . 39
4.6 DMA transfers using a Double-Buffering Method . . . . . . . . . . . 42

5.1 Functional Result of Simple Averaging Filter for Image Size of 256 x
256 and Mask Size of 7 x 7 . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Functional Result of Simple Averaging Filter for Image Size of 1028 x
732 and Mask Size of 7 x 7 . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Performance Measure of Simple Averaging Filter for Image Size of 256
x 256 and Mask Size of 7 x 7 . . . . . . . . . . . . . . . . . . . . . . . 48

5.4 Performance Measure of Simple Averaging Filter for Image Size of 1028
x 732 and Mask Size of 7 x 7 . . . . . . . . . . . . . . . . . . . . . . . 48

5.5 Performance Gain of Simple Averaging Filter on CBE compared to
Intel Core 2 Duo Processor . . . . . . . . . . . . . . . . . . . . . . . . 49

5.6 SPE Timing Statistics for SIMD Simple Averaging Filter . . . . . . . 50
5.7 Functional Result of Mean Normalized Digital Cross Correlation for

Search Area: 424 x 432 and Window Area: 64 x 48 . . . . . . . . . . 52
5.8 Effect on Performance of Cross Correlation by using different data types 54

x



LIST OF FIGURES xi

5.9 Performance Measure of Mean Normalized Cross Correlation for Search
Area: 424 x 432 and Window Area: 64 x 48 . . . . . . . . . . . . . . 55

5.10 Performance Comparison of Simple SIMD and Double Buffered SIMD
versions of Cross Correlation Algorithm . . . . . . . . . . . . . . . . . 56

5.11 Performance Gain of Mean Normalized Cross Correlation on CBE com-
pared to Intel Core 2 Duo Processor . . . . . . . . . . . . . . . . . . . 57



Abbreviations

ASIC Application Specific Integrated Circuit
CBE Cell Broadband Engine
CBEA Cell Broadband Engine Architecture
DSP Digital Signal Processing
EIB Element Interconnect Bus
FPGA Field Programmable Gate Array
LS Local Store
MFC Memory Flow Controller
MMIO Memory Mapped I/O
PPE PowerPC Processor Element
SIMD Single Instruction Multiple Data
SPE Synergistic Processor Element



Chapter 1

Introduction

1.1 Background

Digital Image Processing is a major bottleneck in applications involving imaging.

Hence, improving the performance of Digital Image Processing Algorithms has al-

ways been an interesting problem among researchers. In past substantial performance

improvement has been achieved by offloading the Digital Image Processing task to

specialized hardware consisting of ASICs, DSP Boards, FPGAs, and their various

combinations thereof [1],[2]. With the recent advent of latest multicore processors at

comparable cost, and with their fast task distribution and inherent parallelism capa-

bility on its cores, multicore architectures has presented itself as an obvious solution

to improve the performance of Digital Image Processing Algorithms.

Nowadays most of the commercially available PCs and workstations are com-

ing with state-of-the-art multicore processor chips. The multicore architecture can

achieve parallelism in two ways: (1) thread level parallelism by running different

threads on different cores and (2) fine grain parallelism with the help of architec-

ture specific strategies like Single Instruction Multiple Data (SIMD) parallelization,

instruction pipelining, etc. In addition to performance enhancement, development

1
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on multicore processor leads to less development and design cycle time than that on

FPGAs or other specialized hardware. Generalized algorithms can be implemented

on multicore processors and the multicore processor can do multiple tasks at the

same time in a way similar to traditional general purpose processors. Hence use of

multicore processors is more viable solution to improve performance of image pro-

cessing algorithms than traditional general purpose processors with low performance

and specialized hardware with high development time and low flexibility.

1.2 Motivation

There are many challenges to be addressed to achieve the best performance on mul-

ticore architectures [3]. The major challenge is in designing applications which can

efficiently utilize the inherent parallelism and resources of the different cores of the

chip. This study is motivated by the fact that, as of now, no commercially available

compilers can produce optimal code from traditional scalar application programs,

which can fully exploit the functionality of the multicore processors. The software

development kits available for programming these multicore processors are in primi-

tive stage and also very few standard libraries are available for developing applications

on these multicore processors. As a result, there is a lot of pressure on the application

designers to reap the resources and fully exploit the functionality available in different

cores built on such multicore processor. Hence the major focus of this study is on

development of image processing algorithms on hybrid multicore architecture from

Sony, IBM and Toshiba called Cell Broadband Engine (CBE).

1.3 Objective of this Study

The objectives of this study are:

a. The development of standard image processing algorithms on Cell Broadband

Engine.
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b. To address challenges in designing image processing algorithms for Cell Broad-

band Engine and programming it.

c. To evaluate the shortcomings and drawbacks in implementing image processing

algorithms on Cell Broadband Engine.

d. To present hybrid multicore architecture of Cell Broadband Engine as viable

solution to achieve performance enhancement of image processing algorithms.

1.4 General Outline

Wide varieties of applications have been developed on Cell Broadband Engine to

achieve performance enhancement.Alias systems have developed Alias Cloth Tech-

nology Demonstration for the Cell Processor [4]. Barry Minor et al at of IBM Corpo-

ration Systems and Technology Group has developed Terrain Rendering Engine with

the help of Cell Broadband Engine [5]. Fabrizio Petrini et al has studied the paral-

lelization process of a scientific application, the radiation transport code Sweep3D,

on Cell Broadband Engine [6]. Lurng-Kuo Liu et al has developed Digital Media

Indexing on Cell Broadband Engine [7]. Filip Blagojevic et al has studied Dynamic

Multigrain Parallelization on the Cell Broadband Engine [8]. As far as image pro-

cessing is concerned, the work on Fast Fourier Algorithm for Cell Broadband Engine

has been done by Alex Chungen Chow et al [9], David Bader et al [10] and Long

Chen et al [11]. Also libraries for histogram calculation and convolution have been

developed by IBM for Cell Broadband Engine and provided with Cell SDK 3.0 [12].

The parallel processing approaches to Image correlation using SIMD algorithms has

been presented by Leah J Siegel et al [13].

In this study, two image processing algorithms - Simple Averaging Filter Algo-

rithm and Mean Normalized Digital Cross Correlation Algorithm are developed and

optimized step by step on Cell Broadband Engine processor. The algorithms are
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restructured and designed in such a way to fully exploit the SIMD architecture and

available resources of the Cell Broadband Engine. The commercially available gam-

ing console - Sony Play Station 3 which comes with 9 cores Cell Broadband Engine

Processor is used to port the algorithms on the chip. The operating system running

on Cell Broadband Engine is Yellow Dog Linux 5. Cell SDK 3.0 developed by IBM

is used for development of algorithms. Cell SDK 3.0 is installed on Fedora Core 7

Operating System and the algorithms are cross compiled with the help of GNU Tool

Chain of compilers [14] available with Cell SDK 3.0 for Cell Broadband Engine.

1.5 Scope of the Work

The algorithms developed on Cell Broadband Engine achieved significant performance

gain than that on Intel Core2 Duo Processors. The application designing and pro-

gramming strategies are presented along with the shortcomings and drawbacks of

application development on Cell Broadband Engine. The scope of this work covers

the development of standard image processing libraries which are optimized and tuned

to achieve maximum performance on Cell Broadband Engine. The development of

these standard image processing libraries will eventually lead to rapid application de-

velopment on this hybrid multicore architecture so as to fully exploit the functionality

of multiple cores.

1.6 Thesis Organization

The rest of the thesis is organized as follows.

Chapter 2, Overview of Cell Broadband Engine, describes the Architecture and

Programming Environment of Cell Broadband Engine. The concept of SIMD

Vectorization is also explained in this chapter.

Chapter 3, Overview of Cell SDK 3.0, highlights the important features of Cell SDK
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3.0. It also explains the simulation environment of IBM Full-System Simulator.

In Chapter 4, Implementation, the development of different versions of Simple

Averaging Filter and Mean Normalized Digital Cross Correlation Algorithm is

explained. The Double Buffering Optimization technique for Mean Normalized

Digital Cross Correlation Algorithm is also covered in this chapter.

Chapter 5, Results and Discussions, shows the results obtained by implementation

of Simple Averaging Filter and Mean Normalized Digital Cross Correlation

Algorithm. The programming notes for each algorithm is mentioned. The sug-

gested strategies and drawbacks in implementing Image Processing Algorithms

on Cell Broadband Engine are evaluated.

Finally, in Chapter 6 concluding remarks and scope for future work is presented.



Chapter 2

Overview of Cell Broadband

Engine

The first generation Cell Broadband Engine is the first incarnation of a new family of

microprocessors conforming to the Cell Broadband Processor Architecture (CBEA).

The CBEA is a new architecture that extends the 64-bit PowerPC Architecture. The

CBEA and the Cell Broadband Engine are the result of a collaboration between Sony,

Toshiba, and IBM, known as STI, formally started in early 2001.

Although the Cell Broadband Engine is initially intended for application in game

consoles and media-rich consumer-electronics devices such as high-definition televi-

sions, the architecture and the Cell Broadband Engine implementation have been

designed to enable fundamental advances in processor performance. A much broader

use of the architecture is envisioned.

