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Abstract

With technological advancements, several real-world applications generate massive

amount of data. Such data, also known as data streams, are continuously arriving at an

unprecedented rate and contain valuable knowledge. Due to their effectiveness in sup-

porting decision-making processes and knowledge discovery, the data mining techniques

have attracted considerable interest and attention of research communities. Extracting

patterns from such voluminous data streams requires development of new algorithms or

modifications in the traditional data mining algorithms. In recent years, data stream

classification has been an active area of research in data stream mining and is the focus

of this work.

It is apparent that the power of these mining techniques may breach the privacy

of individuals to whom the data refers and the field of privacy-preserving data mining

(PPDM) has emerged in response to this issue. Specifically, PPDM techniques aim to

perform a trade-off between efficiency in data mining and exposure (direct or via inference)

of sensitive information in the original data. Further, not only the original data but also

the data mining output can lead to disclosure of sensitive information. But when the data

mining output reveals no private patterns, it can be reliably claimed that the privacy of

underlying data is protected. Specifically, when the final goal is to release the output of

data mining (a model), its effectiveness in preserving privacy is of the utmost concern.

This research work focuses on preserving output-privacy, that is, on preventing inference

using the released classifier.
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But, data stream classification and privacy-preservation are two conflicting goals be-

cause the data stream classifier should be ready to predict at any point and has memory

limitations whereas privacy-preserving methods may require multiple scans over the data.

Hence, the crucial issue of privacy-preserving data stream classification (PPDSC) is emerg-

ing as a novel research area. This work proposes a systematic method named Diverse and

Anonymized HOeffding Tree (DAHOT) to address this issue. The algorithm uses Hoeffd-

ing tree as a base classifier for classifying data streams and a variant of k -anonymity as

well as l-diversity principles to preserve the privacy of the output classifier.

Further, advancement in networking technologies has triggered mining of distributed

data. Different organizations (data holders) want to undertake a joint data mining task

to obtain certain global patterns. Such collaboration is essential because of the mutual

benefits it brings. However, free sharing of data is restricted due to privacy and se-

curity concerns, leading to the need of privacy-preserving distributed data mining The

work focuses on horizontally partitioned (homogeneously distributed) data as numerous

applications fall under this data model.

Since the work presented in this thesis targets classification of data streams, the

emerged problem is framed as privacy-preserving classification of horizontally partitioned

data streams. Several applications from diverse domains like credit-card fraud detec-

tion, disease outbreak detection, loan approval, etc. are examples of privacy-preserving

classification of horizontally partitioned data streams.

As a solution, a novel framework is proposed in this thesis, where each participating site

(data holder) induces a DAHOT classifier and third-party combines these local classifiers

to form a global classifier. No private information is to be disclosed to the merger site

too. Within this framework, a method named DAHOT-GPeCT is proposed that uses

Genetic Programming (GP) for induction of a global classifier at the merger site from

the local DAHOT classifiers induced by participating parties. Furthermore, a method

named DAHOT-GPeCT-Ensemble, which is an extension of DAHOT-GPeCT is proposed.

DAHOT-GPeCT-Ensemble uses a combination of GP and Ensemble learning to obtain a

global privacy-preserving classifier from horizontally partitioned data streams.
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Experimental results on synthetic and real data streams indicate that the proposed

approaches have been effective in accurately classifying the horizontally partitioned data

streams while preserving the required privacy.

Keywords: Classification, Data Streams, Output-Privacy-preservation, Horizontal Par-

titioning, Anonymization, Genetic Programming, Ensemble Learning.
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Chapter 1

Introduction

1.1 Motivation

In recent years, advancement in networking technologies and explosion in the availability

of data from various sources has triggered abundant opportunities for collaboration, par-

ticularly collaboration in data mining (Zhan; Aggarwal and Yu). Several organizations

related to financial services, healthcare, e-commerce, market analysis, national security,

etc. are willing to undertake a joint data mining task to obtain certain global patterns

because of the mutual benefits it brings. However, due to legal constraints or competition

concerns, these organizations are reluctant to disclose their private data to each other or

to any third party.

Two such realistic scenarios are as follows (Zhan; Zhuojia and Xun): 1) Several

supermarkets want to perform data mining on the joint data set representing buying

behavior of their customers. As these businesses are competitors, neither of them is

willing to reveal information of its customers to each other, whilst they are aware of

the benefit brought by this collaboration. 2) Multiple pharmaceutical companies want

to collaboratively conduct data mining to discover meaningful patterns among human

genes but are disinclined to share their raw data with other parties participating in the

collaboration.
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Conventionally, the identifying attributes like names, addresses and the like are trimmed

out from the original dataset to assure that individuals’ private information is not inferred.

Some privacy regulations such as HIPAA laws (HIPAA) require that medical data should

be released only after sufficient anonymization (Aggarwal and Yu). But, simply omitting

the identifying attributes is not sufficient as the data also contains attributes depicting

other personal information like date of birth, gender, zip code, etc. Such attributes, called

quasi-identifiers (Aggarwal and Yu) can be linked with information from other publically

available sources and the privacy of individual records can be breached.

For example, several hospitals may wish to collaboratively participate in a research

that studies characteristics of various diseases by releasing data about their patients’

diagnosis. Although the raw data, also called microdata is de-identified before releasing

or applying data mining algorithm, the sensitive details and medical history of an 82 years

old female patient living in a sparsely populated region may be identified by combining

this individual’s gender, age and zip code with an external dataset of voting registration.

As such threats against privacy are increasing; it is required to reconsider data mining

algorithms from the privacy-preservation point of view and the field of privacy-preserving

data mining (Agarwal and Srikant; Lindell and Pinkas; Kantarcioglu; Zhang, Wang, and

Zhao) has emerged in response to this issue. Formally, privacy-preserving data mining

(PPDM) techniques aim to perform a trade-off between efficiency in data mining and

exposure of sensitive information of the subjects. Since multiple parties, each with its

own set of records is involved in the data mining process, the problem is commonly

referred to as privacy-preserving distributed data mining.

Recent developments in the field of privacy-preserving data mining focus on two ma-

jor subjects: preserving the privacy of homogeneously distributed (or horizontally par-

titioned) data and preserving the privacy of heterogeneously distributed (or vertically

partitioned) data.

Most of the previous work in privacy-preserving data mining considers only static data

(Aggarwal and Yu; Hwanjo, Xiaoqian, and Vaidya; Agarwal and Srikant; Lindell and

Pinkas; Kantarcioglu, Jin, and Clifton; Kantarcioglu; Friedman, Wolff, and Schuster;

2
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Tian et al.). Meanwhile, in today’s digital era, massive data streams are being generated

through various sources. Extracting patterns and models from such voluminous data

streams, known as data stream mining is a challenging task.

Several real-world applications of privacy-preserving data mining and data stream min-

ing are associated with classification task . Thus, this work focuses on privacy-preserving

data stream classification and in particular, privacy-preserving distributed data classifica-

tion where data is distributed among collaborating parties (Aggarwal and Yu; Hwanjo,

Xiaoqian, and Vaidya; Lindell and Pinkas). The focus is on homogeneously distributed

data as numerous applications fall under this data model.

For example, several banks collect transactional information for credit card customers

where the features collected, such as age, gender, balance, average monthly deposit, etc.

are the same for all banks (Hwanjo, Xiaoqian, and Vaidya). Identifying whether a partic-

ular transaction is fraudulent or not is a problem called “privacy-preserving classification

of homogeneously distributed data” where the privacy of customers’ data needs to be pro-

tected. Further, due to the growing threat of identity theft, credit card loss, etc., credit

card transaction data are analyzed as data stream and the credit card fraud detection can

be posed as a privacy-preserving horizontally partitioned data stream classification prob-

lem. Many such problems that abound in various diverse domains demand an efficient

approach for privacy-preserving classification of horizontally partitioned data streams.

As another example, in medical application, continuous streams of data from hospitals

or pharmacy stores can be used to detect any abnormal disease outbreaks or biological

attacks (Aggarwal). Several insurance companies and hospitals analyze data on disease

incidents, long-term effects of the disease, patient background, seriousness of the disease,

etc. Organizations like the Center for Disease Control aim to identify disease outbreaks by

training a classifier across the data streams (homogeneous) arriving at various hospitals

(Aggarwal and Yu). Such organizations are seeking patterns that are indicative of disease

outbreaks; which they use to classify a query instance as an outbreak or the opposite.

Moreover, the new viruses or diseases may emerge on the go, while the new symptoms

and/or new medical cases must be taken into consideration and added to the current learn-

3
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ing model accordingly. Detecting disease outbreaks before-time prevents life-threatening

infectious diseases like bird flu, swine flu, dengue, as well as threats of bioterrorism. This

has made disease surveillance a national priority. Hence it is important and beneficial

to have a privacy-preserving horizontally partitioned data stream classification technique

that is capable of classifying potential outbreaks in medical data streams while respecting

the private details of the patients.

Such and similar applications inspire to propose solutions for the task of privacy-

preserving classification of horizontally partitioned data streams. But, data stream clas-

sification and privacy-preservation are divergent tasks because privacy-preserving meth-

ods may require multiple scans over the data which is not suitable for the voluminous

data streams. Hence, the crucial issue of privacy-preserving horizontally partitioned data

stream classification serves as a motivation for this work.

1.2 Objectives

Privacy-preserving classification of horizontally partitioned data streams is a requisite to

several real-world applications like disease outbreak detection, credit-risk classification,

etc. But data stream classification and privacy-preservation are two conflicting goals

which get even complex when data is distributed among several nodes. The objectives of

the work documented in this thesis are:

• To develop an efficient method for preserving output-privacy in data stream classi-

fication. That is, to trade-off accuracy and efficiency in data stream classification

while preventing privacy-breach through record linkage and attribute linkage at-

tacks.

• To develop a systematic method for privacy-preserving classification of horizon-

tally partitioned data streams. That is, to optimize output-privacy-preserving data

stream classification while producing a global model from horizontally partitioned

data streams.

4
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1.3 Scope of the Work

The work aims to develop an efficient method for privacy-preserving classification of dis-

tributed data streams. The scope of the work covers the following:

The work focuses on P data streams (denoted by D1, D2, . . . , DP respectively) arriving

at P different nodes (i.e. P parties). The data owners wish to collaboratively construct a

classifier on the union of their data streams. The work assumes that there are 3 parties

(P = 3) who want to collaborate.

The data stream comprises of a sequence of records: {x 1, x 2, . . . , xn}, where x 1 is the

first record and xn is the record that recently arrived. Each record is a multi-dimensional

feature vector with d attributes: {A1, A2, . . . , Ad}. Some of the records in the data

stream have an associated class label Ci ∈ {C 1, C 2, . . . , Cm} forming a set of training

instances. The class label associated with the remaining instances is to be predicted

using the classifier induced from the training instances. The class label is considered as

a sensitive attribute whereas the other attributes are considered as quasi-identifiers; a

scenario prevalent in several applications. The work considers that all these distributed

streams have the same schema. That is, the data streams are horizontally partitioned.

The database owner wishes to ensure that the sensitive information in the original

data should not be revealed through either direct/indirect (via linking and inference)

exposure and more importantly, through the data mining output. That is, the focus is on

preserving output-privacy (preserving inference using the released classifier) to prevent

record-linkage and attribute-linkage attacks.

There exists a central third-party that combines the results of the participating parties.

No private information to be disclosed to the merger site too. Further, the channel between

the participating sites and the merger site is assumed to be secured.

The work focuses on the problem of credit-risk classification in banking sector, an

important application of privacy-preserving classification of horizontally partitioned data

streams. Hence, all the experiments are conducted on data streams relevant to credit-risk

classification with each data stream having only two classes.

5
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The proposed approach is compared (for performance evaluation) with few relevant

methods which are described in respective chapters of the work. Since no direct methods

for privacy-preserving classification of horizontally partitioned data streams exist in lit-

erature, the performance of the proposed approaches is compared with approaches that

combine data stream classification and privacy-preservation techniques.

1.4 Significant Contributions

The work in the thesis addresses the issue of privacy-preserving data stream classification

and proposes an algorithm named DAHOT for the same. DAHOT takes as an input the

data stream and induces an output-privacy-preserving decision tree classifier that pro-

vides high classification accuracy with small information loss, under the given anonymity

and diversity requirement. An empirical evaluation of DAHOT indicates its efficacy in

classifying massive data streams while preserving the required privacy.

Due an increasing demand of collaboration among competing business organizations

for obtaining global patterns from data, the issue of privacy-preserving classification of

horizontally partitioned data streams needs high attention. As an another contribution,

the work in this thesis proposes a Genetic Programming based approach (named DAHOT-

GPeCT) that evolves a global classifier from the privacy-preserving data stream classifiers

(DAHOTs) induced by parties participating in the collaboration.

The work addresses the problem of decision-making in banking sector. The novelties

introduced in application of Genetic Programming, which include initializing population

using decision tree classifiers, variable size population, reverse rank selection strategy for

mutation, etc. contribute extensively in such and similar decision-making.

Further, an approach that uses ensemble-based learning along with Genetic Program-

ming is proposed to contribute an effective way of privacy-preserving classification of hor-

izontally partitioned data streams. This approach, named DAHOT-GPeCT-Ensemble,

uses a novel fitness function that results into an improved performance of the global

classifier.

6
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1.5 Thesis Organization

Rest of the thesis is organized as follows:

Chapter 2 (Background): This chapter presents the fundamentals of the concepts used

in this work. The work in literature related to the four major components of the work are

discussed. But, the literature specific to the usage of these components to accomplish the

objectives of the work, is discussed, whenever the corresponding chapter is elaborated.

Chapter 3 (Empirical Evaluation of Preliminary Components): This chapter presents

an empirical evaluation of existing methods for two major components that form the

heart of the work: data stream classification and privacy-preserving data classification.

Through experiments, this chapter identifies suitable techniques for each component.

Chapter 4 (Proposed Framework): This chapter presents the proposed framework to

accomplish the goal of privacy-preserving classification of horizontally partitioned data

streams. It describes the application targeted in this work, presents the relevant literature

and covers the generic view of proposed approach as well as details of the implementation

environment.

Chapter 5 (Preserving Output-Privacy in Data Stream Classification): This chapter

proposes an algorithm to induce output-privacy-preserving classifier from the data streams

arriving at individual sites. The proposed algorithm is implemented and compared with

similar existing methods for performance evaluation.

Chapter 6 (Genetic Programming-Based Privacy-Preserving Classification of Horizon-

tally Partitioned Data Streams): This chapter proposes a genetic programming based ap-

proach to induce a privacy-preserving classifier from horizontally partitioned data streams.

This chapter also discusses the experimental results and compares it with results obtained

using similar existing techniques.

Chapter 7 (Ensemble-Based Privacy-Preserving Classification of Horizontally Parti-

tioned Data Streams): A technique that uses genetic programming, as well as ensemble-

based learning is proposed in this chapter. The chapter also proposes a novel fitness

function. Further, through empirical analysis, this chapter proves the effectiveness of

7
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proposed solution in addressing the work’s objectives.

Chapter 8 (Conclusion and Future Work): In this chapter, the conclusions derived

from the literature survey and analysis of experimental results conducted throughout the

work are presented. Future scope of work in this field is also stated in this chapter.

Works Cited section consists of related research work cited in the thesis.

8
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Background

This chapter discusses four major components that compose the proposed work: 1) Data

stream classification, 2) Privacy-preserving data classification, 3) Genetic Programming

and 4) Ensemble learning. A detailed study on each of these components is presented

here but the literature specific to usage of these components to address issues arising in

the proposed approach is presented in the subsequent chapters.

2.1 Data Stream Classification

The advancements in hardware and software technologies have facilitated several appli-

cations to generate a vast amount of data. Such data, also known as data streams, are

characterized as continuously arriving at unprecedented rates (Aggarawal). Examples of

data streams include internet traffic streams, stock trading streams, streams generated

by e-commerce sites, data generated from scientific projects, supermarket data, multi-

media data, medical data streams, data streams generated through industry production

processes, remote sensor and video surveillance streams, etc.

Since last few decades, the data mining techniques have been successfully applied to

several real-world problems. As these data streams contain valuable knowledge, there is

an enormous demand for analyzing and mining them. But, the traditional data mining

methods assume that the data can be scanned multiple times in order to mine it. Due to
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its large volume, performing several scans on it is not cost-effective. Extracting patterns

and models from such continuous data streams, called data stream mining, is a challenging

task.

One data mining task that has been an active area of research from the perspective of

data streams is that of classification. Applications of data stream classification include e-

mail spam detection, credit card fraud detection, malicious web page detection, intrusion

detection, detection of any abnormal disease outbreaks from continuous streams of data

arriving at hospitals, etc. Predicting class label of the incoming data streams, that is,

data stream classification is an emerging issue because the classification algorithm needs

to be executed endlessly.

Several issues arise in addressing efficient classification of data streams. Some of the

primary research issues are discussed here (Aggarawal; Golab and Ozsu; Abdulsalam,

Skillicorn, and Martin; Bifet et al.; and Wang et al.).

• Handling the continuous flow of data streams: The intrinsic feature of data streams

is its speedy and continuous flow. The traditional data mining methods require

all the data collected before applying mining tasks. A data stream classification

method should be able to adapt with the data arriving continuously at varied rates.

• Interleaved labeled and unlabeled instances: Since the conventional classification

techniques assume all the data collected at hand before mining, it divides the entire

classification process into three phases: a training phase that uses labeled data to

train a classifier model; a test phase that uses previously unseen data to test the

model; and a deployment phase wherein the model is applied to classify the unla-

beled data (Abdulsalam, Skillicorn, and Martin). On the other hand, data stream

classification consists of only a single stream of data, in which labeled and unlabeled

data are mixed collectively within the stream. Hence, the training, testing and de-

ployment phases may require to be interleaved and the classifier should be ready to

predict at any point.

10
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• Concept-drift: Most existing algorithms assume that data streams come under sta-

tionary distribution, where the concept of data remains unchanged. When the

underlying class (concept) of the data changes over time, it is referred as concept

drift, which is quite frequent in real-world applications. In case of concept drift,

there is a quandary: whether to update the classifier often and waste resources on

changes that might be momentary (or insignificant) or else to update the model

occasionally (which may result into degradation of the accuracy of the classifier).

There are three algorithmic approaches in order to tackle this quandary: 1) periodic

approach; where the classifier is rebuilt periodically, 2) incremental approach; where

the classifier is updated with every concept drift and 3) reactive approach, where

changes are monitored and the classifier is rebuilt only if it no longer matches the

underlying data. Each of this algorithmic approach has few benefits and limitations.

The periodic approach is simple and has fixed communication and computation cost

but wastes resources when there is no concept-drift. The incremental approach is

accurate and efficient, but immediately updating the classifier might be a waste of

resources if the drift is momentary. The reactive approach is suitable if monitor-

ing of the classifier’s match with the incoming data stream is done accurately and

efficiently. Updating the classifier seldom will save resources, and rebuilding the

classifier when it does not suit the data any longer will maintain the accuracy.

• Memory Concerns: The large volume of data streams and the requirement of clas-

sification algorithms to scan the data multiple times are two conflicting issues. The

solution of this issue can either be availability of unbounded memory or application

of data stream pre-processing techniques like load shedding, sampling, aggregation,

data synopsis, etc. Otherwise novel classification techniques need to be designed to

address this need of data streams.

• Tradeoff between Accuracy and Efficiency: Another issue in data stream classifica-

tion is to tradeoff the accuracy of the classifier and the time complexity. Techniques

that guarantee accurate output in a small time need to be found.

11
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• Distributed data stream classification: A considerable number of applications have

data streams distributed among multiple parties and patterns from the union of

these data streams need to be extracted in order to obtain global trends in the mar-

ket. Combining these voluminous data streams is infeasible and demands algorithms

that efficiently classify these distributed data streams.

Few other than the above mentioned issues also prevail in data stream classification,

however as these are the most significant ones, the proposed work tries to address each of

them to a larger extent. Data stream classification is generally carried out by using novel

classification techniques developed specifically for data streams or by pre-processing the

data streams and then applying traditional classification techniques.

The general process of data stream classification is shown in Figure 2.1. The compo-

nents within the block are elaborated in sub-sections 2.1.1 and 2.1.2.

Figure 2.1: General process of data stream classification

12
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2.1.1 Data stream pre-processing

In order to apply the conventional data mining techniques on data streams and address

the aforementioned issues, these data streams need to be pre-processed and made suit-

able using the entrenched statistical and computational approaches. Some popular and

successful data stream pre-processing techniques are as follows (Aggarawal; Golab and

Ozsu):

• Sampling: It is a well-known technique that has been employed in several tasks since

years. Sampling consists of choosing a subset of data stream and performing the

analysis and mining process only on the subset instead of the entire data stream.

Efficient sampling techniques guarantee the error bounds but may fail to detect

anomalies in sensitive applications like surveillance system.

• Load Shedding: Load shedding involves ignoring a chunk or a sequence of data

from the stream. This results into a decreased volume of data and hence addresses

the issue of multiple scans and memory concerns. It has proved to be efficient

in querying data streams but suffers from the same problems like sampling as the

dropped chunk of data may represent a pattern that is interesting to study.

• Sketching: Sketching refers to the method of randomly projecting a subset of the

features (attributes) and can be considered as vertical sampling of the data stream.

One of the commonly used sketching techniques is Principal Component Analysis.

A disadvantage of sketching is that it may discard some important and relevant

features.

• Synopsis Data Structure: Synopsis data structures are created by applying transfor-

mation techniques like summarization that efficiently summarize the continuously

arriving data streams. The synopsis can then be used for further analysis. His-

tograms, wavelet analysis, quantiles, etc. are used as synopsis data structures. For

data streams arriving at very high speed, synopsis may be insufficient. Further, as

13
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the synopsis discards some of the characteristics of the data, approximate answers

are obtained on application of such data structures.

• Aggregation: Aggregation is a pre-processing technique similar to summarization

but is independent of any mining task. It computes statistical measures like mean

and variance to summarize the data stream and the mining algorithm is applied

on this aggregated data. Aggregation techniques become ineffective when there are

high fluctuations in the data distribution.

Despite of certain limitations, many of these techniques have been widely applied to

pre-process the data streams and make them suitable for traditional data mining algo-

rithms. The work in this thesis uses sampling-based technique as a baseline method for

comparison. Other than these pre-processing techniques, some classification techniques

specific to data streams have been proposed. The next sub-section describes the literature

on such techniques.

2.1.2 Data stream classification techniques

This section describes the state-of-the-art data stream classification techniques and presents

how well they address the demands of data streams.

• Hoeffding tree classifier: Domingos and Hulten proposed the concept of Hoeffding

tree, a decision tree classifier that is capable of learning from data streams. They

name its implementation as Very Fast Decision Tree (VFDT), but the generic term

Hoeffding tree is used throughout the paper. The Hoeffding tree classifier learns

from the data streams incrementally by examining each record only once while

producing trees of quality similar to batch learned trees.

While choosing the best splitting attribute at a given node, it may be sufficient to

use only a small sample of the available training instances that pass through that

node. Hence, the instances that arrive first on the data stream are used to choose

the root attribute and subsequent instances are passed down the tree until they

14
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reach the corresponding leaves. These instances at the leaves are used to select the

splitting attribute there and the process is repeated recursively. The number of

examples required at each node is decided using a statistical result called Hoeffding

bound (Hoeffding). Consider r is the observed mean of some real-valued random

variable r with range R after n independent observations. The Hoeffding bound of

equation 2.1 ensures with a probability 1 – δ that true mean of r is at least r - ε

where

ε =

√

R2 ln(1/δ)

2n
(2.1)

Let G be an attribute selection measure that is to be maximized. For information

gain measure, the range R of G is log2(#classes). After observing n examples at

any given node, let a1 be the attribute with the highest G value, a2 be the attribute

with the second-highest G value and let the difference between the two attributes be

∆G = G(a1) - G(a2). If ∆G is greater than ε, then the Hoeffding bound guarantees

with probability 1 – δ that the true ∆G is greater or equal to 0 and a1 is the best

splitting attribute.

A number of refinements to Hoeffding tree have been proposed in the literature such

as tie-breaking when the value of G is almost similar for two or more attributes,

eliminating consideration of attributes that are not promising, scanning the exam-

ples one more time if the need is, etc. (Domingos and Hulten; Kirkby). Since

Hoeffding tree does not address the issue of concept-drift itself, researchers have

proposed its variants to cope up with concept-drifting data stream.

• Concept-Adapting Very Fast Decision Tree: The method Concept-Adapting Very

Fast Decision Tree (CVFDT) (Hulten, Spencer, and Domingos) works by maintain-

ing a model consistent with respect to a sliding window of instances from the data

stream. It creates an alternate subtree when it detects that the distribution of data

is changing at a node, but this subtree replaces the old tree only after it becomes ac-

curate. The disadvantage of CVFDT is that it does not define any optimal window

size. A small window reflects the current distribution accurately whereas a large
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size accommodates several examples to work on and increases accuracy when the

concept is stable.

