
Formal Verification Using
SLEC(Sequential Logic Equivalence

Checker)

Major Project Report

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology

in

Electronics & Communication Engineering

(Embedded Systems)

By

Shreya Panjvani

(15MECE15)

Electronics & Communication Engineering Department

Institute of Technology-Nirma University

Ahmedabad-382481

MAY 2017

Formal Verification Using
SLEC(Sequential Logic Equivalence

Checker)

Major Project Report

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology

in

Electronics & Communication Engineering

(Embedded Systems)

By

Shreya Panjvani

(15MECE15)

Under the guidance of

External Project Guide: Internal Project Guide:

Mrs Swati Garg Dr.N.P.Gajjar

Member Of Consulting Staff, SLEC PV, Assistant Professor, EC Department

Mentor Graphics India Pvt Ltd, Institute of Technology,

Noida. Nirma University, Ahmedabad.

Electronics & Communication Engineering Department

Institute of Technology-Nirma University

Ahmedabad-382 481

MAY 2017

iii

Declaration

This is to certify that

a. The thesis comprises my original work towards the degree of Master of Tech-

nology in Embedded Systems at Nirma University and has not been submitted

elsewhere for a degree.

b. Due acknowledgment has been made in the text to all other material used.

- Shreya Panjvani

15MECE15

iv

Disclaimer

”The content of this thesis does not represent the technology,opinions,beliefs,

or positions of Mentor Graphics India Pvt Ltd,its employees,vendors, cus-

tomers, or associates.”

v

Certificate

This is to certify that the Major Project entitled “Formal Verification Using

SLEC(Sequential Logic Equivalence Checker)” submitted by Shreya Pan-

jvani (15MECE15), towards the partial fulfillment of the requirements for the

degree of Master of Technology in Embedded Systems, Nirma University, Ahmed-

abad is the record of work carried out by her under our supervision and guidance. In

our opinion, the submitted work has reached a level required for being accepted for

examination.The results embodied in this major project, to the best of our knowl-

edge,haven’t been submitted to any other university or institution for award of any

degree or diploma.

Date: Place: Ahmedabad

Dr N.P.Gajjar Dr. N.P. Gajjar

Internal Guide Program Coordinator

Dr.N.P.Gajjar Dr Alka Mahajan

Section Head, EC Director, IT

vi

Certificate

This is to certify that the Major Project (Phase- I) entitled “Formal Verification

Using SLEC(Sequential Logic Equivalence Checker)” submitted by Shreya

Panjvani(15MECE15), towards the partial fulfillment of the requirements for the

degree of Master of Technology in Embedded Systems, Nirma University, Ahmed-

abad is the record of work carried out by her under our supervision and guidance.

In our opinion, the submitted work has reached a level required for being accepted

for examination.

Mrs Swati Garg

Member Of Consulting Staff, SLEC PV,

Mentor Graphics India Pvt Ltd,

Noida

vii

Acknowledgements

I would like to express my gratitude and sincere thanks to Dr. N.P.Gajjar, PG

Coordinator of M.Tech Embedded Systems program for allowing me to undertake

this thesis work and for his guidelines during the review process.

I take this opportunity to express my profound gratitude and deep regards to

Dr N.P.Gajjar, guide of my major project for his exemplary guidance, monitoring

and constant encouragement throughout the course of this thesis. The blessing, help

and guidance given by him time to time shall carry me a long way in the journey of

life on which I am about to embark.

I would take this opportunity to express a deep sense of gratitude to Mrs Swati

Garg,Member Of Consulting Staff, SLEC PV,Mentor Graphics India Pvt Ltd. for

her cordial support, constant supervision as well as for providing valuable informa-

tion regarding the project and guidance, which helped me in completing this task

through various stages.

I am obliged to team members of SLEC PV, Mentor Graphics India Pvt Ltd.

for the valuable information provided by them in respective fields. I am grateful for

their cooperation during the period of my assignment.

Lastly, I thank almighty, my parents, brother and friends for their constant

encouragement without which this assignment would not be possible.

- Shreya Panjvani

15MECE15

viii

Abstract

Verification of different designs using automated tools has become the widely used

methodology for the Electronic Design Automation(EDA) industry. SLEC(Sequential

Logic Equivalence checker) is one such tool which uses formal verification.

