
SNAPS: EMBEDDED NETWORK SECURITY
APPLIANCE

By

DILEEP KUMAR LABANA

(07MCE024)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

AHMEDABAD-382481

MAY 2009

SNAPS: EMBEDDED NETWORK SECURITY
APPLIANCE

Major Project

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology in Computer Science and Engineering

By

DILEEP KUMAR LABANA

(07MCE024)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

AHMEDABAD-382481

May 2009

iii

Certificate

This is to certify that the Major Project entitled ”SNAPS: EMBEDDED NETWORK

SECURITY APPLIANCE” submitted by Dileep Kumar Labana (07MCE024), to-

wards the partial fulfillment of the requirements for the degree of Master of Tech-

nology in Computer Science and Engineering of Nirma University of Science and

Technology, Ahmedabad is the record of work carried out by him under my supervi-

sion and guidance. In my opinion, the submitted work has reached a level required for

being accepted for examination. The results embodied in this major project, to the

best of my knowledge, haven’t been submitted to any other university or institution

for award of any degree or diploma.

Mr. Dhaval Gajjar Prof. Priyanka Sharma

Guide, Senior Software Engineer, Co-Guide, Assistant Professor,

Solusoft Technologis Pvt. Ltd., Department of Computer Engineering,

Ahmedabad Institute of Technology,

Nirma University, Ahmedabad

Prof. D. J. Patel Dr K Kotecha

Professor and Head, Director,

Department of Computer Engineering, Institute of Technology,

Institute of Technology, Nirma University, Ahmedabad

Nirma University, Ahmedabad

iv

Abstract

The bandwidth management is implemented for the purpose of availability of resource.

So that fare sharing of available bandwidth between employees. The Hierarchical

Token Bucket(HTB) concept is used to control the traffic between different classes.

The secure socket layer VPN is implemented to provide secure access of organizations

network from outside the organization. The traffic between the Web browser and the

SSL VPN device is encrypted with the SSL protocol.Despite the popularity of SSL

VPNs, here not intended to replace Internet Protocol Security (IPsec) VPNs. The

two VPN technologies are complementary and address separate network architectures

and business needs.

The growing problem of spam mails has generated a need for reliable Antispam

filters. Antispam(Spam Filtering) can be applied at the client level or the server level.

Several options are available at the client level for spam filtering. However, such lists

are used by service providers and network administrators to block an email before it is

sent. The unintended consequence of maintaining these blacklists is that sometimes,

innocent senders are inadvertently blocked from sending legitimate emails.Identifying

and removal of spam from the email delivery systems allows end users to regain a

useful means of communication.

v

Acknowledgements

With immense pleasure, I would like to present this report on the dissertation work

related to ”SNAPS: Embedded Network Security Appliance”. I am very thankful to

all those who helped me for the successful completion of the dissertation and for pro-

viding valuable guidance throughout the project work. I would like to thank Solusoft

India Pvt. Ltd, Ahmedabad for giving me an opportunity to successfully complete

of the dissertation work in the specified duration of time. I am very thankful to our

CEO Mr. Kiran Thakrar, for his support. I would like to thank our Project Leader,

Mr. Dhaval Gajjar for having guided me at every step and for giving me enough

freedom to use my creativity in the conception and implementation of the project

idea. I am also thankful to Mr. Roysan Rajan(VP) and Mrs. Rama Ruparelia(MD)

for their cooperation and help.

I like to give my special thanks to Prof. Priyanka Sharma, Assistant Professor,

Department of Computer Engineering, Institute of Technology, Nirma University,

Ahmedabad for her continual kind words of encouragement and motivation through-

out the Major Project. I am thankful to Dr. S. N. Pradhan, Prof In Charge M Tech

CSE, Institute of Technology, Nirma University, Ahmedabad for his suggestions to

improve quality of work.

My kind and sincere thanks and gratitude to Dr K. Kotecha, Director Institute of

Technology, Nirma University, Ahmedabad for his persistent kind words of encour-

agement and motivation throughout the Dissertation work. My sincere thanks and

gratitude to Prof D J Patel, Professor and Head Computer Engineering Department,

Institute of Technology, Nirma University, Ahmedabad for his words of encourage-

ment and motivation throughout the Dissertation work.

The blessings of God, department faculty members and my family members makes

the way for completion of major project. I am very much grateful to them.

- Dileep Kumar Labana

(07MCE024)

Contents

Certificate iii

Abstract iv

Acknowledgements v

List of Tables viii

List of Figures ix

Abbreviation x

1 Introduction 1
1.1 General Overview . 1
1.2 Objective of Study . 3
1.3 Scope of Work . 3
1.4 Organization of Thesis . 4

2 Literature Survey 6
2.1 Elements of Traffic Control . 6

2.1.1 Shapping . 7
2.1.2 Scheduling . 7
2.1.3 policing . 8
2.1.4 Tokens and Buckets . 8

2.2 Linux Traffic Control . 8
2.2.1 Introduction . 8
2.2.2 Queuing Discipline(qdisc) . 9
2.2.3 Class . 10
2.2.4 Filter . 10
2.2.5 Handle . 11

2.3 Virtual Private Network . 11
2.3.1 Types of VPN . 12

2.4 Antispam(spam filter) . 14
2.4.1 Anti Spam Technologies . 15

vi

CONTENTS vii

3 Project Archicture 18
3.1 Introduction . 18
3.2 Versioning System . 18
3.3 Project Architecture . 19
3.4 Installation and Configuration . 20

3.4.1 Installation and configuration of iproute2tool package 20
3.4.2 Kernel Configuration and Compilation 21

4 Bandwidth Management 23
4.1 Introduction . 23
4.2 Advantages . 24
4.3 Disadvantages . 25
4.4 Implementation . 25

4.4.1 iproute2 tools(tc) . 25
4.4.2 Classful Queuing Disciplines 26
4.4.3 Hierarchical Token Bucket(HTB) 27

4.5 Summary . 33

5 SSL VPN 35
5.1 Introduction . 35
5.2 Implementation of SSL VPN using Openvpn 37

5.2.1 Openvpn . 37
5.2.2 Installation and configuration of Openvpn 37
5.2.3 Creating configuration file for clients and server 41

5.3 Summary . 48

6 Anti spam email relay server 49
6.1 Introduction . 49
6.2 Proposed Spam Filter . 50
6.3 Implementation . 51

6.3.1 Postfix configuration . 52
6.3.2 Configuring Amavisd-new . 56
6.3.3 Configuring Spamassassin . 57
6.3.4 Postfix Anti-Spam settings . 57
6.3.5 Postfix content filtering control files 61
6.3.6 Autolearning and sidelining emails 62

6.4 Result . 64

7 Conclusion and Future Scope 66
7.1 Conclusion . 66
7.2 Future Scope . 66

References 68

List of Tables

I Private IP Address space . 38
II Key Files used by clients and server 41

viii

List of Figures

1.1 Components of SNAPS. 2
1.2 Layers of SNAPS. 3
1.3 Working of SNAPS. 4

2.1 Token bucket filter. 9
2.2 PPTP VPN. 13

3.1 Project Architecture. 20

4.1 HTB class structure and borrowing 29
4.2 HTB class states and potential actions taken 30
4.3 Linux traffic control using HTB. 32

6.1 Annual Spam Evolutions[5]. 50
6.2 Modification in master.cf file. 56
6.3 update in main.cf and transport file. 57
6.4 update in main.cf and transport file. 58
6.5 code for Spamassassin. 59
6.6 Comparison between different MTAs. 64
6.7 Performance of Spamassassin and proposed method 65

ix

Abbreviation
SNAPS Solusoft Network Analysis and Protection System
SSL Secure socket Layer
VPN Virtual Private Network
IPS Intrusion Prevention System
TBF Token Bucket Filter
HTB Hierarchical Token Bucket
qdisc Queuing Discipline
CBQ Class Based Queuing
DNSBL Domain Name System Blacklist
DNS Domain Name System
CVS Concurrent Versioning System
FIFO First IN First Out
QoS Quality of Service
IPsec Internet Protocol Security
PKI public key infrastructure
ISP Internet service Provider
SMTP Simple Mail Transport Protocol
MTA Mail Transfer Agent

Chapter 1

Introduction

This chapter covers general overview of the Thesis. It include the motivation and the

scope of the Thesis work. It also guides about the organization of the Thesis report.

In today’s world we see that there are many standalone systems available and

we use them for our day to day use. These systems include computers as one of

their parts. The computers interact with the hardware and then do the operation.

That’s called embedded systems. This thesis, focus on developing some modules of

SNAPS(Solusoft Network Analysis and Protection System). SNAPS is unique secu-

rity product which is developed by Solusoft Pvt. Ltd. It is used for surf protection,

bandwidth management, Antispam, SSL VPN and firewall.

Organizations become more and more averse to risk as they mature. An organiza-

tion under the gun to demonstrate increased CMM(Capability Maturity Model) level

is not going to go looking for real challenge.

1.1 General Overview

SNAPS,unique network security solution in an integrated and easy-to-use and manage

package. With SNAPS, complete security comes from integrating a variety of security

countermeasures into the security appliance to counteract multiple types of security

threats.

1

CHAPTER 1. INTRODUCTION 2

SNAPS provides with six critical security applications - Firewall, VPN Gateway,

Intrusion Protection, Anti-Virus, Surf Protection, Traffic Controller as shown in Fig-

ure 1.1.

Figure 1.1: Components of SNAPS.

In SNAPS, There are three basic layers as shown in figure 1.2. First layer (Lower

Layer) contains hardware and OS. We are using specific hardware specified in require-

ment section. We are using Linux as OS platform.

Second Layer (Middle Layer) contains some Software which is used to implement

the features like Firewall, IPS, VPN, Serf Protection, Traffic Controller and Antispam.

For various features we are using iptables for Firewall, snort for IPS, openvpn for VPN,

squid for Serf Protection, Postfix for Antispam and havp for Antivirus proxy. Third

Layer (Upper Layer) contains the user interface through which a user can configure

SNAPS. We have used PHP as a platform for making GUI.

Figure 1.3 shows us how SNAPS works on the network. SNAPS has four LAN port.

First is called Green Port, which is connected to internal LAN computer. Second Port

is called Red port, which is connected to the internet. Third port is called Orange

port, which is connected to public servers. So administrator can specify some rules

for LAN computer which are there in the configuration page.

CHAPTER 1. INTRODUCTION 3

Figure 1.2: Layers of SNAPS.

1.2 Objective of Study

The goal of this project is to design and implement network security appliance that

provides complete cost effective protection against a wide range of network security

threats and bandwidth management. The system will be built in hard drive provides

for extensive reporting and allows transaction logs to be stored locally. The compact

size, high reliability and economical price makes this appliance a perfect fit for small

to medium size organization.

1.3 Scope of Work

The bandwidth management is implemented for the purpose of availability of resource.

So that fare sharing of available bandwidth between employees. And secure socket

layer VPN is developed to provide secure access of organization’s network from outside

the organization. Also the Antispam is developed to block the spam mail to reach

the end user.

CHAPTER 1. INTRODUCTION 4

Figure 1.3: Working of SNAPS.

1.4 Organization of Thesis

The Thesis covers the different modules of SNAPS. It covers mainly three modules

of SNAPS which are bandwidth management, SSL VPN and Antispam(spam filter).