• Hoeffding Adaptive Tree using Adaptive Windowing: The shortcoming of CVFDT

stated in the previous point is overcome by a technique named Hoeffding Adaptive

Tree using Adaptive Windowing (HAT-ADWIN) (Bifet and Gavalda). ADWIN is a

method that keeps a variable-length window of recently seen items which automat-

ically grows when no change is apparent and shrinks it when the data changes. In

HAT-ADWIN, all statistics of instances are stored in relevant nodes. When there

is a concept-drift, HAT-ADWIN grows a classification tree identical to what VFDT

would grow from a new stable distribution but the new tree replaces the old tree

only when the former becomes accurate than the latter.

• Ensemble-based classifier: A general framework for classification of data streams

with concept-drift is proposed by Wang et al. Instead of constantly modifying a

single classifier model, the framework proposes to train a weighted classifier ensemble

from sequential data chunks partitioned from the stream. A classifier is learned for

each chunk and the weight of classifier is inversely proportional to its expected

prediction error. Wang et al. shows that classifier ensembles outperform single

classifiers while classifying concept-drifting data streams.

• Novel-class detection enabled technique: Most of the traditional data stream clas-

sification techniques assume a fixed number of classes. But in real-world, novel

classes may emerge at any time in the data stream, which remain undetected by

these traditional data stream classification methods until a classifier is trained with

the novel classes. A data stream classification method proposed by Masud et al.

automatically detects a novel class. It is assumed that the instances that belong to

the same class should appear closer to each other (called cohesion) and should be

distant from the instances that belong to other classes (called separation). Any test

instance that is found to be separated from the training data may probably be an

instance of a novel class. However, a novel class is assumed to be detected only if an
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adequate number of such instances that exhibit strong cohesion appear in a stream.

• Imbalanced data stream classifier: Several real-world applications such as intrusion

detection, disease outbreak detection, credit card transaction fraud detection, etc.

generate imbalanced data streams where the number of data instances from one

class is quite less as compared to the other class. Correctly classifying such mi-

nority class examples is a major issue. Like Masud et al., Godase and Attar also

propose a method in which the incoming data stream is divided into chunks, a clas-

sifier is trained from each chunk and an ensemble of these classifiers is created. Here,

the imbalanced data streams are classified by accumulating minority class instances

from previous data chunks and adding them into the current training chunk. Us-

ing previous minority class instances give a benefit over the traditional method of

synthetically creating such examples.

• Naive Bayes: Naive Bayes classifier can be adopted for Data Streams in its original

form (Bifet et al.; Kirkby) and requires only maintaining a statistics table. For dis-

crete valued attributes, only the class label counts per attribute value are required.

Continuous numeric attributes are to be discretized a priori. An attribute with m

unique attribute values and n possible classes can be stored in a table with mn

entries only. On arrival of new training instances in the stream, tables are updated

by merely incrementing the appropriate entries as per attribute values and class.

Naive Bayes is a simple and successful data stream classification technique that is

widely used in absence of concept-drift.

• Scalable Classification Algorithm by Learning decision Patterns: This rule-based

classifier for data streams has been proposed by Ferrer-Troyano, Aguilar-Ruiz, and

Riquelme. Despite the complicatedness in maintaining statistics for a rule-based

classifier, this approach named Scalable Classification ALgorithm by Learning deci-

siOn Patterns (SCALLOP) scales efficiently on data streams. The approach reads a

pre-defined number of labeled instances and creates rule for each class. Thereafter,

the process of rule set maintenance is executed for every newly arriving instance.
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Within this process, if a new instance fortifies an existing rule, the support and

confidence of that rule is re-computed. If a new instance is associated with at least

one of the existing rule but isn’t covered by the rule, then the associated rule is

expanded within the growth bounds if it does not intersect with any of the exist-

ing rule that is associated with the instance’s class label. Lastly, if a new instance

weakens an existing rule, it’s negative support and confidence is re-computed and if

the confidence falls below a threshold, a new rule built from that instance is added

to the rule set. Periodically, a rule-refinement process is performed wherein rules

that belong to the same class and have small distance are merged. Also, rules whose

support is less than a minimum bound or aren’t covered by any instance are dis-

carded. While classifying a new instance, if any rule covers it, then the instance is

assigned the class associated with that rule. Otherwise, the class label is inferred

using a voting-based mechanism among the existing rules.

• Adaptive Nearest Neighbor Classification for Data-streams: An incremental data

stream classifier inspired by the popular k-nearest neighbor classification technique

is proposed by Law and Zaniolo. This classifier named Adaptive Nearest Neighbor

Classification for Data-streams (ANNCAD) uses a grid-based representation. The

classification process of any new instance begins by taking a majority of votes by

nearest neighbors located at fine level. In situation when the instances located at

finer level cannot distinguish between the classes, the votes of instances located at

coarser levels in the hierarchy are taken. ANNCAD addresses the issue of concept-

drift by exponentially decreasing the weight of old instances. The flaw of this

method is that the exponential fading factor may over-estimate or under-estimate

the concept-drift resulting into a decrease in prediction accuracy.

• Lightweight Classification: An Algorithm Output Granularity (AOG) based tech-

nique known as Lightweight Classification (LWClass) is proposed by Gaber, Krish-

naswamy, and Zaslavsky. Based on the data rate and available memory, instances

are stored in the memory. When a new labeled instance x arrives, the algorithm
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measures the distance between x and nearest instances from the memory. If the

class label of the nearest neighbor is same as x and the distance is less than a pre-

determined threshold, the average of the two instances is stored and the weight of

this average entry is increased by 1. The weight is decreased by 1 if the class labels

are different and the entry is deleted when the weight reaches 0. Any unlabeled

instances are classified using the majority vote of k-nearest neighbor entries.

• On-demand classification A micro-cluster based technique called on-demand classi-

fication is proposed by Aggarwal et al. It is named on-demand classification method

because instances are classified on demand when they arrive in the data stream.

The method stores summarized statistics about the data stream in form of class-

specific micro-clusters. The method works in two modules where the first module

keeps storing the summarized statistics about the data streams whereas the second

uses these statistics to classify new instances. Since the summary statistics are up-

dated whenever new data arrives, the method has great flexibility and is suitable

for several applications.

Table 2.1 summarizes the merits and usefulness of each of the data stream classification

techniques described above. The summary aids in identifying suitable techniques for any

application at hand.

2.2 Privacy-Preserving Data Classification

Due to recent advances in data storage and dissemination, privacy-preservation has emerged

to be a major concern in devising a data mining system. Privacy-preserving data mining

(Agarwal and Srikant; Lindell and Pinkas; Aggarwal and Yu) is a novel area of research

which ensures that the sensitive information in the data being mined should be protected

from either direct or indirect (via inference) exposure. In recent years, privacy-preserving

data classification has received tremendous attention. The goal here is to build accurate

classifiers without unveiling the privacy of the data being mined (Xu et al.).
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Table 2.1: Merits of data stream classification techniques
Technique Merits

Hoeffding Tree / VFDT Classifies high-speed data streams without
concept-drift with high efficacy

CVFDT Classifies data streams with concept-drift
efficiently using fixed-size window

HAT-ADWIN Classifies data streams with concept-drift
efficiently using variable length window that is
adaptable to change in distribution of data stream

Ensemble-based classifier Classifies concept-drifting data streams efficiently
as compared to single classifier

Novel-class detection
enabled technique

Detects novel classes that emerge in data stream
but are not defined a priori

Imbalanced data stream
classifier

Classifies minority class instances in data stream
efficiently

Naive Bayes Simple and useful method for classifying data
streams without concept-drift

SCALLOP Scalable rule-based classification technique for
large data stream

ANNCAD Incremental classifier based on popular k-nearest
neighbor method made adaptable for data streams

LWClass Lightweight classifier that functions as per current
data rate and available memory

On-demand classification Flexible and efficient technique based on storing
summarized statistics about data streams
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One of the major applications that demand reconsidering data classification algo-

rithms from the viewpoint of privacy-preservation is collaboration. Collaboration may

be required between several participating parties like banks, competing supermarkets,

hospitals, etc. (Zhan). The data is thus considered to be distributed among these partic-

ipating parties, either homogeneously or heterogeneously (Verykios et al.; Clifton et al.).

Figure 2.2 shows the two ways of data partitioning .

Figure 2.2: Partitioning of data

Vertically partitioned data (or heterogeneously distributed data) refers to data being

collected by different sites or parties on the same individuals but with different attributes

(feature sets). Horizontally partitioned data (or homogeneously distributed data) refers

to different sites collecting similar kind of data over different individuals. Besides this,

at times data may also be arbitrarily partitioned. That is, the instances as well as the

attributes, both may be distributed between the parties.

The work in this thesis focuses on horizontally partitioned data streams (Hwanjo,

Xiaoqian, and Vaidya; Samet and Miri; Kantarcioglu; Xiong, Chitti, and Liu).
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2.2.1 Privacy-preserving data classification techniques

Several methods for privacy-preserving data classification are presented in the literature.

Figure 2.3 shows a generic taxonomy of privacy-preserving data classification techniques

followed by a brief description of these techniques and their usefulness.

Figure 2.3: Taxonomy of privacy-preserving data classification techniques

Data modification and sanitization techniques need to be adapted in an environment

where the data is distributed whereas the cryptographic and other miscellaneous tech-

niques described herein are specifically designed for inducing classifiers from distributed

data.

• Data modification techniques:

To achieve the goal of privacy-preserving data classification, a major solution cat-

egory is to modify the data to be classified. Data modification techniques include

randomization, blocking, sampling, rounding, etc. (Agarwal and Srikant; Zhang,

Wang, and Zhao; Aggarwal and Yu).

Randomization approach has been widely used for privacy-preserving classification.

Initially, in randomization approach, the data providers randomize the data and

transmit it to the data miner, i.e. a sufficiently large noise is added to the data
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with a goal that the true values of the records cannot be recovered. Further, a

distribution reconstruction algorithm that reconstructs the original data distribution

from the randomized data instances is employed and a classifier is built from the

reconstructed data. Several distribution reconstruction algorithms like EM and

Bayes reconstruction method have been used in the literature. The approach has

the advantage of simplicity, but it lacks a formal framework that proves how much

privacy is assured.

Blocking method is generally used in hiding rules. It replaces value of a privacy-

sensitive attribute with an unknown value that does not exist in the domain of

attributes. Rounding is a method that replaces the values of privacy-sensitive at-

tributes with rounded values. But, rounding is applicable to continuous attributes

only. In sampling, data of only a small sample of population is released. Several

such data modification techniques have been proposed in the literature and found

successful. The work proposed in this thesis uses the concept of sampling technique

while releasing data for global classifier induction.

• Cryptographic techniques:

A large portion of literature in privacy-preserving data classification discusses the

application of cryptographic techniques and Secure Multiparty Computation (SMC)

for building classifiers in a privacy-preserving manner (Clifton et al.; Samet and

Miri). For example, in the work by Yehuda and Benny, the training set is considered

to be homogeneously distributed between two parties and the authors attempt to

securely construct an ID3 decision tree. In such techniques, secure log algorithm,

secure sum, etc. sub-protocols are used to securely calculate the conditional en-

tropy for an attribute shared by the two parties and a classifier using ID3 is built

securely. Classifiers so created resemble the classifier induced if the data is centrally

accumulated.

Although such methods are secure enough, they demand a lot of computation and

the cost of communication is also high.
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• Sanitization-based methods:

Frequently for preserving privacy, the data attributes are partitioned into four cat-

egories: the personal identifier (PID), quasi-identifier (QID), non-quasi attribute

(NQA) and sensitive attribute (SA). PIDs (such as name, social security numbers,

etc.) uniquely identify individuals and are removed before mining or publishing the

data. SAs (such as disease, credit worthiness, etc.) contain sensitive information

and the entire process of privacy-preservation focuses on protecting the SA values

from disclosure. QIDs (such as age, marital status, gender, ZIP code, etc.) do not

directly reveal the identity of individuals, but if combined with other public datasets

or available background knowledge of people referred in the data; these QIDs can

link a target individual to a specific SA value. NQAs do not appear in any external

tables and thus cannot be exploited for linking to a SA. Hence, unlike QIDs, they

do not require anonymization.

Let X be a target victim and rX be the record of X in the available data set D.

Researchers in field of privacy-preserving data mining have proposed several models

that are resistant to different attacks. These privacy models include k -anonymity

(Samarati), (Sweeney), l -diversity (Machanavajjhala et al.), t-closeness (Li and Li),

etc. and can be classified based on the following types of attacks (Fung et al.):

– Record Linkage: In this attack, an adversary can link rX to a small group of

records, say G. Moreover, with some additional knowledge, the adversary can

precisely identify rX in D.

– Attribute Linkage: This attack occurs once the record linkage attack has been

applied on D and rX has been associated to a small group of records, say G.

In this attack, an adversary may not be able to uniquely identify rX but can

deduce SA of X based on the SAs linked to G. If SA of all the records in G is

same, the SA of X can be easily found.

– Table Linkage: In record and attribute linkage attack, an adversary has the

knowledge about the presence of X in D. Occasionally, the presence or absence
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of X in D automatically reveals SA of X. A table linkage attack occurs when

an adversary can confidently deduce the presence or absence of X in D.

k -anonymity principle proposed by Samarati and Sweeney has received considerable

attention in recent times and is accepted by both legislators and corporations. It

models protecting the data to be mined or released from possible re-identification

of individuals to whom the data refers. It takes a safe approach necessitating that

each record in the dataset should be indistinguishable from no fewer than other (k

– 1) records with respect to the QIDs that can be used for linking. The idea is to

form groups of at least k records that share the same QID values. These groups

are called equivalence classes (ECs). Generalization and Suppression (Wang, Yu,

and Chakraborty; Fung, Wang, and Yu) are two of the most common techniques for

anonymization, both of which preserve the truthfulness of the data. Generalization

replaces the value of QIDs with more general values commonly using a value gen-

eralization hierarchy. Suppression replaces some values in the original data with a

symbolic character (e.g., “*”) to prevent the data from disclosure.

As an illustrative example, consider the loan approval dataset in Table 2.2.

In Table 2.2, Name is a PID, Age, Education Level, Gender, ZIP code and Mar-

ital Status are QIDs, Salary is a NQA and Loan Approval is a SA. To preserve

the privacy, the PID is to be removed and the QIDs have to be anonymized. If

anonymization is not performed, the adversary can use the publicly available data

from Table 2.3 and find out the sensitive information about the individuals. Such

malicious act by an adversary is a record linkage attack.

Table 2.4 shows a 2-anonymous version (k = 2) of Table 2.2. That is, every record

in Table 2.4 has at least one other record that shares the same value of all QIDs.

Table 2.4 has 4 equivalence classes. Some records suppress the Gender attribute

whereas some suppress Marital Status attribute. Further, the last one or two digits

of ZIP code have been replaced by a ‘*’ for anonymization purpose. The values of

Age attribute are replaced with ranges of values.
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Table 2.2: Original loan approval dataset

PID NQA QIDs SA

Name Salary Age Education

Level

Gender ZIP

code

Marital

Status

Loan

Approval

A 30000 26 Bachelors Male 360001 Single No

B 40000 39 Masters Female 380054 Divorced Yes

C 26000 33 Diploma Male 360001 Married Yes

D 52000 40 Masters Male 380008 Married Yes

E 24000 34 Bachelors Male 360002 Married Yes

F 42000 44 Masters Male 380054 Divorced No

G 20000 29 Diploma Female 360001 Married No

H 26000 35 Masters Male 380054 Married No

I 21000 43 Bachelors Male 360005 Divorced No

J 19000 37 Bachelors Male 360005 Single No

The k -anonymity model is broader to some extent and here only its basic function-

ality is described. Since it is proficient in preserving the privacy in several real-life

applications and presents a theoretical foundation for privacy-related legislation

(Friedman, Wolff, and Schuster), the framework proposed in this thesis uses it for

preserving the privacy of data streams.

k -anonymity can be guaranteed using two ways (Friedman, Wolff, and Schuster):

One approach is to anonymize the dataset first and then mine the k-anonymous data.

Another approach involves mining the data first and then performing anonymization

on the data mining result. The first approach may hide some facts that are vital for

data mining. Further, as described in the beginning of this section, sanitizing the
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Table 2.3: Publicly available data
Name Age Education

Level

Gender ZIP

code

Marital

Status

A 26 Bachelors Male 360001 Single

B 39 Masters Female 380054 Divorced

C 33 Diploma Male 360001 Married

D 40 Masters Male 380008 Married

E 34 Bachelors Male 360002 Married

F 44 Masters Male 380054 Divorced

G 29 Diploma Female 360001 Married

H 35 Masters Male 380054 Married

I 43 Bachelors Male 360005 Divorced

J 37 Bachelors Male 360005 Single

Table 2.4: 2-anonymous version of Table 2.2
EC Salary Age Education

Level

Gender ZIP

code

Marital

Status

Loan

Approval

1
20000 [25-35) Diploma * 360001 Married Yes
26000 [25-35) Diploma * 360001 Married No

2
30000 [25-35) Bachelors Male 36000* * No
40000 [25-35) Bachelors Male 36000* * Yes

3
21000 [35-45) Bachelors Male 360005 * No
19000 [35-45) Bachelors Male 360005 * No

4

36000 [35-45) Masters * 3800** Divorced Yes
52000 [35-45) Masters * 3800** Married Yes
24000 [35-45) Masters * 3800** Divorced No
42000 [35-45) Masters * 3800** Married No
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data mining output is more effective. Since the target of the work proposed in this

thesis is to preserve the privacy of the data mining output, the second approach

is adopted in the proposed framework. However, k -anonymity is susceptible to

attribute linkage attack (also known as homogeneity attack). This attack occurs

when all the values of SA within an EC are same. Thus even if an EC has k or

more records, an adversary can easily discover the SA value of an individual within

an EC. In Table 2.4, both of the records in the third EC block have the same value

of SA depicting that loan applications of individuals I and J were rejected.

Table 2.5: 2-diverse version of Table 2.2
EC Salary Age Education

Level

Gender ZIP

code

Marital

Status

Loan

Approval

1
20000 [25-35) Diploma * 360001 Married Yes
26000 [25-35) Diploma * 360001 Married No

2

30000 <45 Bachelors Male 36000* * No
40000 <45 Bachelors Male 36000* * Yes
21000 <45 Bachelors Male 36000* * No
19000 <45 Bachelors Male 36000* * No

3

36000 [35-45) Masters * 3800** Divorced Yes
52000 [35-45) Masters * 3800** Married Yes
24000 [35-45) Masters * 3800** Divorced No
42000 [35-45) Masters * 3800** Married No

This limitation of k -anonymity is overcome by a stronger notion of privacy called

l -diversity. The main idea behind l -diversity is that the values of SA in each EC

should be well-represented (Machanavajjhala et al.). Table 2.5 represents a 2-diverse

version of Table 2.2. It can be seen that the attribute linkage attack against a 2-

anonymous table is prevented by a 2-diverse table.

Thus, k -anonymity and l -diversity principles prevent record linkage and attribute

linkage attacks respectively. Any data classification method that uses these princi-

ples can suitably perform privacy-preserving data classification. As stated earlier,
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apart from these two attacks, few other attacks like table linkage also occur on data,

but the privacy models proposed to prevent such attacks aren’t presented here as

they are out of the scope of this work.

Rather than sanitizing the data first and then mining it, it can also be beneficial to

mine the data first and then perform anonymization, or to perform both the tasks

together. Friedman, Wolff, and Schuster propose a method for directly building a

k-anonymous decision tree from a private table. Here, both mining and anonymiza-

tion are carried out in a single process. In the beginning, the decision tree consists

of only the root representing all the tuples in a private table. At any given stage of

induction, while splitting a node in the tree, the algorithm selects the attribute in

the quasi-identifier with the highest gain (considering Information Gain or Gini In-

dex as attribute selection measures), only if the split does not violate k -anonymity.

Whenever splitting a quasi-identifier causes a breach of anonymity, a generalized

version of that attribute is selected as a potential candidate for splitting the node.

The algorithm terminates when no further node can be inserted without compro-

mising k -anonymity. Friedman, Wolff, and Schuster show how this hybrid method

of mining and anonymization together is better than doing the said tasks separately.

The proposed framework uses a variant of this technique.

• Miscellaneous techniques:

Peng et al. proposes an ensemble method to perform privacy-preserving distributed

data classification among sites. When the data is homogeneously distributed, each

site constructs a decision tree classifier from the local data available with it, and

a central trusted party integrates these results by producing a classifier ensemble.

This ensemble is used by all the sites to classify the unseen data. This method is

simple and produces accurate classifiers.

Emekci et al. proposes a privacy-preserving decision tree learning method based on

the ID3 algorithm and Shamir’s secret sharing for homogeneously distributed data.

Shamir’s secret sharing method operates in three phases and is used to compute

29



CHAPTER 2. BACKGROUND

summation of the secret values over n parties without revealing the secrets to other

parties. In the first phase, each party has a secret value and they choose a random

polynomial of degree n-1. The constant term in the polynomial is the secret value.

Also, each party creates a random number of its own and reveals it to others. Using

Shamir’s secret sharing algorithm, each party computes the share of all other parties

based on the random numbers revealed by them and sends the respective shares to

all the parties. In the second phase, each party performs the summation of the

shares it obtains from other parties and sends this intermediate result to all parties.

In the final phase, each party solves the set of equations to find the sum of secret

values using the intermediate results received from the second phase. Hence, this

method lets all the parties find the conditional entropy of each attribute from the

data at all the parties. Finally, from this conditional entropy, the best attribute at

a node can be determined and the tree can be induced. This method is scalable up

to a large number of parties but suffers from information leakage issues.

A framework with a multi-round algorithm for classification of homogeneously dis-

tributed data using privacy-preserving k-Nearest Neighbor (kNN) classifier is pro-

posed by Xiong, Chitti, and Liu. In case of distributed environment, an instance’s k

nearest neighbors may be distributed among several nodes. That is, each node will

contain a few data tuples that are k nearest neighbors of each query instance. Hence,

the classification process is divided into two steps: In the first step, the tuples in the

database at each node that belong to k nearest neighbors of the query instance q

(locally) are selected. Further, a privacy-preserving algorithm is applied to identify

k nearest neighbors between the tuples in the union of the databases and query

instance q (globally). In the second step, each node classifies q locally and all the

nodes cooperate to determine the classification of q globally, in a privacy-preserving

way. Higher the value of k, more the privacy is protected. K-nearest neighbor being

a lazy learning technique, this method does not output any classifier model which

is generally required by several applications.
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In a nutshell, the vast literature concerning privacy-preserving data classification fa-

cilitates selection of suitable methods for different applications. In the next chapter, few

of these techniques have been implemented and evaluated for performance comparison.

2.3 Genetic Programming

Genetic Programming (GP), pioneered by Koza, is an evolutionary algorithm that follows

the principle of “Survival of the Fittest” laid down by Charles Darwin. GP has emerged

as an extension of Genetic Algorithms (GA), however, unlike GA, which generally uses

fixed sized binary strings to codify individuals; GP uses a variable sized tree structure.

GP is an innovative search and optimization technique that has been widely applied

to solve numerous real-world problems of classification (Lee et al.; Espejo, Ventura, and

Herrera). Due to its flexible nature, GP can be employed to induce classifiers using

different kinds of representations like decision trees, classification rules, etc. The induction

proceeds by searching a space of candidate classifiers and eventually producing an efficient

one. GP is also commonly used for optimizing algorithmic parameters.

GP uses several key parameters and components, which are described as follows (Koza;

Jabeen and Baig):

• GP individuals: GP works on a population of individuals unlike the other techniques

that operate on only one solution. Generally, the initial population of GP is gener-

ated by forming variable sized trees randomly using the primitive set of functions

(that form internal nodes) and terminals (that form leaf nodes). The terminal and

function set used in GP is typically driven by the nature of the problem domain.

Terminals may be numeric constants whereas the function set encompasses the basic

operations applicable on the terminals with a goal to obtain the desired output. GP

can prevent trees from growing too large by setting a maximum tree size threshold.

• Population size: The number of individuals in GP population may range from 30

to 10,000 as per the requisite and nature of the application.
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• Fitness function: The fitness function is a measure to evaluate the performance of a

GP individual and guide the search process of GP. Fitter individuals are more apt to

be selected to take part in the procreation of the next generation of individuals, thus,

increasing the probability that its genetic material will survive throughout the evo-

lutionary process. Any preference criterion (e.g. accuracy in case of classification)

can be expressed in terms of the fitness function.

• Genetic operators: Genetic operations are applied on individuals to produce new and

expectedly efficient individuals for the next generations. Reproduction, crossover

and mutation are the genetic operators used.

◦ Reproduction: To ensure that the fitness of the best individual in a population

is never less than the best of previous generations, the reproduction operator

is used. Reproduction consists of simply copying some individuals of a genera-

tion’s population directly to the next. Elitism, that is a reproduction method,

copies few individuals with largest fitness to the population of next generation.

◦ Mutation: Mutation operator injects new genetic material into the population

through a randomly generated individual. A mutation point is randomly chosen

in an individual (GP tree) and the sub-tree rooted at that mutation point is

replaced by the newly generated individual. The mutation process is performed

to introduce diversity in individuals and is pictured in Figure 2.4.