Formal verification is a method of proving or disproving the functionality of any

design using Formal methods. Formal Verification does not require input vectors

like simulation. It verifies two designs by comparing boolean equation of both the

designs,generated using formal algorithms.

SLEC(Sequential Logic Equivalence Checker) is a sequential equivalence checker

which compares two designs:specification design (SPEC) and Implementation de-

sign (IMPL) which may be structurally not equivalent. Formal Verification using

SLEC in HLS(High Level Synthesis) is the main motto of this thesis.

The flow of HLS using Mentor’s Catapult and SLEC(Sequential Logic Equivalence

Checker) was studied and performed. Different features of SLEC HLS flow were

tested. Bug finding and reporting was done in Bugzilla. Automation work required

for the tool was done using scripting.

SLEC uses formal verification which leads to better coverage,better resource alloca-

tion,lower power consumption and lesser area. SLEC can prove two designs formally

equivalent inspite of structural differences.

Contents

Declaration iii

Disclaimer iv

Certificate v

Certificate vi

Acknowledgements vii

Abstract viii

List of Figures xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Objective . 1

1.3 Requirements . 2

2 An Introduction to Formal Verification 3

2.1 An Introduction to verification . 3

2.2 Formal Verification . 4

2.2.1 Formal Equivalence Checking 4

ix

CONTENTS x

3 Overview of SLEC 6

3.1 Introduction to SLEC . 6

3.2 Advantages of SLEC . 7

3.3 Ability of SLEC . 8

3.3.1 Equivalence Checking Compatibility 8

3.3.2 Refinement Verification . 8

3.3.3 Basic operation of SLEC . 9

3.4 Setup File . 11

3.5 SLEC-HLS . 12

3.5.1 SLEC-HLS Flow . 13

4 Testing the all piped feature of SLEC HLS flow 21

4.1 An Introduction to pipelining . 21

4.2 Problem Statement . 23

4.3 Initation Interval value . 23

4.4 Algorithm For the Problem . 23

4.5 Problems . 24

4.6 Summary of the testing . 24

5 Testing the CCORE functionality of SLEC HLS flow 25

5.1 An Introduction to CCORE . 25

5.2 Synthesis of CCORE in Catapult . 26

5.3 Constraint on CCORE synthesis in Catapult 27

5.4 Types of CCORE in Catapult . 27

5.5 Synthesis of CCORE in SLEC . 28

5.6 Verification Strategy Of CCORE in SLEC 28

5.7 SLEC setup details for CCORE . 30

5.8 Problem statement . 30

5.9 An introduction to Self checks . 30

5.10 Algorithm for the problem . 30

CONTENTS xi

5.11 Example . 31

5.12 Summary of the testing . 33

6 Automation using PERL 34

6.1 Adding the top name feature . 34

6.1.1 problem statement . 34

6.1.2 Algorithm . 34

6.2 Cleaning of skiplist . 35

7 Conclusion 36

8 Future Scope 37

Bibliography 38

List of Figures

2.1 Formal Verification Using Equivalence Checking 5

3.1 Overview Of SLEC [3] . 6

3.2 Versions and usage of SLEC [2] . 7

3.3 Basic Operation of SLEC [2] . 10

3.4 Setup File [2] . 12

3.5 Sample design for the HLS flow . 13

3.6 Input files . 14

3.7 Hierarchy step . 15

3.8 Library step . 16

3.9 Mapping step . 17

3.10 Architecture step . 18

3.11 Resource step . 19

3.12 schedule step . 20

4.1 Design Example . 22

4.2 Algorithm For the problem . 24

5.1 Implementation of CCORE functionality[4] 26

5.2 Step 1 Cut at CCORE port boundaries [4] 29

5.3 Step 2 Map CCORE port boundaries [4] 29

5.4 snippet of a testcase . 31

5.5 snippet of self checks added for the testcase 32

xii

LIST OF FIGURES xiii

6.1 Algorithm For the problem . 35

Chapter 1

Introduction

1.1 Motivation

Verification has become an inseparable part of any design process. Formal Verifi-

cation has several advantages as compared to classical verification methods. Any

design if verified properly would reduce cost as well as ensure quality and time

to market. Formal verification on the other hand is the widely used method in

EDA(Electronic Design Automation) as it has various advantages as compared to

classical simulation.