Chapter 2, Literature Survey, covers a literature survey for different technique

of bandwidth management,different methods of VPN and survey reports on

various security threats.

Chapter 3, Project Archicture, covers the project architecture,installation and con-

figuration of different software packages. It also includes kernel configuration

and compilation.

Chapter 4, Bandwidth Management, covers the different techniques of bandwidth

management and implementation of HTB technique. It also covers the advan-

CHAPTER 1. INTRODUCTION 5

tages and disadvantages of different techniques.

Chapter 5, SSL VPN, covers the introduction of VPN, different types of VPN and

implementation of SSL VPN.

Chapter 6, Antispam, covers the study of different spam filter techniques and im-

plementation of spam filter.It includes the experiment steps and proof towards

the goal.

Chapter 7, Conclusion and Future Scope, This chapter includes conclusion and

future scope of the Thesis work.

Chapter 2

Literature Survey

This chapter covers the related work and the latest studies in the literature on each

of these building blocks.There have been a number of surveys about network security,

banwidth management, secure socket layer virtual private network(SSL VPN) and

spam filter. The survey we present here covers only those work that are in the same

context as our study. However, for comprehensive completeness, we also give brief

information on some techniques which are used for similar tasks that are not covered

in our study.

Most IT people when having network congestion problems consider, without doing

an in-depth analysis of the situation that the obvious and only solution consists in

buying more bandwidth to have the job done. They forget that what seems to be

a logical solution, is not more than a source of unnecessary expenses because the

problem is alleviated temporarily, to become again, sooner than later, in the same,

or perhaps worst problem.

2.1 Elements of Traffic Control

Traffic control is the name given to the sets of queuing systems and mechanisms

by which packets are received and transmitted on a router. This includes deciding

which (and whether) packets to accept at what rate on the input of an interface and

6

CHAPTER 2. LITERATURE SURVEY 7

determining which packets to transmit in what order at what rate on the output of

an interface. In the overwhelming majority of situations, traffic control consists of

a single queue which collects entering packets and dequeues them as quickly as the

hardware (or underlying device) can accept them.

2.1.1 Shapping

Shaping is the mechanism by which packets are delayed before transmission in an

output queue to meet a desired output rate. This is one of the most common desires

of users seeking bandwidth control solutions. The act of delaying a packet as part of

a traffic control solution makes every shaping mechanism into a non work conserving

mechanism, meaning roughly: ”Work is required in order to delay packets.”

Shapers attempt to limit traffic to meet but not exceed a configured rate (fre-

quently measured in packets per second or bits/bytes per second). As a side effect,

shapers can smooth out bursty traffic. One of the advantages of shaping bandwidth

is the ability to control latency of packets.

2.1.2 Scheduling

Schedulers arrange and/or rearrange packets for output. Scheduling is the mecha-

nism by which packets are arranged (or rearranged) between input and output of a

particular queue. The overwhelmingly most common scheduler is the FIFO (first in

first out) scheduler. From a larger perspective, any set of traffic control mechanisms

on an output queue can be regarded as a scheduler, because packets are arranged for

output.

Other generic scheduling mechanisms attempt to compensate for various network-

ing conditions. A fair queuing algorithm attempts to prevent any single client or flow

from dominating the network usage. A round robin algorithm gives each flow or

client a turn to dequeue packets. Other sophisticated scheduling algorithms attempt

to prevent backbone overload.

CHAPTER 2. LITERATURE SURVEY 8

2.1.3 policing

Policers measure and limit traffic in a particular queue. Policing, as an element of

traffic control, is simply a mechanism by which traffic can be limited. Policing is most

frequently used on the network border to ensure that a peer is not consuming more

than its allocated bandwidth. A policer will accept traffic to a certain rate, and then

perform an action on traffic exceeding this rate.

2.1.4 Tokens and Buckets

Two of the key underpinnings of a shaping mechanisms are the interrelated concepts

of tokens and buckets. In order to control the rate of dequeuing, an implementation

can count the number of packets or bytes dequeued as each item is dequeued, although

this requires complex usage of timers and measurements to limit accurately. Instead

of calculating the current usage and time, one method, used widely in traffic control,

is to generate tokens at a desired rate, and only dequeue packets or bytes if a token

is available.

In summary, tokens are generated at rate, and a maximum of a bucket’s worth of

tokens may be collected. This allows bursty traffic to be handled, while smoothing

and shaping the transmitted traffic. As shown in Figure 2.1. The concepts of tokens

and buckets are closely interrelated and are used in both TBF (one of the classless

qdiscs) and HTB (one of the classful qdiscs).

2.2 Linux Traffic Control

2.2.1 Introduction

Traffic control encompasses the sets of mechanisms and operations by which packets

are queued for transmission/reception on a network interface. The operations include

enquiring, policing, classifying, scheduling, shaping and dropping.

CHAPTER 2. LITERATURE SURVEY 9

Figure 2.1: Token bucket filter.

Linux offers a very rich set of tools for managing and manipulating the transmis-

sion of packets. The larger Linux community is very familiar with the tools available

under Linux for packet mangling and firewalling(netfilter, and before that, ipchains)

as well as hundreds of network services which can run on the operating system.

2.2.2 Queuing Discipline(qdisc)

The qdisc is the major building block on which all of Linux traffic control is built, and

is also called a queuing discipline.Simply put, a qdisc is a scheduler. Every output

interface needs a scheduler of some kind, and the default scheduler is a FIFO. Other

qdiscs available under Linux will rearrange the packets entering the scheduler’s queue

in accordance with that scheduler’s rules.

The classful qdiscs can contain classes, and provide a handle to which to attach

filters. There is no prohibition on using a classful qdisc without child classes, although

CHAPTER 2. LITERATURE SURVEY 10

this will usually consume cycles and other system resources for no benefit. The

classless qdiscs can contain no classes, nor is it possible to attach filter to a classless

qdisc. Because a classless qdisc contains no children of any kind, there is no utility

to classifying. This means that no filter can be attached to a classless qdisc.

2.2.3 Class

Classes only exist inside a classful qdisc (e.g., HTB and CBQ). Classes are immensely

flexible and can always contain either multiple children classes or a single child qdisc.

There is no prohibition against a class containing a classful qdisc itself, which facili-

tates tremendously complex traffic control scenarios.

Any class can also have an arbitrary number of filters attached to it, which allows

the selection of a child class or the use of a filter to reclassify or drop traffic entering a

particular class. A leaf class is a terminal class in a qdisc. It contains a qdisc (default

FIFO) and will never contain a child class. Any class which contains a child class is

an inner class (or root class) and not a leaf class.

2.2.4 Filter

The filter is the most complex component in the Linux traffic control system. The

filter provides a convenient mechanism for gluing together several of the key elements

of traffic control. The simplest and most obvious role of the filter is to classify packets.

Linux filters allow the user to classify packets into an output queue with either several

different filters or a single filter.

Filters can be attached either to classful qdiscs or to classes, however the enqueued

packet always enters the root qdisc first. After the filter attached to the root qdisc

has been traversed, the packet may be directed to any subclasses (which can have

their own filters) where the packet may undergo further classification.

CHAPTER 2. LITERATURE SURVEY 11

2.2.5 Handle

Every class and classful qdisc requires a unique identifier within the traffic control

structure. This unique identifier is known as a handle and has two constituent num-

bers, a major number and a minor number. These numbers can be assigned arbitrar-

ily by the user in accordance with the following rules. The numbering of handles for

classes and qdiscs are as follows:

Major : This parameter is not used by the kernel. The user may use an arbi-

trary numbering scheme, however all objects in the traffic control structure with

the same parent must share a major handle number. Conventional numbering

schemes start at 1 for objects attached directly to the root qdisc.

Minor : This parameter unambiguously identifies the object as a qdisc if minor is

0. Any other value identifies the object as a class. All classes sharing a parent

must have unique minor numbers.

The special handle ffff: 0 is reserved for the ingress qdisc. The handle is used as the

target in classid and flowid phrases of tc filter statements. These handles are external

identifiers for the objects, usable by user and applications. The kernel maintains

internal identifiers for each object.

2.3 Virtual Private Network

Virtual private networks (VPNs) are a fairly complex subject; there is no single

defining product, nor even much of a consensus among VPN vendors as to what

comprises a VPN. Consequently, everyone knows what a VPN is, but establishing a

single definition can be remarkably difficult. Some definitions are sufficiently broad

as to enable one to claim that Frame Relay qualifies as a VPN when, in fact, it is

an overlay network. Although an overlay network secures transmissions through a

public network, it does so passively via logical separation of the data streams.

CHAPTER 2. LITERATURE SURVEY 12

VPNs provide a more active form of security by either encrypting or encapsu-

lating data for transmission through an unsecured network. These two types of

security-encryption and encapsulation-form the foundation of virtual private network-

ing. However, both encryption and encapsulation are generic terms that describe a

function that can be performed by a myriad of specific technologies. To add to the

confusion, these two sets of technologies can be combined in different implementation

topologies. Thus, VPNs can vary widely from vendor to vendor.

2.3.1 Types of VPN

A VPN (Virtual Private Network) is a way of creating a secure connection to and

from a network or computer. VPNs have been used for years, but they have become

more robust in recent years. They are more affordable and also much faster. There

are many different types of VPNs available. Let’s take a look at most common types.

PPTP VPN(Dial-up VPN)

A simple method for VPN is PPTP. It is a software based VPN system that uses

your existing Internet connection. By using your existing Internet connection, a

secure ”tunnel” is created between two points allowing a remote user to connect to a

remote network. You can setup this type of connection with various types of software

or hardware. Windows Server has a PPTP build-it and you can connect to it via

a native VPN client within Windows. Cisco also have this ability, but require a

3rd party software to be loaded on remote workstations. There is some overhead

associated with this as all data transmitted and received in encrypted. This can be

referred to as the poor man’s VPN. There is little to no cost to setup this type of

VPN, and you can often use your existing equipment and software. It is sometimes

referred to as ”dial-up VPN” because when the client software connects it looks like

it’s dialing up. See the diagram below(Figure 2.2):

CHAPTER 2. LITERATURE SURVEY 13

Figure 2.2: PPTP VPN.

Site-to-Site VPN

Site-to-site is as same the point-to-point except there is no ”dedicated” line in use.

Each site has it’s own internet connection which may not be from the same ISP

or even the same type. One may have a T1 while the other only has DSL. Unlike

point-to-point, the routers at both ends do all the work.

They do all the routing and encryption. This is an easy way to connect two offices

without having each user ”dial-up” using a PPTP connection. Site-to-site VPNs can

work with hardware or firewall devices. On the software side, you can use something

like Clark connects. On the hardware side, you can have many different devices to

choose from.

Point-to-Point VPN

Another site to site VPN is a point-to-point Simply put, two or more networks are

connected using a dedicated line from an ISP. The main strength of using a leased

line is that is a circuit-based point-to-point connection. It does not go out over the

CHAPTER 2. LITERATURE SURVEY 14

public Internet, so there performance is not degraded by routing problems, latency,

and external congestion.

Most client to site VPNs are based around IPSec (short for IP Security), which is a

suite of protocols developed by the IETF to support secure exchange of packets at the

IP layer. Typically, an IPSec tunnel connection will be created from a Client software

component to a VPN gateway (or firewall with VPN functionality). Following the

initialization of this tunnel, all packets destined for the remote corporate network

will be routed down this tunnel. The tunnel provides the necessary security, by

encrypting each packet (using one of a selection of algorithms) before forwarding it

to the remote gateway. When packets reach the remote gateway, they are decrypted

and then forwarded ’in the clear’ to the final destination.