◦ Crossover: Crossover operator selects two individuals from the population and

copies them to a mating pool. A crossover point is randomly chosen in each

individual (GP tree) and the sub-trees rooted at those crossover points are

swapped. The two newly produced individuals are added to the new popula-

tion. This is pictured in Figure 2.5.

• Selection method: The literature presents various methods to select individuals for

applying genetic operations and forming the new population. Some popular methods

are: rank selection, proportional selection, tournament selection, etc. (Koza).
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Figure 2.4: Sub-tree mutation

Figure 2.5: Sub-tree crossover
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◦ Using rank selection, individuals in the population are ranked based on their

fitness, from first to last. The probability of selection of an individual is based

on the rank of an individual.

◦ In proportional selection, the probability of selection of an individual is pro-

portional to its fitness function value. Proportional selection can be thought

as spinning a roulette wheel where each segment on the wheel corresponds to

an individual and the size of the segment is proportional to the corresponding

individual’s fitness.

◦ Under tournament selection method, few individuals from the population are

randomly selected for a tournament. Based on their fitness, these individuals

within the tournament compete for being selected to pass genetic material into

the next generation.

• Maximum number of generations: GP process continues for a number of generations.

The maximum number of generations for which GP can run before terminating varies

from 20 to thousands.

• Termination Criteria and solution: The GP runs terminate when either the max-

imum number of generations have been produced or a problem-specific successful

solution has been obtained. The best-of-run individual from the last generation is

then designated as the final result.

The basic GP process is depicted graphically in Figure 2.6:

GP initiates by forming a random initial population of functions and terminals. A

run begins by evaluating the fitness of each individual and applying genetic operation

as per the rate of each operator. Based on their fitness, the individuals get selected for

undergoing genetic operations (1 individual for reproduction as well as mutation and 2

individuals for crossover). A generation is incremented when the required individuals are

produced. The GP cycle terminates when desired number of generations is reached or the

termination criterion is fulfilled.
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Figure 2.6: General process of Genetic Programming

The efficiency of GP has been evaluated extensively by researchers and a detailed

literature of application of GP for classification is presented in Chapter 6. Further, a

GP-based approach is employed in this work for privacy-preserving classification of hori-

zontally partitioned data streams is proposed in Chapter 6.

2.4 Ensemble Learning

Traditional data mining techniques train a single model to solve the target problem.

Ensemble methods (Zhou; Han, Kamber, and Pei) also known as ensemble learning or
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committee-based learning, refers to procedure of training multiple learners rather than

inducing on a single learner to discover useful patterns from the data. Ensemble learning

works by forming a committee of decision-making models and using the combined opinion

of the entire committee to predict the output of a new query. The general architecture of

an ensemble is shown in Figure 2.7.

Figure 2.7: A general ensemble architecture

Ensemble classifiers are gaining increasing attention of researchers due to its efficacy

as compared to single classifiers. The base learners of an ensemble classifier can be

neural networks, decisions trees, etc. When all the base learners are of same type, i.e.

use the same learning algorithm, the ensemble is referred as a homogeneous ensemble

whereas when the base learners use different learning algorithms, the ensemble is known

as heterogeneous ensemble. The computational cost of inducing several learners is not too

large as compared to single learner because several learners are commonly being induced

for tuning the algorithmic parameters. Further, the cost of combining the base learners

is small and acceptable.

2.4.1 Ensemble methods

This sub-section describes few of the most popular ensemble learning methods.

• Bagging: Bagging (Breiman), which stands for bootstrap aggregation is an effective

and successful method of ensemble learning. Originally designed for decision trees,
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bagging can be used with various classifiers. It works by inducing k base classifiers,

each trained on data sampled from the original training dataset. Bagging uses

sampling with replacement and hence some instances may be used by more than

one classifier whereas some instances may not be used by any classifier. To classify

a previously unseen instance x, each classifier yields its class prediction, counted

as one vote for that class. The bagged classifier (ensemble) assigns the class with

highest number of votes to x.

Although bagging is mainly used for predicting categorical class labels, continuous

attribute values are predicted by averaging the output of each learner. Bagging is a

simple technique and its effectiveness increases when the base classifiers are unsta-

ble. The accuracy of Bagging-based ensemble classifier is high because employing

multiple classifiers reduces the variance.

• Random Forests: As its name suggests, Random Forest (RF) (Breimann; Zhou)

forms a forest of trees (decision trees) induced using randomness trait. It is an

extension of Bagging and is based on randomized feature selection. While inducing

the decision tree base classifier, at each node, RF selects a subset of attributes ran-

domly and follows the traditional node splitting procedure using only those selected

attributes.

It is to be noted that RF introduces randomness only in filtering attributes for

different nodes. Once an attribute is selected at a node, the split point is chosen

similar to traditional decision tree induction. Since nodes in decision trees of RF

have to be evaluated for only a subset of attributes, the training time of RF is less

than Bagging of traditional decision tree classifiers.

• Boosting: Boosting (Han, Kamber, and Pei; Schapire et al.) is a popular meta-

algorithm initially proposed for classification only. Boosting iteratively induces a

chain of classifiers from the training data by sampling with replacement. Initially,

the training instances are assigned equal weights. But, after the induction of each

classifier hi, the weights are updated so as to make the successive classifiers hi+1
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concentrate more on the training instances misclassified by hi. Weights of misclas-

sified instances are increased whereas weights of correctly classified instances are

decreased. To classify a previously unseen instance x, the votes of each base classi-

fier in the boosted ensemble classifier H are combined. Further, each classifier’s vote

is weighted by its accuracy and the class that receives the highest votes is assigned

to instance x. Boosting is little time-consuming but works efficiently due to the

accuracy weighted voting mechanism.

Apart from these, several techniques of ensemble learning like Decorate (Zhou), etc. have

been proposed and evaluated by researchers. The literature shows that ensemble classifiers

have proved to be much more successful in solving real-world problems as compared to

single classifiers. Chapter 7 utilizes ensemble learning method to improve the performance

of privacy-preserving distributed data stream classifier.
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Chapter 3

Empirical Evaluation of Preliminary

Components

Subsequently after a detailed study of the existing literature on the sub-areas of the work

presented in this thesis, this chapter presents an empirical evaluation of the two major

components that form the heart of the work: data stream classification and privacy-

preserving classification of horizontally partitioned data. The goal of the experiments is to

identify suitable techniques for each component and utilize the merits of these techniques

while proposing a solution for “privacy-preserving classification of horizontally partitioned

data streams”.

3.1 Data Stream Classification

Conventional data classification algorithms assume data instances can be retrieved for a

small cost. Further, these conventional algorithms publish the classifier after analyzing

the entire dataset. The key requirements of any data stream classifier include working

in limited time, processing examples without performing multiple scans on the data and

having readiness to publish the classifier at any point when needed. The ability of existing

Part of this chapter appears in: Radhika Kotecha and Sanjay Garg, “Data Streams and Privacy: Two
Emerging Issues in Data Classification”, Proceedings of 5th Nirma University International Conference
on Engineering, IEEE (2015)
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data stream classifiers to fulfill these requirements has been evaluated in this section.

Further, the focus of batch learning algorithms is to reuse the data so as to get the

maximum from the limited data available. This is not a concern while learning from data

streams as abundant data is available. The bifurcation between which data instances to

use for training and which to use for testing the model is made by the evaluation procedure

of every learning algorithm.

In order to extract the most out of the data, batch learning generally uses a k-fold

cross-validation method of evaluation, with k set equal to 10 most frequently. But as

the size of the data increases, repeating the training several times is not feasible due to

limited time constraints. Hence, for large datasets, batch learning focuses on reducing

the number of folds or using a single hold-out set as it would require less computational

effort. Data stream classification is an emerging area of research and a limited study on

the evaluation methods is conducted as compared to literature on batch setting. But,

the survey of Bifet et al. states that the most commonly used evaluation procedure for

data stream classification is to employ a single hold-out set. A precise measurement of

accuracy can be obtained by setting aside a large number of instances for testing intention

without making the classification learning algorithm starve for training instances. This

conclusion is consistent with the argument that evaluation procedure of data stream

mining algorithms is simple as no changes in batch setting evaluation method is required.

Moreover, rather than assuring the reliability of a data mining model by several repeated

runs, a large number of testing instances can be employed to guarantee reliability.

A possible way to create a hold-out set of instances for evaluating a data stream

classifier can be to collect a bunch of instances that have not been employed for training.

These instances from the data stream are then used as test instances.

But, since the data stream is considerably large, instead of using a single hold-out,

it is preferable to evaluate the model periodically. This method, called periodic hold-out

evaluation is used to track the performance of the model over the time and to provide

even more precise information about the accuracy of the model. The method involves

periodically using batch of instances as testing instances. The final accuracy of the model
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is derived from the aggregate results of testing.

Another method for evaluating data stream algorithms, called ‘prequential’, interleaves

testing along with training. In this method, each individual instance is used to test the

classifier before employing it for training and the accuracy is updated incrementally. Using

this method, the classifier is always being tested on instances it hasn’t seen before. This

method has a disadvantage that the classifier is punished for making mistakes earlier

irrespective of its capability of achieving high accuracy eventually. This effect decreases

after observing a large number of instances, but as per Bifet et al. the accuracy of classifier

evaluated using this prequential stays always less that the accuracy obtained by evaluating

using hold-out method.

After analysis of the relative advantages of both the methods, the hold-out method of

evaluation as it proves to be satisfactory in most of the cases and is foundation of several

experimental frameworks presented in literature.

Most of the existing work does not make explicit comments on memory utilization.

Instead, limits on usage of memory are enforced either by allocating predefined memory

or analyzing the number of scans the algorithm makes on the data.

Details of experiments performed and results obtained for some of the popular data

stream classification algorithms are presented herewith.

3.1.1 Data streams

Experiments are performed on both synthetic and real-life data streams with the number

of instances varying from lakhs to millions. Table 3.1 lists out the four data streams used

along with their details. Forest Covertype and Waveform data streams are available on

the UCI machine learning repository (Lichman) whereas Loan Approval and Rotating

Hyperplane are synthetically generated data streams. Further, Waveform and Rotating

Hyperplane data streams have concept-drifts.
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Table 3.1: Composition of data streams
Data Stream No. of

Attributes

No. of

Instances

No. of

Classes

Concept-

drift

Forest Covertype 54 5.8 lakhs 7 No

Waveform 40 1 million 3 Yes

Loan Approval 9 10 million 2 No

Rotating Hyperplane 10 10 million 2 Yes

3.1.2 Implementation details

In order to identify an efficient data stream classifier for the problem targeted in this

work, five different data stream classification algorithms have empirically been evaluated

and compared on the data streams described in Table 3.1. Experiments are performed for

Naive Bayes classifier, Rule-based classifier, Hoeffding tree classifier (or VFDT), Hoeffd-

ing Adaptive Tree using Adaptive Windowing (HAT-ADWIN), and Accuracy Weighted

Ensemble classifier.

As described in Chapter 2, Naive Bayes and Rule-based classifier SCALLOP are simple

techniques for data stream classification and hence are considered here for evaluation.

Hoeffding tree classifier is evaluated as it is a variant of the successful decision tree classifier

specifically designed for data streams. HAT-ADWIN uses Hoeffding tree classifier but

addresses the issue of concept-drift using windowing technique. Hence, its performance

is assessed in presence and absence of concept-drifts (using respective data streams).

Accuracy Weighted Ensemble classifier is evaluated as ensemble methods have proved

to be extremely successful in literature. The base learners of this ensemble consist of

traditional decision tree classifiers built from chunks of data using random subset of

features. An ensemble of 5 learners is induced and evaluated. Before testing phase, some

of the examples are accumulated at random time intervals and are used to calculate the

accuracy of each member of the ensemble. When the classifier is to be applied to unseen

instances (for testing or prediction of unlabeled instances), the approach by Wang et al. is

42



CHAPTER 3. EMPIRICAL EVALUATION OF PRELIMINARY COMPONENTS

followed. That is, classifiers in the ensemble are weighted proportionally to their accuracy.

All five techniques have been implemented in Massive Online Analysis (MOA) (Bifet et

al.). MOA is an open source framework for data stream mining that includes a collection

of machine learning algorithms for evaluation. MOA is related to the popular open-

source workbench Waikato Environment for Knowledge Analysis (WEKA) that includes

implementations of extensive series of batch machine learning techniques.

Having considered the relative merits of different methods of evaluation, periodic hold-

out evaluation is employed in the experiments conducted. The popular setting (Han,

Kamber, and Pei) of dedicating 66% of data stream instances for training and rest for

testing is applied. Periodically, testing is performed on a bunch of instances held out.

The final classification accuracy and time reported is the aggregate of the results obtained

periodically.

3.1.3 Results

The results of training accuracy, predictive accuracy, training time and prediction time

of all five classifiers on the stated four data streams are presented using Figure 3.1 to

Figure 3.4 respectively.

Figure 3.1: Training accuracy of classifiers (in %)
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Figure 3.2: Prediction accuracy of classifiers (in %)

Figure 3.3: Training time of classifiers (in s)
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Figure 3.4: Prediction time of classifiers (in s)

From the results, it can be seen that Naive Bayes classifier is quick in training and

evaluating all types of data stream instances as it requires only maintaining a statistics

table. But its prediction accuracy is low as it assumes that attributes are independent from

one another. In conditions when very limited time is available for classifier learning and

prediction, Naive Bayes technique can be applied with a little compromise on accuracy.

Rule-based classifier requires a lot of time for training due to the procedure followed

for maintaining the rule set on arrival of each new example and rule-refinement. The

prediction time gets high when no rule covers some of the test instances and a voting

mechanism is to be applied. But, the training and prediction accuracy of rule-based

classifier is higher than Naive Bayes classifier due to its precise procedure of rule-set

induction and maintenance. However, when a concept-drift occurs, the old rule-set does

not get completely replaced and hence this classifier offers very little support to the issue

of concept-drift.

From the results of Figure 3.1 and Figure 3.2, it can be observed that in absence

of concept-drift, the training as well as prediction accuracy of Hoeffding tree classifier

has always remained highest among all the classifiers considered. In fact, Hoeffding tree

classifier shows remarkably good results in an acceptable time, for both training as well as

prediction. But when the data streams have concept-drifts; as in Waveform and Rotating
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Hyperplane streams, the accuracy of Hoeffding tree classifier falls due to its inability to

cope up with concept-drifts.

For data streams with concept-drift, the Accuracy Weighted Ensemble classifier is

accurate enough as the ensemble member learned from the instances with concept-drift

will be given more weight gradually. In absence of concept-drift, its accuracy is comparable

to the Hoeffding tree classifier which is specifically designed for classifying data streams.

But with the increase in number of attributes or data instances, the time required in

training and prediction is high. The large amount of time makes it less suitable but the

approach can be modified and its merits can be used to build an efficient classifier.

In terms of accuracy, HAT-ADWIN can be regarded as an efficient classifier in presence

as well as absence of concept-drift. However, the time taken by this approach for training

is higher as compared to Hoeffding tree classifier due to its periodic procedure of examining

a concept-drift in the data. But, as a result of this periodic examination, the accuracy

of HAT-ADWIN does not degrade when there is a concept-drift in the data. Further, as

compared to Accuracy Weighted Ensemble classifier, the training as well as prediction

time required by HAT-ADWIN is very less and training plus prediction accuracy is high.

It can be concluded that Hoeffding tree classifier is an efficient candidate for data

stream classification and the windowing technique of its variant HAT-ADWIN is advan-

tageous in dealing with concept-drift too. Thus, the proposed solution approach to the

target problem “privacy-preserving classification of horizontally partitioned data streams”

is based on Hoeffding tree classifier and concept of windowing to address concept-drift.

3.2 Privacy-preserving classification of horizontally

partitioned data

As described in Chapter 2, several techniques for privacy-preserving data classification

have been proposed and implemented by researchers. The issue of preserving privacy gets

even more complicated when the data is partitioned between multiple sites. Since the
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target problem and the scope of the work covers classifying horizontally partitioned data,

it is required to have an evaluation and analysis of performance of the existing privacy-

preserving classification techniques on data that is horizontally partitioned. Some of the

efficient techniques proposed in the literature haven’t been applied for distributed, or

specifically, homogeneously distributed data. Moreover, application of these techniques

on few common datasets is required for a detailed and precise analysis of their suitability

for the target problem.

Hence, several experiments are performed to compare the performance of different

ways of inducing privacy-preserving classifier where the data tuples are stored at multiple

autonomous sites. The goal of each of these techniques is to build a global classifier from

the data that is horizontally partitioned between multiple participating sites. As stated in

the motivation section of Chapter 1, these parties are competitors but are collaborating for

mutual benefits in business. Hence, it is required to induce a privacy-preserving classifier

without disclosing the raw data of any party to the other participating parties or to the

public.

Details of datasets used, experiments performed and results obtained for some of the

popular privacy-preserving data classification methods are presented in the subsequent

sub-sections.

3.2.1 Data sets

For comparing the performances of different methods for privacy-preserving data classifi-

cation, experiments on four data sets from various real domains were conducted. These

data sets are available on UCI machine learning repository (Lichman) and its details

are described in Table 3.2. These data sets contain private information which is to be

protected from disclosure. Specifically, the class attribute is considered as a sensitive

attribute and all other attributes are considered as quasi-identifiers which need to be

protected otherwise the adversary can use the publically available data and find out the

sensitive information about the individuals.
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Table 3.2: Composition of data sets
Data Set No. of Attributes No. of Instances No. of Classes

Transfusion 5 748 2

Diabetes 9 768 2

Bank Marketing 8 4521 2

Spambase 57 4601 2

3.2.2 Implementation details

Experiments are conducted to compare the performance of following four different ap-

proaches where each approach uses the well-known decision tree induction algorithm

CART (Breiman et al.) as the base learner:

(i) Trusted third party: This approach assumes the existence and availability of trusted

third party where the data of all the sites is accumulated centrally. A classifier is in-

duced at this central site and this global classifier is then sent to all the participating

parties.

(ii) Secure multiparty computation: In this approach, all the parties calculate the at-

tribute measures using SMC and produce a local classifier at their respective site.

The induced classifier is same at all the sites and is used as a global classifier by

each of them.

(iii) Ensemble classifier: Within this approach, each site constructs a classifier from

the local data available with it and these classifiers are integrated by producing a

classifier ensemble either at one of the participating sites or a third party site. The

global ensemble induced hence is used by all the sites to classify the unseen data.

(iv) Hybrid k-anonymous decision tree ensemble classifier: In literature, k-anonymous

decision tree classifier (Friedman, Wolff, and Schuster) has been described which is
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applicable for classifying instances at a single site. In the experiments, this method

has been adopted for privacy-preserving classification of horizontally partitioned

data by using the approach of method (iii), i.e. the popular ensemble classifier

induction method. That is, each site induces its own k -anonymous decision tree

and a global classifier ensemble from these local classifiers will be created at a non-

trusted third party or at either of the parties. The value of parameter k is set equal

to 5% of the total number of training instances.

All the algorithms have been implemented in MATLAB 7.8.0 (R2009a). Further,

throughout the experiments, it was assumed that 3 parties want to collaboratively conduct

the data classification.

To evaluate the performance of these algorithms, holdout method is chosen with 3/4th

of the data used for training and rest for testing. To create an environment where the

data is homogeneously distributed, the training data is divided into three random and

overlapping parts with each party owning one component.

3.2.3 Results

The results of training accuracy, predictive accuracy and training time taken by all four

methods on the stated data sets are depicted in Figure 3.5 to Figure 3.7 respectively.

The prediction time taken by each of these classifiers is extremely small and hence is not

shown.

Since the classifier obtained by assuming a trusted third party and the one induced

using SMC is same, their training and prediction accuracies are mentioned together.

Irrespective of the accuracy obtained, the former approach is not feasible because, in the

competitive era, it is difficult to trust a third party.

Further, it can be observed that when a classifier is induced using SMC, the accuracy

is high; but, as a large amount of communication is required, the time taken in training

a classifier is very high. Moreover, with the increase in number of attributes, the com-

munication required also increases. This is because each party has to share each of its
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Figure 3.5: Training accuracy of classifiers (in %)

Figure 3.6: Prediction accuracy of classifiers (in %)

50



CHAPTER 3. EMPIRICAL EVALUATION OF PRELIMINARY COMPONENTS

Figure 3.7: Training time of classifiers (in s)

attribute-value pair with the other parties. Hence, SMC is not a very suitable technique

in today’s big data epoch.

As ensemble classifiers produce more accurate results, the approach is quite suitable

for privacy-preserving classification of homogeneously distributed data and the same is

proved experimentally. But, conclusions about data at other sites can be easily derived

from the classifiers released by those sites and privacy can be breached. Hence, it is

not preferable that the participating parties release the classifiers in raw form without

sanitization.

The final approach of k -anonymous decision tree classifier ensemble overcomes this

disadvantage and preserves privacy to a greater extent. Also, unlike traditional privacy

protection techniques such as data swapping and adding noise, information preserved

using k -anonymization remains truthful. From the results in Figure 3.5 to Figure 3.7, it

is clear that k -anonymous decision tree ensemble has good accuracy and the training time

is also acceptable.

Thus, the proposed approach uses the concept of k-anonymous decision tree classifier

ensemble to generate a privacy-preserving data classification algorithm for homogeneously

distributed data.
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3.3 Summary

This chapter empirically evaluates the existing and popular methods for data stream

classification and privacy-preserving data stream classification which form the two ma-

jor components of the target problem “privacy-preserving classification of horizontally

partitioned data streams”.

After a deep study of the literature about these two components in Chapter 2, the

experiments in this chapter remark Hoeffding tree as a suitable technique for classifying

data streams and windowing as a recommendable modus operandi to address the issue

of concept-drift in the continuously arriving data streams. Further, an ensemble of deci-

sion tree classifiers clubbed with the principle of k -anonymity is identified as an efficient

approach for inducing a privacy-preserving classifier.

Looking at the merits of these approaches and their suitability for the target problem

of the work in this thesis, a framework that encompasses these techniques is proposed in

the next section.
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Proposed Framework

This chapter presents the framework proposed for achieving the goal of privacy-preserving

classification of horizontally partitioned data streams. The key details included are a real-

world application targeted by the work, brief survey of literature on data mining tech-

niques applied to address the targeted application, generic view of the proposed approach

and the implementation environment details.

4.1 Targeted application

Several real-world applications demand efficient privacy-preserving classification of hori-

zontally partitioned data streams. One such application concerning decision making in

banking sector is illustrated in this section and is focused throughout the work.

Due to substantial competition, banks are focusing on client-driven lending and the

scope of obtaining considerable collateral from customers is shrinking. Customers pledge

collateral to a bank only if no other bank are lending without such indemnity. Also, an

increasing number of clients are defaulting on financial obligation by banks via credit cards

or loans. As per BIS, credit risk is characterized as the potential that a bank borrower will

fail to fulfill his commitment partially or fully, which is the major risk faced by banks. In

banking sector, along with the loan officer’s subjective assessment, success of a bank gets

exceedingly dependent on a model that guides decisions of providing credits to customers.
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Specifically considering the risk assessment, several decision-making models are re-

quired in banking sector. For example: 1) New Applicant Classifier: A model that classi-

fies a new credit applicant’s repayment ability into ‘good’ or ‘bad’ groups. Such a decision

support model utilizes financial conditions and demographic as well as characteristics of

the new applicant. Also, along with the banks, such a model would be in the interests of

borrowers too as they can identify their chances of obtaining credit. 2) Behavior Classifier:

A model that classifies if an existing customer will ‘default’ or ‘won’t default’. The model

also considers past payment history of customers. Further, this model not only helps

banks to act upon existing customers that might delinquent but also allows analyzing the

behavior of such customers and using it while lending to new customers.

In a nutshell, predicting a borrower’s ability to repay financial obligations is one of

the essential processes in banks’ credit management decisions. Such credit risk evaluation

can reduce loss and uncertainty. Much literature (Huang, Chen, and Wang; Lee et al.;

Lessmann et al.; Wang et al.; Yeh and Lien; Yu, Wang, and Lai) examines the application

and accuracy of classification techniques for the said task. Banks collect and analyze

information of its past borrowers and build a model (say a decision tree classifier) that

assigns new credit applications as either ‘credit-worthy’ or ‘credit-risky’ based on whether

the applicant would default on the financial obligation.

Aiming to attract good customers and dissuade the fraudulent, the data owners

(banks) may wish to release the data mining output, i.e. the classifier in public and

let potential customers estimate the likelihood of getting credit obligations. The banks

may also want to share their classifier among each other due to the mutual benefits it

brings. However, privacy and security concerns restrict disclosing the characteristics of

the clients. It is assumed that all attributes such as age, gender, marital status, income,

etc. are available to the public, but the class attribute, i.e. the credit worthiness is known

only to the banks. It would be unacceptable if someone uses the classifier to discover

which past clients failed to repay the obligations. Hence, it is extremely important to

enable ‘privacy-preserving’ and particularly, ‘output-privacy-preserving’ classification for

this area. Moreover, since data in the bank is continuously arriving and classifying an
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application may be required at ‘any-time’, the application can be posed as a data stream

classification task.

Further, the features collected, such as age, gender, balance, average monthly deposit,

etc. are the same for all banks (Lindell and Pinkas). That is, the data streams spanned

across the banks are horizontally partitioned. Thus, the problem in its entirety can be

considered as an application of privacy-preserving classification of horizontally partitioned

data streams.

