
Touchless HW/FW test automation,
fault tolerant execution with system
death level detection and recovery

Major Project Report

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology

in

Electronics & Communication Engineering

(Embedded Systems)

By

Sharad Thakur

(15MECE27)

Electronics & Communication Engineering Department

Institute of Technology-Nirma University

Ahmedabad-382 481

Dec 2016

Touchless HW/FW test automation,
fault tolerant execution with system
death level detection and recovery

Major Project Report

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology

in

Electronics & Communication Engineering

(Embedded Systems)

By

Sharad Thakur

(15mece27)

Under the guidance of

External Project Guide: Internal Project Guide:

Mr. Kishore Mottadi Dr. N. P. Gajjar

Software Engineering Manager,CSS-BDV, Program coordinator, Embedded systems,

Intel Technology India Pvt. Ltd., Institute of Technology,

Bangalore. Nirma University, Ahmedabad.

Electronics & Communication Engineering Department

Institute of Technology-Nirma University

Ahmedabad-382 481

Dec-2016

iii

Declaration

This is to certify that

a. The thesis comprises my original work towards the degree of Master of Tech-

nology in Embedded Systems at Nirma University and has not been submitted

elsewhere for a degree.

b. Due acknowledgment has been made in the text to all other material used.

- Sharad Thakur

15MECE27

iv

Disclaimer

”The content of this paper does not represent the technology,opinions,beliefs,

or positions of Intel Technology India Pvt. Ltd.,its employees,vendors,

customers, or associates.”

v

Certificate

This is to certify that the Major Project entitled “Touchless HW/FW test au-

tomation, fault tolerant execution with system death level detection and

recovery” submitted by Sharad Thakur (15mece27), towards the partial ful-

fillment of the requirements for the degree of Master of Technology in Embedded

Systems, Nirma University, Ahmedabad is the record of work carried out by him un-

der our supervision and guidance. In our opinion, the submitted work has reached

a level required for being accepted for examination.The results embodied in this

major project, to the best of our knowledge,haven’t been submitted to any other

university or institution for award of any degree or diploma.

Date: Place: Ahmedabad

Dr. N. P. Gajjar

Internal Guide Program Coordinator

Nirma university Nirma university

Dr. D.K.Kothari Dr. Alka Mahajan

Head of department, EC Director, ITNU

Nirma university Nirma university

vi

Certificate

This is to certify that the Major Project entitled “Touch less HW/FW test

automation, fault tolerant execution with system death level detection

and recovery” submitted by Sharad Thakur(15MECE27), towards the partial

fulfillment of the requirements for the degree of Master of Technology in Embedded

Systems, Nirma University, Ahmedabad is the record of work carried out by him

under our supervision and guidance. In our opinion, the submitted work has reached

a level required for being accepted for examination.

Mr. Kishore Mottadi Ms. Sneha Pingle

Software Engineering Manager,CSS-BDV Software Engineer,CSS-BDV

Intel Technology India Pvt. Ltd. Intel Technology India Pvt. Ltd.

Bangalore Bangalore

vii

Acknowledgment

I would like to express my gratitude and sincere thanks to Dr. D.K.kothari,

Head of Electronics Department, and Dr. N.P.Gajjar, PG Coordinator of M.Tech

Embedded Systems program for allowing me to undertake this thesis work and for

his guidelines during the review process.

I take this opportunity to express my profound gratitude and deep regards to Dr.

N. P. Gajjar, guide of my major project for his exemplary guidance, monitoring

and constant encouragement throughout the course of this thesis. The blessing, help

and guidance given by him time to time shall carry me a long way in the journey of

life on which I am about to embark.

I would take this opportunity to express a deep sense of gratitude to Mr. Mot-

tadi,Kishore,Engineering Manager,Intel Technology India Pvt. Ltd. for his cordial

support, constant supervision as well as for providing valuable information regarding

the project and guidance, which helped me in completing this task through various

stages.I would also thank to Miss Pingle,Sneha, my Project Mentor for always

helping,giving me good suggestions, solving my doubts and guide me to complete

my project in better way.

Lastly, I thank almighty, my parents, brother and friends for their constant

encouragement without which this assignment would not be possible.

- Sharad Thakur

15MECE27

viii

Abstract

Manual testing of a device under test are tedious, time consuming and prominent

to errors. Industry is switching to test automation solutions as they are robust re-

liable and pocket friendly. Many Automation tools with script handling capability

can perform various tasks but many teams dont have required resource and skills to

establish that framework. This thesis focuses on how effective automation tools are

with their correct implementation in end-to-end automation.