The Cell Broadband Engine is a single-chip multiprocessor with nine processors

operating on a shared, coherent memory. In this respect, it extends current trends

in PC and server processors. The most distinguishing feature of the Cell Broadband

Engine is that, although all processors share main storage (the effective-address space

6
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Figure 2.1: Architecture of Cell Broadband Engine

that includes main memory), their function is specialized into two types:

• the PowerPC Processor Element (PPE),

• the Synergistic Processor Element (SPE).

2.1 Cell Broadband Engine Architectural Overview

Figure 2.1 shows the block diagram of Cell Broadband Engine Architecture. The Cell

Broadband Engine on Sony PlayStation 3 is a hybrid multicore architecture with 9

cores - 1 Power Processor Element (PPE) and 8 Synergistic Processor Element (SPE)

each running at 3.2 GHz frequency. Only 6 out of 8 SPEs are available for user ap-

plications on CBE of Sony PlayStation 3. All processor elements are connected to

each other and to the on-chip memory and I/O controllers by the memory-coherent

element interconnect bus (EIB) [15].

The PPE consists of a 64-bit, dual-thread PowerPC Architecture RISC core and

supports a PowerPC virtual-memory subsystem. The PPE contains 32 KB level-

1 (L1) instruction and data caches and a 512 KB level-2 (L2) unified (instruction

and data) cache [16]. The PPE is designed primarily for control processing, running
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Figure 2.2: PowerPC Processor Element (PPE) block diagram

operating systems, managing system resources, and managing SPE threads. The

instruction set for the PPE includes the vector/SIMD multimedia extensions and as-

sociated C/C++ intrinsic extensions in addition to PowerPC instruction set.

As shown in Figure 2.2, the PPE consists of two main units:

• The Power Processor Unit (PPU).

• The Power Processor Storage Subsystem (PPSS).

The PPE is responsible for overall control of the system. It runs the operating

systems for all applications running on the Cell Broadband Engine.

The PPU deals with instruction control and execution. It includes:

• the full set of 64-bit PowerPC registers,

• 32 128-bit vector registers,
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• a 32-KB level 1 (L1) instruction cache,

• a 32-KB level 1 (L1) data cache,

• an instruction-control unit,

• a load and store unit,

• a fixed-point integer unit,

• a floating-point unit,

• a vector unit,

• a branch unit,

• a virtual-memory management unit.

The SPEs of the CBE are single-instruction, multiple-data (SIMD) processor el-

ements that are optimized for data-rich operations allocated to them by the PPE.

Each SPE contains a RISC core, 256 KB software-controlled LS (Local Storage)

for instructions and data, and a 128-bit, 128-entry unified register file [17]. A special

SIMD instruction set-the Synergistic Processor Unit Instruction Set Architecture-and

a unique set of commands for managing DMA transfers and interprocessor messaging

and control are supported by the SPEs. SPE DMA transfers access main storage

using PowerPC effective addresses. The SPEs are not intended to run an operat-

ing system. An SPE controls DMA transfers and communicates with the system by

means of channels that are implemented in and managed by the SPE’s memory flow

controller (MFC). The channels are unidirectional message-passing interfaces. The

PPE and other devices in the system, including other SPEs, can also access this MFC

state through the MFC’s memory-mapped I/O (MMIO) registers and queues, which

are visible to software in the main-storage address space. Maximum DMA Transfer

size is 16 KB.
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Figure 2.3: Synergistic Processor Element (SPE) block diagram

As shown in Figure 2.3, each SPE consists of two main units:

• The Synergistic Processor Unit (SPU).

• The Memory Flow Controller (MFC).

The SPU deals with instruction control and execution. It includes a single register

file with 128 registers (each one 128 bits wide), a unified (instructions and data) 256-

KB local store (LS), an instruction-control unit, a load and store unit, two fixed-point

units, a floating-point unit, and a channel-and-DMA interface. The SPU implements

a new SIMD instruction set, the SPU Instruction Set Architecture, that is specific to

the Broadband Processor Architecture.

Each SPU is an independent processor with its own program counter and is opti-

mized to run SPE threads spawned by the PPE. The SPU fetches instructions from its

own LS, and it loads and stores data from and to its own LS. With respect to accesses
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by its SPU, the LS is unprotected and un-translated storage. The MFC contains a

DMA controller that supports DMA transfers. Programs running on the SPU, the

PPE, or another SPU, use the MFCs DMA transfers to move instructions and data

between the SPUs LS and main storage. (Main storage is the effective-address space

that includes main memory, other SPEs LS, and memory-mapped registers such as

memory-mapped I/O [MMIO] registers.) The MFC interfaces the SPU to the EIB,

implements bus bandwidth-reservation features, and synchronizes operations between

the SPU and all other processors in the system.

The SPEs provide a deterministic operating environment. They do not have

caches, so cache misses are not a factor in their performance. Pipeline-scheduling

rules are simple, so it is easy to statically determine the performance of code. Al-

though the LS is shared between DMA read and write operations, load and store

operations, and instruction prefetch, DMA operations are accumulated and can only

access the LS for at most one of every eight cycles. Instruction prefetch delivers at

least 17 instructions sequentially from the branch target. Thus, the impact of DMA

operations on loads and stores and program-execution times is, by design, limited.

A significant difference between the PPE and SPEs is how they access memory:

• The PPE accesses main storage (the effective-address space that includes main

memory) with load and store instructions that go between a private register file

and main storage (which may be cached).

• The SPEs access main storage with direct memory access (DMA) commands

that go between main storage and a private local memory used to store both

instructions and data. SPE instruction-fetches and load and store instructions

access this private local store, rather than shared main storage. This 3-level or-

ganization of storage (register file, local store, main storage), with asynchronous

DMA transfers between local store and main storage, is a radical break with
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conventional architecture and programming models, because it explicitly paral-

lelizes computation and the transfers of data and instructions.

The PPE and SPEs communicate coherently with each other and with main stor-

age and I/O through the EIB. The EIB is a 4-ring structure (two clockwise and two

counterclockwise) for data, and a tree structure for commands. The EIBs internal

bandwidth is 96 bytes per cycle [18], and it can support more than 100 outstanding

DMA memory requests between main storage and the SPEs.

The memory-coherent EIB has two external interfaces, as shown in Figure 2.1:

• The Memory Interface Controller (MIC) provides the interface between the

EIB and main storage. It supports two Rambus Extreme Data Rate (XDR)

I/O (XIO) memory channels and memory accesses on each channel of 1-8, 16,

32, 64, or 128 bytes.

• The Cell Broadband Engine Interface (BEI) manages data transfers between

the EIB and I/O devices. It provides address translation, command processing,

an internal interrupt controller, and bus interfacing. It supports two Rambus

FlexIO external I/O channels. One channel supports only non-coherent I/O

devices. The other channel can be configured to support either non-coherent

transfers or coherent transfers that extend the logical EIB to another compatible

external device, such as another Cell Broadband Engine.

2.1.1 Cell Broadband Engine and Power, Memory, and Fre-

quency Limitations

The CBE processor overcomes three important limitations of contemporary micro-

processor performancepower use, memory use, and clock frequency.
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Microprocessor performance is approaching limits of power dissipation rather than

integratedcircuit resources (transistors and wires). The only way to significantly in-

crease the performance of microprocessors in this environment is to improve power

efficiency at approximately the same rate as the performance increase. The CBE pro-

cessor does this by differentiating between the PPE, optimized to run an operating

system and control-intensive code, and the eight SPEs, optimized to run compute-

intensive applications. The control-plane PPE leaves the eight data-plane SPEs free

to compute data-rich applications.

On todays symmetric multiprocessorseven those with integrated memory con-

trollerslatency to DRAM memory is approaching 1,000 cycles. As a result, program

performance is dominated by moving data between main storage and the processor.

Compilers and application writers must manage this data movement explicitly, even

though the hardware cache mechanisms are supposed to relieve them of this task.

In contrast, the CBE processors mechanisms for dealing with memory latenciesthe

3-level SPE memory structure (main storage, local stores, and large register files),

and asynchronous DMA transfersenable programmers to schedule simultaneous data

and code transfers to cover long memory latencies. At 16 simultaneous transfers per

SPE, the CBE processor can support up to 128 simultaneous transfers between the

SPE local stores and main storage. This surpasses the bandwidth of conventional

processors by a factor of almost twenty.

Conventional processors require increasingly deeper instruction pipelines to achieve

higher operating frequencies. This technique has reached a point of diminishing re-

turnsand even negative returns if power is taken into account. By specializing the PPE

for control-intensive tasks and the SPEs for compute-intensive tasks, these process-

ing elements run at high frequencies without excessive overhead. The PPE achieves

efficiency by executing two threads simultaneously rather than by optimizing single-

thread performance. Each SPE achieves efficiency by using a large register file that
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supports many simultaneous in-flight instructions without the overhead of register-

renaming or out-of-order processing, and asynchronous DMA transfers, that support

many concurrent memory operations without the overhead of speculation.