SLEC(Sequential Logic Equivalence Checker) is a formal verification tool which has

several advantages as compared to traditional logic equivalence checker. SLEC uses

formal verification techniques which leads to lower capacity issues,lesser power re-

quirements and better coverage

1.2 Objective

Objective for the project:Formal Verification using SLEC can be distributed as fol-

lows:

• Formal verify two designs using Mentor’s Catapult and SLEC.

1

CHAPTER 1. INTRODUCTION 2

The SLEC HLS flow uses two tools Mentor’s Catapult and SLEC. C++ is given

as input to Catapult and produces output as Register Transfer Level(RTL).

The RTL and c++ code is formally verified by SLEC.

• Testing various features of SLEC HLS flow

The SLEC HLS has various features such as pipelining,resource scheduling,resuabality.

• Validating the tool and reporting bugs whenever required.

If two designs do not prove to be formally equivalent then a falsification arrives.

The falsification exists because of two reasons. One of them is when design is

not coded properly and the other is when the tool does not prove it inspite of

being functionally equivalent . A bug is reported in such a case.

1.3 Requirements

To complete this project knowledge of formal verification tool that is Sequential

Logic Equivalence checker (SLEC) ,High Level Synthesis(HLS) tool that is catapult

.In addition to this knowledge of c++ as well as knowledge of scripting languages

like PERL and TCL is required.

Chapter 2

An Introduction to Formal

Verification

2.1 An Introduction to verification

Verification and validation are two words which are used interchangeably but tech-

nically they are quite different. Verification is the method of evaluating your design

in every stage of its development in order to ensure a error free design at the end

of the design process. While Validation refers to the evaluation of final design to

ensure that it meets the specification and requirements. There are various kind of

verification methodology such as:

1) Functional Verification

2) FPGA emulation

3) Assertion based verification

4) code coverage

5) Formal Verification

There are various other methods for verification.Formal Verification is more pop-

ular in HLS due to its numerous advantages. Verification is generally performed

during the development of design. It ensures that the right design is being de-

3

CHAPTER 2. AN INTRODUCTION TO FORMAL VERIFICATION 4

veloped.Validation generally comes after verification and it ensures that the final

product developed is right or not.[1]

2.2 Formal Verification

Formal Verification is a method to prove correctness of any algorithm using various

mathematical modeling. Formal verification can be used in verification of digital cir-

cuits whether sequential or combinational as well as for software expressed as source

code. Earlier simulation was a very widely used method for verification.However

Formal verification has a variety of advantages as compared to classical simulation:

1)Improves verification quality

2)Reduces verification effort

3)Saves verification time since process is faster

4) code coverage is better

5)It does not require input vectors

There are two popular methods for formal verification:

1)Formal Equivalence Checking

2)Formal Property Checking [1]

2.2.1 Formal Equivalence Checking

In the method of Formal Equivalence checking two designs are given as input and a

output is produced by functional verification between two designs. In this method

of formal verification Design Under Test(DUT) and golden reference are compared.

They are reduced to boolean equations and then compared and output is produced.

Figure 2.1 shows the verification methodology for formal equivalence checking.

There are two types of equivalence checking:

1) Combinational Equivalence Checking

2) Sequential Equivalence Checking

CHAPTER 2. AN INTRODUCTION TO FORMAL VERIFICATION 5

Figure 2.1: Formal Verification Using Equivalence Checking

• Combinational Equivalence Checking

In combinational checking one to one mapping of flops is done between two

designs that is the golden design and Device Under Test(DUT).

• Sequential Equivalence Checking

In sequential checking two designs which are structurally different are com-

pared without the use of one to one flop mapping.

There are variety of tools available for logic equivalence checking in field of

EDA.Some of them are

1)FormalPro by Mentor Graphics

2)Conformal by Cadence’

3)Jasper Gold app by Cadence

4)Formality by Synopsys

5)SLEC by Calypto Design Systems(BU OF Mentor Graphics) [1]

Chapter 3

Overview of SLEC

3.1 Introduction to SLEC

SLEC stands for Sequential Logic Equivalence checker tool .It compares two designs

- spec (specification) design and impl (implementation) design - to verify whether

both designs are functionally equivalent or not. These designs may be at similar or

different levels of abstraction. One of them may be be at abstraction or system level

or RTL model and the other can be at RTL with deeper implementation.[2]

Figure 3.1: Overview Of SLEC [3]

SLEC provides:

6

CHAPTER 3. OVERVIEW OF SLEC 7

• Formal Verification without the use of input test vectors.