Automation tool kit is a hardware tool that is utilized to monitor and control the

Device under test. It is a slave tool that has various control capabilities and is

commanded by host system. Automation tool kit legacy has been replaced with

Automation tool kit 2 as it went obsolete. Automation tool kit 2 has better soft-

ware handling capabilities, how? Is discussed in thesis. Automation tool kit 2 have

API written in modular technique which helps in easy implementation and easy

debugging of bugs. Newer version being backward compatible provides support to

older platforms also. End-To-End robust Automation framework system should be

capable of handling failures too which means Automation framework should have

Fault tolerance system and death level detection system. Automation tool kit pro-

vides such capability to Automation framework for implementing fault tolerance

and death level detection modules. Postcode can be read which determines system

death state were after correct fault tolerance technique can be implemented. Before

implementing the new features thorough testing is required using Automation tool

kit 2. The changes required in automation framework in order to implement au-

tomation tool kit 2, frameworks stability testing, fault tolerance and system death

level detection, features as various section of this thesis.

The implementation of this project results in unblocking of test cases, time-saving,

cost-saving for bios validation. Detailed quantitative numbers are mentioned in re-

sults chapter. It also showcases how paramount utilization of automation tools in

test automation results in saving of time and cost.

Contents

Declaration iii

Disclaimer iv

Certificate v

Certificate vi

Acknowledgment vii

Abstract viii

List of Tables xii

List of Figures xiv

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 2

1.3 Problem statement . 2

1.4 Gantt Chart . 3

1.5 Thesis Organization . 4

2 Literature survey 6

2.1 BIOS:Pre-os Firmware . 6

ix

CONTENTS x

2.1.1 UEFI and BIOS comparison 9

2.2 Validation testing . 10

2.3 Automation . 12

2.3.1 Graphical user interface testing 13

2.3.2 Api based testing . 14

2.3.3 Test Automation Framework 14

2.4 Scripting language . 15

2.5 Python programming language . 16

2.5.1 History of Python . 16

2.5.2 Syntax and semantics . 17

2.5.3 Libraries . 17

2.5.4 Development and implementation 18

3 Pre- operating system firmware 20

3.1 Intel platform . 20

3.1.1 Pre-os Firmware components 22

3.1.2 Testing of various Bios configuration 26

4 Automation framework 27

4.0.1 What is a framework . 27

4.0.2 Why Automation framework is required 27

4.0.3 Hybrid automation framework for validation 30

4.0.4 BIOS Automation Framework 32

5 Automation tool kit 33

5.0.1 Atk hardware and daughter cards 34

5.0.2 Difference between ATK legacy and ATK2 37

6 Fault Tolerance System 39

6.0.1 Introduction . 39

6.0.2 Fault,Error and Failure . 41

CONTENTS xi

6.0.3 Implementation of Fault tolerance System 42

7 System Death Level Detection 48

7.0.1 Introduction . 48

7.0.2 Algorithm . 49

7.0.3 Postcode Tool . 50

8 Results 52

9 Conclusion 54

10 Future Scope 55

Bibliography 56

List of Tables

2.1 List of test tool with gui interface . 14

xii

List of Figures

1.1 Gantt Chart . 3

2.1 Bios configuration [7] . 7

2.2 High level diagram of BIOS [7] . 8

2.3 comparison between uefi and bios [8] 9

2.4 Example of xoriant automation framework [9] 13

3.1 Intel validation motherboard [7] . 23

3.2 Uefi architecture [8] . 24

3.3 Bios and chip-set interface [7] . 25

4.1 Example of automation architecture [6] 29

4.2 Hybrid automation architecture [5] 30

4.3 BIOS Automation Framework . 32

5.1 Atk highlevel overview [11] . 35

5.2 ATK client software gui . 36

5.3 ATK bios programmer . 36

5.4 ATK v.2 API library files . 37

5.5 ATK v.2 API examples . 37

6.1 Fault tolerance in NUMA systems[12] 40

6.2 Fault tolerance algorithm example 1 45

6.3 Fault tolerance algorithm example 2 47

xiii

LIST OF FIGURES xiv

7.1 Death level detection algorithm . 49

7.2 Postcode tool snippet . 50

7.3 Postcode tool white box . 51

Chapter 1

Introduction

1.1 Background

Automation: The act or process of converting the controlling of a machine from

manual to more automatic manner. Hearing automation, one pictures enormous

factories with big robotic arms manufacturing products round the clock. But au-

tomation is just not that big thing as big word it is. Automation can be even as

simple as renaming a bunch of file or copying data from one location to another.

Automating a system is one time tedious job with long term benefits. It reduces man-

ual efforts, increase efficiency and increased throughput or productivity. Improved

quality or increased predictability of quality. Improved robustness (consistency), of

processes or product. Automation has been achieved by various means including

mechanical, hydraulic, pneumatic, electrical, electronic devices and computers, usu-

ally in combination. Complicated systems, such as modern factories, airplanes and

ships typically use all these combined techniques.

Automation is second stage of testing. For making things automated manual test

cases should be performed successfully. Bios has large number of features and func-

tionality to be tested. Automation helps to reduce repetitive test cases to save time.

1

CHAPTER 1. INTRODUCTION 2

1.2 Motivation

Good perks of a project helps you to select it. But motivation is what keeps you

going till the end.