Albeit much research, the need to re-consider the recent advances in data mining (i.e.

privacy requirements and streaming nature of data) for decision-making in banking is

taken as the target application for this work. Undoubtedly, the proposed approach is

applicable for any real-world application relating to privacy-preserving classification of

horizontally partitioned data streams.

4.2 Data mining for credit decision-making

Much literature explores the application of data mining techniques to improve assessment

of creditworthiness of customers; some of which are highlighted in this section.

Performance of four different methods: discriminant analysis (DA), logistic regression

(LR), neural networks (NN) and data envelopment analysis–discriminant analysis (DEA–

DA) is compared by Tsai et al. on a loan dataset with 1807 instances. Results show that

DEA–DA and NN perform better than DA and LR. The authors use money attitude of

customers as an attribute while inducing default predicting models.

Huang et al. apply support vector machine (SVM) for credit rating analysis on United

States and Taiwan market datasets. They compare its performance with back propagation

neural network (BNN) and show that SVM achieves only a minor improvement over BNN

in terms of predictive accuracy. Also, number of instances in the datasets is less than

4000. Accuracy of six different data mining methods for predicting probability of default

of credit card clients are evaluated and compared by Yeh and Lien. Data of customer’s

default payments in Taiwan is used and artificial neural network and classification trees are
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shown to perform more accurately among others. The dataset has considerable instances

but lacks comparison with several hybrid and newer data mining techniques.

Stating the long training time and interpretative difficulties of neural network, Lee

explores the performance of Classification and Regression tree (CART) and Multivariate

Adaptive Regression Splines (MARS) and demonstrate the efficiency and suitability of

these methods for credit scoring.

Huang, Chen, and Wang use a hybrid of genetic algorithms with SVM classifier for

credit scoring and a genetic algorithm based feature selection technique is proposed in

literature (Oreski, Oreski, and Oreski) followed by application of neural network as a clas-

sifier for predicting a borrower’s loan repayment ability. Experimental results in the papers

demonstrate the potential of hybrid techniques for assessing creditworthiness. Sustersic,

Mramor, and Zupan also use GA-NN hybrid to develop consumer credit scoring models

on accounting dataset of clients in financial institutions. They too use genetic algorithm

for variable selection and BNN for model construction. BNN shows good results but the

number of instances in the datasets used is small (in hundreds).

Further, Tsakonas et al. propose encoding genetic programming individuals using neu-

ral logic networks for bankruptcy prediction. The paper considers both interpretability

and classification accuracy but again the dataset used is very small, i.e. contains only

118 instances. A multistage neural network ensemble learning approach is proposed by

Yu, Wang, and Lai to assess credit risk. The authors illustrate the performance of the

proposed approach on two credit datasets. But since these datasets are extremely small,

a sampling approach is employed. The potential of ensemble classifiers as efficient alter-

natives for implementing credit scoring tasks is also shown by Twalaa.

Finlay applied ensemble classifier methods to classify customers with good and bad

credit risks. Results demonstrate that multiple classifiers outperform single classifiers.

Importantly, unlike most of the work in the literature, the methods are applied on two

real-world datasets with larger number of instances (88,789 and 138606 instances). Wang

et al. have also shown the effectiveness of decision tree ensemble as compared to single

decision tree and neural networks on two datasets with 690 and 1000 instances respectively.
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Lessmann et al. updates benchmarking study of Baesens et al. concerning classification

algorithms for credit scoring. They compare 41 classifiers with respect to 6 performances

measures on 8 real-world datasets of credit scoring. The datasets are of varying sizes and

the paper presents one of the most comprehensive studies of classifier performances for

credit scoring. Florez-Lopez and Ramon-Jeronimo highlight that the existing data mining

methods applied for credit scoring obtain high accuracy at the expense of interpretability.

Thus, they propose using a classifier ensemble of merged decision trees called correlated-

adjusted decision forest in order to induce an accurate as well as comprehensible classifier

for credit risk problems. But again, the method is applied for a dataset that has just 1000

instances.

To sum up, the existing research applies various data mining techniques, hybridization

of traditional data mining techniques with soft computing methods, advanced techniques

like ensemble classifier, etc. Interpretability of the model is one of the most important

factors for managerial decisions in financial sector. However, either the existing works do

not consider interpretability or uses a small number of instances in the dataset. Further,

the crucial issue of privacy leakage is not majorly addressed. Hence, the work aims to

design an accurate and interpretable privacy-preserving classifier from the data streams

concerning decision-making in banking sector.

4.3 Generic view of proposed approach

The generic view of proposed approach to accomplish the goal of privacy-preserving clas-

sification of horizontally partitioned data streams is shown in Figure 4.1. The approach

comprises of three major phases: 1) Induction of local output-privacy preserving classi-

fiers from data streams, 2) Induction of global classifier and 3) Optimization of global

classifier. These phases are elaborated in the following:

Phase 1: Induction of local output-privacy preserving classifiers from data

streams

In order to induce a global classifier from the horizontally partitioned data streams arriving

at different participating parties, local privacy-preserving classifiers are generated from
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Figure 4.1: Generic view of proposed approach

data stream appearing at each party. These classifiers are then combined to form the

global classifier.

In phase 1 of the proposed work, an approach named Diverse and k-Anonymized

HOeffding Tree (DAHOT) is proposed for preserving output-privacy in data stream

classification at local sites. The approach uses Hoeffding tree algorithm to create a data

stream classifier and k -anonymity as well as l -diversity principles to preserve the privacy

of the output (i.e. the classifier). The goal is to output an anonymized version of this

decision tree classifier and make it available for public usage. The proposed approach uses

a ‘mine and anonymize’ strategy which first forms a decision tree classifier and whenever

the output is to be published, it sanitizes the classifier. A detailed narration of the

approach in Phase 1, experimental evaluation and analysis is presented in Chapter 5.
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Phase 2: Induction of global classifier

As shown in Figure 4.1, the output-privacy-preserving DAHOT classifiers generated in

phase 1 are transferred to the merger site. At the merger site, a global ensemble classifier

is constructed to address privacy-preserving classification of horizontally partitioned data

streams which is then transferred to the participating sites.

The global classifier is induced using an approach named DAHOT-GPeCT. Within

this approach, the DAHOT classifiers received from participating parties form the initial

population and are evolved using Genetic Programming. GPeCT is named from Genetic

Programming based evolution of Classification Trees and includes novel features that

add to the proficiency of GP.

Chapter 6 presents an in-depth analysis of the approach proposed in Phase 2.

Phase 3: Optimization of global classifier

The global classifier induced in Phase 2 is further improved in Phase 3 using ensem-

ble learning along with GP. Instead of using only the best-of-run obtained at the last

generation of GP, the best few individuals from last run are combined to produce an en-

semble classifier. Using buffering and windowing mechanism, this classifier is periodically

updated.

The efficacy of this proposed approach known as DAHOT-GPeCT-Ensemble in privacy-

preserving classification of horizontally partitioned data streams is analyzed and presented

in detail in Chapter 7. The 3-phase induction approach proposed in Figure 4.1 accom-

plishes the work’s objectives presented in Chapter 1.

4.4 Implementation environment details

Each of the algorithms proposed in all the phases is implemented in MATLAB 7.8.0

(R2009a) and the experiments are performed on a machine with Intel Core i3-350M

2.27GHz processor and 2 GB of RAM, all running on Windows 7 Platform. For Ho-

effding tree induction, nmin is set to 200 and δ is set to 10−7. These values of nmin and

δ are adopted from the default settings in original papers on Hoeffding tree induction
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(Domingos and Hulten; Hulten, Spencer, and Domingos). Further, as mentioned in scope

of the work, throughout the experiments, it is assumed that three parties want to collab-

oratively conduct the data classification. More parties can easily be accommodated but

the results presented in this work are derived using three parties only.

The DAHOT classifiers generated at each participating site are to be periodically

transferred to the merger site since the goal is privacy-preserving classification of ‘hor-

izontally partitioned’ data streams. It is to be noted here that the processing of the

algorithm used for generating a global classifier is not distributed. Only the classifiers are

to be exchanged between the sites.

For the same, File Transfer Protocol (FTP) is used. An FTP server is created at the

merger site. All the participating sites can transfer their DAHOT classifiers to the server

and can also read from it. The merger site will read these classifiers (added at the server

by participating sites) and induce the global classifier. The participating sites can also

read the global classifier produced. The detailed process of classifier sharing is presented

in next subsection.

4.4.1 Implementation of classifier sharing process

An FTP server has been created using FileZilla, which is an open source software (cross-

platform FTP application), distributed without charges under the GNU General Public

License. Figure 4.2 to Figure 4.7 indicate the process of file sharing between local sites

and the merger site.

4.5 Summary

This chapter describes the application targeted throughout the work, relevant literature

survey, outline of the proposed approach and overall implementation environment details.

The subsequent three chapters portray the phases of the proposed approach presented in

this chapter.
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Figure 4.2: Creating and connecting to the server created at the merger site

Figure 4.3: Creating and authenticating users (the local sites)
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Figure 4.4: Authorizing the local sites for read/write permissions

Figure 4.5: Login to the global site server by a local site
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Figure 4.6: Adding/Reading classifier) at the merger site

Figure 4.7: Access Log maintenance at the server
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Chapter 5

Preserving Output-Privacy in Data

Stream Classification

5.1 Introduction

Due to their effectiveness in supporting decision-making processes and extracting patterns

locked within large collections of data, data mining techniques have attracted considerable

interest and attention of research communities. It is apparent that the power of these

techniques may breach the privacy of individuals to whom the data refers and the field of

privacy-preserving data mining (Agarwal and Srikant; Lindell and Pinkas; Kantarcioglu;

Zhang, Wang, and Zhao) has emerged in response to this issue. Specifically, the sensitive

information in the original data should be protected from either direct or indirect (via

linking and inference) exposure during the mining process. Further, not only the original

data but also data mining output can lead to the disclosure of sensitive information.

Thus, the rapidly rising area of privacy-preserving data mining research has two main

considerations: The first addresses sanitizing the sensitive raw input data prior mining it

(Samarati; Fung, Wang, and Yu). The second focuses on sanitizing the data mining output

to prevent inference of sensitive patterns from it (Wang and Liu). Most of the existing

Part of this chapter appears in: Radhika Kotecha and Sanjay Garg, “Preserving Output-Privacy in
Data Stream Classification”, Progress in Artificial Intelligence, vol. 6, nos. 2, pp. 87-104, Springer (2017)
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literature proposes methods only for the first consideration. But, since these methods

attempt to preserve maximum utility and statistical information of the raw input data,

the mining output may still breach privacy (Wang and Liu). Instead, it is suggested that

by cleverly modifying the raw patterns obtained using data mining; the maximum utility

of the patterns is preserved. Further, as per (Friedman, Wolff, and Schuster), a privacy-

preserving classifier can be obtained efficiently as compared to a classifier obtained using

sanitized data and the authors suggest first performing mining and then sanitization. If

the data mining output reveals no private patterns, it can be reliably claimed that the

privacy of underlying data is protected. Moreover, when the final goal is to release the

output of data mining (a model); its effectiveness in preserving privacy is of the utmost

concern. This work focuses on preserving output-privacy and proposes a method that

prevents inference using the released classifier.

Further, the continuously arriving data streams provide great data mining opportuni-

ties but require serious consideration over the privacy implications in mining it. However,

it has captured fairly limited attention thus far. Hence, the crucial issue of privacy-

preserving data stream classification (PPDSC) is emerging as a novel research area. This

chapter presents a more systematic method for preserving the privacy of data stream

classifier output. The goal of this output-privacy-preserving data stream classifier is to

prevent record linkage and attribute linkage attacks as described in Chapter 2. Henceforth

in this work, privacy-preservation refers to preventing these attacks.

Chapter 2 presents an overview about the wealth of literature on classification of data

streams and an empirical evaluation of some of these techniques is shown in Chapter 3.

These studies suggest that Hoeffding Tree (Domingos and Hulten) is one of the most sim-

ple and efficient classification techniques for data streams. Specifically, when a classifier

model is to be output, Hoeffding tree is suitable and interpretable. Further, several real

world applications demand reasons for classifying any data instance into a particular class.

Hence a symbolic classifier like Hoeffding tree is favorable and the proposed approach uses

it as the base method for classifying data streams. Certainly Hoeffding tree classifier isn’t

capable to deal with concept-drift and the work in this chapter assumes no concept-drift
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occurs in the data stream. The proposed approach is extended in Chapter 7 to handle

the concept-drift.

Further, as shown in Chapter 2, the literature contains a large number of techniques

that offer strong assurance to avoid information disclosure and preserve privacy of indi-

viduals. Among them, the work in this thesis focuses on k -anonymity as it covers the

basic principle of privacy and is practical as compared to other other models (Ayala-

Rivera et al.). k -anonymity has been studied intensively (Samarati; Fung, Wang, and

Yu; Aggarwal et al.; Bayardo and Agrawal; Bertino et al.; Fung, Wang, and Yu; Iyengar;

LeFevre, DeWitt, and Ramakrishnan), is conceptually simple and can be applied in most

scenarios. Although few works (Machanavajjhala et al.; Sun et al.) have pointed out that

pointed out that k -anonymity is vulnerable to attribute linkage attack and have proposed

variants of k -anonymity, Tian et al. argue that the newly developed models too use k -

anonymity as a base. In addition to k -anonymity, the work also applies the l -diversity

principle (Machanavajjhala et al.) to overcome the limitations of k -anonymity.

Since the eventual goal of any data mining application is to output a model or a

pattern, the focus is on sanitizing the data mining output rather than conventional method

of preserving privacy of data mining input. To preserve inference using the data mining

output, the proposed approach first performs mining on the raw data and then imposes

privacy protection on the mining results. Specifically, an algorithm named Diverse and

k -Anonymized HOeffding Tree (DAHOT) is proposed that utilizes the Hoeffding tree

algorithm as well as k -anonymity and l -diversity principles to produce a classification

tree for preserving output-privacy in data stream classification.

5.2 Related work

This section presents, in brief, the existing literature related to anonymizing data that is

dynamic: either the data is incrementally updated or is continuously arriving. Further,

the work carried out to create privacy-preserving classifiers from the data streams is

highlighted herein.
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Xiao and Tao; Pei et al. and Fung et al. consider incremental privacy-preserving pub-

lishing scenario. The solutions proposed in the work are as follow: Consider R1 is the

privacy-preserving release of D1. For an incremental update with D2 instances, the pro-

posed approaches generate new privacy-preserving release R2 of D1

⋃

D2 such that even

if an attacker jointly analyzes D1 and D2, there can be no privacy leakage. However, these

incremental approaches cannot be applied for preserving the privacy of data streams be-

cause: 1) Existing approaches assume only one record per individual. But a data stream

to be published may contain multiple records per individual. 2) Existing approaches

scan the dataset multiple times which is not suitable for data streams with high velocity.

Hence, approaches that consider preserving the privacy of data streams continuously are

preferred.

Li, Ooi, and Wang proposed an algorithm called SKY (Stream K-anonYmity) that

facilitates k -anonymity on data streams continuously while preserving maximum possible

information in the anonymized data stream. The approach uses a pre-defined domain

generalization hierarchy (DGH) to create a specialization tree (directed tree), where each

node is a vector <vl, . . . , vm>. Each value vi in the vector is drawn from the DGH

with the root of specialization tree being the most general node. For every new tuple in

the data stream, the algorithm scans the specialization tree looking for the most specific

generalization node containing that tuple. If the set of matching tuples of the node satisfy

k -anonymity, then that tuple is anonymized using the node and is output output instantly.

Otherwise, the tuple is stored until the node satisfies k -anonymity. Moreover, a time delay

constraint is applied on each tuple in the buffer. Once the time delay is exceeded, the

tuple is anonymized by the node’s parent and is output. Empirical evaluation in the paper

shows the effectiveness of SKY algorithm.

Cao et al. proposed a cluster-based scheme called Continuously Anonymizing STream-

ing data via adaptive cLustEring (CASTLE) that performs k -anonymization on the in-

coming data streams dynamically. For n QIDs, CASTLE creates clusters as n-dimensional

intervals. Initially, there are no clusters in the memory. When the first data instance ar-

rives, CASTLE creates a cluster out of it. Progressively for each new instance, CASTLE
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selects a cluster that needs the smallest enlargement to include that instance in it. CAS-

TLE satisfies specified delay constraints by checking if an instance in any cluster is about

to expire. Such an instance is output without delay, considering either of the two options:

If the cluster containing the expiring instance is greater than or equal to k instances,

all the tuples in that cluster are output with its generalization. Whereas, if the cluster

with expiring instance has less than k instances, CASTLE selects a neighboring cluster

for merging such that size of the consequent cluster is greater than or equal to k and the

enlargement is minimum. Performance study in the paper shows that CASTLE efficiently

anonymizes the quality of output data stream.

Zhou et al. describe that a smaller delay can improve the efficacy of published data

and propose the following method to obtain k -anonymous data stream: The approach

maintains a list of equivalence classes which is initially empty. For every new instance in

the data stream, an equivalence class is created and the instance is added to it. If the

next tuple is generated by a different object, it is added to the existing equivalence class;

otherwise, the instance is inserted into a new equivalence class created by it. At any time,

if the class has more than k instances in it, those k instances are published after gener-

alizing and the published class is eliminated from the list of equivalence classes. Further,

the paper proposes a randomized algorithm that considers information loss of equivalence

classes. Maintaining statistics or creating an accurate privacy-preserving classifier out of

the data streams is left as a future work.

Chao, Chen, and Sun propose an approach for privacy-preserving classification of data

streams (PCDS). The PCDS approach works in two steps. In the first step, the private

data streams are perturbed using data splitting and perturbation method. In the second

step, the perturbed data streams are mined using the weighted average sliding window

algorithm. The classifier is rebuilt when the classification error goes beyond a determined

threshold. Although PCDS can accurately mine data streams, it requires multiple passes

over the stream during the process: calculating variance of each attribute, perturbing the

private attribute, classifying the perturbed stream, etc.
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Chhinkaniwala and Garg also propose using perturbation for preserving privacy of

data streams and further cluster the streams using standard clustering algorithms. They

propose tuple value based multiplicative data perturbation approach: Tuple value of an

instance is calculated as an average of normalized values of all attributes. These tuple

values are then multiplied with value of instance’s sensitive attribute resulting into a data

stream with statistical characteristics of the data stream preserved. The pre-processing

phase is followed by application of K-means clustering algorithm over a fixed sized slid-

ing window. The efficiency of the proposed approach is demonstrated by performing

experiments on two data streams with 65,000 and 45,000 instances respectively. But

the approach considers preserving privacy of only numeric attributes and a method for

nominal attributes is not addressed.

Chhinkaniwala, Patel, and Garg have also proposed an approach for privacy-preserving

classification of data streams. A sliding window based data perturbation technique is used

for preserving privacy of the data streams. The approach maintains a fixed size window

containing the tuples and works as follows: For each sensitive attribute, the mean of

values of all tuples in the window is calculated and the first tuple value is replaced by this

mean value. The perturbed tuple is popped off and the next tuple in the data stream is

added to the window. The process is repeated for every tuple in the data stream. The

authors also use multiplicative data perturbation using rotation perturbation approach

to preserve privacy of data streams. Hoeffding tree is induced from the perturbed data

streams and experimental results have been performed on dataset with 45,000 instances.

But, again the paper considers only numeric attributes to be sensitive and no solution for

sensitive nominal attributes is proposed.

Xu et al. discuss the case of privacy-preserving classification of multiple data streams.

As the streams are coming from different owners, joining all the streams would breach

privacy. Also, joining the high-speed streams is not suitable. Hence, the authors adopt

Naive Bayesian Classification (NBC) for this scenario and perform sliding window join

(join on data stream in current window) wherein the necessary join statistics are computed

without actually performing the join. The classifier obtained is similar to a NBC obtained
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by applying join on the streams without disclosing private data.

Alongside the advantages, these methods have certain limitations as follows: If the

attacker has knowledge of a sequence of instances in the data stream, both SKY and

CASTLE might fail in adequately preserving the privacy. Further, creating a classifier

using the approach proposed by Zhou et al. as well as the sliding window based approaches

(Chao, Chen, and Sun; Chhinkaniwala and Garg; Chhinkaniwala, Patel, and Garg; Xu

et al.) requires a pre-processing stage which consumes more time and memory. Also,

these methods require reconstructing the classifier every time the window on the input

data stream slides forwards.

Due to these limitations, the methods described in this section do not fit into the

work’s goal of preserving output-privacy in data stream classification and hence these

methods are not considered in the experimentation too. Instead, hybrids of the methods

for data stream classification and privacy-preserving are used. The method proposed in

this chapter overcomes these limitations: it neither requires frequent reconstruction of

classifier nor it is susceptible to attack using a continuous sequence of instances. The

next section describes this proposed method.

5.3 Proposed Output-Privacy-Preserving Data Stream

Classifier

In this section, an algorithm named Diverse and Anonymized HOeffding Tree (DAHOT)

is proposed for preserving output-privacy in data stream classification. The algorithm uses

Hoeffding tree as a base classifier for classifying data streams and k -anonymity as well as

l -diversity models to preserve the privacy of the output classifier.

The anonymized version of this decision tree classifier is to be output and made avail-

able for public usage. The proposed algorithm uses a ‘mine and anonymize’ strategy

which first forms a decision tree classifier and whenever the output is to be published, it

anonymizes the classifier. While constructing the decision tree classifier, the algorithm
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inserts a new splitting node in the tree by choosing the best attribute, using the Ho-

effding bound, and updates the tree accordingly. When the output classifier is to be

published, the number of instances at the leaf nodes is calculated. The nodes that violate

k -anonymity property are pruned.

The k -anonymous decision tree classifier proposed by Friedman, Wolff, and Schuster

performs multiple passes over the data to find out the best splitting attribute, i.e., each

instance is read multiple times. Also, the existing methods of privacy-preserving data

stream classification perform multiple scans over the data stream in order to preserve

the privacy. The proposed algorithm makes only two passes over the entire data stream:

firstly to create the Hoeffding tree classifier and second to sort the examples to appropriate

leaves during the anonymization process. For updating the classifier, only some of the

instances are rescanned, which is explained in Section 5.3.1. Although the data stream

mining techniques prefer scanning the instances only once, rescanning the previously-seen

instances is permissible for time and space efficiency reasons (Domingos and Hulten),

as follows: Firstly, rescanning is performed to enforce privacy constraints on the data

stream classifier. In absence of rescanning, as in most of the existing works, PPDSC may

require two stages: a privacy-preservation stage and a classifier induction stage. This

extra stage of privacy-preservation will, in turn, require multiple passes over the data

as well as consume more time. Secondly, devoid of rescanning, PPDSC will require the

classifier to store a large amount of statistics (to ensure privacy constraints) and thus will

need excess of memory (Kirkby).

Further, the k -anonymity model suffers from two major limitations (Friedman, Wolff,

and Schuster) which have been identified and addressed by the algorithm. Firstly, it

may be difficult for the data owner to tell apart which of the attributes will appear in

external tables. The proposed approach isn’t affected due to this limitation, since the

scope of the work in this thesis assumes that class label (appearing at the leaves of the

decision tree) is the only sensitive attribute. The assumption is acceptable since our task

is classification and people may be aware of the basic details of an individual but are

interested in the target concept (such as whether or not a client defaulted on a loan,
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whether or not a person suffers from a particular disease, etc.). The second limitation

is due to k -anonymity’s susceptibility to homogeneity attack which is addressed by l -

diversity model as described in Chapter 2. The work considers that leaves of decision

trees provide the frequency of each of the classes rather than just the majority class.

Diversity is enforced by altering the privacy constraint to one that requires a certain

amount of diversity in class values at leaf nodes. That is, each leaf should have at least d

tuples per class.

The outline of the proposed algorithm is presented in Algorithm 1, 2 and 3 accompa-

nied by a detailed description of it.

5.3.1 Proposed algorithm

The proposed algorithm is shown in algorithm 1.

The algorithm begins by initializing the tree data structure DAHOT with a single

root node at line 1. Each instance in the data streams (line 2) is filtered down to the

appropriate leaf node l of the tree DAHOT based on the splitting nodes present in the tree

(line 3). Also, counts nl, the number of examples seen at leaf l and the counts nlpqr at this

leaf are updated at line 3 and 4 respectively. For discrete-valued attributes, the counts

nlpqr represent the number of examples of class p that reach the leaf l, where the attribute

q has the value r. Continuous attributes need to be discretized, which is elaborated in

section 5.3.2. Line 6 shows that selection of the best attribute to split is done only when

a mix up of classes is observed at the leaf and when a minimum number of examples

nmin has been accumulated. The latter is done in order to improve the efficiency of the

algorithm.