IPSec was initially devised for site to site VPN connections, so to add the necessary

functionality to IPSec to allow effective client to site connections and management,

each vendor has added vendor specific features to it’s IPSec implementation.

2.4 Antispam(spam filter)

When the average number of spam messages received is continually increasing expo-

nentially, both the Internet Service Provider and the end user suffer. The lack of an

efficient solution may threaten the usability of the email as a communication means.

Email filtering is the process of monitoring incoming (or outgoing) email, and then

taking certain actions when an email is considered to be SPAM [4]. Spam constitutes

a major problem for both e-mail users and Internet Service Providers (ISP) [5]. In

general the word ”spam” is used to refer to unwanted, ”junk” email messages. Spam

can often be referred to as unsolicited commercial e-mail or unsolicited bulk email;

however, not all unsolicited e-mails are necessarily spam.

CHAPTER 2. LITERATURE SURVEY 15

2.4.1 Anti Spam Technologies

Over the past few years, a lot of anti-spam tools and solutions based on different

technological approaches have been developed [7]. However, as you will see below,

there are significant differences in terms of the effectiveness of each approach.

Centralized filtering server

In this architecture, a single anti-spam filter runs on a centralized organization-wide

mail server. This approach eliminates the need to deploy software to email clients or

to train users. Centralized filters have the disadvantage that they do not typically

use the specific preferences and opinions of the user.

Gateway Filtering

In this approach, all inbound email is routed through a filtering gateway before being

delivered to the mail server. Gateway services work well with webbased and mobile

access to email, and may increase robustness since they queue emails if the client

network or server is off-line. On the other hand, the gateway itself is a single point of

failure and may be difficult to manage in the presence of multiple mail servers within

an organization [3].

Rule-based filtering

Rule-based filters assign a spam score to each email based on whether the email

contains features typical of spam messages, such as keywords and HTML formatting

like fancy fonts and background colors. A major problem with rule-based scores is

that since their semantics are not well-defined, it is difficult to aggregate them and

to establish a threshold that can actually limit the number of false positives.

CHAPTER 2. LITERATURE SURVEY 16

Heuristic Filtering

In essence, heuristic filtering is a method of spam detection that uses baseline ar-

tificial intelligence to deliver an automated spam deletion process [5]. These auto-

mated mechanisms categorize incoming email messages as spam or legitimate based

on known spam patterns. In theory, the advantage of this process lies in its automated

nature and the fact that it should require no human intervention in the process of mes-

sage classification. In reality, however, the greatest advantage of heuristics emerges

as its greatest weakness.

Collaborative spam filtering

In collaborative approaches, server-side automatic monitoring systems consider whether

incoming messages are to be known spam after these messages are classified by an au-

tomatic mechanism or by final recipients. These solutions have achieved considerable

success as they overcome the single point of failure typical of centralized architecture.

All the solutions presented above have strengths and weaknesses.

It is clear that no single technology is powerful enough to block all the spam that

might flood an average mail server [7]. In fact, most anti-spam solutions combine

two or more technologies in an attempt to improve their overall effectiveness, while

decreasing their false positives ratio.

Blacklists

The efficiency of a blacklist can be measured by the rate in which the list is updated

[11]. As soon as a machine is detected as a spam source, its IP address should be

included on the blacklist. The period of time in which addresses that are no longer

sending spam are removed is also important, to reduce false positives. Blacklists can

be either managed by users or by organizations responsible for the list management.

User-managed blacklists are rare, as they require constant user interaction to remove

and add addresses. The blacklists commonly used are managed by organizations.

CHAPTER 2. LITERATURE SURVEY 17

The lists are queried using the DNS protocol and are called DNSBL (Domain Name

System Blacklist) [12]. The DNS protocol is used to query these lists because it is a

well established protocol, its implementation is already mature and it also provides

cache of queries, reducing the bandwidth usage.

Bayesian Filters

Bayesian filters are an evolution of rule-based systems because the rules to classify

the messages are automatically created when training the filter. The filter uses a

Bayesian classifier, which is trained with some messages previously classified as either

legitimate or spam. Using these training messages, the classifier can automatically

discover characteristics that are present on both legitimate and spam messages. To

classify the messages it is verified if the characteristics already learned by the filter are

present on the message. The probability of a message be classified as spam given its

characteristics is calculated by the product of the probability that the characteristics

are present on spam messages multiplied by the probability of a message be spam

divided by the probability that the characteristics are present on all the messages

used to train the filter.

It is clear that no single technology is powerful enough to block all the spam that

might flood an average mail server [7]. In fact, most anti-spam solutions combine

two or more technologies in an attempt to improve their overall effectiveness, while

decreasing their false positives ratio.

Chapter 3

Project Archicture

3.1 Introduction

SNAPS contain six modules and each module requires exhaustive analysis and re-

search oriented work. Three modules implemented in this system which are Band-

width management, SSL VPN and spam filter.

3.2 Versioning System

In this CVS (Concurrent Versioning System)is used for coordination between devel-

opers and for taking backup of code. CVS uses client-server architecture: a server

stores the current version(s) of the project and its history, and clients connect to the

server in order to check out a complete copy of the project, work on this copy and

then later check in their changes. Typically, client and server connect over a LAN or

over the Internet, but client and server may both run on the same machine if CVS has

the task of keeping track of the version history of a project with only local developers.

Our CVS server runs on Debian Linux machine while clients are running on Linux as

well as Windows machines.

Each of the developer is allowed to edit files within their own working copy of the

project, and sending (or checking in) their modifications to the server. To avoid the

18

CHAPTER 3. PROJECT ARCHICTURE 19

possibility of people stepping on each other’s toes, the server will only accept changes

made to the most recent version of a file. Developers are therefore expected to keep

their working copy up-to-date by incorporating other people’s changes on a regular

basis. This task is mostly handled automatically by the CVS client, requiring manual

intervention only when a conflict arises between a checked-in modification and the

yet-unchecked local version of a file.

3.3 Project Architecture

This done using SCRUM development model for developing modules of SNAPS.

Scrum is an iterative incremental process of software development commonly used

with software development. Despite the fact that ”Scrum” is not an acronym, some

companies implementing the process have been known to adhere to an all capital

letter expression of the word, i.e. SCRUM. The SCRUM methodology is an approach

for systems development which is based on both defined and black box process man-

agement. SCRUM is an enhancement of the iterative and incremental approach to

deliver product. The SCRUM approach assumes that the analysis, design, and de-

velopment processes in the Sprint phase are unpredictable. A control mechanism is

used to manage the unpredictability and control the risk. Flexibility, responsiveness,

and reliability are the results.

• The first and last phases (Planning and Closure) consist of defined processes,

where all processes, inputs and outputs are well defined. The knowledge of how

to do these processes is explicit. The flow is linear, with some iteration in the

planning phase.

• The Sprint phase is an empirical process. Many of the processes in the sprint

phase are unidentified or uncontrolled. It is treated as a black box that requires

external controls. Accordingly, controls, including risk management, are put on

each iteration of the Sprint phase to avoid chaos while maximizing flexibility.

CHAPTER 3. PROJECT ARCHICTURE 20

Figure 3.1: Project Architecture.

• Sprints are nonlinear and flexible. Where available, explicit process knowledge

is used, otherwise tacit knowledge and trial and error is used to build process

knowledge. Sprints are used to evolve the final product.

• The project is open to the environment until the Closure phase. The deliverable

can be changed at any time during the Planning and Sprint phases of the project.

The project remains open to environmental complexity, including competitive,

time, quality, and financial pressures, throughout these phases.

3.4 Installation and Configuration

3.4.1 Installation and configuration of iproute2tool package

Most linux distributions are starting to provide the iproute2 package, because of

the new redesigned network subsystem implemented in kernels 2.2 and up. The

old comands ’ifconfig’ and ’route’ are now been deprecated because of their faulty

and unexpected behaviour under these kernels. This new routing and filtering code

provides many advantages and features that weren’t available before, and ip/tc are

CHAPTER 3. PROJECT ARCHICTURE 21

the tools to handle it. This package requires db. So first we require to download tar

file then install:

http://www.sleepycat.com/update/snapshot/db-4.1.25.tar.gz

tar-zxvf db-4.1.25.tar.gz

cd db-4.1.25/dist

./configure –prefix=/usr –enable-compat185

make

make install

In linux Debian flavor we can install using following command:

[root@debian]sudo aptitude install ’package name’

iproute2-2.4.7-now-ss020116-try.tar.gz and kernel-2.4.20,

tar -zxvf htb3.6-020525.tgz

tar -zxvf iproute2-2.4.7-now-ss020116-try.tar.gz

cd iproute2

3.4.2 Kernel Configuration and Compilation

Many distributions provide kernels with modular or monolithic support for traffic

control (Quality of Service). Custom kernels may not already provide support (mod-

ular or not) for the required features. If not, this is a very brief listing of the required

kernel options.

Kernel compilation options: #

#QoS and/or fair queueing

#

CONFIG NET SCHED=y

CONFIG NET SCH CBQ=m

CONFIG NET SCH HTB=m

CONFIG NET SCH CSZ=m

CONFIG NET SCH PRIO=m

CHAPTER 3. PROJECT ARCHICTURE 22

CONFIG NET SCH RED=m

CONFIG NET SCH SFQ=m

CONFIG NET SCH TEQL=m

CONFIG NET SCH TBF=m

CONFIG NET SCH GRED=m

CONFIG NET SCH DSMARK=m

CONFIG NET SCH INGRESS=m

CONFIG NET QOS=y

CONFIG NET ESTIMATOR=y

CONFIG NET CLS=y

CONFIG NET CLS TCINDEX=m

CONFIG NET CLS ROUTE4=m

CONFIG NET CLS ROUTE=y

CONFIG NET CLS FW=m

CONFIG NET CLS U32=m

CONFIG NET CLS RSVP=m

CONFIG NET CLS RSVP6=m

CONFIG NET CLS POLICE=y

A kernel compiled with the above set of options will provide modular support for

almost everything discussed in this documentation. The user may need to modprobe

module before using a given feature.

Chapter 4

Bandwidth Management

4.1 Introduction

Traffic control is the name given to the sets of queuing systems and mechanisms

by which packets are received and transmitted on a router. This includes deciding

which (and whether) packets to accept at what rate on the input of an interface and

determining which packets to transmit in what order at what rate on the output of

an interface.

In the overwhelming majority of situations, traffic control consists of a single

queue which collects entering packets and dequeues them as quickly as the hardware

(or underlying device) can accept them. This sort of queue is a FIFO. The default

qdisc under Linux is the pfifo fast which is slightly more complex than the FIFO.

There are examples of queues in all sorts of software. The queue is a way of

organizing the pending tasks or data. Because network links typically carry data in

a serialized fashion, a queue is required to manage the outbound data packets.

In the case of a desktop machine and an efficient webserver sharing the same

uplink to the Internet, the following contention for bandwidth may occur. The web

server may be able to fill up the output queue on the router faster than the data

can be transmitted across the link, at which point the router starts to drop packets

23

CHAPTER 4. BANDWIDTH MANAGEMENT 24

(its buffer is full!). Now, the desktop machine (with an interactive application user)

may be faced with packet loss and high latency. Note that high latency sometimes

leads to screaming users! By separating the internal queues used to service these two

different classes of application, there can be better sharing of the network resource

between the two applications.