Its good to do productive work. Work that benefits the team. Work with most

learning outcome is much of value. Job of Automation in a validation and debug-

ging team is a challenging one. one must have complete understanding of the system

you work to implement your solutioning. With new platforms coming many major

and minor revisions are required to migrate the system. This Porting process is also

challenging.

Because of constant regressive work in the team there is less time to revisit the

corned issues and fix them. One such main stream issue are migrating to new ver-

sion of tools. it demands time and efficiency so that process can end with minimum

errors. Automation tool kit has to be ported to it’s new version and needed to be

utilized maximum. The trickiness and amount of knowledge that i would gain was

enough for me to motivate to choose this as a project work.

1.3 Problem statement

Automation tool kit is being widely used as a validation tool among many teams.

It has a wide variety of hardware and daughter card support. One can over power

source control, front panel control, clear the cmos, read post code status, reading

back bios code as well as version and etc. It provides facility of handling its fea-

tures using GUI and scripts both. The issue with legacy ATK was that that it was

complex in implementation. Debugging and making changes with legacy was not

easy. It missed modularity in its structure. So whole new implementation in respect

with software was seen in ATK v2.0. It came up as ATK version2.0, also referred

as ATK2. Greater effort was to port complete system to new version of ATK. Au-

CHAPTER 1. INTRODUCTION 3

tomation framework has to be restructured to adapt new version of ATK tool.

Changes where required in every script that slightly even utilizes ATK in it. Pain

increases because it has to be done for all the platform ATK supports. Though ATK

is not a platform specific devices but there does remain minor difference in form of

implementation. So, to migrate from ATK legacy to ATK2 automation framework

has to go through all the major and minor changes necessary. To add up to the

scoop of hurdles another was time as ATK legacy went END OF LIFE. New plat-

forms only supported ATK2. This resulted into blockage in automation test cases

for new platform.

Hence, faster and precise porting is required.

1.4 Gantt Chart

The time-line of project work from the start of the project is shown in below gantt

chart.

Figure 1.1: Gantt Chart

CHAPTER 1. INTRODUCTION 4

1.5 Thesis Organization

The thesis work carried out during the course of time has been presented here in

four chapters.

Chapter 1: Introduction In this chapter importance of this thesis will be ex-

plained.Background study for thesis work to get going and is the motivation behind

the selection of this topic for thesis. Gantt chart shows the time line pf the work

to be done. Before that understanding the work is necessary, problem statement

explains the base of this project, hurdles and glimpse of the path to overcome it.

Chapter 2: Literature survey It describes about bios its draw back and

requirement for uefi bios.How validation testing is performed and its importance too.

Brief study about automation and different framework and why python is important

in automation. what features of python helps in implementation of automated test

scripts.

Chapter 3: Pre-operating system firmware Bios works as interface between

hardware and operating system. this chapter will well explain it. It also describes

different modules stitched with bios and there importance. How bios differs with

platforms can be learned from this chapter.

Chapter 4: Automation framework Validation testing is done in automated

fashion. In this chapter knowledge about different automation framework is shared,

how they are implemented and why they are necessary. Importance of there modu-

larity can be understood in this chapter.

Chapter 5: Automation tool kit This chapter will describe about the tool

being used for automation. ATK is a versatile tool capable of monitoring and

controlling a validation platform. How to work with it using GUI and API’s will be

learned in this chapter.

Chapter 6: Fault Tolerance System This chapter discusses about imple-

mentation of Fault tolerance system in automation framework. It gives knowledge

of various FTS implementation methods and in detail discussion of recovery block

CHAPTER 1. INTRODUCTION 5

mechanism used to implement FTS.

Chapter 7: System death level detection The greater the amount of in-

formation is more precise decision can be taken. How we can gain system death

information and

Chapter 8: Results This chapter includes the implementation results of the

project.

Chapter 9: conclusion This chapter contains the conclusion regarding the

report and what can be implemented using the knowledge bases shared in this

report. This is first part of project work and contains major of theory and study

work. Conclusion defines how these information will be put in use in completion of

project.

Chapter 10: Future scope Further work that can be done regarding this

project is stated in this chapter. The scope of enhancement beyond this thesis are

mentioned as a part of future work.

Chapter 2

Literature survey

2.1 BIOS:Pre-os Firmware

BIOS is acronym for BASIC INPUT OUTPUT SYSTEM. A BIOS functions as an

insulator between the hardware on one hand, and the operating system or application

software on other end. It hands over control of hardware to operating system.

BIOS prepares your computer for correct functioning. It can also be stated as set

of commands which run, check, performs several functionality within computer to

meet basic requirement to be able to boot operating system. Bios is kept in a non-

volatile memory location called ROM (Read only memory). Rom used to keep bios

is EEPROM (Electrically erasable read only memory). It resides on motherboard

of computer. [1]

Roms are not of as large in size as of RAM or storage devices. That means bios and

other firmware which dwell in ROM are of small in size. Bios is of size of few MBs

only.