By distinguishing and separately optimizing control-plane and data-plane proces-

sor elements, the CBE processor mitigates the problems posed by power, memory,

and frequency limitations. The net result is a multiprocessor that, at the power

budget of a conventional PC processor, can provide approximately ten-fold the peak

performance of a conventional processor. Of course, actual application performance

varies. Some applications may benefit little from the SPEs, whereas others show a

performance increase well in excess of ten-fold. In general, computeintensive appli-

cations that use 32-bit or smaller data formats (such as single-precision floatingpoint

and integer) are excellent candidates for the CBE processor.

2.2 Cell Broadband Engine Programming Overview

The Cell Broadband Engine looks like a 9-way coherent multiprocessor to an appli-

cation programmer. The PPE is more adept in control-intensive tasks and quicker at

task switching while the SPEs are more adept in compute-intensive tasks and slower

at task switching. However, either processor element is capable of doing both types

of functions. This specialization is a significant factor accounting for the order-of-

magnitude improvement in peak computational performance and chip-area-and-power

efficiency that the CBE processor achieves over conventional PC processors [18].

CBE-processor software development is done in the C/C++ language and sup-

ported by a rich set of language extensions that define C/C++ data types for SIMD

operations and map C/C++ intrinsics (which are commands, in the form of function

calls) to one or more assembly instructions. These language extensions give C/C++

programmers great control over code performance, without the need for assembly
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Figure 2.4: Big-endian byte and bit ordering

language programming.

The instruction set for the PPE is an extended version of the PowerPC Archi-

tecture instruction set. The extensions consist of the vector/SIMD multimedia ex-

tensions, a few additions and changes to PowerPC Architecture instructions, and

C/C++ intrinsics for the vector/SIMD multimedia extensions.

The instruction set for the SPEs is a new SIMD instruction set, the Synergistic

Processor Unit Instruction Set Architecture, with accompanying C/C++ intrinsics,

and a unique set of commands for managing DMA transfer, external events, interpro-

cessor messaging, and other functions. The instruction set for the SPEs is similar to

that of the PPE’s vector/SIMD multimedia extensions, in the sense that they operate

on SIMD vectors. However, the two vector instruction sets are distinct, and programs

for the PPE and SPEs are often compiled by different compilers.

Storage of data and instructions in the CBE processor uses big-endian ordering,

which has the following characteristics:

• Most-significant byte stored at the lowest address, and least-significant byte

stored at the highest address.
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• Bit numbering within a byte goes from most-significant bit (bit 0) to least-

significant bit (bit n). This differs from some other big-endian processors [15].

Figure 2.4 shows a summary of the byte-ordering and bit-ordering in memory, as

well as the bit-numbering conventions.

While developing application on CBE, the usual practice is to run a main pro-

gram on the PPE that allocates threads to the SPEs. In such an application, the

main thread is said to spawn one or more CBE tasks. A CBE task has one or more

main threads associated with it, along with some number of SPE threads. An SPE

thread is a thread that is spawned to run on an available SPE. An SPE thread has its

own 128 x 128-bit register file, program counter and MFC-DMA command queues [18].

A main thread can interact directly with an SPE thread through the SPE’s LS.

It can interact indirectly through the main-storage space. A thread can poll or sleep,

waiting for SPE threads. The operating system defines the mechanism and policy for

selecting an available SPE. It must prioritize among all the CBE applications in the

system, and it must schedule SPE execution independently from regular main threads.

The operating system is also responsible for runtime loading, passing parameters to

SPE programs, notification of SPE events and errors, and debugger support.

2.2.1 PPE Registers

The PPE problem-state (user) registers are shown in Figure 2.5. All computational

instructions operate on registers; no computational instructions modify main storage.

To use a storage operand in a computation and then modify the same or another

storage location, the contents of the storage operand must be loaded into a register,

modified, and then stored back to the target location.

The PPE registers include:
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Figure 2.5: PPE User Register Set

• General-Purpose Registers (GPRs) Fixed-point instructions operate on the full

64-bit width of the GPRs, of which there are 32. The instructions are mode-

independent, except that in 32-bit mode, the processor uses only the low-order

32 bits for determination of a memory address and the carry, overflow, and

record status bits.

• Floating-Point Registers (FPRs) The 32 FPRs are 64 bits wide. The internal

format of floating-point data is the IEEE 754 double-precision format. Single-

precision results are maintained internally in the double-precision format.

• Link Register (LR) The 64-bit LR can be used to hold the effective address of

a branch target. Branch instructions with the link bit (LK) set to 1 (that is,

subroutine-call instructions) copy the next instruction address into the LR. A

Move To Special-Purpose Register instruction can copy the contents of a GPR

into the LR.
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• Count Register (CTR) The 64-bit CTR can be used to hold either a loop

counter or the effective address of a branch target. Some conditional-branch

instruction forms decrement the CTR and test it for a zero value. A Move To

Special-Purpose Register instruction can copy the contents of a GPR into the

CTR.

• Fixed-Point Exception Register (XER) The 64-bit XER contains the carry

and overflow bits and the byte count for the move-assist instructions. Most

arithmetic operations have instruction forms for setting the carry and overflow

bit.

• Condition Register (CR) Conditional comparisons are performed by first setting

a condition code in the 32-bit CR with a compare instruction or with a recording

instruction. The condition code is then available as a value or can be tested

by a branch instruction to control program flow. The CR consists of eight

independent 4-bit fields grouped together for convenient save or restore during

a context switch. Each field can hold status information from a comparison,

arithmetic, or logical operation. The compiler can schedule CR fields to avoid

data hazards in the same way that it schedules the use of GPRs. Writes to the

CR occur only for instructions that explicitly request them; most operations

have recording and non-recording instruction forms.

• Floating-Point Status and Control Register (FPSCR) The processor updates

the 32-bit FPSCR after every floating-point operation to record information

about the result and any associated exceptions. The status information re-

quired by IEEE 754 is included, plus some additional information for exception

handling.

• Vector Registers (VRs) There are 32 128-bit-wide VRs. They serve as source

and destination registers for all vector instructions.

• Vector Status and Control Register (VSCR) The 32-bit VSCR is read and writ-
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Figure 2.6: SPE user-register set

ten in a manner similar to the FPSCR. It has 2 defined bits, a non-Java mode

bit and a saturation bit; the remaining bits are reserved. Special instructions

are provided to move the VSCR to a VR register.

• Vector Save Register (VRSAVE) The 32-bit VRSAVE register assists user and

privileged software in saving and restoring the architectural state across context

switches.

2.2.2 SPE Registers

The complete set of SPE user registers is shown in Figure 2.6. All computational

instructions operate only on registersthere are no computational instructions that

modify storage. The SPE registers include:

• General-Purpose Registers (GPRs) All data types can be stored in the 128-bit

GPRs, of which there are 128.

• Floating-Point Status and Control Register (FPSCR) The processor updates

the 128-bit FPSCR after every floating-point operation to record information

about the result and any associated exceptions.
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Figure 2.7: Vector Addition Operation

2.3 SIMD Vectorization

A vector is an instruction operand containing a set of data elements packed into a

one-dimensional array. The elements can be integer or floating-point values. Most

Vector/SIMD Multimedia Extension and Synergistic Processing Unit (SPU) instruc-

tions operate on vector operands [18]. Vectors are also called SIMD operands or

packed operands.

SIMD processing exploits data-level parallelism. Data-level parallelism means

that the operations required to transform a set of vector elements can be performed

on all elements of the vector at the same time. That is, a single instruction can be

applied to multiple data elements in parallel.

Support for SIMD operations is pervasive in the Cell Broadband Engine. In the

PPE, they are supported by the Vector/SIMD Multimedia Extension instruction set.

In the SPEs, they are supported by the SPU instruction set. In both the PPE and

SPEs, vector registers hold multiple data elements as a single vector. The data paths

and registers supporting SIMD operations are 128 bits wide, corresponding to four

full 32-bit words. This means that four 32-bit words can be loaded into a single reg-
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Figure 2.8: Byte-Shuffle (Permute) Operation

ister, and, for example, added to four other words in a different register in a single

operation. Figure 2.7 shows such an operation. Similar operations can be performed

on vector operands containing 16 bytes, 8 halfwords, or 2 doublewords.

The process of preparing a program for use on a vector processor is called vector-

ization or SIMDization. It can be done manually by the programmer, or it can be

done by a compiler that does auto-vectorization.

Figure 2.8 shows another example of an SIMD operation in this case, a byte-

shuffle operation. Here, the bytes selected for the shuffle from the source registers,

VA and VB, are based on byte entries in the control vector, VC, in which a 0 specifies

VA and a 1 specifies VB. The result of the shuffle is placed in register VT.
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Overview of Cell SDK 3.0

The IBM Software Development Kit for Multicore Acceleration Version 3.0 (SDK

3.0) is a complete package of tools to enable you to program applications for the Cell

Broadband Engine (Cell BE) processor. The SDK 3.0 is composed of development

tool chains, software libraries and sample source files, a system simulator, and a Linux

kernel, all of which fully support the capabilities of the Cell BE.

Cell BE applications can be developed on the following platforms:

• x86

• X86-64

• 64-bit PowerPC (PPC64)

• BladeCenter QS20

• BladeCenter QS21

The supported languages for developing Cell BE applications are as follows:

• C/C++

• Assembler

22
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• Fortran

• ADA (Power Processing Element (PPE) Only)

Although C++ and Fortran are supported, take care when you write code for the

Synergistic Processing Units (SPUs) because many of the C++ and Fortran libraries

are too large for the 256 KB local storage memory available [14].