Further, the attribute selection measure (say information gain) G is calculated for

each attribute Ai (line 6). If attribute A1 is found to be the best attribute (line 7) and A2

is found to be the second-best attribute (line 8); and the difference between their gains

is greater than the Hoeffding bound ε (line 9 and 10), then X1 is selected as the splitting

attribute (line 11). For each branch with the corresponding attribute-value pair (line
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Algorithm 1 DAHOTree(D, nmin, δ, k, d)

Input: Data stream, D; the minimum number of examples before evaluating attributes,
nmin; 1 minus preferred probability of selecting the correct attribute at any node in
tree, δ; k -anonymity parameter, k ; diversity parameter, d

Output: Diverse and k -anonymized Hoeffding tree, DAHOT
1. Let DAHOT be a tree with a single leaf l (the root) and initialize nlpqr, the number

of examples of class p that reach the leaf l, where the attribute q has the value r

2. for all training examples in the data stream D do

3. Filter down the example into an appropriate leaf l of tree DAHOT and increment
nl, the number of examples seen at l

4. Update the counts nlpqrat l
5. if nl mod nmin = 0 and examples seen at l belong to more than one class then
6. Compute G(Ai) for each attribute of instances on l

7. Let A1 be attribute with highest G
8. Let A2 be attribute with second-highest G

9. Calculate Hoeffding bound ε =
√

R2 ln(1/δ)
2nl

10. if (G(A1) – G(A2) > ε then

11. Convert l to an internal node that splits on A1

12. for all branches of the split do
13. Add a new leaf with initialized counts nlpqr

14. end for

15. end if

16. end if

17. if classifier output is to be published at any point then
18. if classifier output is to be published the first time then

19. Re-scan the entire data stream D seen so far
20. else if updated classifier output is to be published then

21. Scan the newly arrived instances in data stream and instances stored at active
nodes

22. end if

23. Sort the examples into appropriate leaves of tree DAHOT
24. T = TreeTraversal(DAHOT)
25. for all node v in T do

26. if v is a leaf node then

27. PrivacyTest(DAHOT, |D|, v, k, d)
28. else

29. if both children of v are marked as pass then

30. Mark node v as pass
31. else

32. Prune node v to form a new leaf containing instances of its children
33. PrivacyTest(DAHOT, |D|, v, k, d)
34. end if

35. end if

36. end for

37. end if

38. end for
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Algorithm 2 TreeTraversal(DAHOT)

Input: Binary tree, DAHOT
Output: DAHOT traversal sequence
1. Let Q be a queue and S be a stack
2. Let n be the root node of DAHOT
3. Enqueue n to Q

4. while Q is non-empty do

5. if n is a non-leaf node in DAHOT then

6. Enqueue left-child of node n to Q

7. Enqueue right-child of node n to Q

8. end if

9. Dequeue the front element of Q and Push it on S

10. Designate the new front element in Q as n
11. end while

12. while S is non-empty do

13. Pop the top element of S and add it to DAHOT traversal sequence T
14. end while

15. return T

Algorithm 3 PrivacyTest(DAHOT, N, v, k, d)

Input: Binary tree, DAHOT; total number of examples seen so far in data stream, N ;
node for testing against anonymity, v ; k -anonymity parameter, k ; diversity parameter,
d

Output: Anonymity-checked node, v
1. Calculate n, the total number of examples at v
2. Calculate nlp, the number of examples of class p at v
3. nk = k * N

4. nd = d * n

5. if n>= nkand nlp >= nd for each class p then

6. Mark node v as pass
7. end if
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12), a new leaf node is created and the examples at the branching node are forwarded

down the split to initialize the count nlpqr (line 13). This process, beginning from line

2, is executed in a loop for every training instance. As the attribute selection measure,

we employ Gini Index used in the popular Classification and Regression Tree (CART)

algorithm (Breiman et al.) that creates binary trees.

Data streams must be capable of producing the output at any given point (line 17-

23). When the output classifier is to be published for the first time, all the instances in

the stream are rescanned to compute the number of instances at the leaf nodes. This

rescanning of all the instances in the data stream is carried out only once and the nodes

that violate k -anonymity property are pruned. At this stage, the instances are divided

and stored in parts corresponding to the leaves of the published classifier.

Whenever the data stream receives new labeled instances, the classifier is updated.

Publishing this updated classifier requires re-scanning of: 1) instances that arrived after

the last classifier was published 2) the instances at the nodes (called active nodes) that

are expanded with the newly arrived instances. This rescanning occurs only when the

user requires an updated version of the classifier to be published (which may occur on

arrival of a large number of new instances in the data stream). This rescanning affects

the performance of DAHOT only in terms of the time taken in reading and sorting the

instances at appropriate leaves.

To produce an anonymous classifier, the classifier tree DAHOT is traversed as depicted

in Algorithm 2 and the traversal sequence is stored in T (line 24). The methodology of

traversing DAHOT described in algorithm 2 is explained in Figure 5.1. It is a combination

of bottom-up traversal and breadth-first search technique. Figure 5.1(a) shows an example

tree and Figure 5.1(b) shows its corresponding traversal sequence. The traversal is carried

out such that any node is visited only after both of its children are visited.

Each node v in the traversal sequence T is tested for anonymity (line 25-36) as follows:

If v is a leaf node, the anonymity test of Algorithm 3 counts the number of examples, n,

appearing at v. If this count is less than the anonymity requirement k * N (where N is

the number of instances seen so far in the data stream), the node v fails the k -anonymity
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Figure 5.1: DAHOT traversal example

test. Otherwise, the node is resistant to linking attack as it makes each record belonging

to its path (from root to leaf v of the tree) indistinguishable from at least (k – 1) other

individuals. Further, to prevent homogeneity attack, the node v is checked against the

class diversity parameter d. If nlp, the number of examples per class is at least d times

the total number of examples (n) at v, then the node v passes the privacy test. The range

of both the privacy parameters k and d is [0, 1).

If v is a non-leaf node, it passes the privacy test only if both of its children (considering

binary trees) pass the test. Otherwise, node v is pruned and converted to a leaf node,

say v ’. All the instances that belonged to the children of node v are now assigned to the

newly created leaf v ’. Further, v ’ being a leaf node, is again made to undergo the privacy

test and marked pass if it satisfies the required constraints k and d.

Thus, a d -diverse and k -anonymous Hoeffding tree classifier is induced from the data

streams. The tree obtained using this algorithm satisfies the need of a data stream mining

algorithm: the capability to predict anytime. Also, it assures that the output does not

reveal any sensitive information about the individuals referred in the data.

5.3.2 Discretization of data streams

Strategies for handling continuous attribute values have been extensively studied in the

batch setting. The discretization methods transform the continuous data to discrete values
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as a pre-processing step that is independent from the learning algorithm. Hence, any

data mining technique that accepts only discrete attributes can mine data that originally

contained continuous numeric attributes, by utilizing transformed version of the data.

To replicate the same in case of data streams is difficult as it is inefficient and at

times impossible to load the entire stream into the memory and discretize it. The major

reasons for this difficulty, is the large size of data streams as well as its nature of arriving

continuously and not all together. Hence, the work considers a small but sufficient part

of initial data stream (labeled) and uses it to find suitable discrete value substitutes

for the continuous data. After this pre-processing step, any incoming data instance with

numeric attribute is substituted to relevant discretized values and then used. The popular

discretization methods for data streams are:

a. Exhaustive Binary Tree based discretization (Gama, Rocha, and Medas)

b. VFML method of discretization (Hulten and Domingos)

c. Greenwald and Khanna’s discretization method (Greenwald and Khanna)

d. k-means clustering (Hartigan and Wong)

e. Partition Incremental Discretization (PID) (Gama and Pinto)

The work utilizes a variant of PID to discretize the numeric attributes. The method is

composed by two layers: The first layer divides the continuous numeric range into b bins

of equal width. There is no overlapping between the bins, so that any given value will

lie in exactly one bin. The second layer counts the number of instances in each bin and

splits or merges bin as per the following criteria based on countavg the average number

of instances in each bin:

• If the number of instances in any bin is a threshold times less than count: the

elements of the bin are merged with neighboring bins.
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• If the number of instances in any bin is a threshold times greater than countavg:

the bin is split into two parts from the middle-point and elements are divided into

respective bins.

The above procedure is repeated until either of the above two conditions exist. Finally,

all other instances are sorted as per the derived discretization.

5.4 Experimental details

To demonstrate the effectiveness of the proposed algorithm, experiments are performed

with different datasets. This section presents the details of datasets used as well as

implementation details and reports the evaluation results.

5.4.1 Data streams

Since the scope of the work considers addressing the issue of privacy-preserving data

stream classification in banking application described in the Chapter 4, experiments are

performed on data streams in the banking sector. As mentioned in the scope of the work

in Chapter 1, the class-label is considered as a SA and all other attributes are considered

to be QIDs.

The banking datasets used in most of the existing work on privacy-preserving data

mining have a small number of instances. This is mainly due to unavailability of real

financial data from banks due to privacy constraints. But these days several synthetic

data stream generators and large datasets depicting real-world problems are available.

Four such data streams from banking sector are utilized in the experiments and their

details are as follows:

(1) Default of credit card clients: The dataset represents a case of defaulting on credit

card payments by customers in Taiwan and has been taken from machine learning

repository of the University of California at Irvine (Lichman). The data contains
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23 attributes with 30,000 instances. The SA class-label has 2 values, depicting the

client’s behavior to ‘default’ or ‘not default’.

(2) Give me some credit: This dataset is provided by a financial institution for Kaggle

competition (Kaggle) named “Give me some credit”. It contains 10 attributes and

150,000 instances divided into 2 classes representing whether somebody will experi-

ence financial distress in the next two years: ‘yes’ or ‘no’.

(3) German Credit: The data stream is synthetically generated using the publicly avail-

able real-life data set provided by a German financial institution and available at

machine learning repository of the University of California at Irvine (Lichman). This

synthetic data stream contains 20 risk driver attributes with 300,000 instances. The

sensitive class attribute has 2 values: ‘good payers’ and ‘bad payers’.

(4) Loan Approval: This dataset is synthetically generated using Massive Online Analysis

framework (Bifet et al.). The data generation function is designed to aid determining

whether the loan should be approved. It has 9 attributes and 1,000,000 instances

falling into 2 classes: ‘approve’ or ‘disapprove’ loan applications.

Although each of these data streams has only 2 classes, the proposed approach is applicable

to multi-class data streams too. Since the data streams used for the application targeted

in this work have only two classes, results on multi-class data streams are not shown.

5.4.2 Baseline methods for comparison

To demonstrate the effectiveness of the proposed algorithm, its performance is compared

with 3 other methods. Details of these methods are described in the following:

(1) Sanitized Decision Tree Classifier on Partial Data Stream (SDTP): The method is

based on sampling and has been adopted from approach by Friedman, Wolff, and

Schuster; Aggarawal; Golab and Ozsu. It utilizes only partial (sample of) labeled

instances to induce a classifier. From this partial data stream, the traditional decision
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tree classifier using the algorithm CART is created and pruned until it satisfies the

required anonymity and diversity constraints (i.e. pruned for sanitization).

(2) Ensemble of Sanitized Decision Tree Classifiers (ESDT): This technique is based

on creating an ensemble of N classifiers using the Bagging approach (Breiman) and

is an adaptation of method by Abdulsalam, Skillicorn, and Martin and Wang et al.

Whenever a predefined number of labeled data instances are observed, a decision tree

classifier (using CART) is created, sanitized (by pruning) and added to the ensemble.

The number of instances to observe before inducing a base classifier is dependent on

the type of application and preference of the user.

(3) Hoeffding Tree (HT) classifier: Since the proposed algorithm is an enhancement of

Hoeffding tree classifier (Domingos and Hulten; Kirkby), an efficient data stream

classifier, it is used as a reference for comparison with the proposed method and

analysis of the information loss and difference in accuracy due to sanitization.

5.4.3 Evaluation criteria

Considering the characteristics of an ideal privacy-preserving data stream classifier, the

evaluation is done using the following parameters:

(1) Training and Predictive Accuracy: Training accuracy is defined as the percentage

of training instances that are correctly classified by the classifier whereas predictive

accuracy is defined as the percentage of testing (previously unseen) instances that are

correctly classified by the classifier.

(2) Training and Prediction Time: Training time refers to the time taken to construct the

model whereas prediction time is the time required for classifying previously unseen

instances.

(3) Classifier Interpretability: Interpretability refers to the level of understanding pro-

vided by the classifier. Since the work uses decision tree as a base classifier, inter-
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pretability is considered based on number of nodes in the classifier. Large trees may

not be interpretable and thus trees with smaller number of nodes are preferred.

(4) Information Loss: The literature presents a variety of information loss metrics. In

this work, the notion of information loss is based on the Classification Metric (CM) by

Iyengar which is specifically applicable for anonymization of data concerned with the

classification task. CM is computed based on an instance’s adherence to the majority

class of the classification tree node it is filtered to. It is defined in equation 5.1 as the

difference between the sum of penalties of each instance in the data stream post and

pre-sanitization, normalized by the total number of instances in the stream D :

Information Loss =

(
∑

instance r penalty(r)post−sanitization

−
∑

instance r penalty(r)pre−sanitizaton

)

|D|
(5.1)

An instance r is penalized if its class-label is not the majority class majority(N ) of

the node N it belongs to and is defined as in equation 5.2:

penalty (r) =







1, if class (r) 6= majority(N(r))

0, otherwise
(5.2)

5.4.4 Evaluation methods

Two different evaluation methods are used in this work:

(1) Periodic hold-out evaluation:

For performance assessment and comparison, a periodic hold-out method of evaluation

is used where the classifiers are periodically tested on previously unseen instances.

This can be adjoined to a scenario of creating a classifier on a data stream whose

initial instances are labeled and remaining stream consists of a mixture of labeled

and unlabeled instances. Herein, whenever the stream encounters a labeled instance,
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it is used for training the classifier; whereas when an unlabeled instance arrives,

the classifier being trained is used to find the class label of that instance (that is,

deployment of the classifier). While linking periodic hold-out with this scenario in

the experimentation, instead of deployment, testing is conducted.

The proportion of training and testing instances during the entire stream is demon-

strated in Figure 5.2 where the shaded area represents labeled, training instances.

The commonly used approach in data mining is followed where 66% of the total data

is used for training the classifier (Bifet et al.; Kohavi; Han, Kamber, and Pei).

Figure 5.2: Scenario of interleaved training and test instances in data stream

The first testing is carried out after observing a large number of training instances.

Hence, 60% of the training data (i.e. 40% of the total data stream) is devoted for

the initial training part. The remaining 60% of the stream has mixed training (26%)

and test (44%) instances. Experiments were also conducted using 50% and 70%

of the training data for the initial part of the stream. The classification accuracy

considerably drops on using only 50% of the training data initially whereas a little

increase in accuracy is observed while using 70% of the training data for the same. The

reported results use 60% of the training data before the first testing as it represents

an average case scenario and seems to be more realistic as compared to the rest.

(2) Traditional hold-out evaluation:

Experiments have also been conducted using the traditional hold-out of method of

evaluation as it is a standard method of evaluating data mining algorithms. The

experiments use the initial 66% of the data stream for training the classifiers and rest

for testing.
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5.5 Results and Discussion

In this section, different discretization methods are evaluated and compared to identify

a suitable one. Further, the experimental results of the proposed DAHOT with SDTP,

ESDT, and HT are compared and analyzed on the data streams stated in Section 5.1.

5.5.1 Empirical comparison of discretization methods

The popular methods for data stream discretization have been empirically compared and

the results of accuracy of Hoeffding classifier with attributes discretized using each of

these techniques is depicted in Figure 5.3. The number of bins is set to 10 and the

discretization threshold for PID is set to 50%. Since the purpose of this experiments is

to identify a suitable discretization method for the DAHOT, experiments are conducted

using DAHOT’s base data stream classifier Hoeffding tree only.

Figure 5.3: Predictive accuracy (in %) using different discretization methods

Although Binary-tree based discretization provides the highest result, the method ulti-

mately stores all the values in the tree and hence occupying a large amount of space. Com-

paratively, PID gives good results and does not require excess storage post-discretization.
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5.5.2 Evaluation using periodic hold-out method

This section discusses the experimental results of the periodic hold-out method of eval-

uation. SDTP utilizes only the initial (labeled) chunk of instances to induce a classifier.

Any labeled instance arriving later in the stream is not used in creating or updating the

classifier. For experiments using ESDT, an ensemble of N = 5 classifier is formed with

3 decision tree classifiers are created from the initial 40% of data stream and 2 from the

remaining labeled instances arriving later in the stream. Since the output of the algorithm

is sensitive to the chosen values of privacy parameter k and d, a range of values for k and

d are tested and its results are reported in this section.

5.5.2.1 Effect of privacy parameter k

The amount of anonymity required, i.e. the anonymity parameter k is specified as the

percentage of training data. For example, k = 0.2% indicates that the number of instances

at a node in the classification tree should be at least 0.2% of the training data. The effect

of k in k -anonymity on all four data streams is tested and results of prediction accuracy

by varying the value of k from 0.2 to 0.5 are reported in Figure 5.4 to Figure 5.7. For this

set of experiments, the value of diversity parameter is set as d = 0.3%. As the value of

k increases, a greater amount of privacy is assured but more data instances are required

to form an equivalence class at the leaf nodes. Also, a higher number of nodes may fail

to be validated and hence be pruned. As a result, the predictive accuracy decreases,

which can be observed from Figure 5.4 to Figure 5.7. Since HT represents a data stream

classifier without privacy constraints, its performance is not affected by the anonymity

parameter k. On the other hand, for all four data streams, a greater amount of reduction

in predictive accuracy of STDP, ESDT, and DAHOT is seen for the value of k > 0.3%.

Hence, in all the remaining experiments conducted and reported in this paper, the value

of k is constrained to be 0.3%.
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Figure 5.4: Predictive accuracy vs Privacy level (k) on data stream 1

Figure 5.5: Predictive accuracy vs Privacy level (k) on data stream 2
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Figure 5.6: Predictive accuracy vs Privacy level (k) on data stream 3

Figure 5.7: Predictive accuracy vs Privacy level (k) on data stream 4
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5.5.2.2 Effect of diversity parameter d

Further, the effect of diversity parameter d is examined by varying its value from 0.1%

to 0.4%. The value of diversity parameter d = 0.1% (for example) implies that at any

leaf node, the proportion of instances of each class should be at least 0.1% of the total

instances at that leaf node. The larger the value of d, the more privacy is preserved but

the accuracy degrades. The results in Figure 5.8 to Figure 5.11 confirm the effect.

Figure 5.8: Predictive accuracy vs Diversity level (k) on data stream 1

Figure 5.9: Predictive accuracy vs Diversity level (k) on data stream 2
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Figure 5.10: Predictive accuracy vs Diversity level (k) on data stream 3

Figure 5.11: Predictive accuracy vs Diversity level (k) on data stream 4
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The results indicate that a tradeoff between accuracy and diversity is achieved by

setting the value of diversity parameter d in between 0.2 to 0.3. In the rest of the

experiments, by default, the value of d is set to 0.3%. A smaller value of d may make the

classifier vulnerable to homogeneity attacks whereas for d > 0.3, the predictive accuracy

falls considerably. Hence, the value d = 0.3% that provides a reasonable performance is

used.

5.5.2.3 Key Experimental Results

The training accuracy, predictive accuracy, training time, prediction time, information

loss and interpretability of all four classifiers are evaluated on stated data streams and

the results of the same are reported in Figure 5.12 to Figure 5.17 respectively. As shown

Figure 5.12: Training accuracy of classifiers (in %) using periodic hold-out evaluation

in Figure 5.12, the training accuracy of SDTP classifier is the low because the classifier

is not updated with the new labeled instances that arrive after the classifier has been

published once. Unlike SDTP, since ESDT does not ignore any of the labeled instances,

its training accuracy is higher than STDP. Specifically, when enough instances are ac-

cumulated, ESDT simply induces a new decision tree from them and adds the tree to

the ensemble classifier. ESDT waits until it receives at least 30% of the total number of
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instances received earlier and then forms a new decision tree. ESDT is expected to be well

accurate since it is based on the popular and successful ensemble classification technique.

But, since each of the ensemble members is sanitized to achieve the required privacy, the

overall accuracy of ESDT falls.

Further, like ensemble classifiers, HT has also gained popularity in recent literature

and is a widely used technique for classifying data streams efficiently. Since DAHOT

is based on HT, its training accuracy is higher than STDP and ESDT on all four data

streams. However, a major reduction in accuracy of DAHOT is seen as compared to

its ancestor HT as DAHOT is pruned to satisfy anonymity and diversity constraints. A

small amount of pruning is expected to increase the accuracy of a classifier (in case of

overfitting), but when several nodes are pruned (as in this case) a reduction in accuracy

is seen.

Further, as shall be described towards the end of this sub-section, the size of DAHOT

induced from ‘Default of credit card clients’ and ‘Give me some credit’ data streams is

small. This implies that a larger number of instances belong to the leaves of classification

tree and hence lesser nodes are to be pruned (to satisfy privacy constraints). As a result,

there is a small difference in the training accuracy of DAHOT and HT on these data

streams as compared to the remaining two as shown in Figure 5.12.

From Figure 5.13, it can be seen that the predictive accuracy of SDTP is again the

lowest among all as it has not been trained with excess examples like the remaining three

classifiers that are compared. However, when memory requirements do not permit all

the training instances to be utilized for learning, SDTP can be considered as a choice.

Further, an ensemble of SDTP classifiers can prove to be effective and is explored in the

next chapter. As the sanitization process of the trained ensemble classifier removes some

nodes and hence the learning by those nodes, the predictive accuracy of ESDT is lower.

Similarly, during the sanitization process of DAHOT, certain concepts are unlearned

(tree pruning) and hence its predictive accuracy is lower than HT. As shown in Fig-

ure 5.13, since HT performs efficiently on all data streams and DAHOT is derived from

HT, the predictive accuracy of DAHOT is higher than both SDTP and ESDT. SDTP
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Figure 5.13: Predictive accuracy of classifiers (in %) using periodic hold-out evaluation

Figure 5.14: Training time of classifiers (in s) using periodic hold-out evaluation
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Figure 5.15: Prediction time of classifiers (in s) using periodic hold-out evaluation

and ESDT induce traditional decision tree classifiers and hence their training time is high

and increases with the size of the data, which can be seen from Figure 5.14. Since HT is a

classifier specifically designed for data streams, the time required for training HT is lower

as compared to the traditional decision tree classifier. Since DAHOT is based on HT,

training time of DAHOT is also less than SDTP and ESDT. But, along with HT-based

tree induction, as DAHOT also performs the privacy-preservation process, its training

time is higher than HT as shown in Figure 5.14.

Prediction time of classifiers is shown in Figure 5.15. Since SDTP is induced from

lesser instances and size of the classifier is small, the prediction time is also less. ESDT

requires maximum time in prediction since each testing instance needs to be evaluated

against all the ensemble members prior declaring a class label. As the size of the HT

classifiers is small (as shown in Figure 5.16 and described later), the time required in

classifying new instances is proportionally small. Since DAHOT is a pruned version of

HT, its size is smaller than HT. As a result, the time required to classify an instance

using DAHOT is even less than HT, which is one of the advantages of our algorithm. It

may be required to clarify that the privacy-preservation process in DAHOT is carried out

during the training phase only and since the classifier published is already sanitized, no

extra time for privacy-preservation is required during prediction.
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Figure 5.16: Number of nodes in classifiers using periodic hold-out evaluation

Figure 5.17: Information loss of classifiers (in %) using periodic hold-out evaluation
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As mentioned in Section 5.4.3, interpretability is considered based on the number of

nodes in the classifier which is depicted in Figure 5.16. Since SDTP induces a classifier

from only partial data stream, the number of nodes in the classification tree is small,

making SDTP very interpretable. On the other hand, ESDT does not ignore any of the

training instances and ensembles 5 traditional decision tree classifiers induced from the

entire data stream. As a result, the total number of nodes in classifier induced using

ESDT is large making it less interpretable.

HT classifiers are smaller due to the Hoeffding bound as well as its characteristic of

accumulating nmin instances prior splitting the nodes. As a result, HT and the proposed

HT-based classification tree DAHOT has lesser number of nodes. Further, since DAHOT

is a result of pruning HT for anonymity and diversity, the number of nodes in DAHOT is

lesser than HT too.

Further, the information loss incurred by the targeted classifiers is shown in Fig-

ure 5.17. As the size of the classifier induced using SDTP is small, the leaf nodes contain

a large number of instances. Hence, only a small number of nodes are to be pruned to

satisfy the privacy constraints. As a result, the information loss using SDTP is lower

than ESDT. On the other hand, since each of the ensemble members of ESDT is pruned

till privacy is preserved, the resultant number of nodes pruned is large and hence the

information loss of ESDT is the highest. Like SDTP, the size of classifier induced using

the proposed DAHOT is small and unlike ESDT all the instances are sorted to a single

tree of DAHOT. Also, since DAHOT is based on HT, it is accurate enough as it uses all

the training instances for classifier induction. Thus, DAHOT requires a minimum amount

of pruning which leads to minimum information loss as compared to all other classifiers.