• Generate Counter Example if designs are not functionally equivalent.

• Complex Bug Detection [2]

3.2 Advantages of SLEC

SLEC has several advantages as compared to other Logic Equivalence Checker.

• Easy and early detection of system-level and RTL functional bugs, without

using test-benches.

• Reduces verification effort as there is no need for test-bench creation and

modification

• Eliminates long simulation regressions and saves time

Figure 3.2: Versions and usage of SLEC [2]

CHAPTER 3. OVERVIEW OF SLEC 8

3.3 Ability of SLEC

3.3.1 Equivalence Checking Compatibility

SLEC can perform equivalence checking between

• System-Level Models and manually created Register-Transfer Level (RTL)

models.

• System-Level models and the RTL output produced by supported High-Level

Synthesis (HLS) products such as Mentor Catapult.

• RTL models and the same RTL models with minor refinements in speed, area

and power that may change their sequential behavior.

• RTL models and RTL models which have been optimized by various power

optimization tools [2]

3.3.2 Refinement Verification

• Resource Scheduling: whenever a design is refined or enhanced, resources are

allocated and scheduled to implement functional behavior in order to meet the

cost and performance targets. It may happen that a computation which was

of single cycle in a design specification may become multi-cycled during the

implementation, changing the timing of an interface.

• State Recoding: State machine encodings may be changed in order to achieve

better and optimized implementation area, timing, and/or dynamic power.

A state recoding which was binary encoded in the specification design may

change to one-hot in the implementation design.

• Pipelining: Pipelines are often added to a design in order to improve through-

put and performance. Pipeline refinements means inserting or modifying the

number of pipeline stages in a design’s data and control paths.

CHAPTER 3. OVERVIEW OF SLEC 9

• Register Retiming: Register retiming is a common method of RTL optimiza-

tion which is used to balance the amount of logic between flip-flops. Even if

the state of both the RTL models are different, the interface behavior of the

impl and spec designs are equal.

• Clock Gating: Clock gating is an optimization technique used to reduce dy-

namic power. Sequential changes can affect the design state, due to which the

use of combinational equivalence checkers are prevented. SLEC can verify de-

signs with sequential differences thus it can highlight errors which are caused

due to clock gating and verify designs inspite of the differences in clock gating.

• Interface Refinements: whenever designs are refined, block interfaces may

change to abstract data types. In order to preserve core functionality, in-

terface protocols and timings may change.

• Additional Modes of Operation: An implementation design may have addi-

tional modes of operation as compared to the specification design. In order to

verify High-level behaviors implementation inputs are constrained so that the

additional modes of operation are disabled.[2]

3.3.3 Basic operation of SLEC

The inputs given to SLEC are specification design and implementation design.Both

of them are formally verified.

Figure 3.3 shows the basic steps involved:They are

1)Reading the designs

2)Providing clock to both the designs

3)providing reset states to both the designs

4)Providing Interface Alignment

5)State correspondence between both the designs

6)Finally verifying them[2]

CHAPTER 3. OVERVIEW OF SLEC 10

Figure 3.3: Basic Operation of SLEC [2]

• Design:The two designs spec and impl are given as input and are read in.

Portions of the designs such as large memories which cannot be analyzed by

SLEC, must be black-boxed. The design files and libraries used for each design

have to be specified by the user[2].

• Clocking:A clock has to be specified to achieve a common frame of reference

for timing relationships between the two devices. SLEC supports one clock

per design, however different phase of the clock can be used and the clock may

be gated. For the cases where both of the designs has a single clock, no setup

information has to be added for the spec and impl designs in the tcl file[2].

• Reset state:Reset states in any design are required to begin equivalence check-

ing. This information can be provided in the .tcl file through explicit state

values,reset sequences or VCD dumps.Normally reset values are generally set

to zero[2].

• Interface Alignment:To verify the designs formally correspondence must be

established between the design interfaces of spec and impl. If both the designs

are cycle accurate that is they use same clock cycles for operation and even

use matching names for input and output ports, all of this information can

CHAPTER 3. OVERVIEW OF SLEC 11

be automatically interpreted. The Designs which have differences in timing,

protocols, or data representation require additional setup information in the

.tcl file. In that case the input and output ports in one design must be mapped

to corresponding ports on the other design [2].