The SDK consists of numerous components including the following:

• The IBM Full System Simulator for the Cell Broadband Engine, systemsim

• system root image containing Linux execution environment for use within sys-

temsim.

• GNU tools including C and C++ compilers, linkers, assemblers and binary

utilities for both PPU and SPU.

• IBM xlc (C and C++) compiler for both PPU and SPU.

• IBM xlf (Fortran) compiler for both PPU and SPU.

• newlib for the SPU. newlib is a C standard library designed for use on embedded

systems.

• gdb debuggers for both PPU and SPU with support for remote gdbserver debug-

ging. The PPU debugger also provides combined, PPU and SPU, debugging.

• PPC64 Linux with CBE enhancements.

• SPE Runtime Management Library providing a standardized, low-level appli-

cation programming interface for application access to the SPEs.

• Libraries to assist in the development and execution of parallel applications,

including the:
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– Accelerated Library Framework library (ALF) support SM, and the

– Data Communication and Synchronization (DaCS) library.

• Performance tools including:

– oprofile is a system-wide profiler for Linux,

– CellPerfCount is a low level tool to configure and access HW performance

counters,

– FDPR-Pro is a tool for gather information for feedback directed optimiza-

tion,

– CodeAnalyzer examines executable files and displays detailed information

about functions, basic blocks, and assembly instructions, and

– Visual Performance Analyzer (VPA) is an Eclipse-based performance vi-

sualization toolkit.

– spu timing is a static timing analysis timing tool that instruments assembly

source (either compiler or programmer generated) with expected, linear,

instruction timing details.

– PDT is a performance debugging tool which provides a tracing infrastruc-

ture for application timing analysis.

• An Eclipse-based Integrated Development Environment (IDE) to improve pro-

grammer productivity and integration of development tools.

• Standardized SIMD math libraries for the PPUs Vector/SIMD Multimedia Ex-

tension and the SPU.

• Mathematical Acceleration Subsystem (MASS) libraries supporting both long

and short (SIMD) vectors.

• Cell optimized domain-specific application libraries, including Basic Linear Al-

gebra Subprograms (BLAS) library, Fast Fourier Transform (FFT) library, and

Monte Carlo Random Number Generator library.
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Figure 3.1: Simulator Stack for the Cell Broadband Engine

3.1 IBM Full-System Simulator

The IBM Full-System Simulator for the Cell Broadband Engine is a generalized sim-

ulator that can be configured to simulate a broad range of full-system configurations.

It supports functional simulation of complete systems based on the Cell Broadband

Engine processor, including simulation of the PPE, SPUs, MFCs, memory, disk, net-

work, and system console. The SDK, however, provides a ready-made configuration

of the simulator for Cell Broadband Engine system development and analysis. The

simulator also includes support for performance simulation (or timing simulation) of

certain components to allow users to analyze performance of Cell Broadband Engine

applications. It can simulate and capture many levels of operational details on in-

struction execution, cache and memory subsystems, interrupt subsystems, communi-

cations, and other important system functions. Figure 3.1 shows the simulation stack.

The IBM Full-System Simulator provides different simulation modes, ranging from

functional simulation of processor instructions to performance simulation of an entire

system. In most cases, the simulation mode can be changed dynamically at any point

in the simulation. However, certain warm-up effects may affect the results of perfor-

mance simulation for some portion of the simulation following a change to cycle mode.
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Simple (functional-only) mode models the effects of instructions, without attempt-

ing to accurately model the time required to execute the instructions. In simple mode,

a fixed latency is assigned to each instruction; the latency can be arbitrarily altered

by the user. Since latency is fixed, it does not account for processor implementation

and resource conflict effects that cause instruction latencies to vary. Functional-only

mode assumes that memory accesses are synchronous and instantaneous. This mode

is useful for software development and debugging, when a precise measure of execu-

tion time is not required.

Fast mode is similar to functional-only mode in that it fully models the effects of in-

structions while making no attempt to accurately model execution time. In addition,

fast mode bypasses many of the standard analysis features provided in functional-

only mode, such as statistics collection, triggers, and emitter record generation. Fast

mode simulation is intended to be used to quickly advance the simulation through

uninteresting portions of program execution to a point where detailed analysis is to

be performed.

Cycle (performance) mode models not only functional accuracy but also timing. It

considers internal execution and timing policies as well as the mechanisms of system

components, such as arbiters, queues, and pipelines. Operations may take several

cycles to complete, accounting for both processing time and resource constraints.

The IBM Full System Simulator for the Cell Broadband Engine is started with a

graphics user interface by following command:

systemsim -g

Two new windows will appear on the screen. The first is a command-line/console

window labeled mysim in the windows title bar. The second is the simulator graphical
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Figure 3.2: Windows visible after starting the simulator GUI

user interface (GUI) window. These windows are shown in Figure 3.2. The window

labeled mysim is an uart window that, when Linux boots, it becomes a Linux console

window. When the console window first appears, it is empty and there is no user

prompt, because Linux has not yet been booted on the simulated system.The window

in which the simulator was started (systemsim -g) is the simulator command-line

window.

3.1.1 The Callthru Utility

The callthru utility allows you to copy files between the host system and the simulated

system while it is running. This utility runs within the simulated system and accesses
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files in the host system using special callthru functions of the simulator. The source

code for this utility is provided with the simulator in the sample/callthru directory as

a sample of the use of the simulator callthru functions. In the Cell SDK, the callthru

utility is installed as a binary application in the simulator system root image in the

/usr/bin directory. The callthru utility supports the following options:

• To write standard input into ¡filename¿ on the host system, issue

callthru sink <filename>

• To write the contents of <filename> on the host system to standard output,

issue

callthru source <filename>

Redirecting appropriately lets you copy files between the host and simulated system.

For example, to copy the /tmp/matrix mul application from the host into the simu-

lated system and then run it, issue the following commands in the console window of

the simulated system:

callthru source /tmp/matrix mul > matrix mul

chmod +x matrix mul

./matrix mul

Another commonly used feature of the callthru utility is the exit option, which

will stop the simulation, similar to the stop button of the GUI, but initiated by the

callthru utility inside the simulator rather than through user interaction. This is

especially useful for constructing scripted executions of the simulator that involve

alternating steps in the simulator and the simulated system.

3.2 Compiling and linking with the GNU tool chain

The GNU tool chain available with Cell SDK 3.0 includes a GCC compiler and utilities

that optimize code for the Cell BE processor. These are:
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• The spu-gcc compiler for creating an SPU binary

• The ppu32-embedspu tool

• The ppu-gcc compiler

• The ppu-embedspu tool which enables an SPU binary to be linked with a PPU

binary into a single executable program

• The ppu32-gcc compiler for compiling the PPU binary and linking it with the

SPU binary
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Implementation

To achieve the performance gain on CBE, the application should partition the work

on the available cores of the processor. Various considerations like processing-load

distribution, program structure, program data flow and data access patterns, cost,

in time and complexity of code movement and data movement among processors,

and cost of loading the bus and bus attachments must be taken into account while

distributing the workload and data.

The model chosen in this study for partitioning an application on CBE is PPE-

Centric. In the PPE-centric model, the main application runs on the PPE, and

individual tasks are off-loaded to the SPEs. The PPE then waits for, and coordi-

nates, the results returning from the SPEs. The SPEs can be used in three ways in

PPE-Centric model - the multistage pipeline model, the parallel stages model and the

services model [18]. Out of these three models, the parallel stages model as shown in

Figure 4.1, has been chosen to implement the simple averaging filter and mean nor-

malized digital cross correlation algorithm. The selected image processing algorithms

have large amount of data that can be partitioned and acted on at the same time.

Hence, it typically make sense to use SPEs to process different portions of that data

in parallel and thus the PPE-centric Parallel Stages Model is used for implementation.

30
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Figure 4.1: Parallel Stages Model

The programming approach in implementing the algorithms is to develop different

versions of each algorithm step-by-step, gradually exploiting the functionally of the

CBE to its maximum. In first step, the scalar version of the algorithm is developed

on Intel Core2 Duo Processor running at 2.20 GHz frequency. In second step, the

scalar version of algorithm is developed to run on only the PPE core of the CBE. In

third step, the scalar version of algorithm is parallelized to run on the PPE and the

multiple SPEs of the CBE. In fourth step, the SIMD Vectorization of the algorithm is

done on only the PPE core of the CBE. Finally, in the fifth step, the SIMD Vectorized

algorithm is parallelized to run on the PPE and multiple SPEs of the CBE. At each

step, the functional correctness of the algorithm is asserted by comparing the results

obtained with the simulation results of the algorithm developed in MATLAB using

MATLAB’s standard functions. And finally the performance results are compared

by measuring the time using C language’s gettimeofday() and clock() functions. But

the clock() function does not count the clocks of the portion of the program running

on SPEs. Hence the results shown in this study are that obtained by using gettime-

ofday() function.