In a nutshell, from the results of Figure 5.12 to Figure 5.17, it can be verified that

DAHOT is an efficient and effective technique for preserving the privacy of data stream

classification output.
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5.5.3 Evaluation using traditional hold-out method

In this section, the results of traditional hold-out method of evaluation are demonstrated

for the same algorithms and data streams used in Section 5.5.2. The periodic hold-out

evaluation method and the traditional hold-out evaluation method produce nearly similar

results but since hold-out method is considered as a standard method of evaluating data

mining algorithms, experiments have been conducted using the former also and its results

are presented here. The results of anonymity and diversity parameter tuning are not

reported as they yield same conclusions as in periodic hold-out evaluation. Hence, again

k = 0.3% and d = 0.3% is used throughout the experiments. Furthermore, again as per

the commonly used approach of data mining Han, Kamber, and Pei, 66% of data is used

for training and remaining is used for testing.

Figure 5.18 to Figure 5.23 demonstrate the results of training accuracy, predictive

accuracy, training time, prediction time, interpretability, and information loss of SDTP,

ESDT, DAHOT and HT using traditional hold-out evaluation on all data streams stated

in Section 5.4.1.

Figure 5.18: Training accuracy of classifiers (in %) using traditional hold-out evaluation

The training and predictive accuracies of classifiers are shown in Figure 5.18 and

Figure 5.19 respectively. Similar to the results of periodic hold-out method, DAHOT
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Figure 5.19: Predictive accuracy of classifiers (in %) using traditional hold-out evaluation

performs better than SDTP and ESDT and there is a small reduction in its accuracy as

compared to HT due to the privacy-preservation process carried out by DAHOT. Since in

the traditional hold-out method of evaluation, all the data stream instances are present

beforehand, STDP has a wide range of instances to sample from and instances are sampled

randomly without replacement. As a result, its predictive accuracy increases as compared

to periodic hold-out evaluation method presented in Section 5.5.1.

Figure 5.20: Training time of classifiers (in s) using traditional hold-out evaluation
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Figure 5.21: Prediction time of classifiers (in s) using traditional hold-out evaluation

Figure 5.20 and Figure 5.21 show the training and prediction time required by the clas-

sifiers which are almost equivalent to their versions induced using periodic hold-out eval-

uation. ESDT again consumes maximum time for training as well as prediction whereas

the prediction time of DAHOT is the lowest among the rest as it is a pruned version of

the small sized HT.

Figure 5.22: Number of nodes in classifiers using traditional hold-out evaluation
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Figure 5.23: Information loss of classifiers (in %) using traditional hold-out evaluation

The observation for classifier interpretability (Figure 5.22) is same as that derived

using evaluation of periodic hold-out method. Further, since the predictive accuracies of

classifiers when they are supplied instances using traditional hold-out method are high, the

information loss is little less as compared to the respective periodic hold-out version. The

small information loss using each of the classifiers as shown in Figure 5.23 is acceptable

due to the privacy-preservation guaranteed.

From the results of Figure 5.18 to Figure 5.23, the efficacy of DAHOT in preserving

the privacy of data stream classification output is reassured.

5.6 Summary

Based on all the experiments conducted, it is observed that the major advantages of the

proposed DAHOT, which is an enhancement of HT, include high predictive accuracy,

less prediction time and lower information loss. The increase in predictive accuracy is

only over SDTP and ESDT but not on HT since it is not privacy compliant. On using

DAHOT, the minimum improvement in training accuracy is 0.76% whereas the maximum

improvement is 5.27%. The minimum and maximum improvement in predictive accuracy

(using DAHOT) is 1.96% and 5.82% respectively. Also, DAHOT preserves a minimum

99



CHAPTER 5. PRESERVING OUTPUT-PRIVACY IN DATA STREAM CLASSIFICATION

of 2.47% and a maximum of 5.24% information as compared to SDTP and ESDT. Also,

the advantages of SDTP indicate that it can be extended and enhanced to be utilized as

an effective privacy-preserving data stream classifier. Techniques like ensemble learning,

genetic programming, etc. have been applied in the next chapter to enhance SDTP.

These techniques have also been applied to DAHOT to build an even improved classifier.

Specifically, the next chapter explores these hybrids for an environment where the data

is distributed between multiple parties.
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Chapter 6

Genetic Programming-Based

Privacy-Preserving Classification of

Horizontally Partitioned Data

Streams

6.1 Introduction

Data mining has emerged as a powerful tool for extracting patterns from the data streams

arriving at various organizations. In today’s technological era, success in a business isn’t

achievable single-handedly. Rather, success is based upon collaboration between parties

because of the mutual advantage it brings. That is, multiple data streams need to be

aggregated and mined to learn global patterns existing in the market and obtain accurate

results for effective business decision-making.

An easy way is to gather the data streams from all the participating parties into a

central site and run a data mining algorithm at this central site. But, this centralized

Part of this chapter appears in: Radhika Kotecha and Sanjay Garg, “Genetic Programming based
Evolution of Classification Trees for Decision Support in Banking Sector”, International Journal of Knowl-
edge Engineering and Soft Data Paradigms, vol. 5, nos. 3/4, pp. 186-204, Inderscience Publishers (2016)
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CLASSIFICATION OF HORIZONTALLY PARTITIONED DATA STREAMS

approach is infeasible for a large number of applications due to several factors. One of

major factors is that transmitting such large data streams to a central site is cumbersome

and inefficient. Secondly, in today’s malicious environment, it is difficult to assume the

commonly used stratagem of the existence of a trusted third party for conducting the

overall mining process. Specifically, collaboration may occur between competitors who

are unwilling to share the data with each other or anyone due to privacy and confidentiality

issues. However, these competitors are aware that the mutually beneficial collaboration

is extremely important for business escalation. This issue has led to the concept of

distributed data streams mining (DDSM) which involves mining the patterns from data

streams that are distributed between multiple sites. DDSM addresses this issue without

requiring the sharing of data and without revealing any information except the final

data mining output. But as described in Chapter 5 of this thesis, since the data mining

output can also breach the privacy, DDSM cannot be accomplished without application

of privacy-preserving techniques. Privacy-preserving distributed data stream mining has

emerged to address this issue.

As stated in Chapter 2, a vast amount of literature presents different methods to per-

form privacy-preserving data mining without using a trusted third party. These methods

incorporate cryptographic techniques such as secure multi-party computation. However,

due to high computation complexity of such methods, they become impractical when the

input is large. Especially for the case of potentially infinite data streams targeted in this

work, cryptographic techniques appear deficient to provide the required solution.

The goal of this chapter is to develop methods for output-privacy-preserving dis-

tributed data stream mining. Particularly, the focus is on output-privacy-preserving dis-

tributed data stream classification since the task of classification is the core subject of

this thesis.

Organizations may collect the same set of data about different entities, i.e. all the

parties have the same schema. Such a data model is referred as homogeneously distributed

data or horizontally partitioned data. Numerous applications fall under this category. For

example, customers’ credit card transaction data streams where the features collected, like
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income, age, gender, account balance, average monthly deposit, etc. are similar for all

banks. Other examples include transaction information of clients of supermarkets, data

streams arriving at hospitals, etc. Alternatively, the participating parties may gather

different information about the same entities, i.e. all the parties have different attributes.

This data model is referred as heterogeneously distributed data or vertically partitioned

data. Examples in this category include trading transactions and phone call data, traffic

report streams and road-accident streams, etc. As mentioned in the scope of the work,

this thesis considers only horizontally partitioned data.

This chapter extends the work of Chapter 5 to privacy-preserving classification of hor-

izontally partitioned data streams. Specifically, a genetic programming-based approach

has been proposed that utilizes the output-privacy-preserving classifiers trained from data

streams at individual sites to develop a global classifier at a central site. Since the clas-

sifier output released by individual sites does not disclose any private information, the

global classifier formed using these local classifiers also prevents the privacy breach. The

key dimensions considered while designing the global classifier are accuracy, privacy and

interpretability.

6.2 Related work

The participating sites send output-privacy-preserving decision tree classifiers to the cen-

tral site. These classification trees accumulated at the central site are combined, evolved

and optimized to form a global decision tree classifier. Decision trees (Mitchell 1997;

Rokach and Maimon 2005) provide very accurate results and are symbolic (i.e. inter-

pretable) classifiers. But, if the evolved global classification tree has very large number of

nodes, it may not be interpretable. Thus, one should seek for the smallest and accurate

classification tree.

Evolutionary algorithms (EA) (Back) like Genetic Algorithms (GA) (Goldberg) and

Genetic Programming (GP) (Koza) have been found successful in solving numerous clas-

sification problems (Jabeen and Baig; Lee; Shali, Kangavari, and Bina). They are used
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either directly as classifiers or to optimize the classification techniques (Oka and Zhao;

Muni, Pal, and Das; Riekert, Malan, and Engelbrect; Bot and Langdon; Davis et al.;

Saraee and Sadjady; Khoshgoftaar, Liu, and Seliya). For example, GA is combined with

kNN to improve the classification performance (Suguna and Thanushkodi). Kotecha,

Ukani, and Garg have directly used GP as a classification technique. The results show

that the classification tree obtained using GP has a smaller number of nodes. This is

because GP allows controlling the size of the trees by depth-limiting the trees generated

in order to form the initial population. Also, tree size can be used as a fitness measure

while evolving the trees using GP and hence preferring trees with a smaller size. Hence,

by combining decision trees and GP, a symbolic classifier that presents a good trade-off

between accuracy and compactness can be produced. Further, tree structures are an en-

coding scheme for GP individuals (Espejo, Ventura, and Herrera), which makes merging

GP and decision trees a preferable approach.

The remainder of this section presents in a nutshell, the existing literature related to

the application of genetic programming to classification (and specifically decision trees), to

show the different ways in which this evolutionary algorithm can help in the construction

of accurate and reliable classifiers.

6.2.1 Application of genetic programming for classifier optimiza-

tion

The approach proposed by Enodu and Zhao evolves a data set rather than trees. The

data set being evolved is targeted to be small in size while including maximum domain

knowledge. The fitness of each evolving data set in the population is measured by creating

a decision tree from it and verifying its generalization ability on a validation set. The

approach works well (as compared to C4.5 (Han, Kamber, and Pei) on very small datasets

and redundant datasets but fails on large datasets.

In the method proposed by Oka and Zhao, the initial population is created by randomly

selecting parts of the training examples from the entire training set and applying C4.5
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on these examples to create Binary Decision Trees. The trees are further evolved using

GP. The method does not show any improvement over C4.5. This may be because while

randomly selecting training examples for creating the initial population, some significant

knowledge may be missed. Also, the trees evolved are large as no size penalty is issued.

An approach that evolves a multi-tree classifier is proposed by Muni, Pal, and Das.

For a classification problem with n classes, each individual in the population consists of n

trees; one for each class. GP evolves by considering a joint view of each tree. Unfit trees

are given more chances to evolve. The approach requires only a single GP run to evolve

an optimal classifier for a multi-class problem. However, the size of the trees needs to be

reduced, which is an open issue.

A new adaptive feature called culling is introduced by Riekert, Malan, and Engelbrect.

Culling adds new randomly created trees to the existing population after some generations

of evolution. This feature adds diversity and hence provides little improvement over GP.

In the approach proposed by Saraee and Sadjady, values of attributes of the same

type can be compared at the nodes of trees. For example, a test at the node of a decision

tree can be Attribute1 = Attribute2? By comparing attribute values, the number of

classification rules or the size of the tree can be reduced significantly because the number

of comparisons is reduced. But, the approach fails when there are no dependent attributes.

A survey of existing literature on how GP can be applied to obtain efficient classifiers

is conducted by Espejo, Ventura, and Herrera. The survey discusses how GP has been

applied for feature selection, feature construction, extracting classification rules, learning

ensemble classifiers, etc. Some important issues that can be the subject of future research

in application of GP for classification are also addressed.

A method that constructs initial population using random decision trees is proposed

by Rouwhorst and Engelbrecht. Also, mutations on relational operators in attribute

tests, pruning, etc. are used as genetic operators. Finally, the final classification tree is

converted into rules and the number of classification rules is decreased significantly as

compared to C4.5 and CN2. But, no major increase in test accuracy is found. Two new

genetic operators named elimination and merge are introduced by Kuo, Hong, and Chen.
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Elimination operator eliminates redundant rules from the classification tree whereas the

merge operator removes any subsumed rule from the classification tree. The usage of the

new operators increases the accuracy of the classification tree while reducing the number

of nodes.

Taking motivation and lessons from this study, the next section proposes a new algo-

rithm that merges GP to Decision Trees and attempts to produce a near-optimal classifier

in terms of accuracy and interpretability.

6.3 Proposed Approach

This section proposes an approach named Genetic Programming based Evolution of

Classification Trees (GPeCT) that uses the output-privacy-preserving data stream DA-

HOT proposed in the previous chapter. This hybridized approach of DAHOT and GPeCT

named DAHOT-GPeCT aims to evolve an optimized privacy-preserving classifier from

horizontally partitioned data streams using Genetic Programming. The algorithm is run

at the merger site and works on the output-privacy-preserving data stream classifiers

(DAHOTs) received from participating sites. An optimal classifier needs to be accurate

and comprehensible. Thus, the proposed approach gives importance to the size of the

tree as well as its accuracy, by designing the fitness function accordingly.

6.3.1 Proposed algorithm

The proposed algorithm is shown in algorithm 4.

The input to the algorithm is a set of artificially generated data instances. Each

participating party sends some output-privacy-preserving DAHOT classifiers to the global

site to from the initial population. Further, two validation factors c1and c2 that improve

the efficiency of the algorithm are provided as an input. As an output, the algorithm gives

a classification tree best so far, which is a near-optimal classifier in terms of accuracy and

comprehensibility. Initially, pop size is set equal to the desired size of the initial population
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Algorithm 4 DAHOT-GPeCT. Evolves a classification tree.

Input: Ds, Data instances; DAHOT classifiers received from n participating parties;
validation factors c1, c2

Output: best so far, a near-optimal classification tree; Population of last generation
1. for i = 1 to n do //Population initialization
2. for i = 1 to pop size/n do
3. Add a DAHOT classifier Cij to the population
4. end for
5. end for
6. Evaluate fitness of each individual in initial population using fitness measure of Equa-

tion 6.1 and Ds

7. while generation < max generations or Termination criterion is not satisfied do
8. repeat
9. Perform genetic operations on parent trees to generate offspring trees for the new

population
10. if (Size of individual< c1 * Size of best so far) then
11. Evaluate its fitness using Equation 6.1 and increment new pop size

12. else if (Accuracy of individual > c2 * Accuracy of best so far) then
13. Evaluate its fitness using Equation 6.1 and increment new pop size

14. else
15. Discard the individual
16. end if
17. until pop size individuals are produced
18. generation ← generation + 1
19. pop size ← new pop size

20. end while
21. Save the population of last generation for classifier update
22. Designate best individual found so far as best so far

and as the name suggests, the parameter max generations is set equal to the maximum

number of generations the algorithm is desired to run.

The following sub-sections provide in-depth details of the algorithm and GP steps that

are executed within the algorithm.

6.3.1.1 Initializing Genetic Programming Population

The algorithm begins by creating the initial GP population (of size pop size) using DA-

HOT classifiers (decision trees). With n participating parties, each party i sends (pop size

/ n) DAHOT classifiers. At each site i, a classifier is induced after a random instances
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using random subset of attributes (Breimann). The classifier induction continues until

(pop size / n) individuals are produced which are together sent to the global site.

As detailed in Chapter 5, DAHOT is composed of Hoeffding tree that is a decision

tree classifier for data streams. Initializing the population using these decision trees would

give us good trees (in terms of accuracy) from the beginning itself. This will give way

to an advantage over the traditional GP way of initializing population randomly with

terminals and functions (Oka and Zhao; Bot and Langdon; Rouwhorst and Engelbrecht;

Kuo, Hong, and Chen).

As mentioned in section 6.2.1, Oka and Zhao use decision tree algorithm C4.5 to create

an initial population, but not including every training tuple while creating the initial

population results in loss of accuracy. In the proposed algorithm, the initial population

produced using DAHOT considers all the data stream instances. Further, since multiple

DAHOT trees are used from each site, instances are used multiple times for identifying

patterns.

The Hoeffding trees (Domingos and Hulten) use Gini index (employed by the popu-

lar algorithm CART (Breiman et al.; Han, Kamber, and Pei)) as an attribute selection

measure. With Gini index, binary trees are formed if the Hoeffding bound is satisfied.

From the literature survey conducted, it is observed that binary trees are preferable for

GP as most of the researchers have applied evolutionary algorithms on binary decision

trees only.

The fitness of each individual (tree) is evaluated using the fitness measure as proposed

in Equation 6.1:

Fitness =
Accuracy of the Decision Tree

[No. of Nodes in the Tree]λ
(6.1)

where the parameter λ represents a trade-off between accuracy and size (i.e. number

of nodes) of the classification tree. Its value can range from 0.01 to 0.1.

The fitness function is developed such that a trade-off between accuracy and size of the

tree can be provided. As the value of λ increases, the value of the denominator increases,
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i.e. large trees are assigned lower fitness. The impact of trade-off factor λ on fitness is

shown in Table 6.1.

Table 6.1: Impact of λ on fitness measure
Classifier No. Accuracy No. of Nodes λ Fitness

1 80 100 0.01 76.40

2 90 100 0.01 85.95

3 90 200 0.01 85.36

4 80 100 0.05 63.55

5 90 100 0.05 71.49

6 90 200 0.05 69.05

7 80 100 0.1 50.48

8 90 100 0.1 56.79

9 90 200 0.1 52.98

From Table 6.1, it can be seen that when two trees are of the same size: the tree with

higher accuracy is considered fitter; when accuracies of two trees are same: the tree with

a smaller size is considered fitter.

6.3.1.2 Genetic Operations

The algorithm performs the basic three genetic operations on the trees of existing popula-

tion to generate the new population. They are: Reproduction, Crossover, and Mutation.

The method of selecting individuals for genetic operation varies according to the nature

of the operation.

For reproduction, the best individuals are selected using the Rank Selection Method.

This is to make sure that the fittest members are more likely to be passed on to the next

generation, and past optimal solutions are not lost. For crossover operation, tournament

selection method is used to select individuals for this operation. For mutation, a method
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called reverse rank selection is proposed to select individuals for mutation. That is, this

method selects unfit individuals over the fit individuals and mutates them. Using this

method saves good trees from undergoing the random changes of mutation, because as per

(Muni, Pal, and Das), the nature of mutation is destructive at times. This new selection

method has three benefits. One is that the good trees are not damaged, secondly, very bad

trees are removed and replaced with better trees and lastly, diversity is also introduced.

6.3.1.3 Validation of Individuals

The work introduces a new process named “validation process” for the individuals pro-

duced through the genetic operations. For any GP individual i, let Si denote the size

of individual and Ai denote individual’s accuracy. Further, best so far indicates the best

individual obtained by far.

For validation factors c1, c2 ∈ R+, the validation, i.e. acceptance or rejection occurs

as per Equation 6.2:

V alidatei =



















1, Si < c1 · Sbest so far

1, Ai > c2 · Abest so far

0, otherwise

(6.2)

Within this process, the fitness of only validated individuals is calculated. If any individual

i is rejected (i.e. Validatei = 0), its fitness is not calculated.

The individuals who pass the above test and get validated are added to the new

population and the counter of new pop size is increased by one per individual validated.

This parameter at the end of the generation gives us our new population size which is to

be used for the next generation. This way, the algorithm uses variable-size population.

Using variable-size population allows saving the time and computation effort required in

calculating the fitness of already known bad individuals.

However, a generation is incremented only if pop size individuals are produced, irre-

spective to those individuals being accepted or rejected. Hence, to check if the generation

should be incremented, the count of number of individuals produced is increased with ev-
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ery genetic operation (in accordance with the number of individuals produced, i.e. count

of individuals produced is increased by 1 for reproduction and mutation and by 2 for

crossover). Once the required amount of individuals i.e. pop size individuals are pro-

duced, the next generation is evolved. For this new generation, new pop size becomes

pop size.

6.3.1.4 Termination Criterion

The algorithm stops when the termination criterion is met or the maximum number of

generations (max generations) has been reached. Another termination criterion here is

that for p consecutive generations, the best q fitness values (F ) achieved should be the

same, which is depicted using Equation 6.3:

∀i ∈ [1, p], ∀j ∈ [1, q] : Fi,j = Fi+1,j (6.3)

Once the termination criterion is met or the maximum number of generations has

evolved, the best classifier obtained by now, that is, best so far is designated as the

output classifier.

Since the data streams are continuously arriving, formation of new classification trees

at local sites may be required and the global classifier update may also be needed. The

proposed algorithm has the provision to handle such classifier update. Here, the popu-

lation of the last generation produced while evolving the classifier is saved. Later, when

new training instances come at hand, trees induced from this data are sent to the merger

site and added into the current population and GP is run for one more generation using

the said population. The best so far obtained at the end of this run becomes the final

classifier. This classifier would incorporate training instances available earlier as well as

the newly arrived instances. This method of classifier update is inadequate, especially

when there is a concept-drift in the data. A systematic method of classifier update is

presented in Chapter 7.

A framework of the proposed approach is shown in Figure 6.1.
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Figure 6.1: Framework of the proposed approach
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The entire process is divided into 3 stages. Stage I includes creating initial population

of DAHOT classifiers from the incoming data streams at participating sites and sending

these local classifiers to the merger site. The training data at merger site is used to

evaluate the fitness of these local classifiers. The Genetic Programming cycle for inducing

the decision tree classifier is executed at the merger site in stage III. The global privacy-

preserving classifier induced from horizontally partitioned data streams is evaluated in

stage III and is analyzed for prediction accuracy (at the merger site as well as after

sending them to the participating sites), classifier size, training time and information

loss.

6.4 Experimental Evaluation and Analysis

In order to verify the effectiveness of the proposed algorithm and address the problem of

privacy-preserving classification of horizontally partitioned data streams, several experi-

ments are conducted with different real-world and synthetic data streams. The following

sub-sections describe the details of the data streams used as well as implementation details

and present the evaluation results.

6.4.1 Data streams at participating sites

Since decision making in banking sector is the target application throughout the work,

the same data streams described in Chapter 5 are used in this chapter too. But, since

the work in this chapter works on horizontally partitioned data streams, the composition

of the data at each site is as shown in Table 6.2:

The number of instances in the data streams at each site ranges from thousands to

a million, verifying the performance of the proposed algorithm on data streams with

different sizes. The types of attributes in these datasets are numeric, categorical, or

mixed. Some instances of data streams ‘Default of credit card clients’ and ‘Give me some

credit’ have been replicated at the other sites. Further, as stated in Chapter 5, because

of the lack of availability of large datasets for banking as well as for validation of the
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Table 6.2: Composition of data streams
Data
stream

No. of
Attributes

No. of
Classes

Instances
at Site 1

Instances
at Site 2

Instances
at Site 3

Default of
credit card
clients

23 2 20,000 20,000 20,000

Give me
some credit

10 2 100,000 100,000 100,000

German
credit

20 2 300,000 300,000 300,000

Loan
approval

9 2 1,000,000 1,000,000 1,000,000

proposed algorithm, synthetic data streams are used. Thus, large number of instances

has been generated at each site for synthetic datasets ‘German credit’ and ‘Loan approval’.

Furthermore, as described in Chapter 5, although each of these data streams has only 2

classes, the proposed approach is applicable to multi-class data streams too. Since the

data streams used for the application targeted in the work have only two classes, results

on multi-class data streams are not shown.

6.4.2 Data streams at merger site

At the merger site, several DAHOT classifiers are received from the local participating

sites. The proposed algorithm GPeCT is run on these DAHOT classifiers with a goal

to induce an optimal global classifier. For the algorithm to run, some data instances are

required as training data. The data instances are also required to predict the performance

of the induced global classifier. In order to meet this demand of the algorithm, the

participating sites need to send a sample of their data streams to the merger site. But,

since the privacy of the data is of utmost importance, it is not acceptable for the local

sites to disclose or send the original data in raw form. The original global data cannot

exist physically but is required to exist, at least conceptually. To address this issue, the
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framework proposes to produce artificial data at the merger site. The instances in the

artificial data have the same attributes as in the data streams of all the local sites. Such

artificial data is generated using two different ways as follows:

(1) Artificial Data Generation through Anonymization: An approach to preserve the pri-

vacy of the micro-data is to transform it using anonymization methods like generaliza-

tion and suppression. As described in Chapter 2, k -anonymity principle necessitates

that each record in the released dataset is indistinguishable from at least other k – 1

records appearing in the dataset. This principle assures that the probability of dis-

covering any individual’s information based on the published dataset does not exceed

the threshold 1/k.

In the framework proposed by this work, each local site applies this anonymization

approach and sends a sample of anonymized data to the merger site. For this sample

data (and not the data stream), the anonymity parameter is set as k = 3 and privacy

leakage is obstructed using cell suppression method. Underneath this method, val-

ues of some attributes in the instances may be missing due to suppression and thus

imputation methods should be deployed to determine such values.

(2) Artificial Data Generation through Decision Tree Paths: The disjoint classification

rules formed paths of decision tree classifiers received from the local parties can be

used as a template by the merger site to generate pseudo-data. The data generated

in this manner is efficient as paths of a decision tree accentuate the most significant

patterns of the original data. Moreover, this method can successfully generate high-

quality data without violating the privacy of individuals as the classification trees

published by the local sites are output-privacy-preserving.