6

CHAPTER 2. LITERATURE SURVEY 7

Figure 2.1: Bios configuration [7]

There are few major tasked performed by BIOS

• Detecting components and POST: Bios program checks for the major

devices connected with your computer. It checks if they are functioning prop-

erly or not. Bios performs POST (power on self-test). It checks CPU, RAM,

interrupt and DMA controllers and other parts of the chip-set, video display

card, keyboard, hard disk drive, optical disc drive and other basic hardware

are working correctly or not. If any failure is scene and operating system can-

not be booted it flashed error either in for of message or beep or hex code.

Only after POST is successful computer can boot up. An error found in the

POST is usually fatal (that is, it causes current program to stop running) and

will halt the boot process, since the hardware checked is absolutely essential

for the computer’s functions.

• Booting Up: Once POST is done, computer is ready to boot. But before

booting BIOS has to figure out from where to boot. It checks all storage

devices connected for boot program. It has a specific order to check for called

boot order, if there are more than one boot programs bios lists it or selects

the default one. In the drive boot programs are kept at a separate section

called master boot record (MBR). Once these boot loaders are triggered they

CHAPTER 2. LITERATURE SURVEY 8

are ready to take command from BIOS to OS (MBR).

• Gate keeping: Once operating system is loaded BIOS still has work to do.

Being in background it provides low level support for OS in handling major

tasks. Consider if operating system needs to talk to the hard drive, for in-

stance, it doesn’t have to know how or where your hard drive is attached. It

just sends the message to the BIOS, which takes care of passing it along to

the correct drive on the correct socket.

• Bios CMOS setup: Although BIOS comes pre-installed and pre-configured

still you can change bios setting. A button cell can be seen attached on

motherboards. It helps keep the changed bios setting in a small CMOS RAM.

If you clear the ram bios setting would go back to default. Changing boot

order, cpu frequency, clock speed, password are few basic stuffs that can be

altered in bios.

Figure 2.2: High level diagram of BIOS [7]

BIOS is medium to communicate between operating system and platform hardware.

BIOS is the only software in the platform that knows all the details of the mother-

board. POST is the responsible for testing system which will use OS loader to load

CHAPTER 2. LITERATURE SURVEY 9

operating system whereas ACPI and SMBIOS tables are useful for power manage-

ment and to control it. Run time services are services which will generate interrupt

for particular service to OS then OS will give return back notification by executing

that services.

2.1.1 UEFI and BIOS comparison

UEFI replaced bios legacy. Uefi supports bios legacy features.UEFI can support

remote diagnostics and repair of computers, even with no operating system in-

stalled.Unified Extensible Firmware Interface(UEFI) is grounded in Intels initial

Extensible Firmware Interface(EFI) specification, which defines a software interface

between an operating system and platform firmware. The UEFI architecture al-

lows users to execute applications on a command line interface. It has intrinsic

networking capabilities and is designed to work with multi processors systems.

Figure 2.3: comparison between uefi and bios [8]

CHAPTER 2. LITERATURE SURVEY 10

2.2 Validation testing

To validate if results being achieved are being achieved in right manner. The process

that determines if product satisfies specified business requirement or not is called

validation testing. This evaluation can be done either during development period

or at the end of the development process of the product. Products can be software

as well as hardware.[6]

Most products go under validation testing in there development phase only. Because

things are subjected to change easily and with cost efficient way while in development

phase. Validation testing helps in producing accurate and stable product with less

bugs and defects.

Validation is required because often it happens that what is verified on paper may

not be achieved with the product, so validation is required to resolve anomaly. There

is a difference between verification and validation where verification defines checking

for if required outcome are obtained or not while validation defines that outcome

have been achieved in required way.

Under validation of product there are many kinds of testing it under goes.

• Unit testing: In this type of testing smallest testable part of an application

is tested for its functionality as an individual entity.

• Acceptance testing: This technique of testing defines if software has meet

its requirement or not. This reflects the acceptance of the product.

• Regression testing: Which new changes in the software done older program-

ming should still work. The changes should not affect passing functionality.

So with every new fix other functionality should also work.

• White box testing:This is a method of testing of software where internal

functionality is also tested with related outcome.

• Black box testing: In This method only result is monitored with respect to

given input

CHAPTER 2. LITERATURE SURVEY 11

Importance of validation

• Quantitatively determine the variability of a process and its control.

• Investigate deviations if any from established parameters.

• Cost improves quality of product.

• Greater scrutiny of the process performance for development and deployment

of process controls.

Test case: they are written for validation. Formal method of validation

These test cases can be manual or automated. Automated test cases reduces

validation time and human effort. Typical test case parameters that are re-

quired to run a test case.

• Test case ID

• Test case scenario

• Test description

• Test steps

• Prerequisites

• Expected outcome

Automation of test cases is biggest asset and requirement of validation industry.