The Simple Averaging Filter algorithm and mean normalized digital cross corre-

lation algorithm are chosen due to their simplicity in application partitioning. The

image data can be easily partitioned in such a way that the algorithm can work on
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different portions of the image data in parallel. This helped in putting the entire focus

on the application designing strategies for the Cell Broadband Engine and not worry-

ing about the complexities in partitioning the data for parallelization of the algorithm.

For both the scalar and SIMD version of the algorithms on PPE and multiple

SPEs, the main thread running on the PPE reads the input image from the disk.

Then the PPE thread spawns the SPE program which implements the algorithm on

the given number of the SPEs i.e. from 1 SPE to 6 SPEs. After this, the PPE

thread waits for the SPE threads to finish their tasks. The running SPE threads then

initiates the DMA transfer for their part of the image data from the main memory

to their respective Local Store and perform computation on the image data in their

Local Store and finally send back the results to the main memory from their Local

Store by again initiating DMA transfer. The PPE thread resumes when all the SPE

threads have finished their work and write back the filtered image back to the disk

and exit. The task division is done by partitioning the image data into num spe

equal portions, where num spe is the given number of SPEs. Each SPE gets the

(m/num spe rows) of the total m rows of the m x n image data for computation.

4.1 Simple Averaging Filter

Simple Averaging Filter is a simplest image filtering technique in spatial domain.

Simple Averaging Filter is widely used for removing uniform type of noise as well

as Gaussian noise. The filtering in the spatial domain involves convolving the noise

image with a mask or window of size w x w [19], where this w is normally odd integer

such as 3, 5, or 7. Rarely does it get larger than these sizes. Figure 4.2 explains the

filtering the image in spatial domain with mask size of 3 x 3.

At the beginning when the mask is overlaid onto the image,w5 (center of the filter

mask) will be aligned with z5 (pixel in the image to be filtered). The value for z5 will
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Figure 4.2: Filtering in Spatial Domain

be replaced by a value which is computed as shown in (4.1).

R = (w1 ∗ z1) + (w2 ∗ z2) + (w3 ∗ z3)

+ (w4 ∗ z4) + (w5 ∗ z5) + (w6 ∗ z6)

+ (w7 ∗ z7) + (w8 ∗ z8) + (w9 ∗ z9) (4.1)

Once this is done, the filter mask will be shifted to the left so that its center, w5,

is now aligned with z6 and similarly the value of z6 will be computed. This process

will be repeated by moving the mask across the whole image and thus computing the

new pixel values of the filtered image in a different array.

The filter mask for simple averaging filter is as shown in Figure 4.3. The kernel of

this filter consists of constant 1. The scaling factor of 1
9

is to guarantee that the result

of summing up the point-wise multiplication will not run off the allowable dynamic

range of the intensity level. For example for an 8-bit image, the scaling factor will

ensure that the resulting intensity will not exceed 255. As the filter mask consists of
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Figure 4.3: 3 x 3 Mask of Simple Averaging Filter

all 1s, the multiplication between 1s of the filter mask and image pixels is not done.

Hence in this study, the simple averaging filter only does the addition of the image

pixels according the mask size specified.

The simple averaging filter implemented in this study keep the boundary pixels

of the original image unchanged where the filter mask crosses past the boundary of

the original image. The scalar version of the simple averaging filter is developed on

Intel Core 2 Duo Processor with Fedora Core 7 operating system. The code is written

in C Language and compiled without any optimization with standard gcc compiler

available with the Fedora Core 7 operating system. The scalar version and SIMDized

version of the simple averaging filter for CBE PPE only is written in C and compiled

with ppu-gcc compiler [14] available with Cell SDK 3.0. To implement the SIMDized

version of simple averaging filter for CBE PPE only, the algorithm is restructured in

such a manner so that it can take advantage of SIMD architecture of the processor

by using Vector/SIMD Multimedia Extension Instruction Set of the PPE.

The important steps in SIMDization of the Simple Averaging Filter are highlighted

in Figure 4.4 for image size of m x n and mask size of w x w. The m x n image is first

restructured into 8 element vectors of type vector unsigned short int. The 8 elements

with uniform shade in Figure 4.4 indicate one vector each. The pointer called ptr of

type vector unsigned short int * points to the first vector of the image which contains

8 elements with indices from (0, 0) to (0, 7). Then the pointer (ptr +1) points to the
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Figure 4.4: SIMDization of Simple Averaging Filter

second vector of the image which contains 8 elements with indices from (0, 8) to (0,

15). For example, a 16 x 16 image can be represented by 32 vectors of type vector

unsigned short int so that all the pixels of the image can be accessed by offsetting

the pointer ptr from (ptr + 0) to (ptr + 31). If the total number of columns - n in an

image is not a multiple of 8, then appropriate numbers of columns are zero padded

so that each starting pixel of the row will be the first element of 8 element vector.

This constraint is added intentionally to avoid use of vector permutation and shuffle

operation to manually align the image pixels while performing vector operations on it.

Then as shown in Figure 4.4, for mask size of w x w, first w vectors of the first vector

column of the image are added using vec add() instruction. After that first w vectors

of the second vector column, third vector column and so on up to the last vector col-

umn are added using vec add() instruction. The result of these vector additions are

stored at their respective column positions at the center row of the mask and image

overlap area. The vec add(a,b) instruction is a SIMD vector addition instruction that
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(m x n Image,

w x w Mask) Scalar Additions Vector Additions

Scalar (m− w + 1)

Version ∗(n− w + 1) —

∗(w ∗ w)

SIMDized (2n− w) w ∗ (m− w + 1) ∗ (n/no. of

Version ∗(m− w + 1) elements in single vector)

Table I: Formulated Computation Statistics of Simple Averaging Filter

can perform 8 scalar additions in parallel on vector elements of unsigned short int

vectors a and b [20]. Now, first w elements of the center row of the mask and image

overlap area are added using scalar addition by extracting vector elements by using

vec extract() instruction and after that scaled by dividing the sum with (w∗w). This

result is placed at the center column of the mask and image overlap area in the new

filtered image array using vec insert() instruction. After that the mask is moved right

one column and the sum is computed by adding (w + 1)th element and subtracting

0th element. The scaled result obtained by dividing the sum with (w ∗ w) is placed

at the center of mask and image overlap area. In this way new pixel values are com-

puted by adding 1 pixel value and subtracting 1 pixel value instead of performing

seven vector additions at each step. When all the pixel values of the given row are

computed, the above steps are repeated by moving the mask down one row. Table

I shows the formulated computation statistics of the scalar version and restructured

SIMDized version of simple averaging filter for image size of m x n and mask size of

w x w. Table II shows the numerical values of computation statistics of the same for

image size of 16 x 16 and mask size of 7 x 7.

The Altivec library available with Cell SDK 3.0 is required to perform the vec-

tor operations on PPE. The Misc library available with Cell SDK 3.0 is required to
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(16 x 16 Image, 7 x 7 Mask) Scalar Additions Vector Additions

Scalar Version 4900 —

SIMDized Version 250 140

Table II: Computation Statistics of Simple Averaging Filter

allocate and free memory aligned on 16-byte boundary. Two functions in the Misc

library are used - malloc align() function allocates memory on 16-byte boundary and

free align() function free the allocated memory using malloc align() function [12].

This alignment of data on CBE is necessary on both PPE and SPE to perform vector

operations.

The SIMDized version of simple averaging filter for CBE PPE and multiple SPEs

also works in similar way as explained in Figure 4.4. But the computation is done

by the SPE threads on the data in their respective Local Store. Hence the simple

averaging filter is redesigned to handle the transfer of data from PPE’s main memory

to each Local Store and sending back the computed results to the main PPE thread.

Two different programs are developed to run on the PPE and the SPEs respectively.

PPE program is compiled with ppu-gcc. SPE program is compiled with spu-gcc.

Then the ppu-embedspu tool is used to link the SPU binary with the Power Proces-

sor Unit (PPU) binary into a single executable program [14]. A PPE module starts an

SPE module running by creating a thread on the SPE, using the spe context create,

spe program load, and spe context run library calls, provided in the SPE runtime

management library [18]. The threads are created by PPE using standard pthread

library. The Misc library functions are used by PPE and SPE to allocate memory

aligned at 16-byte boundary. The SPU Intrinsics library is used by the SPE pro-

gram to support the vector operations on the SPEs. The Memory Flow Controller

(MFC) input and output macros [18] are used by the SPE program to handle DMA

transfers between main memory and the local store. The SPU vector instructions like
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spu add(), spu extract() and spu insert() are used to perform vector operations on

SPE corresponding to the PPU vector instructions like vec add(), vec extract() and

vec insert() [20].

For mask size of w x w, each SPE requires (w − 1) extra rows to be transferred

to their Local Store in order to compute results on their share of rows of image

data. The Local Store holds only up to 256 KB for the program, stack, local data

structures, and DMA buffers. Also the maximum DMA transfer can be up to 16 KB

in size. Hence all the rows required to be processed by the SPE cannot be DMA

transferred or stored in the Local Store together. Considering the above limitation

and the algorithm structure, each SPE initiates DMA transfer of single vector at a

time. Some memory is allocated by each SPE to store 1 row of temporary results and

1 row of computed results into the local store. The final results are transferred to the

PPE one row at a time by initiating DMA transfer by the SPE.