Traffic control is the set of tools which allows the user to have granular control

over these queues and the queuing mechanisms of a networked device. The power

to rearrange traffic flows and packets with these tools is tremendous and can be

complicated, but is no substitute for adequate bandwidth. The term Quality of

Service (QoS) is often used as a synonym for traffic control.

Packet switched networks differ from circuit based networks in one very impor-

tant regard. A packet switched network itself is stateless. A circuit based network

(such as a telephone network) must hold state within the network. IP networks are

stateless and packet switched networks by design; in fact, this statelessness is one of

the fundamental strengths of IP.

The weakness of this statelessness is the lack of differentiation between types of

flows. In simplest terms, traffic control allows an administrator to queue packets

differently based on attributes of the packet. It can even be used to simulate the

behavior of a circuit based network. This introduces statefulness into the stateless

network.

4.2 Advantages

When properly employed, traffic control should lead to more predictable usage of

network resources and less volatile contention for these resources. The network then

meets the goals of the traffic control configuration. Bulk download traffic can be allo-

cated a reasonable amount of bandwidth even as higher priority interactive traffic is

simultaneously serviced. Even low priority data transfer such as mail can be allocated

bandwidth without tremendously affecting the other classes of traffic.

CHAPTER 4. BANDWIDTH MANAGEMENT 25

4.3 Disadvantages

Complexity is easily one of the most significant disadvantages of using traffic control.

There are ways to become familiar with traffic control tools which ease the learning

curve about traffic control and its mechanisms, but identifying a traffic control miss

configuration can be quite a challenge.

Traffic control when used appropriately can lead to more equitable distribution

of network resources. It can just as easily be installed in an inappropriate manner

leading to further and more divisive contention for resources.

The computing resources required on a router to support a traffic control scenario

need to be capable of handling the increased cost of maintaining the traffic control

structures. Fortunately, this is a small incremental cost, but can become more signif-

icant as the configuration grows in size and complexity.

4.4 Implementation

4.4.1 iproute2 tools(tc)

iproute2 is a suite of command line utilities which manipulate kernel structures for IP

networking configuration on a machine. Because it interacts with the kernel to direct

the creation, deletion and modification of traffic control structures, the tc binary

needs to be compiled with support for all of the qdisc you wish to use. In particular,

the HTB qdisc is not supported yet in the upstream iproute2 package.

The tc tool performs all of the configuration of the kernel structures required to

support traffic control. As a result of its many uses, the command syntax can be

described (at best) as arcane. The utility takes as its first non option argument one

of three Linux traffic control components, qdisc, class or filter. Here below some of

the examples are shown with tc command.

Example1: tc command usage

[root@debian]tc

CHAPTER 4. BANDWIDTH MANAGEMENT 26

Usage: tc [OPTIONS]OBJECT { COMMAND — help }

where OBJECT := { qdisc — class — filter}

OPTIONS := { s[tatistics] — d[etails] — r[aw] }

Example2: qdisc

[rootdebian]# tc qdisc add dev eth0 root handle 1:0 htb

Example3: class

[rootdebian]# tc class add dev eth0 parent 1:1 classid 1:6

htb rate 256kbit ceil 512kbit

Example3: filter

[root@debian]# tc filter add dev eth0 parent 1:0 protocol ip

prio5 u32 match ip port 22 0xffff match ip tos 0x10 0xff flowid

1:6 police rate 32000bps burst 10240 mpu 0 action drop/continue

Traffic control is implemented using the linux iproute2 package. For this we re-

quired to first configure the kernel. In iproute2 package tc command is provide the

granular control over traffic.

4.4.2 Classful Queuing Disciplines

The flexibility and control of Linux traffic control can be unleashed through the agency

of the classful qdiscs. Remember that the classful queuing disciplines can have filters

attached to them, allowing packets to be directed to particular classes and subqueues.

There are several common terms to describe classes directly attached to the root

qdisc and terminal classes. Classes attached to the root qdisc are known as root

classes, and more generically inner classes. Any terminal class in a particular queuing

discipline is known as a leaf class by analogy to the tree structure of the classes.

CHAPTER 4. BANDWIDTH MANAGEMENT 27

Besides the use of figurative language depicting the structure as a tree, the language

of family relationships is also quite common.

4.4.3 Hierarchical Token Bucket(HTB)

HTB uses the concepts of tokens and buckets along with the class based system and

filters to allow for complex and granular control over traffic. With a complex borrow-

ing model, HTB can perform a variety of sophisticated traffic control techniques. One

of the easiest ways to use HTB immediately is that of shaping. By understanding

tokens and buckets or by grasping the function of TBF, HTB should be merely a

logical step. This queuing discipline allows the user to define the characteristics of

the tokens and bucket used and allows the user to nest these buckets in an arbitrary

fashion. When coupled with a classifying scheme, traffic can be controlled in a very

granular fashion.

Below is example output of the syntax for HTB on the command line with the tc

tool. Although the syntax for tcng is a language of its own, the rules for HTB are

the same.

Example: tc usage for HTB Usage: ... qdisc add ... htb [default N][r2q N]

default minor id of class to which unclassified packets are sent{0}
r2q DRR quantums are computed as rate in Bps/r2q10
debug string of 16 numbers each 0?3 {0}
class add htb rate R1 burst B1 [prio P] [slot S] [pslot PS]

[ceil R2] [cburst B2] [mtu MTU] [quantum Q]
rate rate allocated to this class (class can still borrow)
burst max bytes burst which can be accumulated during

idle period (computed)
ceil definite upper class rate (no borrows) (rate)
cburst burst but for ceil (computed)
mtu max packet size we create rate map for (1600)
prio priority of leaf; lower are served first(0)
quantum how much bytes to serve from leaf at once(use r2q)

CHAPTER 4. BANDWIDTH MANAGEMENT 28

HTB is a newer queuing discipline and your distribution may not have all of the tools

and capability you need to use HTB.

Shaping

One of the most common applications of HTB involves shaping transmitted traffic

to a specific rate. All shaping occurs in leaf classes. No shaping occurs in inner or

root classes as they only exist to suggest how the borrowing model should distribute

available tokens.

Borrowing

A fundamental part of the HTB qdisc is the borrowing mechanism. Children classes

borrow tokens from their parents once they have exceeded rate. A child class will

continue to attempt to borrow until it reaches ceil, at which point it will begin to

queue packets for transmission until more tokens/ctokens are available. As there

are only two primary types of classes which can be created with HTB the figure 4.2

and figure 4.1identify the various possible states and the behavior of the borrowing

mechanisms. As shown in figure 4.2 and figure 4.1.

This figure identifies the flow of borrowed tokens and the manner in which tokens

are charged to parent classes. In order for the borrowing model to work, each class

must have an accurate count of the number of tokens used by itself and all of its

children. For this reason, any token used in a child or leaf class is charged to each

parent class until the root class is reached.

Any child class which wishes to borrow a token will request a token from its parent

class, which if it is also over its rate will request to borrow from its parent class until

either a token is located or the root class is reached. So the borrowing of tokens flows

toward the leaf classes and the charging of the usage of tokens flows toward the root

class.

Note in this diagram that there are several HTB root classes. Each of these root

classes can simulate a virtual circuit.

CHAPTER 4. BANDWIDTH MANAGEMENT 29

Figure 4.1: HTB class structure and borrowing

HTB class parameters

HTB class uses the following parameter in queuing discipline:

default :

An optional parameter with every HTB qdisc object, the default default is 0,

which cause any unclassified traffic to be dequeued at hardware speed, com-

pletely bypassing any of the classes attached to the root qdisc.

rate :

Used to set the minimum desired speed to which to limit transmitted traffic.

This can be considered the equivalent of a committed information rate (CIR),

or the guaranteed bandwidth for a given leaf class.

CHAPTER 4. BANDWIDTH MANAGEMENT 30

Figure 4.2: HTB class states and potential actions taken

ceil :

Used to set the maximum desired speed to which to limit the transmitted traffic.

The borrowing model should illustrate how this parameter is used. This can be

considered the equivalent of ”burstable bandwidth”.

burst :

This is the size of the rate bucket (see Tokens and buckets). HTB will dequeue

burst bytes before awaiting the arrival of more tokens.

cburst :

This is the size of the ceil bucket (see Tokens and buckets). HTB will dequeue

cburst bytes before awaiting the arrival of more ctokens.

quantum :

CHAPTER 4. BANDWIDTH MANAGEMENT 31

This is a key parameter used by HTB to control borrowing. Normally, the

correct quantum is calculated by HTB, not specified by the user. Tweaking

this parameter can have tremendous effects on borrowing and shaping under

contention, because it is used both to split traffic between children classes over

rate (but below ceil) and to transmit packets from these same classes.

r2q :

Also, usually calculated for the user, r2q is a hint to HTB to help determine

the optimal quantum for a particular class.

Rules for using HTB

Below are some general guidelines to using HTB for traffic control. These rules are

simply a recommendation for beginners to maximize the benefit of HTB until gaining

a better understanding of the practical application of HTB.

• Shaping with HTB occurs only in leaf classes.

• Because HTB does not shape in any class except the leaf class, the sum of the

rates of leaf classes should not exceed the ceil of a parent class. Ideally, the

sum of the rates of the children classes would match the rate of the parent

class, allowing the parent class to distribute leftover bandwidth (ceil ? rate)

among the children classes. This key concept in employing HTB bears repeating.

Only leaf classes actually shape packets; packets are only delayed in these leaf

classes. The inner classes (all the way up to the root class) exist to define how

borrowing/lending occurs.

• The quantum is only only used when a class is over rate but below ceil.

• The quantum should be set at MTU or higher. HTB will dequeue a single

packet at least per service opportunity even if quantum is too small. In such a

case, it will not be able to calculate accurately the real bandwidth consumed.

CHAPTER 4. BANDWIDTH MANAGEMENT 32

• Parent classes lend tokens to children in increments of quantum, so for maximum

granularity and most instantaneously evenly distributed bandwidth, quantum

should be as low as possible while still no less as MTU.

• A distinction between tokens and ctokens is only meaningful in a leaf class,

because non?leaf classes only lend tokens to child classes.

• HTB borrowing could more accurately be described as ”using”.

Finally the simplified linux traffic control snerio is shown in the following figure

4.3.

Figure 4.3: Linux traffic control using HTB.

CHAPTER 4. BANDWIDTH MANAGEMENT 33

4.5 Summary

In bandwidth management takes lot of time to analysis the current situation. So first

thing is require to identifying organization requirement. And SNAPS has four port

for interfaces with external and internal connection.

First thing is require to do is define general scenario for traffic control so that

first divide bandwidth management in two modules fixed and dynamic bandwidth

allocation on four interfaces like eth0, eth1, eth2 and eth3.

The classful qdisc Hierarchical token bucket concept is used. As explained earlier

htb uses classes with subclasses so we can define different class for different users

with different rate. In this we can assign different access rate and limitation with

user level. As for example if any organization consist three type of user one is CEO

level, second is Manager level and third is Employee level . In this each level of user

has different requirement and priority. In this type of situation we can use htb qdisc

for better control over the available bandwidth.

One script was written to implement traffic control for above situation.For this

one algorithm is defined and steps of algorithm are shown blow.