• State Correspondence: If the two designs have any common correspondence

in state then it must be specified. This optional information helps SLEC in

verification process. SLEC even tries to find as many state correspondences as

possible between the two designs,before it attempts to prove the equivalence

[2].

• Verification:The two designs can be verified using one of two modes: bug find-

ing or full proof. Generally bug finding mode should is preferred to search for

any functional differences between the designs. In this mode SLEC compares

the designs over a bounded or fixed set of transactions. Full proof mode pro-

vides additional formal techniques which are to prove the designs equivalent

which are not supported in the bug finding mode. If the designs are not equiv-

alent, counterexamples are produced which demonstrate the differences. After

SLEC completes its verification log files ,waveform files and test benches are

generated for further analysis by the user [2].

3.4 Setup File

The operation of SLEC is controlled by a TCL command file. The command file

provides problem setup information which identifies the designs and describes how

the interface mappings and timings of the two designs should be compared. For

equivalence checking, an instance of the top-level module of the specification de-

sign is named spec, while the comparable instance of the top-level module of the

implementation design is named impl [2].

CHAPTER 3. OVERVIEW OF SLEC 12

Figure 3.4: Setup File [2]

3.5 SLEC-HLS

HLS stands for High Level Synthesis (HLS). HLS has the ability to generate pro-

duction quality RTL implementation from high level abstraction languages like c

and c++. In High level synthesis Algorithmic behavior written in C/C++ or Sys-

tem C is given as input to the HLS tool which then automatically synthesizes the

algorithmic behavior to register transfer level (RTL) design. HLS maps top-level

c++ variables to resources that would implement RTL. In this, resource synthesis

is the process of mapping top-level C++ variables to resources that implement a

RTL. Whenever an algorithm is converted into RTL with the help of HLS,various

constraints such as scheduling has to be taken care with the hardware point of view.

SLEC-HLS is verification of the RTL generated by the HLS tool Catapult. The

two inputs given to SLEC-HLS are RTL generated by the HLS tool and the system

level design in c or c++. The two designs are verified formally stating that they are

functionally equivalent or not. This would verify that whether the RTL generated

by the HLS tool catapult is functionally correct or not. If the two designs are not

found equivalent a counter example is generated which can pinpont design bugs.

CHAPTER 3. OVERVIEW OF SLEC 13

The HLS flow of catapult is briefly described in the following stages:

1)Input Files

2)Hierarchy

3)Library

4)Mapping

5)Architecture

6)Resource

7)Generate RTL

3.5.1 SLEC-HLS Flow

This section would briefly describe the HLS flow used in SLEC

The Input design for the SLEC HLS flow is shown in figure:

Figure 3.5: Sample design for the HLS flow

1) Input Files:This is the first step of the HLS flow. In this step the design file(c,c++

or system c) is given as input to the HLS tool. The following snippet depicts such

a scenario:

CHAPTER 3. OVERVIEW OF SLEC 14

Figure 3.6: Input files

2) Hierarchy:This step decides the hierarchy of the design. It would state which

function would be the top level function and which functions will be the sub blocks.

CHAPTER 3. OVERVIEW OF SLEC 15

Figure 3.7: Hierarchy step

3) Libraries:This step of HLS provides us various options such as technology(65

or 90nm) that has to be used for the verification. It also gives various other options

of design constraints such as synthesis tool,target hardware technology,compatible

libraries and design hierarchy.

CHAPTER 3. OVERVIEW OF SLEC 16

Figure 3.8: Library step

4)Mapping: This step of HLS is used to set clock,reset,enable and handshaking

signals. It is also used to select process in HLS. It is also used to specify handshaking

signals.

CHAPTER 3. OVERVIEW OF SLEC 17

Figure 3.9: Mapping step

5)Architecture:This step of HLS performs design partition.This step performs op-

timization and applies constraint on designs. For example loops can be merged,unrolled

or pipelined. It has low power options for low power designs. It also has various

options such as Initation Interval value.

CHAPTER 3. OVERVIEW OF SLEC 18

Figure 3.10: Architecture step

6)Resource:This step of HLS allocates the resources needed for each and every

operation. It also sets a limit for the number of instances that can be allocated.