The values of the attributes for this artificial data are assigned using the following

approach: For attributes appearing in the path of the decision tree, the values are

assigned using the respective path labels. But, if the attribute is not present in

any decision tree path, its value in the resultant tuple is determined using certain

heuristics or imputation methods.
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The imputation method used in this work is as follows:

(i) Each party should send a sample of instances without the sensitive attribute

class-label. Let Da be this sample data.

(ii) Let the artificial data generated be Dm. Dm will be having instances in which

at least one of the features is missing.

(iii) For each instance x in Dm:

(a) Divide the instance into observed and missing parts as x = [xo; xm]

(b) Calculate the distance between the xo and all the instances from the set Da

(using only those features in the instance vectors from Da which are in xo.

(iv) Use the K nearest instances (K -nearest neighbors) and perform a majority vot-

ing to derive the missing values in xm.

All the attributes are categorical since the data is discretized a priori. Sending a

sample of instances without the concerned class-label is acceptable since class-label is the

only sensitive attribute.

6.4.3 Baseline methods for comparison

To demonstrate the effectiveness of the proposed algorithm, its performance is compared

with 3 other methods. Since the literature does not have exact methods of privacy-

preserving classification of horizontally partitioned data streams, the privacy-preserving

data stream classification methods are adapted to the distributed data environment and

utilized for comparative analysis with the proposed approach.

Details of these methods are described in the following:

(1) Ensemble of SDTP Classifiers (SDTP Ensemble): The experimental results presented

in the previous chapter suggest that extended versions of SDTP classifier (Friedman,

Wolff, and Schuster; Aggarawal; Golab and Ozsu) can prove to be effective. As stated

in Chapter 2, ensembles are popular methods that combine base learners to form an
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efficient classifier. SDTP Ensemble uses the Bagging approach (Breiman) to combine

the STDP classifiers received from the participating sites. The ensemble combines

best N classifiers based on their predictive accuracy. Since each of these members are

output-privacy-preserving classifiers, the resultant ensemble turns to be an output-

privacy-preserving classifier built from horizontally partitioned data streams.

(2) Ensemble of DAHOT Classifiers (DAHOT Ensemble): The approach creates an en-

semble of DAHOT classifiers using the Bagging approach (Breiman). The ensemble

combines best N classifiers based on their predictive accuracy. Since DAHOT is

proved as an efficient output-privacy-preserving data stream classifier in Chapter 5

and ensembles haves efficacy in combining base classifiers, DAHOT ensemble seems

comparable to our proposed approach.

(3) Hybrid of SDTP and GPeCT (SDTP–GPeCT): Since preserving the privacy is a

chief goal of the work, the privacy-preserving SDTP classifiers (Friedman, Wolff, and

Schuster; Aggarawal; Golab and Ozsu) obtained from the participating parties are

hybridized with GPeCT to produce a global privacy-preserving classifier on horizon-

tally partitioned data streams. These SDTP classifiers form the initial population

of GP. That is, rather than using DAHOT classifiers, SDTP classifiers are deployed

as GP individuals and the same approach described in Section 6.4 is utilized. The

final classifier thus becomes a suitable candidate for comparison with the proposed

approach.

6.4.4 Implementation details

Some initial runs were performed to compare various values of tournament size, trade-

off factor, and validation factors. Table 6.3 summarizes the values of all the GPeCT

algorithm parameters used for experiments. Since reverse rank selection method is used

for mutation, assigning the rate of selection of mutation operator equivalent to (i.e. as high

as) reproduction operator is acceptable. Since the targeted application for the proposed

algorithm is for the banking sector, all the parameters of GPeCT (and hence for SDTP-
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Table 6.3: GPeCT algorithm parameters
Parameter Value

Initial population size 30

Maximum number of generations 100

Tournament size 7

Trade-off factor λ 0.01

Validation factor c1 5

Validation factor c2 0.5

Termination criterion 5,000 Fitness Evaluation OR 100% training
accuracy OR the best p = 3 fitness for q =
3 consecutive generations remains same

Probability of Reproduction (Pr) 20%

Probability of Crossover (Pc) 60%

Probability of Mutation (Pm) 20%

GPeCT and DAHOT-GPeCT) have been tuned on the basis of data streams depicted in

Table 6.2. Further, 10 different executions of GP are conducted and an average case is

reported here. For SDTP Ensemble and DAHOT Ensemble, N = 5 is used, that is, best

5 classifiers are combined to form the Ensemble.

6.5 Results and Discussion

The resultant global privacy-preserving classifiers (created from local classifiers built on

horizontally partitioned data streams) are compared for their predictive accuracy at each

site, the number of nodes in the global classifiers, their training time and the information

loss using these global classifiers.
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Figure 6.2 shows the results of predictive accuracy (in %) of the global classifiers at the

merger site: SDTP Ensemble, DAHOT Ensemble and best three solutions (BSF – Best So

Far) obtained using SDTP–GPeCT and DAHOT–GPeCT. Figure 6.3 to Figure 6.5 show

the results of predictive accuracy (in %) of the stated global classifiers on data streams

at the three local sites individually. The number of nodes in each of these six classifiers is

shown in Figure 6.6. In case of ensemble classifiers, the number of nodes represents a total

of number of nodes combined from each base classifier. Figure 6.7 shows the information

loss using the four global classifiers whereas Figure 6.8 shows the training time of each.

Figure 6.2: Predictive accuracy (in %) of classifiers on data streams at merger site

Figure 6.3: Predictive accuracy (in %) of classifiers on data streams at site 1
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Figure 6.4: Predictive accuracy (in %) of classifiers on data streams at site 2

Figure 6.5: Predictive accuracy (in %) of classifiers on data streams at site 3
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Figure 6.6: Number of nodes in classifiers on data streams at merger site

Figure 6.7: Information loss (in %) of classifiers on data streams at merger Site
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Figure 6.8: Training time (in s) of classifiers on data streams at merger site

The effect of using ensemble methods on the predictive accuracy of a classifier is

shown in Figure 6.2 to Figure 6.5. That is, the performance of the global classifier SDTP

Ensemble has improved as compared to the single classifier (as compared to SDTP used

at local sites). Undoubtedly, the testing instances are different at both the ends, but

even on periodic evaluation, SDTP could not reach the accuracy level achieved by SDTP

Ensemble. Similarly, the accuracy of DAHOT Ensemble has also increased.

Further, discussing about the comparative performance of the classifiers on the same

testing data at the merger site, the predictive accuracy of the SDTP Ensemble is lowest

while DAHOT Ensemble ranks high in predictive accuracy, especially on ‘Give me some

credit’ and ‘German Credit’ data streams. In fact, as can be seen in Figure 6.2, on all

the data streams, the predictive accuracy of DAHOT Ensemble has been comparable to

SDTP-GPeCT classifier. Rather than SDTP ensemble, the SDTP-GPeCT has shown

an improved performance and all of the three fittest classifiers (BSF1, BSF2 and BSF3)

obtained using the later have higher predictive accuracy as compared to the former. The

improved performance is due to GP’s ability to produce optimized classifiers from the

population at hand. DAHOT-GPeCT seems to be the most successful classifier among

all as it inherits the benefits of the efficient DAHOT classifier as well as the optimization

proficiency of GPeCT.
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As shown in Figure 6.3 to Figure 6.5, similar observations are derived using the ex-

perimental evaluation of classifiers at all the local sites. DAHOT-GPeCT gives the best

performance in terms of predictive accuracy followed by SDTP-GPeCT.

In the application targeted in this thesis, the induced classifier is utilized to make

financial decisions and hence the conclusions of the classifier should be easily interpretable.

Classification trees with large number of nodes reduce the interpretability. Thus the

fitness function designed for GPeCT prefers a classification tree with lesser number of

nodes. As a result, SDPT-GPeCT classifiers BSF1, BSF2 and BSF3 as well as DAHOT-

GPeCT classifiers BSF1, BSF2 and BSF3 have lesser nodes which is depicted in Figure 6.6.

SDTP Ensemble and DAHOT Ensemble combine N = 5 decision trees, and additionally,

selection of ensemble members is made based on the predictive accuracy of classifiers

without favoring small classification trees. Hence, the number of nodes in the classifiers

induced using these methods are higher. This loss in interpretability can be ignored if the

predictive accuracy is remarkably high.

At the merger site, the artificially generated training instances are utilized only by al-

gorithms hybridized using GPeCT wherein their role is to evaluate the classifiers and select

from them the ones on which genetic operators will be applied in every generation. The

classifiers worked upon at the merger site are already privacy-preserving and no explicit

privacy-preserving technique needs to be applied. As a result, once the local classifiers are

induced, no more information loss occurs in formation of the global classifier. However,

one may consider that the information loss using any global classifier is eventually due to

training instances at the merger site which are misclassified by the classifier. To be precise,

the information loss may be computed as the difference between the training error due to

the privacy-preserving global classifier and its non-privacy-preserving counterpart. Such

information loss can be easily ignored as no information from the arriving data streams

is lost.

However, taking such information loss into consideration, Figure 6.7 shows the infor-

mation loss incurred by the global classifiers targeted in this chapter. SDTP Ensemble

has high information loss whereas the information loss using DAHOT Ensemble and
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DAHOT-GPeCT is almost equivalent, showing the efficacy of these global classifiers in

preserving privacy while being accurate in classification. The DAHOT-GPeCT classifier

has minimum information loss as compared to all other classifiers, again owing credit to

the adeptness of its constituents GPeCT and DAHOT.

Figure 6.8 shows the time required to induce the global classifiers at the merger site.

Classifiers evolved using GP, which are, SDTP-GPeCT and DAHOT-GPeCT take more

time than SDTP Ensemble and DAHOT Ensemble as they run for a number of generations

with each run consuming little time. However, the construction of classifier is a one-time

cost and once generated, it can be used to classify the newly arriving data stream instances

for long. Hence, the time required in training SDTP-GPeCT and DAHOT-GPeCT is

acceptable. The prediction time required by each of these classifiers isn’t shown as it is

very small and almost similar.

6.6 Summary

This chapter proposes an algorithm named GPeCT that merges Genetic Programming and

Classification Trees considering accuracy and interpretability as optimization parameters.

The fitness function is designed accordingly and the results of experimental evaluation

show that the classifiers hybridized with GPeCT have improved efficacy. The goal of

privacy-preserving classification of horizontally partitioned data streams is satisfactorily

achieved because the base classifiers are output-privacy-preserving and are built from

continuously arriving data streams.

The proposed DAHOT-GPeCT classifier outperforms all other classifiers on the four

data streams concerning decision making in banking sector. The minimum and maximum

improvement in predictive accuracy using DAHOT-GPeCT classifier at the merger site

as compared to other classifiers is 7.1% and 12.22% respectively.

Further, the classifiers hybridized using GPeCT have high interpretability and the

results of best three classifiers BSF1, BSF2 and BSF3 obtained at the termination of GP

prove the same. Additionally, the comparable performance of DAHOT Ensemble with
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SDTP-GPeCT suggests that the advantages of ensemble learning can be utilized with GP

to further optimize the performance of the classifier.

Thus, taking inspiration from the experimental conclusions derived in this chapter,

a novel technique for privacy-preserving classification of horizontally partitioned data

streams using an amalgamation of ensemble learning and GP is proposed and implemented

in the next chapter.
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Chapter 7

Ensemble-Based Privacy-Preserving

Classification of Horizontally

Partitioned Data Streams

7.1 Introduction

Formally as well as empirically, ensembles have proved to be one of the most efficient

techniques in the fields of data mining and machine learning. As a result, ensemble

learning has achieved wide popularity and the area has seen an active involvement of

researchers proposing many algorithms to enhance the prediction ability of such ensemble

systems. The efficacy of ensemble learning in producing privacy-preserving classifier from

horizontally partitioned data streams has been witnessed from the experiments in Chapter

6. However, there is a scope of improvement in these methods which is addressed in this

chapter.

One of the major concerns in machine learning and data mining research is that of

generalization. Formally, generalization can be defined as the prediction ability of a

Part of this chapter appears in: Sanjay Garg and Radhika Kotecha, “DAHOT-GPeCT Ensemble for
Output-Privacy-Preserving Classification of Horizontally Partitioned Data Streams”, in communication
with IEEE Transactions on Cybernetics (2017).
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base learner or a data mining model. Specifically targeting the classification task, the

better a classifier performs on the previously unseen data; the better it is considered to

have the generalization ability. The ‘bias-variance’ quandary depicts the significance of

generalization ability of a learner.

The bias term refers to the measure of how much the best classifier h* in the classifier

search space H deviates from the target concept. The variance term refers to the measure

of how much different realizations of a model can vary from h*, selecting wrong classifiers

in H.

Figure 7.1 illustrates the graphical visualization of bias-variance quandary using a

bulls-eye diagram (Fortmann). The center circles (bulls-eye) depict the target concept.

The accuracy of classification degrades while shifting away from the bulls-eye. Several

different hits on the target are obtained by reiterating the complete classifier induction

procedure. Every hit symbolizes a specific realization of the classifier. If the bias is high,

Figure 7.1: Bull’s eye diagram for bias-variance quandary

both training as well as test error will be high. Whereas, if the variance is high, training

error will be low, and test error will be high.
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The generalization ability of ensembles improves when the ensemble members are

diverse and accurate (Chawla and Sylvester). That is, an important requirement for

successful ensemble learning is to include base learners (classifiers) where errors on the

training set are at least to some extent uncorrelated.

The empirical evidences demonstrated in Chapter 6 prove the potential of evolutionary

algorithm Genetic Programming in giving accurate classification results. The evolutionary

algorithms work on a population of individuals (classifiers in this case) and return the

best-of-run classifier as the concluding output. But, along with the best-of-run classifier,

the other classifiers in the population are also effective at classification. Such classifiers

from the population can be utilized as members of the ensemble. By watchfully selecting

diverse classifiers, an efficient ensemble classifier can be obtained and thus the research

that combines ensemble learning and evolutionary computation is increasingly capturing

attention.

The literature presents several ways to enforce diversity within an ensemble classifier

setup. One such method focuses on co-evolution and creating an efficient evolutionary

ensemble learning technique based on the theory of multi-objective evolutionary optimiza-

tion.

Making use of this concept, a new fitness function that adopts diversification heuristics

to extract diverse classifiers is presented in this chapter. Since the classifiers are adequately

diverse and the errors made by them on the training data are independent, an ensemble

of these classifiers that utilizes the majority vote technique will have good generalization

ability.

Thus, an evolutionary ensemble classifier has proposed in this chapter and its perfor-

mance has been verified using experiments. As expected, the proposed approach meets

the goal of the work, which is, efficient privacy-preserving classification of horizontally

partitioned data streams.
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7.2 Related Work

Genetic Programming is gaining popularity for their contribution in building efficient

homogeneous as well as heterogeneous ensemble classifiers. There are several ways in

which Genetic Programming and ensembles are integrated, like application of Genetic

Programming to select ensemble members, application of Genetic Programming to adjust

weights of members of the ensemble, etc.

Research (Bhowan et al.) suggests combining Genetic Programming classifiers to form

an ensemble where each individual classifier provides a vote on class membership and the

aggregate knowledge of these classifiers can be utilized to obtain improved generalization

as compared to other individual classifiers. Popular aggregating methods like Bagging,

Boosting, etc. can be employed to obtain efficient classification.

Several researchers have proposed approaches to adjoin an additional penalty term in

the fitness function of Genetic Programming. One such approach is Negative Correla-

tion Learning (NCL) (Chen and Yao; Liu, Yao, and Higuchi) that encourages ensemble

diversity by adding a penalty term in the error function. The goal of NCL is accentuate

cooperation among the ensemble members and encourage biased members whose errors

are negatively correlated.

NCL uses neural networks as base learners and for a training set {xn, yn}, with n =

1, 2, ... , N, NCL combines M neural network classifiers, represented as f (x) in order to

form an ensemble as shown in equation 7.1 (Chen and Yao):

fens =
1

M

M
∑

i=1

fi (xn) (7.1)

In training a neural network fi, the error function ei for any network i is defined as in

equation 7.2:

ei =
N
∑

n=1

(fi (xn)− yn)
2 + λpi (7.2)

where λ is a weighting parameter for the correlation penalty term pi depicted in
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equation 7.3 and Figure 7.4:

pi =
N
∑

n=1

{

(fi (xn)− fens (xn))
∑

j 6=i

(fj (xn)− fens (xn))

}

(7.3)

= −
N
∑

n=1

(fi (xn)− fens (xn))
2 (7.4)

The aim is to minimize pi, and negatively correlate each classifier’s error with the

error occurring through the remaining ensemble. The weighting parameter λ commands

a trade-off between the training error and the correlation penalty. When λ = 0, each

neural network classifier in the ensemble is trained independently. Whereas, with the

increase in weighting parameter λ, the emphasis laid on minimizing the penalty term

keeps increasing.

The error E of the ensemble classifier can be obtained by averaging the errors ei of

the individual classifiers. That is, E can be minimized by minimizing ei individually.

The concept of NCL has been used in several ways to improve the performance of

ensemble classifiers. (Chen and Yao) uses evolutionary algorithms and random subsets

of features along with NCL to produce accurate and diverse ensembles by emphasizing

cooperation in ensemble learning. Dam et al. have also shown improved performance and

generalization ability of ensemble classifier on application of NCL.

Another important and popular diversity measure proposed in literature is Pairwise

Failure Crediting (PFC) (Chandra and Yao) which is a population-level measure of diver-

sity. Unlike NCL that compares an individual’s output to the output of the ensemble, PFC

measures the training error of an individual with all other individuals in the population.

Both NCL and PFC have proved to be efficient in producing diverse ensembles of

classifiers due to their nature of promoting evolution of diverse individuals in the popu-

lation. But, since these measures tend to be biased towards the majority class, Bhowan,

Johnston, and Zhang have applied these measures to find the diversity of individuals sep-

arately for each class in order to address the problem of imbalanced class distributions.

The final diversity-based fitness function is the average of the measure for minority as
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well as majority classes so that the individuals in the ensemble are uniformly diverse with

respect to all the classes.

A method named Boost Cellular Genetic Programming Classifier (BoostCGPC ) (Folino,

Pizzuti, and Spezzano) implements the AdaBoost.M1 boosting algorithm on a parallel

computer by using the algorithm CGPC (Cellular Genetic Programming for data classi-

fication) as base classifiers. For training dataset S having N instances, if P number of

processors are utilized to run the algorithm, BoostCGPC divides the entire population

of classifiers in P subpopulations, applies uniform sampling with replacement on S to

produce P subsets of instances of size n (< N) and constructs an ensemble of classifiers

by choosing the fittest individual from each subpopulation. Bag cellular genetic program-

ming classifier (BagCGPC ) (Folino, Pizzuti, and Spezano) utilizes the same parallelization

strategy of BoostCGPC to induce classification trees but performs Bagging.

A distributed Boosting Cellular Genetic Programming Classifier (Follino, Pizzuti, and

Spezzano) that uses an algorithm named Clustering Boost Cellular Genetic Programming

Classifier (ClustBoostCGPC ) has proved to be effective in producing accurate ensemble

classifier with diversification among the ensemble members. The algorithm is based on

clustering technique to construct the ensemble of classifiers. Unlike BoostCGPC that

selects the individual with highest fitness from each subpopulation; ClustBoostCGPC

forms clusters of individuals that share a similarity measure and selects an individual

with highest fitness from each cluster. As per the property of clustering technique, since

the intra-cluster distance is lowest and inter-cluster distance is highest, a range of diverse

classifiers can be obtained on selecting an individual from each cluster.

A new category of algorithms named Orthogonal Evolution of Teams (OET) proposed

by Soule and Komireddy (Komireddy and Soule) are cooperative and co-evolutionary

algorithms that focus on evolving ensemble components (classifiers) with diverse special-

izations. Two algorithms OET1 and OET2 are given by (Thomason and Soule)which

consists of individual selection with team replacement (IT), and team selection with in-

dividual replacement (TI) respectively.

The OET1 algorithm performs selection on individuals and does replacement on teams.
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Offspring creation is initialized with an empty team and fittest individuals are added using

tournament selection. In order to be selected for a parent team, an individual must have

high fitness and so as to avoid being replaced, any team in the population should have a

high fitness.

Quite the reverse, the OET2 algorithm carries out selection on teams and does replace-

ment on individuals. Two teams that are highly are selected by tournament selection to

play as parents and crossover and mutation are performed on these teams in order to gen-

erate two new children teams. OET2 does replacement by comparing the fitness of team

members in the children to the fitness of team members in the population. Individuals

with lower fitness get selected to be replaced by individuals in the new children team.

In order to be selected for a parent team, a team must have high fitness, that is, the

members must cooperate better, and so as to avoid being replaced, any individual team

member must have high fitness. OET1 and OET2 algorithms form evolutionary pressure

for individuals to perform efficiently and for their teams to perform efficiently too.

Conventionally, the goal of any classification algorithm is to maximize the accuracy

on training instances. But, not all instances are equally informative. An instance is

considered hard if it is misclassified by a majority of the classifiers. Thus, any classifier

that correctly classifies a hard example is considered more important than any classifier

that correctly classifies the training instances rightly classified by nearly all classifiers.

Evolutionary algorithms have been employed to address this issue and a new diversity-

enforcing fitness function that enforces classifier diversity is proposed in the literature

(Gagne et al.). The fitness of classifiers is characterized based on a group of reference

classifiers, denoted Q. The hardness of any training instance x is computed based on the

number of classifiers inQ that incorrectly classify x. Finally, the fitness of any classifier h is

calculated by the cumulative hardness of the instances correctly classified by h. Since this

approach seems appealing and has proven to be successful in building efficient classifiers,

it is analyzed using an example in the next section. Further, a multi-objective fitness

function that takes this approach as a building block is proposed in the next section.
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7.3 An Improved Fitness Function

For an ensemble classifier to be efficient, its member classifiers should be efficient. Since

the target is to form an evolutionary ensemble classifier that combines Genetic Program-

ming individuals, the fitness of these individuals is of foremost importance. Hence, a

detailed discussion regarding fitness functions is presented in this section. Particularly in

sub-section 7.3.1, a popular fitness function from the literature (Gagne et al.) is presented.

Followed by it, the concept of multi-objective optimization is discussed in sub-section 7.3.2

and based on that; a novel fitness function is proposed in sub-section 7.3.3.

7.3.1 Diversity-enforcing fitness function

A diversity-enforcing fitness function proposed by Gagne et al. works as follows:

Let D = {(xi, yi), xi ∈ X, yi ∈ Y, i = 1 . . . n} be the training data where X is the

instance space and Y is the set of class labels. Let Q be the set of reference classifiers. The

error function e is denoted as e(h(xi), yi) which is the (real valued) cost of misclassifying

xi (that is, assigning a class other than yi). That is, e(h(xi), yi) = 1 if h(xi) 6= yi.

The hardness (or weight) of every training instance xi is computed based on the num-

ber of classifiers in Q that incorrectly classify xi. Formally, the hardness of training

instances denoted as wi is the average error caused by the reference classifiers, as shown

in equation 7.5:

wi =
1

|Q|

∑

h∈Q

e(h (xi) , yi) (7.5)

The fitness F of every classifier h is then measured by the aggregate hardness of the

instances that are correctly classified by h as shown in 7.6:

F (h) =
∑

i = 1 . . . n

h (xi) = yi

w
γ
i (7.6)
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That is, F (h) is the sum over all training instances correctly classified by h, of their

hardness wi raised to power γ. The term γ controls the significance of the cumulated

hardness wi and diversity pressure. That is, on setting γ = 0, fitness function happens

to be equal to the number of correctly classified instances and the diversity pressure is

eliminated.

The following example shows and justifies how this diversity-enforcing fitness function

promotes diverse and accurate classifiers. The example considers γ = 1 and for simplicity,

only 7 instances are included in the training data. For demonstration, 5 different classifiers

are evaluated (irrespective of type of classifiers).

Table 7.1 shows the error of each classifier on the 7 instances (1 indicates an error

and 0 indicates a correct classification), the total error by classifiers on each instance, and

hardness of each instance calculated using equation 7.5.

Table 7.1: Hardness of training instances based on classifiers
Error Function on Instance i

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

Classifier 1 0 1 1 0 0 1 0

Classifier 2 0 0 1 1 0 1 0

Classifier 3 1 1 0 1 0 1 0

Classifier 4 1 0 1 0 1 1 0

Classifier 5 0 0 1 0 0 1 0

Total Error on Instance i 2 2 4 2 1 5 0

Hardness of Instance, wi 0.4 0.4 0.8 0.4 0.2 1 0

It can be seen that instance 3 is correctly classified by classifier 3 only hence its
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hardness is high and instance 6 is misclassified by all the classifiers and has highest

hardness. On the other hand, instance 7 is correctly classified by all classifiers and has

hardness wi = 0.