Step 1: Initially define access rate in Kilo bits per second (kbps), Kilo bytes per

second (KB), mega bits per second (mbps), or Mega byte (MB)

Step 2: Choose interface on which we want to implement traffic control. Example

eth0, eth1 etc.

Step 3: Define fixed or dynamic bandwidth allocation

Step 4: Define available bandwidth and total no. of users.

Step 5: If we want to implement fixed bandwidth allocation then bandwidth is

equally divided in to all users than goto step7. If dynamic then network administrator

can assign access rate according to requirement and goto step 6.

Step 6: Assign upload and download limit.

Step 7: Assign ceil rate and enter the IP addresses of user.

step 8: Next if you want to implement bandwidth management on another inter-

CHAPTER 4. BANDWIDTH MANAGEMENT 34

face than repeat step 2 or goto step9.

Step 9: Exit.

This script shows the stopping criteria, So anyone can stop access rate limitation

on particular interface like eth0 than it behaves normally. And also mention some

command for result which shows that what access rate is available in particular class.

Here it uses the HTB qdisc so that shapping and borrowing can done as explained

earier. This is done using assigning 2 kbps download limit and 1kbps upload limit on

interface eth0 and try to download some files from internet it take lot time. It was

checked using command ”tc -s -d class show dev eth0”, it show rate less than 2kbps

means it work.

Chapter 5

SSL VPN

5.1 Introduction

Secure Sockets Layer (SSL) virtual private networks (VPN) provide secure remote

access to an organization’s resources. A VPN is a virtual network, built on top of

existing physical networks, that can provide a secure communications mechanism for

data and other information transmitted between two endpoints. Because a VPN can

be used over existing networks such as the Internet, it can facilitate the secure transfer

of sensitive data across public networks. An SSL VPN consists of one or more VPN

devices to which users connect using their Web browsers.

The traffic between the Web browser and the SSL VPN device is encrypted with

the SSL protocol or its successor, the Transport Layer Security (TLS)protocol. This

type of VPN may be referred to as either an SSL VPN or a TLS VPN. SSL VPNs

provide remote users with access to Web applications and client/server applications,

and connectivity to internal networks. Despite the popularity of SSL VPNs, they are

not intended to replace Internet Protocol Security (IPsec) VPNs. The two VPN tech-

nologies are complementary and address separate network architectures and business

needs. SSL VPNs offer versatility and ease of use because they use the SSL proto-

col, which is included with all standard Web browsers, so the client usually does not

35

CHAPTER 5. SSL VPN 36

require configuration by the user. SSL VPNs offer granular control for a range of

users on a variety of computers, accessing resources from many locations.There are

two primary types of SSL VPNs:

SSL Portal VPN : This type of SSL VPN allows a user to use a single standard

SSL connection to a Web site to securely access multiple network services. The

site accessed is typically called a portal because it is a single page that leads to

many other resources. The remote user accesses the SSL VPN gateway using

any modern Web browser, identifies himself or herself to the gateway using an

authentication method supported by the gateway, and is then presented with a

Web page that acts as the portal to the other services.

SSL Tunnel VPN : This type of SSL VPN allows a user to use a typical Web

browser to securely access multiple network services, including applications and

protocols that are not web-based, through a tunnel that is running under SSL.

SSL tunnel VPNs require that the Web browser be able to handle active content,

which allows them to provide functionality that is not accessible to SSL portal

VPNs.

SSL VPN products vary in functionality, including protocol and application sup-

port. They also vary in breadth, depth, and completeness of features and security

services. Some recommendations and considerations include the following:

• SSL VPN manageability features such as status reporting, logging, and auditing

should provide adequate capabilities for the organization to effectively operate

and manage the SSL VPN and to extract detailed usage information.

• The SSL VPN high availability and scalability features should support the orga-

nization’s requirements for failover, load balancing and throughput. State and

information sharing is recommended to keep the failover process transparent to

the user.

CHAPTER 5. SSL VPN 37

• SSL VPN portal customization should allow the organization to control the look

and feel of the portal and to customize the portal to support various devices

such as personal digital assistants (PDA) and smart phones.

• SSL VPN authentication should provide the necessary support for the organiza-

tion’s current and future authentication methods and leverage existing authen-

tication databases. SSL VPN authentication should also be tested to ensure

interoperability with existing authentication methods.

• The strongest possible cryptographic algorithms and key lengths that are con-

sidered secure for current practice should be used for encryption and integrity

protection unless they are incompatible with interoperability, performance and

export constraints.

5.2 Implementation of SSL VPN using Openvpn

5.2.1 Openvpn

OpenVPN is a full-featured SSL VPN which implements OSI layer 2 or 3 secure

network extension using the industry standard SSL/TLS protocol, supports flexi-

ble client authentication methods based on certificates, smart cards, and/or user-

name/password credentials, and allows user or group-specific access control policies

using firewall rules applied to the VPN virtual interface. OpenVPN is not a web

application proxy and does not operate through a web browser.

5.2.2 Installation and configuration of Openvpn

Steps for Installation of openvpn in Linux Debian

1. It is also possible to install OpenVPN on Linux using the universal ./configure

method. First expand the .tar.gz file using following command:

tar xfz openvpn-[version].tar.gz

CHAPTER 5. SSL VPN 38

2. Than cd to the top-level directory type:

./configure

make

make install

3. Determine whether to routed or brigded VPN. Here routed VPN is imple-

mented.

./configure

make

make install

4. Setting up a VPN often entails linking together private subnets from different

locations.

The Internet Assigned Numbers Authority (IANA) has reserved the following

three blocks of the IP address space for private internets (codified in RFC 1918):

While addresses from these netblocks should normally be used in VPN configura-

10.0.0.0 10.255.255.255 (10/8prefix)
172.16.0.0 172.31.255.255 (172.16/12prefix)

192.168.0.0 192.168.255.255 (192.168/16prefix)

Table I: Private IP Address space

tions, it’s important to select addresses that minimize the probability of IP address

or subnet conflicts. The types of conflicts that need to be avoided are:

• conflicts from different sites on the VPN using the same LAN subnet numbering,

or

• remote access connections from sites which are using private subnets which

conflict with your VPN subnets.

For example, if the popular 192.168.0.0/24 subnet used as private LAN subnet. Now

trying to connect to the VPN from an internet cafe which is using the same subnet

CHAPTER 5. SSL VPN 39

for its WiFi LAN. Then there will be a routing conflict because machine won’t know

if 192.168.0.1 refers to the local WiFi gateway or to the same address on the VPN.

As another example, If multiple sites are linked each other by VPN, but each site is

using 192.168.0.0/24 as its LAN subnet. This won’t work without adding a complex-

ifying layer of NAT translation, because the VPN won’t know how to route packets

between multiple sites if those sites don’t use a subnet which uniquely identifies them.

The best solution is to avoid using 10.0.0.0/24 or 192.168.0.0/24 as private LAN

network addresses. Instead, use something that has a lower probability of being used

in a WiFi cafe, airport, or hotel where anybody might expect to connect from re-

motely. The best candidates are subnets in the middle of the vast 10.0.0.0/8 netblock

(for example 10.66.77.0/24).

5. Setting up your own Certificate Authority (CA) and generating certificates

and keys for an Openvpn server and multiple clients. The first step in building an

OpenVPN 2.0 configuration is to establish a PKI (public key infrastructure). The

PKI consists of:

• a separate certificate (also known as a public key) and private key for the server

and each client, and

• a master Certificate Authority (CA) certificate and key which is used to sign

each of the server and client certificates.

OpenVPN supports bidirectional authentication based on certificates, meaning

that the client must authenticate the server certificate and the server must authen-

ticate the client certificate before mutual trust is established.Both server and client

will authenticate the other by first verifying that the presented certificate was signed

by the master certificate authority (CA), and then by testing information in the now-

authenticated certificate header, such as the certificate common name or certificate

type (client or server).This security model has a number of desirable features from

the VPN perspective:

CHAPTER 5. SSL VPN 40

• The server only needs its own certificate/key – it doesn’t need to know the

individual certificates of every client which might possibly connect to it.

• The server will only accept clients whose certificates were signed by the master

CA certificate (which we will generate below). And because the server can

perform this signature verification without needing access to the CA private

key itself, it is possible for the CA key (the most sensitive key in the entire

PKI) to reside on a completely different machine, even one without a network

connection.

• If a private key is compromised, it can be disabled by adding its certificate to a

CRL (certificate revocation list). The CRL allows compromised certificates to

be selectively rejected without requiring that the entire PKI be rebuilt.

6. Generate the master Certificate Authority (CA) certificate and key

In this section a master CA certificate/key, a server certificate/key, and certifi-

cates/keys for 3 separate clients are generated. Following commands are used to

generate master certificate and keys:

[root @debian] cd /usr/share/doc/packages/openvpn Next, initialize the PKI.

On Linux/BSD/Unix: . ./vars ./clean-all ./build-ca

7. Generate certificate & key for server Server key can be generated using the

following command ./build-key-server server As in the previous step, most param-

eters can be defaulted. When the Common Name is queried, enter ”server”. Two

other queries require positive responses, ”Sign the certificate? [y/n]” and ”1 out of 1

certificate requests certified, commit? [y/n]”.

8. Generate certificate & key for server Generating client certificates is very similar

to the previous step.

./build-key client1

./build-key client2

./build-key client3

CHAPTER 5. SSL VPN 41

Remember that for each client, make sure to type the appropriate Common Name

when prompted, i.e. ”client1”, ”client2”, or ”client3”. Always use a unique common

name for each client.

9. Generate Diffie-hallman parameter Diffie Hellman parameters must be gener-

ated for the OpenVPN server. On Linux/BSD/Unix:

./build-dh

10. Key Files Following key files are used at sever side and client side(as shown

in Table II):

Filename Needed By Purpose Secret
ca.crt server + all clients Root CA certificate NO
ca.key key signing machine only Root CA key YES

dhn.pem server only Diffie Hellman parameters NO
server.crt server only Server Certificate NO
server.key server only Server Key YES
client1.crt client1 only Client1 Certificate NO
client1.key client1 only Client1 Key YES
client2.crt client2 only Client2 Certificate NO
client2.key client2 only Client2 Key YES
client3.crt client3 only Client3 Certificate NO
client3.key client3 only Client3 Key YES

Table II: Key Files used by clients and server

11. The final step in the key generation process is to copy all files to the machines

which need them, taking care to copy secret files over a secure channel.

5.2.3 Creating configuration file for clients and server

After installing openvpn and generating key files for server and client, then create

server config file and client config file.

CHAPTER 5. SSL VPN 42

Editing the server configuration file

The sample server configuration file is an ideal starting point for an OpenVPN server

configuration. It will create a VPN using a virtual TUN network interface (for rout-

ing), will listen for client connections on UDP port 1194 (OpenVPN’s official port

number), and distribute virtual addresses to connecting clients from the 10.8.0.0/24

subnet.At this point, the server configuration file is usable; however it might require

customizing it further:

• Enabling TUN/TAP interface.

In openvpn two options are available for establishing tunnel between client and

server. Here if bridge is established than it required to enable TAP driver in

Linux or TUN driver for routing. This is enabled using following command: To

check whether or not the TUN/TAP drivers are properly loaded:

[root @debian]$ lsmod — grep tun Tun 12672 1

If not than first enabling using

[root@debian]$ modprobe tun

• Server is identified by writing mode as server in server config file

• Tunnel port

Default source and destination tunneling port is UDP 1194. We should keep the

default setting unless we need to change it for Firewall reasons otherwise we can

keep it. Prefer UDP ports. The use of TCP can lead to degraded performances.