Test scripts are written to automate test cases. Scripting languages are base for

writing these test scripts.

But not all functionality of product can be tested using automation so manual

validation is required. For this, with constant human intervention test cases are to

be followed

CHAPTER 2. LITERATURE SURVEY 12

2.3 Automation

Software automation testing means testing the application using a special software

which controls the tests that are to be runned on our product to validate it. Test

that are generally automated are regressive testing. Test automation can be done for

continuous testing purpose, repetitive test can be automated and kept for running.

Automation reduces human error .A specific formal routine can be set for test cases

to be runed by.[6]

In Regression testing due to a minor change in application every other functionality

has to be checked again. This is necessary but is tiring job. Only way to accomplish

it faster is with more skilled labor working manually and still living chances of error.

This also increases the cost of product.

Test automation can be costly because of its software, tools being used and au-

tomation infrastructure need to be built for that. More flexibility we require in

our automation framework more expensive its implementation becomes. Flexibility

defines whether remote access feature are required or not, email acknowledgment

is required or not, step by step log is required or not. This cost is although one

time investment and can be calibrated with regular use of it in regression testing for

different platforms.

Some important features of automation framework

a. Data driven capabilities

b. Debugging and logging capabilities

c. Extensible and Customization

d. E-mail Notifications

e. Platform independence

f. Version control friendly

CHAPTER 2. LITERATURE SURVEY 13

g. Support unattended test runs

If we talk about test automation approaches, there can be two kind of approaches

• Graphical user interface testing

• Api based testing

Figure 2.4: Example of xoriant automation framework [9]

2.3.1 Graphical user interface testing

Automation software creates a graphical interface where with mouse click and keystrokes

execution, controlling of test scenario can be done. Results can be seen on the GUI

itself. This gives handy atmosphere for the user to work on. We can record the

events and play back later as many time as required. This is helpful in web related

testing where we can monitor the screen.

List of test tool with gui interface

CHAPTER 2. LITERATURE SURVEY 14

Table 2.1: List of test tool with gui interface

tool name Developer License

Essential test Zeenyx Software, Inc. Proprietary

HP WinRunner HP Proprietary

Linux Desktop Testing Project Collaborative project Gnu lgpl

Oracle Application Testing Suite Oracle Proprietary

Rational Functional Tester IBM Rational Proprietary

Selenium Collaborative project Apache

Testing Anywhere Automation anywhere Proprietary

Visual Studio Coded UI Test Microsoft Proprietary

2.3.2 Api based testing

API testing is also being widely used by software testers due to the difficulty of

creating and maintaining GUI-based automation testing. It involves directly test-

ing APIs as part of integration testing, to determine if they meet expectations for

functionality, reliability, performance, and security.[9] Since APIs lack a GUI, API

testing is performed at the message layer. APi testing is faster comparative to GUI

testing as it does not include overheads. API testing is considered critical when

an API serves as the primary interface to application logic since GUI tests can be

difficult to maintain with the short release cycles and frequent changes commonly

used with agile software development.

2.3.3 Test Automation Framework

Automation framework is a well-defined structure to run the test cases in a specific

manner to achieve results. Automation framework are different than test tools.

There can be different types of framework depending upon application it need to

test.

Various framework/scripting techniques are generally used:

CHAPTER 2. LITERATURE SURVEY 15

a. Linear (procedural code, possibly generated by tools like those that use record

and playback)

b. Structured (uses control structures - typically if-else, switch, for, while condi-

tions/ statements)

c. Data-driven (data is persisted outside of tests in a database, spreadsheet, or

other mechanism)

d. Keyword-driven

e. Hybrid (two or more of the patterns above are used)

2.4 Scripting language

It is a programming language generally for run time environment. It produces scripts

with which we can execute tasks in automated fashion. Environments that can be

automated through scripting include software applications, web pages within a web

browser, the shells of operating systems (OS), embedded systems, as well as numer-

ous games. Scripting language can be domain level specific language for a particular

platform or high level programming language working at higher abstraction level in

a mainframe. Examples of programming language are Python, Perl, tcl, ruby, lua.

Type pf scripting language

• Glue language: Scripting for combining software components. Language

specialized in gluing components together are termed as glue languages.

• Job control language: Languages specifically build to control the job of a

system are listed in this shell language. It is done using controlling command

line interpreters such as shell, ms-dos or apple shell.

• Gui scripting: With the advent of graphical user interfaces, a specialized kind

of scripting language emerged for controlling a computer. These languages

CHAPTER 2. LITERATURE SURVEY 16

could in principle be used to control any GUI application; but, in practice

their use is limited because their use needs support from the application and

from the operating system.

• Application specific language Many computer games get help of scripting

language to define the action of non-player objects in the game. These generate

specific patterns for them to be embedded in the program. These languages

can be program specific but are general at higher level.

• Embedded language: These languages may be technically equivalent to

an application-specific extension language but when an application embeds

a ”common” language, the user gets the advantage of being able to transfer

skills from application to application. A more generic alternative is simply

to provide a library (often a C library) that a general-purpose language can

use to control the application, without modifying the language for the specific

domain.