Table 7.2: Classifier fitness based on diversity-enforcing fitness measure
Classifier Total number

of instances
classified
correctly

Accuracy of
Classifier

Classifier Fitness =
Total Hardness of
classifier = sum(wi)
of correctly classified
instances, γ = 2

1 4 0.57 0.36

2 4 0.57 0.36

3 3 0.43 0.68

4 3 0.43 0.32

5 5 0.71 0.52

From Table 7.2, it can be seen that although the total number of instances correctly

classified by classifiers 3 and 4 is same and thus the classification accuracy (defined as the

amount of training instances that are correctly classified) is same, but fitness of classifier

3 is greater than classifier 4. This is because classifier 3 is more diverse and classifies

hard examples. This justifies that the ensemble created using classifiers that dominantly

qualify this fitness measure would be efficient.

However, this fitness function is restricted to a single objective that lays importance

only on the hardness of examples. In order to include other measures like overall accuracy,

etc. in the fitness functions, multi-objective optimization approach can to be utilized.

7.3.2 Multi-objective optimization

Multi-objective optimization (also known as Pareto optimization) is a field of multiple-

criteria decision making for problems that require simultaneous optimization of more
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than one objective. Such problems are widely found in real-world and are receiving high

attention of researchers. One of the most common and straightforward method to solve

multi-objective problems is to employ an a priori approach. This approach aggregates

several objectives into a single objective function (a scalar value) in accordance with

pre-defined preference information of objectives.

In order to indicate the relative preference of objectives, weighting coefficients are

assigned to each objective. This can be characterized by a simple aggregation function

given in equation 7.7:

F (h)=
k

∑

i=1

αifi (7.7)

where fi symbolizes the performance of individual h on the ith objective, αi denotes

the weighted relative preference of the ith objective (0<=αi<=1), and k stands for the

number of objectives.

7.3.3 Proposed multi-objective fitness function

The fitness function presented in Chapter 6 considers accuracy (that is, the proportion of

training instances correctly classified) and classifier interpretability (number of nodes in

the classification tree) combined and used as a single objective.

Since the ensemble members are required to be diverse in terms of errors made on

training data, the diversity-enforcing fitness function described in sub-section 3.1 is re-

quired to be additionally considered.

Since these two major objectives are to be included, the fitness function of equation 7.7

becomes as shown in equation 7.8:

F (h)=α1f1+ α2f2 (7.8)

The fitness function of chapter 6 becomes the first objective f1whereas the diversity-

enforcing fitness function presented in equation 7.6 becomes the second objective f2. A
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new fitness function that combines these two objectives is proposed and is depicted in

equation 7.9:

Fitness F of every classifier h is measured using accuracy, interpretability and cumu-

lated hardness of examples that are correctly classified by h:

F (h)=α1
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(7.9)

where α1 and α2 denote the preferences of objectives 1 and 2 respectively, n repre-

sents the total number of training instances, nodes represent the number of nodes in the

classification tree, λ is the accuracy and interpretability trade-off parameter, wi is the

cumulated hardness and γ denotes the diversity governing parameter.

Analysis of the proposed fitness function (Equation 7.9) is illustrated in Table 7.3 for

the same set of instances and classifiers shown in Table 7.1. For easy understanding of

the effect of the multi-objective fitness function, the number of nodes in each classifier

(tree) is assumed to be 100. The effect of varying number of nodes on the fitness function

is already studied and explained in Chapter 6.

It can be seen from Table 7.3 that although the classification accuracy and ultimately

the value of objective 1 of classifier 2 is greater than classifier 3, but fitness of classifier 3

is greater than classifier 2 because classifier 3 is more diverse and classifies hard examples.

But only when there is a vast difference in accuracies (much higher accuracy) and small

difference in hardness (little lower hardness), the classifier with higher accuracy wins. This

case can be understood using classifier 3 and 5. Hence, the proposed fitness function proves

to be efficient in selecting accurate, interpretable and diverse classifiers. As a result, the

ensemble created using the classifiers that dominantly qualify this fitness measure would

be proficient.
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Table 7.3: Classifier fitness based on the proposed fitness measure
Classifier Accuracy Objective f1

with λ = 0.01
Objective f2
with γ = 2

Classifier Fitness
with α1 = 0.4 and
α2 = 0.6

1 0.57 0.54 0.36 0.43

2 0.57 0.54 0.36 0.43

3 0.43 0.41 0.68 0.57

4 0.43 0.41 0.32 0.36

5 0.71 0.68 0.52 0.58

7.4 Proposed Approach

This section proposes genetic programming and ensemble-based approach for inducing a

global privacy-preserving classifier. Figure 7.2 presents the proposed approach diagram-

matically.

Figure 7.2: Genetic programming and ensemble learning for global privacy-preserving
classifier induction

As shown in Figure 7.2, the merger site receives multiple output-privacy-preserving

classification trees (DAHOTs) from each participating site where each classifier is built

using random subset of attributes and at a gap of receiving t data stream instances.

These DAHOTs undergo genetic programming runs to obtain accurate, interpretable and
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diverse classifiers using the proposed fitness function depicted in equation 7.9. These accu-

rate, interpretable and diverse classifiers are then combined to form an efficient ensemble

classifier.

The proposed approach is an extension of Algorithm DAHOT-GPeCT presented in

Chapter 6 and for completeness the entire approach is presented in section 7.5.1 as Algo-

rithm 5.

7.4.1 Proposed algorithm

The proposed algorithm is shown in algorithm 5.

The algorithm 5 named DAHOT-GPeCT-Ensemble is an extension of algorithm 6.1

proposed in Chapter 6. The difference lies in the final classifier formation (lines 21 and 22).

At the termination of GP runs, the population of final generation is sorted in decreasing

order of the fitness function values and stored for future usage. With this population

(naming it Z), an ensemble classifier E using Bagging (Breiman) approach is created using

the first N individuals from Z. The resultant DAHOT-GPeCT-Ensemble is the global

classifier formed to address the issue of privacy-preserving classification of horizontally

partitioned data streams.

7.5 Experimental Evaluation and Analysis

In order to verify the effectiveness of the proposed approach DAHOT-GPeCT-Ensemble

for privacy-preserving classification of horizontally partitioned data streams, several ex-

periments are conducted with different real-world and synthetic data streams. The follow-

ing sub-sections describe the details of the data streams used as well as implementation

details and present the evaluation results.

140



CHAPTER 7. ENSEMBLE-BASED PRIVACY-PRESERVING CLASSIFICATION OF

HORIZONTALLY PARTITIONED DATA STREAMS

Algorithm 5 DAHOT-GPeCT-Ensemble. Evolves an ensemble classifier.

Input: Data instances Ds; DAHOT classifiers C received from n participating parties;
validation factors c1, c2

Output: Ensemble classifier, E
1. for i = 1 to n do //Population initialization
2. for j = 1 to pop size/n do
3. Add a DAHOT classifier Cij to the population
4. end for
5. end for
6. Evaluate fitness of each individual in initial population using fitness measure of Equa-

tion 7.9 and Ds

7. while generation < max generations or Termination criterion is not satisfied do
8. repeat
9. Perform genetic operations on parent trees to generate offspring trees for the new

population
10. if (Size of individual< c1 * Size of best so far) then
11. Evaluate its fitness and increment new pop size
12. else if (Accuracy of individual > c2 * Accuracy of best so far) then
13. Evaluate its fitness and increment new pop size
14. else
15. Discard the individual
16. end if
17. until pop size individuals are produced
18. generation ← generation + 1
19. pop size ← new pop size
20. end while
21. Let Z be the sorted population of last generation in decreasing order of fitness function

value
22. Apply Bagging to build an ensemble classifier E using first N individuals from Z

7.5.1 Data streams

Since the work in this chapter extends the work presented in Chapter 6, at the participat-

ing sites, the same data streams with identical composition as listed in Table 6.2 are used

here. At the merger site too, the same artificially generated data as described in section

6.4.2 is used. The target application, that is, decision making in banking sector remains

the same.
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7.5.2 Baseline methods for comparison

To demonstrate the effectiveness of the proposed algorithm DAHOT-GPeCT-Ensemble,

its performance is compared with 3 other methods of privacy-preserving classification of

horizontally partitioned data streams. Two of these global classifier induction methods

are SDTP-GPeCT and DAHOT-GPeCT, which have been described and implemented

in the previous chapter. The third method is SDTP-GPeCT-Ensemble that forms an

ensemble of SDTP classifiers evolved using GPeCT. Using the popular Bagging approach

(Breiman, an ensemble of N best classifiers is formed based on fitness of the classifiers.

7.5.3 Implementation details

For experiments, the values of algorithmic parameters of GPeCT are same as stated in

Table 6.3 of Chapter 6. The number of classifiers in the ensemble, N is set equal to 5,

that is, the global privacy-preserving data stream classifier is formed by bagging of 5

fittest classifiers from last generation of DAHOT-GPeCT built using the fitness function

of Equation 7.9. The parametric values for the fitness function of Equation 7.9 are λ =

0.01, γ = 2, α1 = 0.4 and α2= 0.6.

7.5.4 Results and discussion

The global privacy-preserving classifiers built on horizontally partitioned data streams are

compared for their predictive accuracy at the merger site as well as each local participating

sites, the number of nodes in the global classifiers, their training time and the information

loss using these global classifiers.

Figure 7.3 shows the results of predictive accuracy (in %) of the global classifiers at

the merger site: SDTP–GPeCT, DAHOT–GPeCT and best three solutions (BSF – Best

So Far) obtained using SDTP–GPeCT Ensemble and DAHOT–GPeCT Ensemble.

The results of predictive accuracy (in %) of the stated global classifiers on data streams

at the three local sites individually is shown in Figure 7.4 to Figure 7.6. The number of

nodes in each of these six classifiers is shown in Figure 7.7. In case of ensemble classifiers,
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Figure 7.3: Predictive accuracy (in %) of classifiers on data streams at merger site

the number of nodes represents a total of number of nodes combined from each base

classifier. Figure 7.8 shows the information loss using the four global classifiers whereas

Figure 7.9 shows the training time of each.

The results shown in Figure 7.3 are as expected. The proposed DAHOT-GPeCT

Ensemble shows better classification accuracy as compared to the other three methods

on the data stream at local sites as well as merger site. The difference in classification

accuracy is significant as compared to the best classifiers (BSF) of SDTP-GPeCT and the

SDTP-GPeCT Ensemble. At the merger site, the predictive accuracy of DAHOT-GPeCT

Ensemble is 93.64% on ’default of credit card clients’ data stream, 96.15% on ’give me

some credit’ data stream, 98.32% on ‘German credit’ data stream and 95.77% on ’loan

approval’ data stream. This high accuracy is the result of the novel fitness function of

Equation 7.9 that gives significance to accurate and diverse classifiers. Such accurate and

diverse classifiers have higher fitness and become members of the ensemble.

It can be seen from Figure 7.4, Figure 7.5 and Figure 7.6 that all the classifiers pro-

duce similar predictive accuracy at each site. The minimum and maximum difference

between accuracies of SDTP-GPeCT obtained at the three participating sites is 1.8% and

3.72% respectively. Using DAHOT-GPeCT classifier, the minimum and maximum differ-

ence between predictive accuracies obtained at the three participating parties is 1.68%

and 3.16% respectively. In case of SDTP-GPeCT, the minimum and maximum differ-
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Figure 7.4: Predictive accuracy (in %) of classifiers on data streams at site 1

Figure 7.5: Predictive accuracy (in %) of classifiers on data streams at site 2
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ence is 1.45% and 3.29% respectively whereas using DAHOT-GPeCT the minimum and

maximum difference in accuracies at the three sites is 0.89% and 2.84% respectively.

Figure 7.6: Predictive accuracy (in %) of classifiers on data streams at site 3

This minor difference in accuracy obtained at different sites shows the stability of each

of the algorithms and the stability strengthens the conclusion about DAHOT-GPeCT-

Ensemble being the most suitable for privacy-preserving classification of horizontally par-

titioned data streams.

The number of nodes in each of the classifiers is shown in Figure 7.7. For the ensemble

classifiers, the cumulative number of nodes in all the base classifiers is considered and is

predictably high. But, the advantages these ensemble classifiers offer, especially those

offered by the proposed DAHOT-GPeCT-Ensemble, makes the loss in interpretability

acceptable. As mentioned in Chapter 6, once the local classifiers are induced, no more

information loss occurs in formation of the global classifier but one may consider that

the information loss using any global classifier is eventually due to training instances at

the merger site which are misclassified by the classifier. Information loss using the global

classifiers targeted in this chapter is shown in Figure 7.8. Such information loss can be

easily ignored as no information from the arriving data streams is lost. Irrespective of

this, the information loss due to DAHOT-GPeCT-Ensemble is small and minimum.

Figure 7.9 shows the time required to induce the global classifiers at the merger site.
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Figure 7.7: Number of nodes in global classifiers on data streams at merger site

Figure 7.8: Information loss (in %) of classifiers on data streams at merger site
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Each of the classifiers is evolved using GP and run for a number of generations. Since

each run consumes little time due to computation of fitness function, the overall training

time of these classifiers is high. Further, it can be seen that the time required by all four

classifiers is nearly equivalent and proportional to the classification tree size. But again,

as the construction of classifier is a one-time cost and once generated, it can be used to

classify the newly arriving data stream instances for long and the training time of these

classifiers is acceptable. The prediction time required by each of these classifiers is very

small and almost similar and hence isn’t shown.

Figure 7.9: Training time (in s) of global classifiers on data streams at merger site

The next section extends the privacy-preserving classification of horizontally parti-

tioned data streams for the scenario where these global classifiers need to be updated.

7.6 Classifier Updation

At each local site, the data streams are continuously arriving with some labeled and some

unlabeled records. The performance of most effectual classifier build from the streaming

data may degrade as time proceeds and new data arrives.

Specifically, when the data stream is not generated by a stationary stochastic process,

the data distribution and underlying concept of the data may change with time and may
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no longer match the previously received data. As the result of such concept-drift, the

prediction accuracy drops. Thus, it is required to revise or refine the classifier model by

incorporating new instances as they arrive. The model must not only capture the latest

trends and patterns in the streaming data but should also be capable to discard the effect

of obsolete patterns.

Since streaming data is arriving at multiple parties with each party willing to contribute

in mining valuable patterns, any concept-drift detected at either of the sites may be useful

to the other sites. Thus, since each site is using the same global ensemble classifier, it

gets essential to update the other sites about any change in the classifier at a particular

site.

7.6.1 Proposed approach

Several scenarios exist where the classifier needs to be updated due to concept-drift. Such

scenarios and the update processes are described as follows:

Scenario 1: At participating (local) sites, after receiving global classifier

Once the global classifier (say G1) is built, it is sent to all the participating (local)

sites where it is employed to work upon the newly arriving data. This newly arriving data

stream would contain some labeled and some unlabeled instances.

The unlabeled instances at each participating site are classified using this global clas-

sifier G1. Further, the labeled instances arriving at this moment are also passed to the

global classifier G1 to predict their outcome and verify the performance of the classi-

fier. Instances may be misclassified either because the global classifier is inaccurate or

due to a concept-drift. In either case, the instances that get misclassified by the global

classifier G1 are stored in a buffer B. Any individual in the global ensemble classifier G1

that misclassifies the instances is given a negative vote, one per instance misclassification.

Simultaneously, a fixed-size sliding window W (initially empty) is maintained at each site

and the newly arriving instances are continuously added to the window W. The window

keeps sliding over the instances to accommodate the newest instances and discards the
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old instances. The combination of buffering and windowing borrows its concept from

ADWIN (Bifet and Gavalda).

Scenario 2: At participating (local) sites, once the buffer B is full

Assume that the buffer B gets full at participating site P1. In such a case, an output-

privacy-preserving decision tree classifier T1 is induced using the instances in the buffer

and traditional decision tree induction algorithm CART. Similar to Hoeffding tree, CART

uses Gini index as an attribute selection measure and forms binary tree but works on static

data. The resultant decision tree is further sanitized to satisfy diversity and anonymity

constraints.

The instances in W are used to evaluate the newly created classifier T1 and indi-

viduals of the global classifier G1. Classifier T1 or any individual in ensemble G1 that

misclassifies the instances is given a negative vote, one per instance misclassification. If

any individual of G1 receives more negative votes (at least 15% more) as compared to

T1, this newly created classification tree T1 replaces that weakest ensemble member. If

such a replacement occurs, a new ensemble classifier G1’ is formed at a local site P1.

If there is a momentary concept-drift, the newly created classifier will not be able

to compete with the individuals in the ensemble and hence won’t replace any ensemble

member.

The same scenario can occur at any of the participating sites and the same process of

updating classifier is to be followed.

Scenario 3: At participating (local) sites, when classifier update occurs at

other local site

When a new classification tree replaces an ensemble member at any participating site,

this newly created tree is sent to all other participating sites. Assume that a newly

induced classification tree T2 replaces one of the ensemble members at site P2. All other

sites on receiving T2 will evaluate the ensemble members as well as T2 on the current

window and gather votes for each of the classifiers.

If T2 outperforms any of the ensemble members at any site (say site P1), then such

a weak ensemble member is replaced by T2 and a new ensemble classifier named G1”
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is created at site P1. This locally updated ensemble G1” is now used at site P1 to

classify further instances. The same classifier updating procedure is carried out at all the

participating sites.

Scenario 4: At participating (local) sites, periodically

Periodically at each site, all the members of ensemble G1 and the newly induced or

received trees are evaluated using the instances in the current window W. Any individual

that misclassifies the instances is given a negative vote, one per instance misclassification.

It is to be noted that at any local site, even if an individual is replaced by a new classifier,

the vote for all the ensemble members of the original global classifier G1 are accumulated.

Further, at each site, misclassification penalty votes are accumulated for the newly added

classifiers (self-induced or received from other sites, if any) too. Accuracies (weights) of

classifiers are computed based on the proportion of votes received.

Each site sends accuracies of all ensemble members as well as the newly added tree to

the merger site.

Scenario 5: At merger site, when classifiers are received from each partic-

ipating (local) site

Based on the average of received accuracies of ensemble members and new trees,

a fresh ensemble classifier G2 is induced using the most-accurate classifiers. However,

totally discarding the trees that formed the previous ensemble might be an over-killing

act. Hence, such trees are added to the final population of GP.

The updated global classifier G2 is again transferred to all the local sites and is used

to classify unseen instances in the data stream arriving at those sites.

Periodically, all the sites send their votes for every ensemble member to the global

site. An additional run of GP is conducted when the performance of the global classifier

decreases below a user-specified threshold for minimum accuracy of the ensemble mem-

bers. The classifier performance is only verified periodically. Re-induction occurs only

when the performance gets degraded.

150



CHAPTER 7. ENSEMBLE-BASED PRIVACY-PRESERVING CLASSIFICATION OF

HORIZONTALLY PARTITIONED DATA STREAMS

7.6.2 Results and discussion

The issue of classifier updation has been addressed by introducing a concept-drift in the

‘Loan Approval’ data stream. Since this data stream is synthetically generated using

MOA (Bifet et al.), introducing the concept-drift in the stream after induction of the

global classifier is done efficiently. The parameters are set as follows: buffer size |B|=

1000 and window size |W|= 2000. The performance of the proposed DAHOT-GPeCT-

Ensemble classifier in terms of predictive accuracy evaluated for different scenarios is

depicted in Figure 7.10.

The results shown in Figure 7.10 are for a scenario when the incoming data stream at

participating site 2 results into updating the global classifier. The newly induced classifier

from the incoming data stream replaces a weak ensemble member at site 2 to form a new

global ensemble and this new classifier is forwarded to the remaining two sites. After

evaluation of the new classifier at site 1 using the instances in its window, the global

classifier at site 1 is also updated with a weak ensemble member being replaced with the

newly received classifier. But, at site 3, the newly arrived classifier does not prove to be

efficient than the old ensemble members and the global classifier is not updated.

Figure 7.10: Predictive accuracy (in %) of classifiers before and after classifier update

Figure 7.10 shows three different predictive accuracies: 1) the initially created global
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classifier evaluated using the newly arrived data stream instances 2) the effect global

classifier update at site 2, which results into global classifier update at site 1 as well

but not at site 3 and 3) global classifier updated at the merger site on evaluation at

participating sites.

For obvious reasons, the effect of global classifier updated at site 2 will result into

improved accuracy as compared to the initially created global classifier. Further, it can

be seen that since classifier 1 updates the global ensemble by replacing its weakest member

with the newly received classifier from site 2, the accuracy of the updated global ensemble

classifier at site 1 is improved as compared to the initially build global classifier. The

accuracy of DAHOT-GPeCT-Ensemble at site 3 is already high initially and the update

at site 2 does not replace any ensemble member at site 3 and ultimately, the initially

created global classifier is not updated. But still, the accuracy remains high.

When the global classifier is updated at the merger site and sent back to each of

the participating parties for future classification, the predictive accuracy at all these

participating parties is improved. This proves that the proposed approach is successful in

updating the classifier for performance improvement.

7.7 Summary

This chapter used ensemble learning to improve the performance of DAHOT-GPeCT

classifier proposed in the previous chapter. A novel GP fitness function that prefers ac-

curate and diverse individuals is proposed. With the proposed approach, named DAHOT-

GPeCT-Ensemble, privacy-preserving classification of horizontally partitioned data streams

is carried out by forming an ensemble of these accurate and diverse classifiers evolved using

GP.

The proposed DAHOT-GPeCT-Ensemble classifier outperforms all other classifiers on

the four data streams concerning decision making in banking sector used in this the-

sis. Also, the issues in data stream classification presented in Chapter 2 are addressed.

The minimum and maximum improvement in predictive accuracy using DAHOT-GPeCT-
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Ensemble classifier at the merger site as compared to other classifiers is 5.03% and 10.37%

respectively. Further, the results of updating the global DAHOT-GPeCT-Ensemble clas-

sifier for ‘Loan Approval’ data stream show how the periodic update in classifier can

improve the prediction accuracy.

The results obtained from the experimental evaluation of the proposed DAHOT-

GPeCT-Ensemble classifier are satisfactory and prove the classifier’s efficacy on the data

streams relating to the targeted application of credit-risk in banking sector. Thus, the

goal of the work in this thesis, that is, privacy-preserving classification of horizontally

partitioned data streams has been successfully accomplished.
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Chapter 8

Conclusions and Future Scope

8.1 Conclusions

The techniques proposed in this thesis succeed in achieving the objectives described in

Chapter 1.

Having done an in-depth study and empirical analysis of existing literature as well as

the proposed approaches for privacy-preserving classification of horizontally partitioned

data streams, several conclusions are drawn.

Following conclusions are derived while working to fulfill the first objective of the

work, that is: “to develop an efficient method for preserving output-privacy in data stream

classification”:

To achieve this objective, that is, for the participating parties to publish a local classi-

fier from the continuously arriving data streams, an output-privacy-preserving data stream

classifier named DAHOT is proposed.

Applying l -diversity principle along with k -anonymity through DAHOT intensifies

the uncertainty in linking patterns derivable from the published classifier to individuals

whose data is being mined. Since record linkage and attribute linkage attacks on the

published classifier are prevented, the privacy requirement for the targeted application is

satisfied. Using Hoeffding trees as base classifiers offers several advantages such as easy
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amalgamation with privacy principles, high classification accuracy, interpretability and

the availability to predict at any point. The empirical performance comparison of DAHOT

with few other methods also proves it’s efficacy in classifying massive data streams while

preserving the required privacy.

While accomplishing the second objective of the work, that is: “to develop a system-

atic method for privacy-preserving classification of horizontally partitioned data streams”,

following conclusions are derived:

The DAHOT, genetic programming and ensemble-learning based framework thrives

in addressing privacy-preserving classification of horizontally partitioned data streams.

The novelties introduced such as reverse rank selection strategy for mutation, variable-

size population, an additional validation stage, accuracy and interpretability based fitness

function, etc., make the genetic programming-based approach, named DAHOT-GPeCT

competent enough in achieving the desired objective.

An improved version of DAHOT-GPeCT, named DAHOT-GPeCT-Ensemble classifier,

proves that an ensemble of output privacy-preserving data stream classifiers (DAHOTs)

selected through a novel fitness function that emphasizes classification accuracy, inter-

pretability and diversity is a suitable solution method for parties intending to collaborate

and induce a privacy-preserving classifier from their horizontally partitioned data streams.

8.2 Future Scope of Work

There are several avenues for future work in this area.

The first one suggests privacy-preserving classification of data streams with multiple

sensitive attributes. This requires modification in DAHOT algorithm in terms of the

nodes to be pruned. This modification will reduce the amount of pruning and hence

decrease the information loss.

Further, the framework proposed in this work is evaluated for data streams having

only two classes. The same can be extended for data streams with multiple classes. The

scope of the work covers only horizontally partitioned data streams. Privacy-preserving
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classification can be extended to vertically partitioned data streams as well as arbitrarily

partitioned data streams.

The work focuses on preventing record-linkage and attribute-linkage attacks. Privacy

models like t-closeness, differential privacy, personalized privacy, etc. designed to prevent

various other attacks can be explored to protect the classifier output from malicious

attacks.

The proposed framework treats all the attribute values similarly irrespective of its data

distribution (which may be skewed). Moreover, the proportion of classes in the data is

frequently imbalanced. The proposed framework can be extended to address such issues.

Lastly, the proposed work has been implemented for decision-making in banking sector.

The effectiveness of proposed approach can be verified with other data streams of banking

sector or other applications of privacy-preserving classification of horizontally partitioned

data streams.

These works remain as open issues for researchers in the field of data mining.
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