So for this udp port was used.

Port to udp

Port 1194

• Next server certificate and key files are used as shown in Table II.

CHAPTER 5. SSL VPN 43

Editing the client configuration files

Like the server configuration file, first edit the ca, cert, and key parameters to point

to the files you generated in the PKI section above. Note that each client should have

its own cert/key pair. Only the ca file is universal across the OpenVPN server and

all clients.

Next, edit the remote directive to point to the hostname/IP address and port num-

ber of the OpenVPN server (if your OpenVPN server will be running on a single-NIC

machine behind a firewall/NAT-gateway, use the public IP address of the gateway,

and a port number which you have configured the gateway to forward to the Open-

VPN server).

Finally, ensure that the client configuration file is consistent with the directives

used in the server configuration. The major thing to check for is that the dev (tun or

tap) and proto (udp or tcp) directives are consistent. Also make sure that comp-lzo

and fragment, if used, are present in both client and server config files. Starting up

the VPN and testing for initial connectivity Starting the server. First, make sure the

OpenVPN server will be accessible from the internet. That means:

• opening up UDP port 1194 on the firewall (or whatever TCP/UDP port you’ve

configured), or

• setting up a port forward rule to forward UDP port 1194 from the firewall/gateway

to the machine running the OpenVPN server.

Next, make sure that the TUN/TAP interface is not firewalled. To simplify trou-

bleshooting, it’s best to initially start the OpenVPN server from the command line

(or right-click on the .ovpn file on Windows), rather than start it as a daemon or

service: Starting the client.As in the server configuration, it’s best to initially start

the OpenVPN server from the command line (or on Windows, by right-clicking on the

client.ovpn file), rather than start it as a daemon or service: openvpn [client config

file]

CHAPTER 5. SSL VPN 44

A normal client startup on Windows will look similar to the server output above,

and should end with the Initialization Sequence Completed message. Now, try a ping

across the VPN from the client. If you are using routing (i.e. dev tun in the server

config file), try:

ping 10.8.0.1

If bridging is implemented than(i.e. dev tap in the server config file), try to ping

the IP address of a machine on the server’s ethernet subnet. If the ping succeeds,

congratulations! You now have a functioning VPN. Configuring OpenVPN to run

automatically on system startup

The lack of standards in this area means that most OSes have a different way

of configuring daemons/services for autostart on boot. The best way to have this

functionality configured by default is to install OpenVPN as a package, such as via

RPM on Linux or using the Windows installer. Linux

If OpenVPN is installed via an RPM package on Linux, the installer will set up

an initscript. When executed, the initscript will scan for .conf configuration files

in /etc/openvpn, and if found, will start up a separate OpenVPN daemon for each

file.Including multiple machines on the server side when using a routed VPN (dev

tun).

Once the VPN is operational in a point-to-point capacity between client and

server, it may be desirable to expand the scope of the VPN so that clients can reach

multiple machines on the server network, rather than only the server machine itself.

For the purpose of this example, we will assume that the server-side LAN uses a

subnet of 10.66.0.0/24 and the VPN IP address pool uses 10.8.0.0/24 as cited in the

server directive in the OpenVPN server configuration file. First, you must advertise

the 10.66.0.0/24 subnet to VPN clients as being accessible through the VPN. This

can easily be done with the following server-side config file directive:

push ”route 10.66.0.0 255.255.255.0”

In a typical remote access scenario, the client machine connects to the VPN as a

single machine. But suppose the client machine is a gateway for a local LAN (such

CHAPTER 5. SSL VPN 45

as a home office), and each machine on the client LAN to be able to route through

the VPN.

For this example, first assume that the client LAN is using the 192.168.4.0/24

subnet, and that the VPN client is using a certificate with a common name of client2.

The goal is to set up the VPN so that any machine on the client LAN can communicate

with any machine on the server LAN through the VPN.Before setup, there are some

basic prerequisites which must be followed:

• The client LAN subnet (192.168.4.0/24 in our example) must not be exported

to the VPN by the server or any other client sites which are using the same

subnet. Every subnet which is joined to the VPN via routing must be unique.

• The client must have a unique Common Name in its certificate (”client2” in our

example), and the duplicate-cn flag must not be used in the OpenVPN server

configuration file.

First, make sure that IP and TUN/TAP forwarding is enabled on the client ma-

chine. Next, would be deal with the necessary configuration changes on the server

side. If the server configuration file does not currently reference a client configuration

directory, add one now:

client-config-dir ccd

In the above directive, ccd should be the name of a directory which has been pre-

created in the default directory where the OpenVPN server daemon runs. On Linux

this tends to be /etc/openvpn and on Windows it is usually in Program Files. When

a new client connects to the OpenVPN server, the daemon will check this directory

for a file which matches the common name of the connecting client. If a matching

file is found, it will be read and processed for additional configuration file directives

to be applied to the named client. The next step is to create a file called client2 in

the ccd directory. This file should contain the line:

iroute 192.168.4.0 255.255.255.0

CHAPTER 5. SSL VPN 46

This will tell the OpenVPN server that the 192.168.4.0/24 subnet should be

routed to client2. Next, add the following line to the main server config file (not

the ccd/client2 file):

route 192.168.4.0 255.255.255.0

Route and iroute statements required because that route controls the routing from

the kernel to the OpenVPN server (via the TUN interface) while iroute controls the

routing from the OpenVPN server to the remote clients. Both are necessary. Next, if

anybody would like to allow network traffic between client2’s subnet (192.168.4.0/24)

and other clients of the OpenVPN server. If so, add the following to the server config

file.

push ”route 192.168.4.0 255.255.255.0”

This will cause the OpenVPN server to advertise client2’s subnet to other con-

necting clients.The last step, and one that is often forgotten, is to add a route to

the server’s LAN gateway which directs 192.168.4.0/24 to the OpenVPN server box

(this won’t be need if the OpenVPN server box is the gateway for the server LAN).

Suppose If this step was missed and tried to ping a machine (not the OpenVPN

server itself) on the server LAN from 192.168.4.8. The outgoing ping would probably

reach the machine, but then it wouldn’t know how to route the ping reply, because

it would have no idea how to reach 192.168.4.0/24. The rule of thumb to use is that

when routing entire LANs through the VPN (when the VPN server is not the same

machine as the LAN gateway), make sure that the gateway for the LAN routes all

VPN subnets to the VPN server machine.

Similarly, if the client machine running OpenVPN is not also the gateway for the

client LAN, then the gateway for the client LAN must have a route which directs all

subnets which should be reachable through the VPN to the OpenVPN client machine.

Routing all client traffic (including web-traffic) through the VPN Overview

By default, when an OpenVPN client is active, only network traffic to and from

the OpenVPN server site will pass over the VPN. General web browsing, for example,

will be accomplished with direct connections that bypass the VPN.

CHAPTER 5. SSL VPN 47

In certain cases this behavior might not be desirable – If a VPN client to tunnel all

network traffic through the VPN, including general internet web browsing. While this

type of VPN configuration will exact a performance penalty on the client, it gives the

VPN administrator more control over security policies when a client is simultaneously

connected to both the public internet and the VPN at the same time.

Implementation

Add the following directive to the server configuration file: If VPN setup is over a

wireless network, where all clients and the server are on the same wireless subnet,

add the local flag:

push ”redirect-gateway def1” push ”redirect-gateway local def1”

Pushing the redirect-gateway option to clients will cause all IP network traffic

originating on client machines to pass through the OpenVPN server. The server will

need to be configured to deal with this traffic somehow, such as by NATing it to the

internet, or routing it through the server site’s HTTP proxy. In Linux, a command

such as this to NAT the VPN client traffic to the internet:

iptables -t nat -A POSTROUTING -s 10.8.0.0/24 -o eth0 -j MAS-

QUERADE

This command assumes that the VPN subnet is 10.8.0.0/24 (taken from the server

directive in the OpenVPN server configuration) and that the local ethernet interface

is eth0. When redirect-gateway is used, OpenVPN clients will route DNS queries

through the VPN, and the VPN server will need handle them. This can be accom-

plished by pushing a DNS server address to connecting clients which will replace their

normal DNS server settings during the time that the VPN is active. For example:

push ”dhcp-option DNS 10.8.0.1”

Will configure Windows clients (or non-Windows clients with some extra server-

side scripting) to use 10.8.0.1 as their DNS server. Any address which is reachable

from clients may be used as the DNS server address.

CHAPTER 5. SSL VPN 48

5.3 Summary

The installation of Openvpn package requires lot of attention and analysis work.

The main thing in establishing SSL VPN between client and server is to RSA key

management and common certificate generation. Also generating server’s private key

and each client’s private key. The server and client configuration files are created

with the help of sample config file. Modify sample config file according to described

in section 5.2. The client/server tunnel is tested using the ping command which shows

that both are reply each other with standard format of ping reply.

Chapter 6

Anti spam email relay server

6.1 Introduction

A lot of users see spam as annoying e-mails they can simply delete. They do not

realize their real monetary impact. Actually spam is costly for both users and the

ISP [6]. The spam cost to the ISP is more dramatic and can be seen at two levels:

an increase on the load of e-mail servers and the waste of bandwidth. In addition,

the average number of spam messages received is increasing exponentially. Figure 6.1

shows recent statistics on the number of spam messages received by one e-mail user,

and taken from [5]. Fighting spam is necessary. The lack of an efficient solution may

threaten the usability of email as a communication means.

Spam filtering can be applied at the client level or the server level. Several options

are available at the client level for spam filtering. However, such lists are used by

service providers and network administrators to block an email before it is sent; the

unintended consequence of maintaining these blacklists is that sometimes, innocent

senders are inadvertently blocked from sending legitimate emails. Spam filters are

also effective against mass mailings of spam mail.

49

CHAPTER 6. ANTI SPAM EMAIL RELAY SERVER 50

Figure 6.1: Annual Spam Evolutions[5].

6.2 Proposed Spam Filter

The proposed anti spam filtration scheme, is divided into three parts. Like every

other filtration mechanism, it also has white list dictionary which is maintained by

administrator. Black list is not necessary for system but user can edit both lists.

Secondly, system has capability to calculate spam score using spamassassin. Last

filtration chamber is consisted of Bayesian filter, based on the probabilistic approach.

The Pseudo code of Filtration is given in algorithm 1.

When an email arrives at SMTP proxy server, it checks the senders mailing ad-

dress. If it is in white list, without performing the other filtration procedure, mail will

be sent to mail box. Other wise, apply the filtering procedure, to find out detected

email is HAM or SPAM.

CHAPTER 6. ANTI SPAM EMAIL RELAY SERVER 51

Algorithm 1 Mail Message (M) Process
1. if mail address (MA) is in the White list

then
2. Mark Message (M) as HAM detected
3. Save M to mail box
4. else
5. calculate spam score(SS)
6. If SS less than Threshold value
7. then mark message as HAM
8. else
9. Send message to Naive Bayesian filter
10. if mark message(M) as SPAM
11. then change the subject as SPAM MAIL
12. else
13. send to mail box
14. endif
15. endif
16. endif

6.3 Implementation

The email MTA is postfix which has a good security record and is fairly easy to setup

right. Postfix will listen normally on port 25 for incoming mail. Upon reception it

will forward it to Amavisd-new on port 10024. Amavisd-new will then filter the mail

through different filters before passing the mail back to Postfix on port 10025 which

in turn will forward the mail to the next mail server.