2.5 Python programming language

widely used high-level, general-purpose, interpreted, dynamic programming lan-

guage

It is a very powerful object oriented programming language. It has high readability,

what you write can be read for a meaning. Python is open source language which is

compatible with many operating system. Lets go with some history of python.[10]

2.5.1 History of Python

Pythons began in December 1989[31] by Guido van Rossum at Centrum Wiskunde

and Informatica (CWI) in the Netherlands as a successor to the ABC language.

Later in 2000 python 2.0 was released with major up-gradation including a cycle-

detecting garbage collector and support for Unicode. With this release the develop-

CHAPTER 2. LITERATURE SURVEY 17

ment process was changed and became more transparent and community-backed.

Python 3.0 also commonly referred as Python 3000 or py3k a major, backwards-

incompatible release, was released on 3 December 2008 after a long period of testing.

Latest released version is python 3.5.

2.5.2 Syntax and semantics

Arrangement of words and there logic is syntax and semantics. Python has more

of English keywords for expression than punctuation. It also uses less of syntactic

expression than c and pascal.[10]

Python uses space for indentation in comparison to brackets and curls in other lan-

guages. Increase in indentation after some statement defines start of a block while

decrease in indentation show the end of the block.

Python has many modules for statement and flow control like if statement, for, while

else-if while few more in it are like try, exception for better handling of statements.

Implementation of these conditional statement are different than what we see in c,

c++ and other language. It has more linguistic expression way of implementation.

Python focus more on string operations. String variables does not have fixed size in

python they can be a single character as well as size of paragraph.

Methods: Python is object oriented based language. It intensively uses benefits of

classes, methods, instances type of stuffs from OOPS. Import function are used

to call the different modules in a file. Once called we can use the methods from

inherited class.

2.5.3 Libraries

Biggest asset of python is its large stock of libraries. It supports wide range of

platforms because of its vast library collection. If not it is open source and one can

create the library and add up to the collection. Installing python or running python

does not needs all the package to be dumped together. We can get on the need

CHAPTER 2. LITERATURE SURVEY 18

basis. There is a python package index, a full repository for support to third party

software. It holds over 92,000 packages offering wide range of functionality such

as.[?]

• Graphical user interfaces, web frameworks, multimedia, databases, networking

and communications

• Test frameworks, automation and web scraping, documentation tools, system

administration

• Scientific computing, text processing, image processing

2.5.4 Development and implementation

Python is a run time language. It can be executed on a command line in a sequential

runned fashion. Pythons command line is a basic one while some developer software

provides additional features on command line too example Ipyhton IDLE. Editor

can also be used for writing python scripts. Write using any editor, save the file

using python extension .py and execute with python interpreter.

The first python implementation was cpython where its library was written in mix-

ture of c and python. CPython was intended from almost its very conception to be

cross-platform.

Pypy is a faster version of cpython. Its just in time compiler gives significant im-

provement over cpython. Stackless python is a fork of cpython which implements

micro threads. Whereas micropython is faster version of python 3 for implementa-

tion in microcontrollers.

User mode debugging is a simplest form of debugging process which is capable of

single target user mode process. In user mode, you can simply examine the program

state and you can also modify the states. So it will be notified when special events

happening in the target process. Debugger performs debugging process with target

debugger till the process is running on target. This is also known as live debugging.

CHAPTER 2. LITERATURE SURVEY 19

Python has wide usage. So we can see its wider implementation on different plat-

forms with vivid implementations and compilers being developed.

There is another concept known as postmortem debugging in which debuggers ex-

amine a dump files containing a snapshot of a given process in user mode.

There are several compilers to high-level object languages, with either unrestricted

Python, a restricted subset of Python, or a language similar to Python as the source

language

Three built in user mode debuggers come with the windows debugging tools.

Those are cdb.exe, ntsd.exe and windbg.exe. These all have same functionality

but it works in different ways. These all can do console application debugging and

graphical windows program too. If the sources are available than these all can

perform source level debugging too. Straight machine level debugging is also done

by them.

a. Jython, it can be executed with every Java virtual machine implementation.

This also enables the use of Java class library functions from the Python

program.

b. IronPython, runs Python programs on the .NET Common Language Runtime.

c. The RPython language can be compiled to C, Java bytecode, or Common

Intermediate Language, and is used to build the PyPy interpreter of Python.

d. Pyjamas compiles Python to JavaScript.

e. Shed Skin compiles Python to C++.

f. Cython and Pyrex compile to C.

Chapter 3

Pre- operating system firmware

Pre os firmware sets up link between operating system and hardware. It works as

interface between both. Bios stitched with other critical modules are called pre-

os firmware. Some of these modules are mandatory while few are optional and are

required only on specific requirement. Bios is most important part of pre os firmware.