CHAPTER 3. OVERVIEW OF SLEC 19

Figure 3.11: Resource step

7)schedule:This step of HLS schedules the resources that have been allocated on

the basis of timing constraints and usability. The whole scheduled process can be

seen with the help of Gantt chart.

CHAPTER 3. OVERVIEW OF SLEC 20

Figure 3.12: schedule step

8)RTL:Finally an RTL is generated

Chapter 4

Testing the all piped feature of

SLEC HLS flow

4.1 An Introduction to pipelining

Any algorithm would have data dependency in it which ultimately decreases the

throughput and performance. Pipelining is a technique to reduce data dependency

by parallel execution which however adds data or buffer storage. Pipelining allows

fetching of the next instruction when the first one is performing any arithmetic

operation. Thus it is an very important feature provided in HLS flow to increase

throughput and performance. The designs in HLS flow are pipelined in order to

speed up the synthesis process.

The SLEC HLS flow uses three modules for pipelining:

1)Top piped:If the design is top piped the function which is marked as top in the

hierarchy is pipelined. The main function in c++ design is marked as top.

2)All piped:If the design is all piped all the other functions except the one which is

marked as top are pipelined.

3)No piped:If the design is no piped no function is pipelined.

Figure below shows the design snippet of a sample design file. In this snippet in the

21

CHAPTER 4. TESTING THE ALL PIPED FEATURE OF SLEC HLS FLOW22

Figure 4.1: Design Example

case of top piped only the main function that is top would be pipelined. In the case

of no piped no function would be pipelined while in case of all piped both of the for

loops would be pipelined. The throughput and performance would be different for

each of pipelined case. For top piped the syntax would be

directive set /top/core/main -PIPELINE INIT INTERVAL 1

For all piped the syntax would be

directive set /top/core/main/for -PIPELINE INIT INTERVAL 1

directive set /top/core/main/for#1 -PIPELINE INIT INTERVAL 1

For no piped case the syntax would be missing.

CHAPTER 4. TESTING THE ALL PIPED FEATURE OF SLEC HLS FLOW23

4.2 Problem Statement

To reduce the Initation Interval value to the minimum possible value of all the all

piped cases present in the qa repository.

4.3 Initation Interval value

Initation Interval value is the value after which the loop will start its next iteration.

A minimum value of II is desirable since it would increase parallelism and hence

decrease data dependency

4.4 Algorithm For the Problem

To test the all piped feature of SLEC HLS flow a certain algorithm was followed

which is depicted in the figure below. First of all,all of the all piped cases were

extracted from the qa repository. After extracting them the II value of all the cases

were set to one. After setting them to one they were ran in regression which had a

build which would error out for the all piped cases which do not showed pipelining

behavior that is they do not have overlapping. After the regression ran some of the

cases passed,some of them failed. The failing cases had two cases:

1)The cases which gave CTS-PRCM error

2)The cases which had Resource Competition error

The cases which gave CTS-PRCM error were the one which do not show any over-

lapping in any pipelining region and have to be removed from the qa repository

since they show no meaning. While the cases which had resource competition er-

ror were the ones which could not complete its execution with II 1,so their II has

to be increased to 2. Again regression was run on the cases which gave resource

competition. After the regression finished the same scenario depicts as mentioned

previously. The process has to be repeated till all the cases are resolved.

CHAPTER 4. TESTING THE ALL PIPED FEATURE OF SLEC HLS FLOW24

Figure 4.2: Algorithm For the problem

4.5 Problems

During the testing the major problem which was faced was there were test-cases

which had multiple loops that were to be pipelined. So the test-cases had to be

checked by providing different II value for the loops. Those test-cases were to be

handled manually

4.6 Summary of the testing

There were a total of 2111 all piped cases. After the testing finished 737 test-cases

passed and had the minimum II value and 881 cases were removed. The remaining

1618 cases can be tested further.

Chapter 5

Testing the CCORE functionality

of SLEC HLS flow

5.1 An Introduction to CCORE

CCORE is a user defined operation that consists of collection of one or more opera-

tors. CCORE is a functionality which is very much similar to user defined functions

in C. CCORE is a concept defined by Catapult for the main purpose of reusabil-

ity. The synthesis of CCORE in catapult is very much different as compared to

SLEC.There are several advantages of using CCORE.They are:

1)Improves runtime

2)Reduces total number of variables since reusabality is introduced.

3)The functionality optimized once can be reused a number of times.