4.2 Mean Normalized Digital Cross Correlation

Cross-correlation is the basic statistical approach for image matching. It is often used

for template matching or pattern recognition in which the location and orientation

of a template or pattern is found in an image. Cross-correlation is similarity measure

or match metric, i.e. it gives a measure of the degree of similarity between an image

and a template [21]. The cross correlation process for template matching is shown in

Figure 4.5.

The cross correlation coefficient R between two windows - Search Area (SA) s of

size M x M and Window Area (WA) w of size N x N, (N≤M), has to be computed

for (M −N + 1)2 shift positions. To take into account any spatially invariant linear,

radiometric relationship between sample values of the WA and SA mean-normalized

digital cross correlation is generally used. Then the cross correlation coefficient R is
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Figure 4.5: Digital Cross Correlation Process

defined by (4.2).

R(u, v) =

∑N
x=1

∑N
y=1(s(u + x, v + y)− suv)(w(x, y)− w)

2

√
[
∑N

x=1

∑N
y=1 (s(u + x, v + y)− suv)

2 ∑N
x=1

∑N
y=1 (w(x, y)− w)2]

(4.2)

u, v = 0, 1, 2, . . . ,M −N

The s(x, y) and w(x, y) are pixel values at location (x, y) of s and w respectively. The

value of R in (4.2) lies in the range between -1 to +1, and the closer R is to +1, the

more similar the two windows will be.

Mean normalized digital cross correlation algorithm is highly compute intensive
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than simple averaging filter and requires large number of floating point multiplication,

addition and subtraction operations on the image data. Hence this kind of algorithm

is more suitable to gain programming and performance insight in developing image

processing algorithm on Cell Broadband Engine.

All the scalar and SIMDized versions of mean normalized digital cross correlation

algorithm for running on Intel Core 2 Duo Processor, CBE PPE only and CBE PPE

and multiple SPEs, are developed and compiled in similar lines to the corresponding

version of simple averaging filter. The standard math library is also used in addition

to all the libraries used for the PPE and SPE programs of simple averaging filter. The

Search Area is zero padded by appending columns so that the number of columns in

the Search Area can be in multiple of the number of elements in the single vector

operand used for computations. Similarly, the number of columns in the selected

Window Area is also in multiple of number of elements in the single vector operand

used for computation in order to avoid complexities in the SIMDized version of the

algorithm. The mean of the Window Area is computed on the PPE and DMA trans-

ferred to each SPE for both scalar and SIMD version of algorithm to run of CBE

PPE and multiple SPEs. This value is required by all the SPEs to compute the cross

correlation coefficient. Computing the mean of Window Area on each SPE will incur

redundant computation overhead in each SPE. For window size of N x N, each SPE

requires (N −1) extra rows to be transferred to their Local Store in order to compute

results on their share of rows of image data. The DMA transfer of size of single

row of Window Area is initiated to fetch the data of Window Area and Search Area

into the local store from main memory for computation by the SPEs in both scalar

and SIMD version to run on CBE PPE and multiple SPEs. The results are DMA

transferred back to the main memory from Local Store to main memory one vector

at a time by the SPE. Due to the limitation of the size of Local Store in SPEs, the

Search Area data is DMA transferred twice to the SPE - first time to compute mean

of the Search Area and second time to compute the cross correlation coefficient. The
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spu shuffle() instruction is used by SPE and vec perm() [22] instruction is used by

PPE to reorganize the data of the Search Area in SIMD version of algorithm to run

on CBE PPE and multiple SPEs and CBE PPE only respectively. This is required as

the Search Area data does not remain aligned on vector boundary as the window is

moved over the Search Area. The other SIMD instructions used by the SPE program

are spu extract(), spu insert(), spu splats(), spu sub() and spu madd() . The corre-

sponding SIMD instructions used by the PPE program are vec extract(), vec insert(),

vec splats(), vec sub() and vec madd() [20]. The spu madd() and vec madd() are

multiply and accumulate vector instruction which gives significant performance gain

on SIMD architectures. The other issues in implementation of the mean normalized

cross correlation algorithm like aligned memory allocation, etc. are similar to the

implementation issues of simple averaging filter.

4.3 Optimization of Mean Normalized Digital

Cross Correlation Algorithm by Double

Buffering Technique

The SIMD version of mean normalized digital cross correlation SPE program use

DMA transfers to move large amount of data between main storage and the local

store (LS) in the SPE. The following simple scheme is used to achieve that data

transfer in SIMD version of algorithm without optimization:

a. Start a DMA data transfer from main storage to buffer B in the LS.

b. Wait for the transfer to complete.

c. Use the data in buffer B.

d. Repeat.
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Figure 4.6: DMA transfers using a Double-Buffering Method

This method wastes a great deal of time waiting for DMA transfers to complete. In

the optimized Double Buffered SIMD version of algorithm, the process is being speed

up significantly by allocating two buffers, B0 and B1, and overlapping computation

on one buffer with data transfer in the other. This technique is called double buffering

[18]. Figure 4.6 shows a flow diagram for this double buffering scheme.

Double buffering is a form of multibuffering, which is the method of using multiple

buffers in a circular queue to overlap processing and data transfer. The purpose of

double buffering is to maximize the time spent in the compute phase of a program and

minimize the time spent waiting for DMA transfers to complete. Let Tt represent the

time required to transfer a buffer B, and let Tc represent the time required to compute

on data contained in that buffer. In general, the higher the ratio (Tt/Tc), the more

performance benefit an application will realize from a double-buffering scheme [18].

The optimized double buffered SIMD version of algorithm gives substantial per-

formance gain over SIMD version of algorithm without any optimization. The double

buffered SIMD version of algorithm is developed by modifying the earlier SIMD ver-

sion of algorithm with very few programming efforts like using two dimensional arrays

to store two rows each of the Search Area and the Window Area, and using unique
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DMA tag IDs for each logical group of row buffers. Each logical group of row buffers

contains one row of Search Area and one row of Window Area. Then the program

is modified and implemented according to the double buffering technique shown in

Figure 4.6.



Chapter 5

Results and Discussions

5.1 Simple Averaging Filter

The functional results of Simple Averaging Filer for Image Size of 256 x 256 and Mask

Size of 7 x 7 are shown in Figure 5.1. The pixels at the border of the filtered image

that are kept unchanged can be seen in the output image clearly at the bottom and

at two sides in Figure 5.1.

The functional results of Simple Averaging Filter for Image Size of 1028 x 732 and

Mask Size of 7 x 7 are shown in Figure 5.2. The Mask Size of 7 x 7 blurs the original

significantly, but this Mask Size is intentionally chosen to increase the computation

in Simple Averaging Filter.

The results of both the images have been verified and matched by using the im-

filter() function of the Matlab, except at the border pixels that are kept unchanged

in our implementation.

The performance of different versions of algorithm on Intel Core 2 Duo Processor

and Cell Broadband Engine Processor is compared by measuring the time of execu-

44
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Figure 5.1: Functional Result of Simple Averaging Filter for Image Size of 256 x 256
and Mask Size of 7 x 7

tion of the program by using gettimeofday() function available in sys/time.h library

of the C language. The time of reading the image from the disk and writing back

the results to the disk are not included in the measured timings. Table I shows the

measured execution time in micro seconds of different versions of simple averaging

filter for image size of 256 x 256 and mask size of 7 x 7.

Figure 5.3 shows the graph of Performance Measure of Simple Averaging Filter for

Image Size of 256 x 256 and Mask Size of 7 x 7. It can be clearly seen from Figure 5.3

that the maximum performance gain of 3X is obtained on SIMD version of algorithm

running on CBE PPE only than Intel Core 2 Duo Processor. Also the SIMD version

of algorithm running on CBE PPE only is 2.15 times faster than corresponding scalar

version running on CBE PPE only. The important feature of CBE hybrid multicore

architecture is highlighted in the performance results of SIMD version of algorithm

running on CBE PPE and multiple SPEs. The maximum performance gain of 2.34X

over Intel Core 2 Duo Processor was obtained by running the SIMD version of al-

gorithm on CBE PPE and 3 SPE cores. Thereafter increasing the SPE cores leads
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Figure 5.2: Functional Result of Simple Averaging Filter for Image Size of 1028 x 732
and Mask Size of 7 x 7

to decrease in performance gain gradually to 1.97X for algorithm running on CBE

PPE and 6 SPEs. The reason for this decrease in performance gain by adding more

SPE cores is that Simple Averaging Filter is less compute intensive and after the

image data is divided on multiple SPE cores, each SPE core is left with very little

computational load and then the data transfer between the main memory and the

Local Store of the SPEs become the major bottleneck in performance.

Table II shows the execution time of different version of different versions of Sim-

ple Averaging Filter for Image Size of 1028 x 732 and Mask Size of 7 x 7.