It is largest stack holder in pre-os. There are large variants of bios developed for a

specific platform depending on the major features required. A single platform has

large variants of SKUS which further required different bios builds. To understand

better we will have a look at different Intel platforms architecture.

3.1 Intel platform

Intel platforms have two main constituents CPU: Central processing unit and PCH:

Peripheral control hub. Intel architecture beginning from 8-bit processor is now

being implemented on 64 bit processors. Intel releases different processors under

similar codename. Kabylake micro-architecture can be found with core I, atom

and even xeon processors. So, the basic difference is created by the ingredient

stuffing inside the processor. Intel platform has two important things CPU and

PCH. Combination of these two decides the kind of SOC and functionality they can

perform.

20

CHAPTER 3. PRE- OPERATING SYSTEM FIRMWARE 21

Different kinds of packages of soc intel platforms have

• Multichip package: In this kind of package CPU and PCH both are under one

die. They make one SOC only. These kinds of packages can be seen in low

powered devices like ultra books.

• Two chip package: in this package cpu and PCH reside in different sockets.

There are two different silicon sockets on motherboard. Single SOC for both

pch and cpu. These kind of package can be seen in high end laptops and

desktops.

• Multi socket package: In multi socket. Soc of CPU will have more than one

cpu inserted in it. There will be two silicon sockets one for multi cpu soc and

other for pch soc. These type of packages are used for server machines.

Different segments are there depending upon the die package. Validation is divided

into these segments as they are major division.

a. Ultra thin segment

b. Ultra light segment

c. Halo segment

d. Desktop segment

Every segment goes under validation. There are specially designed motherboards

for all the segments called validation platforms. Where all the functionality of pre-os

firmware can be tested. Only after these things are validated they are passed for

OEM use.

Validation is a continuous process. Where with every testing and validation bugs

errors fixes are done and new version is released with all fixes. Again the version

has to go under similar scrutiny process until all the major issues are resolved and

board becomes stable.

CHAPTER 3. PRE- OPERATING SYSTEM FIRMWARE 22

Bios basically checks for stability between motherboard and silicon. Because operat-

ing system commands to silicon and silicon is the one which has to use the resources

available on the motherboard efficiently and effectively. This utilization does not

only depend on single thing. Software and hardware are equally responsible for in

sync and correct functioning of a feature.

Hardware dependency:

• Cpu and pch

• Motherboard

• Add on cards

• External segments

Software dependency:

• Bios

• Device drivers

• Operating system and drivers

• Utility tools and drivers

3.1.1 Pre-os Firmware components

Correct combination of both hardware and software dependency ensures the func-

tioning of a feature. Establishing this combination is called best known configuration

(BKC). In this pre-os firmware plays a crucial role because it has major dependency.

Pre-os firmware came into existence after UEFI. Due to the limitations of bios uefi

was developed. Many wrappers where build across bios and bios was made modu-

lar. This helped in better implementation and adaptability as per variants. Uefi is

nothing but specifications that pre os firmware follows.

CHAPTER 3. PRE- OPERATING SYSTEM FIRMWARE 23

Figure 3.1: Intel validation motherboard [7]

Some Ingredients stitched with pre-os firmware:

• Bios firmware: Bios firmware handles the part of initialization of devices.

POST operation. Boot loader operation, customization of bios configuration.

In uefi environment it provides graphical interface for bios configuration. Bios

flash chip also known as spi flash chip is directly linked with PCH. Serial

peripheral Interface bus (SPI) is use to flash and communicate with BIOS

program that resides under the flash chip. For every pot operation bios pro-

vides a post code. Post code is in hexadecimal format. This information of

post code is given to bios from PCH.

• Processor microcode: Microcode resides inside cpu in a high speed memory

chip. It initializes cpu. It is closely attached to machine level. But these

microcode are hard coded. They cannot be altered once programmed. To

remove this critical drawback microcode were attached with pre os firmware

CHAPTER 3. PRE- OPERATING SYSTEM FIRMWARE 24

Figure 3.2: Uefi architecture [8]

as they can interact with cpu. If any update or patch is required in cpu

microcode it can be fetched from pre os.

• Pch patch: Similar to microcode these patches are attached for pch. Not

all functionality can be coded in a silicon. This helps to store the additional

data regarding pch. They are mainly power management specific information.

• Option rom: Peripheral devices like ram, storage device, video cards can

have there own rom chip. In that resides option rom or extension rom. They

can be replaced with the module in bios. Option rom provides great flexibility

in feature enabling. For example if a device is connected to 4k HD display but

processor does not support than it will be useless to load drivers for 4k display

instead processor can work with the installed firmware.

• Security patches Security is not only required form viruses but from mal-

functioning also. Security patch helps in authentication of all the tasks and

checks performed by bios. This Ensured any fraud device is not detected and

recognizes only trusted devices and path. This keeps cpu safe from breaches

CHAPTER 3. PRE- OPERATING SYSTEM FIRMWARE 25

Figure 3.3: Bios and chip-set interface [7]

and missionaries. There are large number of security straps in cpu which can

be enabled and disable via bios. These straps decide the level of security in

system. Curtain straps can be customized are called soft straps while some

are hard straps that cannot be altered.