4)Minimizes mux sharing logic

5)Facilitates coarse gain sharing improving area

Figure 6.1 shows the difference of implementation of a functionality with and without

the help of a CCORE. It also shows the advantage of using CCORE functionality.[4]

25

CHAPTER 5. TESTING THE CCORE FUNCTIONALITY OF SLEC HLS FLOW26

Figure 5.1: Implementation of CCORE functionality[4]

5.2 Synthesis of CCORE in Catapult

In Catapult CCORE can be synthesized in two modes:

1)Top-Down

In this mode CCORE can be synthesized in one step.The user has to simply specify

the top functionality and the other CCORE functions. The synthesis of CCORE

functionality using this method is simpler as compared to the bottom-up approach.

Top-Down functionality is a simpler approach in implementation point of view.

2)Bottom-Up

In this method synthesis of CCORE is a multi-step process. First all the CCORE

functionality are synthesized using separate Catapult runs and different CCORE

libraries are used while synthesizing top. The bottom-up approach is tougher in im-

plementation as compared to top-down but is easy to debug during falsifications.[4]

CHAPTER 5. TESTING THE CCORE FUNCTIONALITY OF SLEC HLS FLOW27

5.3 Constraint on CCORE synthesis in Catapult

• Inouts are not allowed

• Handshake interfaces are not allowed

• All outputs must be written unconditionally

• CCORE must be pipelined with II=1

5.4 Types of CCORE in Catapult

1)Combinational CCORE

In this type of CCORE output is not registered.This type of design does not contain

any clock. The designs are purely combinational and does not contain any flip flop

since they do not have to hold any value. This CCORE is generally scheduled in

one Cstep.

2)Sequential CCORE

In this type of CCORE outputs are not registered. This type of design generally

have one or more clock. This design contains flip flop since they need to hold values.

In this type of CCORE registering of input and output can be controlled through

directive. This type of CCORE may or may not be scheduled in one cstep.

3)Static CCORE

This type of CCORE contains static variables. Since this CCORE contains static

variables they are known as static CCORE.

4)Variable latency CCORE

This type of CCORE contains variable latency.[4]

CHAPTER 5. TESTING THE CCORE FUNCTIONALITY OF SLEC HLS FLOW28

5.5 Synthesis of CCORE in SLEC

By default, SLEC inlines all function calls. User has to explicitly tell SLEC to

synthesis it as a CCORE function hierarchy. SLEC only creates combinational

CCOREs. SLEC will honor mark hierarchy command or CCORE pragma only

under a g̈lobal enable hierarchy synthesis̈. For any function if mark hierachy is

specified, SLEC creates a module for that function and dumps all the information

required for mapping in an XML file spec ccore info.xml.

Although, in most of the cases SLEC tries to create just one module for each

CCORE, but sometimes due to the different ways of passing actuals to the same

formals (e.g. pointer formal binded to two arrays of different sizes), SLEC will

create different modules with different interfaces.[4]

5.6 Verification Strategy Of CCORE in SLEC

SLEC verify CCORE in the following steps :

1)SLEC identifies the number of CCORE functionality in the design

2) SLEC indentifies the top

3) The whole design is divided into different modules with the help of boundaries

4) The design is then cut at port of CCORE boundaries.

5) The next step is to map CCORE port boundaries accordingly

6) CCORE is then formally verified with the help of SLEC.[4]

The full process of verification is briefly explained in the following two figure. The

two figure depicts the two main process of verification.

CHAPTER 5. TESTING THE CCORE FUNCTIONALITY OF SLEC HLS FLOW29

Figure 5.2: Step 1 Cut at CCORE port boundaries [4]

Figure 5.3: Step 2 Map CCORE port boundaries [4]

CHAPTER 5. TESTING THE CCORE FUNCTIONALITY OF SLEC HLS FLOW30

5.7 SLEC setup details for CCORE

SLEC in general inlines all the function calls.User has to explicitly specify to SLEC

to synthesize it as a CCORE functionality. There are two methods for the user to

explicitly specify the function as CCORE.

1) Using mark hierarchy command

This command helps to point the function declaration which is to be synthesized as

CCORE. Function Declaration can be pointed either by using source information or

canonical names.

2)Use pragma

If function declaration is associated with following pragma, then also it is synthesized

as a CCORE: #pragma map to operator [CCORE] [4]

5.8 Problem statement

To add self checks to all the CCORE cases present in the qa repository.