Figure 5.4 shows the graph of performance measure of different versions of Simple

Averaging Filter for Image Size of 1028 x 732 and Mask Size of 7 x 7. This image

contains much larger number of rows and columns than previous image of size 256 x

256. Hence maximum performance gain is achieved when we run the algorithm on

maximum number of SPE cores on CBE. This can be clearly seen in Figure 5.4. Also
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Algorithm Version Time (Micro Seconds)

Scalar Version on Intel Core2Duo 16994

Scalar Version on CBE PPE 12004

SIMD Version on CBE PPE 5570

SIMD Version on PPE + 1 SPE 12479

SIMD Version on PPE + 2 SPE 8150

SIMD Version on PPE + 3 SPE 7251

SIMD Version on PPE + 4 SPE 7288

SIMD Version on PPE + 5 SPE 7551

SIMD Version on PPE + 6 SPE 8592

Table I: Performance Measure of Simple Averaging Filter for Image Size: 256 x 256
and Mask Size: 7 x 7

Algorithm Version Time (Micro Seconds)

Scalar Version on Intel Core2Duo 193681

Scalar Version on CBE PPE 145059

SIMD Version on CBE PPE 63987

SIMD Version on PPE + 1 SPE 126533

SIMD Version on PPE + 2 SPE 64690

SIMD Version on PPE + 3 SPE 45295

SIMD Version on PPE + 4 SPE 35352

SIMD Version on PPE + 5 SPE 30392

SIMD Version on PPE + 6 SPE 27396

Table II: Performance Measure of Simple Averaging Filter for Image Size: 1028 x 732
and Mask Size: 7 x 7
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Figure 5.3: Performance Measure of Simple Averaging Filter for Image Size of 256 x
256 and Mask Size of 7 x 7

Figure 5.4: Performance Measure of Simple Averaging Filter for Image Size of 1028
x 732 and Mask Size of 7 x 7

the SIMD version of algorithm running on CBE PPE only is 2.26 times faster than

the corresponding scalar version.

Figure 5.5 shows the graph of performance gain of Simple Averaging Filter algo-

rithm on Cell Broadband Engine Processor compared to Intel Core 2 Duo Processor

for Image Size of 1028 x 732 and Mask Size of 7 x 7. The maximum performance

gain achieved is 7.07X for the SIMD version of algorithm running on CBE PPE and

6 SPE cores.
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Figure 5.5: Performance Gain of Simple Averaging Filter on CBE compared to Intel
Core 2 Duo Processor

Figure 5.6 shows the SPE Timing Statistics of the SIMD version of Simple Av-

eraging Filter running on CBE PPE and 6 SPE cores. This SPE Timing Statistics

were obtained by profiling the code on IBM Full-System Simulator. The stalls due to

branch miss and the channel stall cycles of the Simple Averaging Filter are very high

as shown in Figure 5.6. Thus still optimizing the SIMD version of Simple Averaging

Filter algorithm by using techniques such as Double Buffering, Loop Unrolling, etc.

can improve the performance of the algorithm.

5.2 Programming Notes on Simple Averaging Fil-

ter

The following observations are made in programming Cell Broadband Engine of Sony

PlayStation 3 for Simple Averaging Filter algorithm:

• The Simple Averaging Filter algorithm applied on small images with small

Mask Size like 3 x 3 or 5 x 5 has less computational load. Hence running

Simple Averaging Filter in such scenarios on all the available SPE cores actually
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Figure 5.6: SPE Timing Statistics for SIMD Simple Averaging Filter

degrades the performance because of bottleneck of data transfer between the

main memory and the Local Store of the SPEs.

• To achieve the maximum performance gain for the algorithm, optimal number

of SPE threads must be spawned depending on the Image Size and Mask Size.

The optimal number of SPE threads for different sizes of image and mask must

be determined after prior benchmarking of the algorithm with images and mask

of different sizes.

• Higher performance gain is achieved by SIMDization of the algorithm as the

SPEs of the CBE are SIMD processors. The manual optimization of the algo-

rithm produces more optimal code than auto-vectorizing compilers.

• The current SIMD implementation of the algorithm can be optimized by re-
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ducing the column wise vector additions. Only one incremental vector addition

and subtraction is required instead of w vector additions for mask size of w x

w. This will reduce the computational load of the algorithm itself.

• The major bottleneck of the algorithm is the DMA transfer between the main

memory and local store. This can be optimized by using double buffering tech-

niques.

• Larger size of DMA transfers gives better performance than DMA transfers of

very small size.

• The CBE of PlayStation 3 takes significantly more time in disk I/O operations

than Intel Core 2 Duo Processors.

5.3 Mean Normalized Digital Cross Correlation

The functional results of the Mean Normalized Digital Cross Correlation algorithm

for Search Area of size 424 x 432 and Window Area of size 64 x 48 are shown in

Figure 5.7. The brightest spot is seen in the output image where the object in the

Window Area strongly matches the object in the Search Area and the cross correla-

tion coefficient at that pixel has the maximum value. The functional results of Mean

Normalized Digital Cross Correlation algorithm are verified and matched with the

results obtained by corr2() function of the Matlab.

Table III shows the measured execution time of different versions of Mean Normal-

ized Cross Correlation algorithm for Search Area of 424 x 432 and Window Area of 64

x 48. The execution time is measured in micro-seconds using gettimeofday() function

of sys/time.h library in C Language. The time required to read the input image from

disk and to write back the results to the disk are not included in the measured timings.
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Figure 5.7: Functional Result of Mean Normalized Digital Cross Correlation for
Search Area: 424 x 432 and Window Area: 64 x 48

The effect on performance of cross correlation algorithm by using different data

types for storing image pixels can be clearly seen from the graph of Figure 5.8 and

the timing values in Table III. The computation involved in the cross correlation

algorithm requires floating point operations and the image pixels can be stored in

minimum memory space by using unsigned char or unsigned short int data types.

When the image pixels on CBE PPE are stored using unsigned short int data type,

the performance of the algorithm is degraded severely because PPE has to convert the

unsigned short int operands to floating point operands and align them before perform-

ing computation. This conversion takes considerable time in CBE than in Intel Core

2 Duo Processors. Also the double floating point operations on CBE takes consider-

able time compared to single floating point operations. Hence in simple SIMD and

double buffered SIMD version of the algorithm, single floating point vector operands

are used. This compromise with the accuracy of the results is done to achieve better

performance.

Figure 5.9 shows the graph of performance measure of Mean Normalized Digital
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Algorithm Version short int Single Double

Buffering Buffering

(float) (float)

Scalar Version on Intel Core2Duo 11190000 - -

Scalar Version on CBE PPE 33390000 3990000 -

Scalar Version on PPE + 1 SPE - 14152563 -

Scalar Version on PPE + 2 SPE - 7130102 -

Scalar Version on PPE + 3 SPE - 5594991 -

Scalar Version on PPE + 4 SPE - 4239463 -

Scalar Version on PPE + 5 SPE - 3378727 -

Scalar Version on PPE + 6 SPE - 2833243 -

SIMD Version on CBE PPE - 1790000 -

SIMD Version on PPE + 1 SPE - 5763532 3151503

SIMD Version on PPE + 2 SPE - 3026199 1694075

SIMD Version on PPE + 3 SPE - 2414738 1363968

SIMD Version on PPE + 4 SPE - 1869236 1076704

SIMD Version on PPE + 5 SPE - 1518370 895030

SIMD Version on PPE + 6 SPE - 1296795 783178

Table III: Performance Measure of Mean Normalized Cross Correlation for Search
Area: 424 x 432 and Window Area: 64 x 48

Cross Correlation algorithm for Search Area of 424 x 432 and Window Area of 64 x

48. The SIMD version of algorithm running on CBE PPE only is 2.22 times faster

than the corresponding scalar version. The SIMD version of algorithm running on

CBE PPE and 1 SPE is 2.45 times faster than the corresponding scalar version. The

cross correlation algorithm is highly compute intensive and hence increasing the SPE

cores to its maximum (6 in our case) results in increase in performance gain of the

algorithm.

Figure 5.10 shows the comparison of performance measure of the simple SIMD
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Figure 5.8: Effect on Performance of Cross Correlation by using different data types

version and the optimized Double Buffered SIMD version of the Cross Correlation

Algorithm for Search Area of 424 x 432 and Window Area of 64 x 48. The double

buffered SIMD version of the algorithm is nearly 2 times faster than the simple SIMD

version. The performance gain of double buffered SIMD version over simple SIMD

version of algorithm is between 1.83X to 1.66X.

Figure 5.11 shows the graph of performance gain of Mean Normalized Cross Cor-

relation algorithm on CBE Processor compared to Intel Core 2 Duo Processor. The

maximum performance gain of 14.29X is obtained for the double buffered SIMD ver-

sion of algorithm running on CBE PPE and 6 SPEs.

5.4 Programming Notes on Mean Normalized Dig-

ital Cross Correlation

The following observations are made in programming Cell Broadband Engine of Sony

PlayStation 3 for Mean Normalized Digital Cross Correlation algorithm:
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Figure 5.9: Performance Measure of Mean Normalized Cross Correlation for Search
Area: 424 x 432 and Window Area: 64 x 48

• There is much scope in optimizing the algorithm itself to decrease the computa-

tional load in the current implementation by considering only the pixels in the

new column and new row for computation after shifting the position of window

area.

• Due to the limitation of size of Local Store of SPE to 256KB, the window area

of even moderate size and the portion of search area overlapped by the window

area cannot be stored in the Local Store of the SPE simultaneously. This results

in transferring the same image data of Search Area twice - first time to compute

mean and second time to compute the difference between the mean the pixel

value.