Amavisd-new is a content filtering framework utilizing helper applications for

virus filtering and spam filtering. In this setup two helper applications sre used one

ClamAV for filtering virus mails and Spamassassin for filtering spam. Spamassassin

itself can function as yet another layer of content filtering framework and utilize the

helper applications Vipul’s Razor2 and DCC.

Unlike many other spam fighting technologies like RBLs and others Spamassassin

does not simply accept or reject a given email based on one single test. It uses a lot

of internal tests and external helper applications to calculate a spam score for every

CHAPTER 6. ANTI SPAM EMAIL RELAY SERVER 52

mail passed through. This score is based on the following tests:

• Bayesian filtering

• Static rules based on regular expressions

• Distributed and collaborative networks

To implenting spam filter at gateway level required to install and configure no. of

packages such as Postfix, Perdition, Amavisd-new and Spamassassin etc. and all this

packages are freely available and one can install directly in Linux environment using

apt-get install command.

6.3.1 Postfix configuration

By default, Postfix configuration files are in /etc/postfix. The two most important

files are main.cf and master.cf; these files must be owned by root. Giving someone else

write permission to main.cf or master.cf (or to their parent directories) means giving

root privileges to that person. In /etc/postfix/main.cf, it require to set up a minimal

number of configuration parameters. Postfix configuration parameters resemble shell

variables, with two important differences: the first one is that Postfix does not know

about quotes like the UNIX shell does.

The myorigin parameter specifies the domain that appears in mail that is posted

on this machine. The default is to use the local machine name, $myhostname, which

defaults to the name of the machine. For the sake of consistency between sender and

recipient addresses, myorigin also specifies the domain name that is appended to an

unqualified recipient address. Examples (specify only one of the following):

/etc/postfix/main.cf:

myorigin = $myhostnamedefault: send mail as ”user@$myhostname”)

myorigin = $mydomain (probably desirable: ”user@$mydomain”)

The mydestination parameter specifies what domains this machine will deliver

locally, instead of forwarding to another machine. The default is to receive mail for

CHAPTER 6. ANTI SPAM EMAIL RELAY SERVER 53

the machine itself.In this default setting is as below:

/etc/postfix/main.cf:

mydestination = $myhostname localhost.$mydomain localhost

mydestination = $myhostname localhost.$mydomain localhost $mydomain

mydestination = $myhostname localhost.$mydomain localhost www.$mydomain

ftp.$mydomain

Postfix will forward mail from clients in authorized network blocks to any destina-

tion. Authorized networks are defined with the mynetworks configuration parameter.

The default is to authorize all clients in the IP subnetworks that the local machine is

attached to.If machine is connected to a wide area network then by default mynet-

works setting may be easily done. specify only one of the following:

/etc/postfix/main.cf:

mynetworks style = subnet (default: authorize subnetworks)

mynetworks style = host (safe: authorize local machine only)

mynetworks = 127.0.0.0/8 (safe: authorize local machine only)

mynetworks = 127.0.0.0/8 168.100.189.2/32 (authorize local machine)

Postfix tries to deliver mail directly to the Internet. According to local conditions.

For example, the system may be turned off outside office hours, it may be behind a

firewall, or it may be connected via a provider who does not allow direct mail to the

Internet. In those cases it needs to configure Postfix to deliver mail indirectly via a

relay host. Specify only one of the following:

/etc/postfix/main.cf: relayhost = (default: direct delivery to Internet)

relayhost = $mydomain (deliver via local mailhub)

relayhost = [mail.$mydomain] (deliver via local mailhub)

relayhost = [mail.isp.tld] (deliver via provider mailhub)

The Postfix system reports problems to the postmaster alias using different classes

of notification.The meaning of the classes is as follows:

bounce Inform the postmaster of undeliverable mail. Either send the postmaster

a copy of undeliverable mail that is returned to the sender, or send a tran-

CHAPTER 6. ANTI SPAM EMAIL RELAY SERVER 54

script of the SMTP session when Postfix rejected mail. For privacy reasons, the

postmaster copy of undeliverable mail is truncated after the original message

headers. This implies ”2bounce” (see below). See also the user relay feature.

The notification is sent to the address specified with the bounce notice recipient

configuration parameter (default: postmaster).

2bounce: When Postfix is unable to return undeliverable mail to the sender, send

it to the postmaster instead (without truncating the message after the primary

headers). The notification is sent to the address specified with the 2bounce notice recipient

configuration parameter (default: postmaster).

delay: Inform the postmaster of delayed mail. In this case, the postmaster receives

message headers only. The notification is sent to the address specified with the

delay notice recipient configuration parameter (default: postmaster).

policy: Inform the postmaster of client requests that were rejected because of pol-

icy restrictions. The postmaster receives a transcript of the SMTP session.

The notification is sent to the address specified with the error notice recipient

configuration parameter (default: postmaster)

protocol: Inform the postmaster of protocol errors (client or server side) or attempts

by a client to execute unimplemented commands. The postmaster receives a

transcript of the SMTP session. The notification is sent to the address specified

with the error notice recipient configuration parameter (default: postmaster).

resource: Inform the postmaster of mail not delivered due to resource problems (for

example, queue file write errors). The notification is sent to the address specified

with the error notice recipient configuration parameter (default: postmaster).

Proxy/NAT external network addresses

Some mail servers are connected to the Internet via a network address translator

(NAT) or proxy. This means that systems on the Internet connect to the address of

CHAPTER 6. ANTI SPAM EMAIL RELAY SERVER 55

the NAT or proxy, instead of connecting to the network address of the mail server.

The NAT or proxy forwards the connection to the network address of the mail server,

but Postfix does not know this.

If a Postfix server is run behind a proxy or NAT, then need to configure the

proxy interfaces parameter and specify all the external proxy or NAT addresses that

Postfix receives mail on.

Postfix logging

Postfix daemon processes run in the background, and log problems and normal activ-

ity to the syslog daemon. The syslog process sorts events by class and severity, and

appends them to logfiles. The logging classes, levels and logfile names are usually

specified in /etc/syslog.conf. At the very least you need something like:

/etc/syslog.conf:

mail.err /dev/console

mail.debug /var/log/maillog

Code

First postfix is configured to listen on port 10025 and remove most of the restrictions

as they have already been applied by the postfix instance listening on port 25. Also

we ensure that it will only listen for local connections on port 10025. This is done by

adding d the following code at the end of /etc/postfix/master.cf As shown in figure

6.2.

The file master.cf tells the postfix master program how to run each individual

postfix process. More info with man 8 master. Next it needs the main postfix instance

listening on port 25 to filter the mail through amavisd-new listening on port 10024.

It also needs to set the next hop destination for mail. Tell Postfix to filter all mail

through an external content filter and enable explicit routing to let Postfix know

where to forward the mail to.

CHAPTER 6. ANTI SPAM EMAIL RELAY SERVER 56

Figure 6.2: Modification in master.cf file.

Postfix has a lot of options set in main.cf as shown in figure6.3. For further expla-

nation of the file consult manpage postconf or the same online Postfix Configuration

Parameters.The format of the transport file is the normal Postfix hash file. Mail to

the domain on the left hand side is forwarded to the destination on the right hand

side. Code for transport file is shown in figure6.3.

6.3.2 Configuring Amavisd-new

Amavisd-new is used to handle all the filtering and allows you to easily glue together

severel different technologies. Upon reception of a mail message it will extract the

mail, filter it through some custom filters. It handles white and black listing, fil-

ter the mail through various virus scanners and finally it will filter the mail using

SpamAssassin.

Amavisd-new itself has a number of extra features.It identifies dangerous file at-

tachments and has policies to handle them per-user, per-domain and system-wide

CHAPTER 6. ANTI SPAM EMAIL RELAY SERVER 57

Figure 6.3: update in main.cf and transport file.

policies. Edit the following lines in /etc/amavisd.conf as in figure6.4.

6.3.3 Configuring Spamassassin

Amavis is using the Spamassassin Perl libraries directly so there is no need to start

the service. Also this creates some confusion about the configuration as some Spa-

massassin settings are configured in /etc/mail/spamassassin/local.cf and overridden

by options in /etc/amavisd.conf. Code for local.cf is shown in figure 6.5.

6.3.4 Postfix Anti-Spam settings

When a client (a computer trying to send us mail) connects to Postfix and begins a

communication session, Postfix records information about that session. Prior to the

point where Postfix accepts mail from that session for delivery, we have the option of

evaluating the session and rejecting the mail by setting some restrictions in main.cf.

The configuration below is actually very conservative, allowing most email to come

in the front door so amavisd-new and Spamassassin have their shot at it. Adding addi-

tional restrictions will increase the likelihood of rejecting valid email from improperly

configured computers. Among other things, getting this stuff wrong could reject le-

gitimate mail and/or cause us to become an open relay. Note that restrictions don’t

always restrict, some also permit. Postfix restriction stages are as follows, and are

CHAPTER 6. ANTI SPAM EMAIL RELAY SERVER 58

Figure 6.4: update in main.cf and transport file.

processed in the following order:

• smtpd client restrictions

• smtpd helo restrictions

• smtpd sender restrictions

• smtpd recipient restrictions

• smtpd data restrictions

We are only going to place entries in the last three restriction stages. Restriction

stages are processed in this order regardless of the order listed in main.cf

smtpd sender restrictions

This restriction stage restricts what sender addresses this system accepts in MAIL

FROM: commands (the envelope sender). We will place three tests (restrictions) in

CHAPTER 6. ANTI SPAM EMAIL RELAY SERVER 59

Figure 6.5: code for Spamassassin.

this restriction stage.

A restriction stage holds a list of restrictions (tests). Typically, tests evaluate to

either DUNNO, REJECT, or OK. DUNNO means ”I don’t know what to do, let the

next test decide”. REJECT simply rejects the mail. OK means no more tests are

performed in this restriction stage, tests continue with the next stage (if any). reject *

type tests typically evaluate to REJECT or DUNNO. permit * type tests typically

evaluate to OK or DUNNO, and check * access type tests can perform a variety of

actions. The illustration shows the basic logic.

1) check sender access Postfix compare the envelope sender to entries in an /etc

/postfix /sender access database and act upon those entries if a match is found.

It also define what action is taken there (OK, DUNNO, REJECT etc.) on a

sender by sender basis. If the sender is not listed in the file, the test evaluates

to DUNNO, and the next test is performed.

2) reject non fqdn sender Reject when the envelope sender mail address is not

in the proper format. Remember, the ”envelope sender” is what the sending

mail server gives in the ”MAIL FROM:” line during the SMTP session, not the

CHAPTER 6. ANTI SPAM EMAIL RELAY SERVER 60

header ”From:” line. ”Joe” is not allowed to send us mail (because we can’t

reply to ”Joe”) but ”Joe@example.com” is at the very least an email address. If

the sender does not get rejected at this point, this test evaluates to ”DUNNO”.