5.9 An introduction to Self checks

Self checks are the checks added by the tester to ensure the correct functionality of

any design.

5.10 Algorithm for the problem

Self checks for any design are added in a seperate .tcl file whose name starts with

self checks.tcl. The following algorithm was followed for the solution of problem.

1)Find out all the CCORE cases present in the qa repository.

2)Study the cases from design perspective that is study test.cpp

3)Add self checks in .tcl file.

CHAPTER 5. TESTING THE CCORE FUNCTIONALITY OF SLEC HLS FLOW31

5.11 Example

Figure 5.4: snippet of a testcase

Figure 6.4 shows snippet of testcase.Self checks have to be added for the testcase.

Figure 6.5 shows the self-checks which are added for above testcase.

self checks are the functionality explicitly added by the user to test the correct

functionality of any design.

CHAPTER 5. TESTING THE CCORE FUNCTIONALITY OF SLEC HLS FLOW32

Figure 5.5: snippet of self checks added for the testcase

Self checks are really heplful since if they fail there is a clear mismatch of func-

tionality handling between the user and the tool. The self checks added in the

following functionalities are as follows:

• CTS-MLP

This self check is added to check the pipeline functionality of the design. If

the design is all piped then atleast one should be pipelined. For no piped no

CHAPTER 5. TESTING THE CCORE FUNCTIONALITY OF SLEC HLS FLOW33

loop should be pipelined. For top piped main loop should be pipelined.

• CTS-PMIM

This self check is added when user expects any port to be optimized by SLEC.

When the functionality inside CCORE represents a dead logic or logic which

is of no use such ports are to be optimized.

• CTS-CIMS

This self check is added when any map hierarchy is dropped by SLEC. Map hierarchy

represents the number of hierarchy present in the design.

• map count

This self check is added to check that the number of times CCORE instantiated

by SLEC is as per user’s expectation or not.

• slec optim count

This self check is added when any port is optimized by SLEC.

• cat optim count

This self check is added when any port is optimized by Catapult.

5.12 Summary of the testing

There were 500 cases present in the qa repository. Self checks were added to 500

testcases.Each design has to be viewed and functionality has to be added to them.

Chapter 6

Automation using PERL

6.1 Adding the top name feature

6.1.1 problem statement

The top name was to be added to the given testcases

6.1.2 Algorithm

Any test-case in the SLEC HLS flow runs with a setup file. This file is generally

written in TCL.The following algorithm was followed to add the top name option.

The top name option for a particular design has to be found from the slec.log after

running the testcase. The value of top is then stored in a variable. The tcl file is now

open and has to traverse line by line to find the build design option. The top name

option has to be then added with the build design option

The whole task was completed by a perl script. However some of the cases had to

be treated manually.

34

CHAPTER 6. AUTOMATION USING PERL 35

Figure 6.1: Algorithm For the problem

6.2 Cleaning of skiplist

The testcases which ran in the central regression previously had only the top piped

version. Afterwards when they were converted to the all piped and no piped ver-

sion,some of them started failing. These test-cases are added in the skiplist. Clean-

ing of skiplist is done by cleaning those failures

Chapter 7

Conclusion

Formal verification has several advantages and is highly flexible over simulation

and other verification methods. Simulation requires input vectors while SLEC uses

formal verification and hence it does not require input vectors. This leads SLEC to

have lesser capacity issues and greater performance. HLS has eased the EDA since

a specification design can be converted into RTL or implementation design which

leads to decreased time to market. SLEC can prove two designs to be functionally

equivalent inspite of structural differences.While testing different features of SLEC-

HLS flow it was seen that SLEC even leads to capacity issues where two designs

which need to prove formally equivalent had a simpler functionality.

36

Chapter 8

Future Scope

SLEC(Sequential Logic Equivalence checker) is a LEC which uses formal verifica-

tion.In future it can be used for testing various features of SLEC HLS flow.The

verification methodolody of SLEC is continuously improved by adding various fea-

tures.The testing of this features has to be continuously done in order to make it

robust.

37

Bibliography

[1] http://vlsi.pro/formal-verification-an-overview/

[2] SLEC user manual

[3] SLEC Product Family Datasheet

[4] SLEC CCORE Reference Manual

38