• The high computation requirement of mean normalized cross correlation algo-

rithm than its data transfer from main memory to Local Store leads to perfor-

mance gain of 14.29X on CBE. The performance gain of only 7.07X is obtained

for Simple Averaging filter which has the similar data transfer requirement as

cross correlation algorithm, but the computational requirement is very low than

cross correlation algorithm. Hence, the algorithms with higher computational



CHAPTER 5. RESULTS AND DISCUSSIONS 56

Figure 5.10: Performance Comparison of Simple SIMD and Double Buffered SIMD
versions of Cross Correlation Algorithm

load on its data achieve higher performance gain on CBE.

• The maximum performance gain is achieved by manual SIMDization of the

algorithm.

• The double buffering optimization technique nearly doubles the performance

gain of the algorithm than the algorithm without double buffering.

• The type conversion of scalar variables into data types of different sizes (for

example, short int to float) degrades the performance of CBE severely.

• As the cross correlation algorithm requires floating point operations, the data

type of vectors for storing image data is chosen as float. This uses 4 times

more memory than the actual memory requirement for storing the image data.

But now the computation between the vectors of similar types can be done is

straightforward manner. If memory was saved by using data type of smaller size

for storing image data, the vector should be manually converted to float by using
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Figure 5.11: Performance Gain of Mean Normalized Cross Correlation on CBE com-
pared to Intel Core 2 Duo Processor

vec perm() or spu shuffle() instruction to perform floating point operation thus

degrading the performance. Hence while programming CBE, the programmer

has to do tradeoff between the memory and performance requirements.

• The double floating point operation on CBE is accurate but very slow. The

single floating point operation on CBE is fast but less accurate.

5.5 Suggested Strategies for Designing Image Pro-

cessing Algorithms on Cell Broadband Engine

The programming approach and strategies for designing Image Processing algorithms

effectively on Cell Broadband Engine are summarized below:

• The PPE must be used as the control processor and all the computational work

must be offloaded to SPEs to achieve performance enhancement on CBE.

• The manual SIMDization of the code is necessary to achieve the maximum per-

formance gain on the Cell Broadband Engine. The appropriate SIMD strategy

must be selected according to the algorithm. Evaluate the pros and cons of im-

plementing the array-of-structure and structure-of-arrays organization for the
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algorithm.

• The limitation of the maximum size of DMA transfer - 16KB and the maximum

size of Local Store - 256KB should be kept in while programming CBE.

• Try to avoid using more SPE threads than physical number of SPEs because

context switching consumes a fair amount of time.

• The optimal number of physical SPE cores to be used by the algorithm must

be decided based on the computational load of the algorithm and size of the

data passed to the algorithm by prior benchmarking. Adding more SPE cores

than this optimal number will leave the SPE cores with very less computational

work and the performance will start degrading.

• The data should be aligned or padded for efficient quadword accesses, using the

aligned attribute.

• The casting between vectors is not recommended as none of these casts performs

any data conversion and the bit pattern of the result is the same as the bit

pattern of the argument that is cast.

• When any computation is required to be done between the scalar and a vector,

the scalar must be promoted to vector before performing the computation to

make such operations more efficient.

• The single floating point operations are less accurate but fast, while the double

floating point operations are more accurate but too slow. Hence to have better

performance, it is recommended to use the double floating point operations only

when the accuracy provided by using the single floating point operations is not

sufficient.

• The DMA transfer of data between the main memory and Local Store of the

SPEs must be carefully designed in order to avoid the bottleneck in performance
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of the algorithm. The DMA transfer must be boosted by using double buffering

optimization technique. If possible, the size of DMA transfer must be multiple

of 128 bytes for effective utilization of the bus and memory bandwidth.

• A 16 bytes alignment is mandatory for data transfer of more then 16 bytes while

128 bytes alignment is optional but provides better performance.

• Prefer to use SPE initiated DMA transfers versus PPE initiated DMA transfers

because each SPE of the CBE and enqueue 16 DMA requests and there are 6

usable SPE cores available on CBE of Sony PlayStation 3.

5.6 Shortcomings and Drawbacks in Implementing

Image Processing Algorithms on Cell Broad-

band Engine

The following shortcomings and drawbacks were observed while developing different

versions of Simple Averaging Filter and Mean Normalized Cross Correlation algo-

rithms on Cell Broadband Engine and after analyzing the performance results ob-

tained by deploying these algorithms on Sony PlayStation 3:

• The manual SIMDization of the algorithm takes much time and efforts of the

application designer, which leads to increase in design time of algorithm devel-

opment on CBE.

• While programming for CBE, the programming efforts also increase due to

considerations like efficient application partitioning and data transfer, optimized

DMA operations, alignment of data, inter-processor communication, local store

size limitations, etc.

• The single floating point operations are not accurate.

• The double floating point operations are very slow.
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• The disk I/O operations by CBE processor of Sony PlayStation3 are too slow

compared to Intel Core 2 Duo Processor.

• Sometimes redundant extraneous data have to be DMA transferred to SPE due

to the limitation of the size of Local Store which in turn becomes the major

performance bottleneck of the algorithm.



Chapter 6

Conclusion and Future Scope

6.1 Conclusion

The manual SIMDization of the algorithm is necessary to produce optimal code for

Cell Broadband Engine. The data transfer between the SPE and PPE elements is

the major performance bottleneck in Cell Broadband Engine and must be optimized

by using techniques like double buffering. There is large number of application de-

signing and programming considerations to be taken care of while developing image

processing algorithms on Cell Broadband Engine.

The Simple Averaging filter algorithm on Cell Broadband Engine runs 7 times

faster than Intel Core 2 Duo Processor. The mean normalized cross correlation

algorithm runs 14 times faster on Cell Broadband Engine than Intel Core 2 Duo

Processor. Thus substantial performance enhancement is achieved by implementing

image processing algorithm on Cell Broadband Engine but with significant increase

in programming efforts and development time.
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6.2 Future Scope

The future scope of this work is the development of Image Processing Libraries that

will be optimized for maximum performance enhancement on Cell Broadband Engine.

This will help in rapid development of applications involving image processing using

these libraries on Cell Broadband Engine. Thus the performance of applications

involving image processing will be improved with minimum programming efforts on

hybrid multicore architecture of Cell Broadband Engine.



Appendix A

Vector/SIMD Multimedia

Extension data types

The Vector/SIMD Multimedia Extension model adds a set of fundamental data types,

called vector types.

Vector types are shown in Table I. The represented values are in decimal (base-10)

notation. The vector registers are 128 bits and can contain:

• Sixteen 8-bit values, signed or unsigned

• Eight 16-bit values, signed or unsigned

• Four 32-bit values, signed or unsigned

• Four single-precision IEEE-754 floating-point values
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Vector Data Type Meaning Values

vector unsigned char Sixteen 8-bit unsigned values 0 ... 255

vector signed char Sixteen 8-bit signed values -128 ... 127

vector bool char Sixteen 8-bit unsigned boolean 0 (false), 255 (true)

vector unsigned short Eight 16-bit unsigned values 0 ... 65535

vector unsigned short int Eight 16-bit unsigned values 0 ... 65535

vector signed short Eight 16-bit signed values -32768 ... 32767

vector signed short int Eight 16-bit signed values -32768 ... 32767

vector bool short Eight 16-bit unsigned boolean 0 (false), 65535 (true)

vector bool short int Eight 16-bit unsigned boolean 0 (false), 65535 (true)

vector unsigned int Four 32-bit unsigned values 0 ... 232 - 1

vector signed int Four 32-bit signed values -231 ... 231 - 1

vector bool int Four 32-bit unsigned values 0 (false), 231 - 1 (true)

vector float Four 32-bit single precision IEEE-754 values

vector pixel Eight 16-bit unsigned values 1/5/5/5 pixel

Table I: Vector/SIMD Multimedia Extension data types



Appendix B

Generic SPU Intrinsics

Generic intrinsics map to one or more assembly-language instructions, as a function

of the type of its input parameters. Generic intrinsics are often implemented as com-

piler built-ins.

Many generic intrinsics accept scalars as one of their operands. These correspond

to intrinsics that map to instructions with immediate values. Table I lists the generic

SPU intrinsics.
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Intrinsic Description

d = spu splats(a) Replicate scalar a into all elements of vector d

d = spu add(a, b) Vector add

d = spu genc(a, b) Vector generate carry

d = spu madd(a, b, c) Vector multiply and add

d = spu msub(a, b, c) Vector multiply and subtract

d = spu mul(a, b) Vector multiply

d = spu rsqrte(a) Vector floating-point reciprocal square root estimate

d = spu and(a, b) Vector bit-wise AND

d = spu nand(a, b) Vector bit-wise complement of AND

d = spu nor(a, b) Vector bit-wise complement of OR

d = spu xor(a, b) Vector bit-wise exclusive OR

d = spu rl(a, count) Element-wise bit rotate left

d = spu sl(a, count) Element-wise bit shift left

d = spu extract(a, element) Extract vector element from vector

d = spu insert(a, b, element) Insert scalar into specified vector element

d = spu promote(a, element) Promote scalar to vector

Table I: Generic SPU Intrinsics
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