3) reject unknown sender domain Reject when the envelope sender’s domain

part of the mail address has no DNS ”A” or ”MX” record at all. This set-

ting kicks about 35% of the mail coming in my mail server. It is common for

spammers to use a bogus domain name so they don’t have to deal with the

backlash of rejected mail. It is also important for us not to fill up our queue

with bounce notices that can never be delivered due to the fact that the sender’s

domain does not even exist. If the sender’s domain has an ”A” or ”MX” record,

this test will also evaluate to ”DUNNO”.

smtpd recipient restrictions

The access restrictions that the Postfix SMTP server applies in the context of the

RCPT TO: command. This refers to the ”envelope recipient” which is what the client

gave in the ”RCPT TO:” line during the SMTP session, not the header ”To:” line.

Restrictions that would normally go in these prior restriction stages can alter-

nately be placed in smtpd recipient restrictions. Therefore, some people prefer to

place all the smtpd * restrictions that would normally go in prior restriction stages

into smtpd recipient restrictions (in the proper order) and leave the prior stages

unconfigured (empty). In our case it is safer to use smtpd sender restrictions and

smtpd recipient restrictions. Those specific restrictions(tests) are placed in smtpd

recipient restrictions:

1)permit mynetworks Allows machines listed in ”mynetworks” to skip the rest

of the tests in this restriction stage (permit = OK). In other words, it exits

this stage and is tested in the next stage (smtpd data restrictions). Because

permit mynetworks is placed in front of reject unauth destination, this means

machines in $mynetworks are allowed to relay mail to any domain. Without

CHAPTER 6. ANTI SPAM EMAIL RELAY SERVER 61

this, we would only be able to send mail to our own domain(s). If the IP address

of the sender is not listed in $mynetworks, the test evaluates to ”DUNNO” and

continues on to the next test (reject unauth destination).

2) reject unauth destination This, along with permit mynetworks is used for re-

lay control. This setting, in essence, means that mail bound for any domain

that we have not configured our machine to accept mail for will be rejected. If

the domain is listed in relay domains, this test evaluates to ”DUNNO” and the

session is allowed to go on to the next test (if any). Just like ”mynetworks”,

this setting is extremely critical.

By placing permit mynetworks directly ahead of reject unauth destination,

we are assured that we can send mail to domains other than ours, but we will

only accept mail addressed to us from computers outside our network, thus

permit mynetworks and reject unauth destination work as a team.

smtpd data restrictions

Optional access restrictions that the Postfix SMTP server applies in the context of

the SMTP DATA: command. Like smtpd recipient restrictions, this is a restriction

stage.

6.3.5 Postfix content filtering control files

Postfix has /etc/postfix/header checks and /etc/postfix/body checks files. These files

will list certain ”strings” of text, and tell Postfix what to do with mail if it encounters

these strings in email headers or the body of the message.

header checks: Optional (only use if you intend on using header checks): postconf

-e ”header checks = pcre:/etc/ postfix/header checks”

body checks: Optional (only use if you intend on using body checks): postconf -e

”body checks = pcre:/etc /postfix/body checks”

CHAPTER 6. ANTI SPAM EMAIL RELAY SERVER 62

content filte: Here’s where we tell Postfix to use amavisd-new. postconf -e ”content

filter = smtp -amavis: [127.0.0.1]:10024”

6.3.6 Autolearning and sidelining emails

If the spam score is very low than there is the possibility of some false positives.

These are filtered into the folder likely-spam. These are manually reviewed and any

false positive is moved to the redeliver mailfolder. Now here we required to write

redeliver.pl script and copy to the /usr/local/bin/.

Code Listing 6.14: redeliver.pl #!/usr/bin/perl -w

Redelivers mail using a modified version of smtpclient

By: Jens Hilligsoe ¡gentoo@hilli.dk¿

use strict;

if(!($#ARGV == 0)) {

die ”Usage:\n$0 maildir mail\n”;

}

my $mail = $ARGV[0];

my $to = ””;

my $from = ””;

sub prunefile ($);

Retrieve To and From envelope adresses open (MAIL, $mail) or die

”Could not open $mail: $?\n”; while(< MAIL >) {

if(($to eq ””) —— ($from eq ””)) {

chop;

(my $key, my $value) = split (/:/);

if($key eq ”X-Envelope-To”) {

$to = $value;

after

}

CHAPTER 6. ANTI SPAM EMAIL RELAY SERVER 63

if($key eq ”X-Envelope-From”) {

$from = $value;

if($from eq ””) {

$from = ”postmaster”;

}

}

}

}

if($to eq ””) {

prunefile($ARGV[0]); # Just nuke it if to is empty

} else {

my $redelivercmd = ”cat $ARGV[0] — smtpclient -F -S 127.0.0.1 -P 10025

-f $from $to”;

unless (system($redelivercmd) == 0) {

die ”Unable to redeliver: $?”;

}

prunefile($ARGV[0]); # Clean up

}

sub prunefile ($) {

my ($file) = @ ;

unless (unlink $file) {

die ”Unable to remove mail: $?”;

}

}

CHAPTER 6. ANTI SPAM EMAIL RELAY SERVER 64

6.4 Result

Antispam filter is implemented at gateway level due to this it required to setup to

two proxy server for receiving and sending mail. Here postfix is used as SMTP proxy

server and perdition as POP/IMAP proxy server. Spamassassin is used to calculate

spam score and based on this HAM or SPAM is decided. Amavisd-new is used for

content filter such as body checks, header checks etc.

No MTA scores well by all measures. The needs of users vary greatly and some

criteria are mutually orthogonal. Commonly cited MTA selection criteria are:Ease of

administration, Security, Performance and Long-term viability.

Postfix is better than Sendmail for implementing spam filter. Here following table

shows the comparison between different Mail Transfer Agents(MTAs). As shown in

below figure6.6, Postfix is better than other MTAs according to the overall perfor-

mance criteria.

Figure 6.6: Comparison between different MTAs.

CHAPTER 6. ANTI SPAM EMAIL RELAY SERVER 65

In this implement spamassassin is used for calculating spam score. It is important

to set particular threshold value. For this a series of experiments are carried out for

spam detection If it is not properly define than increase in false positive and false

negative. As graph shows comparative result at different threshold values. Here we

could got good result at threshold value 5.0 as shown in figure 6.7.

Figure 6.7: Performance of Spamassassin and proposed method

Chapter 7

Conclusion and Future Scope

7.1 Conclusion

In bandwidth management HTB classful qdisc is more preferable from implementation

point of view, due to its classful qdisc so we can divide one class into further subclass

so better control over traffic. Using openvpn Linux free distribution package we can

establish more secure virtual private network, due to it uses the SSL/TLS protocol.

In the Antispam, spamassassin is used for calculating spam score. It is important

to set particular threshold value. If it is not properly define than increase in false

positive or false negative. Antispam gives good result at threshold value 5.0.

7.2 Future Scope

To improve the performance of the application several approaches can be made. First,

a thorough examination of the characteristics of the organization because organiza-

tions are vary in size. Second, attempts should be made in concert with Network

Administrators to determine how fairy distribute the available bandwidth between

users and how to apply different policies to control spam mail. Finally, Some new

modifications can make this system more versatile. In the future, we evaluate the

system, analyze the system in a formal way and investigate the offline change of indi-

66

CHAPTER 7. CONCLUSION AND FUTURE SCOPE 67

vidual addresses. Future improvement may be the integration of more modules into

the system to look more facets of the email. The images, sender and receiver of email

and subject part may help us to further classify a mail as a spam or ham. Most of the

spam emails use the URL of some website. If we can make such a powerful system

which can follow the URL and parse the text inside the website, this can also lead us

to identify the spam behavior.

References

[1] W. Diffie, M. E. Hellman Exhaustive Cryptanalysis of the NBS Data Encryption
Standard. Computer, pp.[74-84], June 1977.

[2] Yang Kuihe, Chu Xin Implementation of Improved VPN Based on SSL. Hebei
University of Science and Technology, Shijiazhuang 050054, China, 2000.

[3] B. Braden, D. Clark, S. Shenker Integrated Services in the Internet Architecture:
an Overview. Request for Comments (RFC) 1633, IETF, June 1994.

[4] Sally Floyd, Van Jacobson Link-sharing and Resource Management Models for
Packet Networks. Transactions on Networking, Vol. 3 No. 4, August 1995.

[5] Mingjun Lan, Wanlei Zhou Spam Filtering based on Preference Ranking. School
of Information Technology, Deakin University, Australia, 2005.

[6] Symantec Internet Security Threat Report Trends for January 06-June-06 Syman-
tec white paper, Volume X, Sept 2006.

[7] Usman Tariq, ManPyo Hong, Wonil Kim Quick Fix, an expeditious approach to
diminish SPAM. Technical report, Royal Institute of Technology, 2003.

[8] Banit Agrawal, Nitin Kumar, Mart Molle Controlling Spam Emails at the Routers.
Department of Computer Science & Engineering University of California, River-
side, California, 92521, 2005.

[9] Minh Tran, Grenville Armitage End-users’ resource consumption of spani and a
3D anti-spani evaluation framework. Centre for Advanced Internet Architectures
Swinburne University of Technology Melbourne, Australia, 2006.

[10] J. Jung, E. Sit An Empirical Study of Spam Traffic and the Use of DNS Black
Lists. Empirical Study of Spam Traffic and the Use of DNS Black Lists”, Proc. of
the 4th ACM SIGCOMM Conference on Internet Measurement, Sicily, Itaty, Oct
2004.

[11] G. Lindberg Anti-Spam Recommendations for SMTP MTAs. RFC 2505, Internet
Engineering Task Force, Feb 1999

68

REFERENCES 69

[12] Danilo Michalczuk Taveira, Otto Carlos Muniz Bandeira Duarte A Monitor Tool
for Anti-spam Mechanisms and Spammers Behavior. P.O. Box 68504 - 21945-970,
Rio de Janeiro, RJ, Brazil, 2008

[13] S. L. Pfleeger, G. Bloom Canning spam: Proposed solutions to unwanted email.
IEEE Security & Privacy Magazine, vol. 3, no. 2, pp. 4047, Mar. 2005.

	Certificate
	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Abbreviation
	Introduction
	General Overview
	Objective of Study
	Scope of Work
	Organization of Thesis

	Literature Survey
	Elements of Traffic Control
	Shapping
	Scheduling
	policing
	Tokens and Buckets

	Linux Traffic Control
	Introduction
	Queuing Discipline(qdisc)
	Class
	Filter
	Handle

	Virtual Private Network
	Types of VPN

	Antispam(spam filter)
	Anti Spam Technologies

	Project Archicture
	Introduction
	Versioning System
	Project Architecture
	Installation and Configuration
	Installation and configuration of iproute2tool package
	Kernel Configuration and Compilation

	Bandwidth Management
	Introduction
	Advantages
	Disadvantages
	Implementation
	iproute2 tools(tc)
	Classful Queuing Disciplines
	Hierarchical Token Bucket(HTB)

	Summary

	SSL VPN
	Introduction
	Implementation of SSL VPN using Openvpn
	Openvpn
	Installation and configuration of Openvpn
	Creating configuration file for clients and server

	Summary

	Anti spam email relay server
	Introduction
	Proposed Spam Filter
	Implementation
	Postfix configuration
	Configuring Amavisd-new
	Configuring Spamassassin
	Postfix Anti-Spam settings
	Postfix content filtering control files
	Autolearning and sidelining emails

	Result

	Conclusion and Future Scope
	Conclusion
	Future Scope

	References