• Graphic drivers: The GOP driver is a replacement for legacy video BIOS

and enables the use of UEFI pre-boot firmware without CSM. The GOP driver

can be 32-bit, 64-bit, or IA-64 with no binary compatibility. UEFI pre-boot

firmware architecture (32-/64-bit) must match the GOP driver architecture

(32-/64-bit). The Intel Embedded Graphics Drivers’ GOP driver can either be

fast boot (speed optimized and platform specific) or generic (platform agnostic

for selective platforms). [3]

• Thunderbolt / type c support: For usb type c and thunderbolt support

features are enabled in UEFI itself. Thunderbolt has to support many fea-

CHAPTER 3. PRE- OPERATING SYSTEM FIRMWARE 26

tures in pre-os environment so its support was required in pre os firmware.

Thunderbolt features are optional in bios. We can enable and disable it as per

need.

• ME drivers: These drivers provide the feature of hardware-based remote

management, security, power management, and remote configuration features

that enable independent remote access to Active management Technology-

enabled PCs.

3.1.2 Testing of various Bios configuration

The presence of bios menus and BIOS settings are dependent on your intel platform,

board model, hardware components installed, and the BIOS version. BIOS menu

titles may differ as per them. Functioning of all the listing bios options are necessary.

For this testing of each and every function are required. Verification and validation

of these bios options using Automation framework will be mentioned in next chapter.

Chapter 4

Automation framework

4.0.1 What is a framework

A Test Automation Framework is a structure that is laid to provide an execution

environment for the automation test scripts. The framework provides the user with

various benefits that helps them to develop, execute and report the automation test

scripts efficiently. It is specifically a structure that is created for automation running

using scripts. [5]

There can be various advantages of framework like scalability modularity re usability,

lesser cost and maintenance. SO to grab these benefits user are advised to work with

one or other test framework. Moreover the need of single automation framework

arises when we have bunch of developers working on different modules of a single

project and you want them to work with single approach. If every developer starts

implementing there own approach than it will be difficult to communicate and share

results and knowledge.

4.0.2 Why Automation framework is required

Requirement of automation framework has been made pretty clear in above section.

We will see the greater advantages of automation framework here and how to choose

suitable framework. As defined by framework, automation framework helps keep the

27

CHAPTER 4. AUTOMATION FRAMEWORK 28

work flow structured. These structure depends on the type of framework users is

using.

We will list down few advantages of having a automation framework.

• Re-usability of code: Framework maintains the code in a centralized library.

if any new code is to be written with existing feature code can be used form

library.

• Maximum coverage: Centralized track record helps to keep an eye on things.

This records helps to maintain maximum coverage.

• Recovery scenario: Any crash on the local platform or host can ruin your test

case but it can be regenerated from framework. because automation framework

would work as a data backup no data loss will be there.

• Low cost maintenance: A centralized system helps in easy monitoring access-

ing and controlling of validation process. This saves time of developers in

communicating within. Individual approach will increase the collaboration

cost even.

• Minimal manual intervention: Automation framework provides end to end au-

tomation solution also. this helps in reducing manual intervention and errors.

• Easy Reporting: In a framework every test case runed will dump its logs and

result at a same place or with same extraction process. this helps in easy

reporting of bugs and issues.

The image below we will see a example of automation framework. After setting

up the framework engineer has to just give valid inputs in the system and rest

are handled by the automation system. required inputs can be like.

a. Host and device id, if there are more than one host and sut connected

with framework.

CHAPTER 4. AUTOMATION FRAMEWORK 29

b. test case parameters like what feature are to be tested, run duration,

repeat cycles, any specific parameters.

c. Specific location for results to be saved.

d. Specific setting or function to be performed before or after the execution.

Figure 4.1: Example of automation architecture [6]

There are different kind of automation framework that can be setup. As we have

basic knowledge about automation framework we will see different kinds of setups

available in market. They can vary dependent on the advantage they provide.

a. Module Based Testing Framework

b. Library Architecture Testing Framework

c. Data Driven Testing Framework

d. Keyword Driven Testing Framework

CHAPTER 4. AUTOMATION FRAMEWORK 30

e. Hybrid Testing Framework

f. Behavior Driven Development Framework

The automation framework which will be described in this complete thesis work is

hybrid type of automation framework. Developed from library Architecture testing

framework and data driven framework.

Figure 4.2: Hybrid automation architecture [5]

4.0.3 Hybrid automation framework for validation

Derived from library based architecture the first task to setup this network is to

identify different functionality to make a modular model. In validation testing as

we talked about there are large number of testing to be done. number of bios

functionality are to be tested. But not all are unique many have repeated steps. For

example

In 6th generation platform there are number of power options i.e Shutdown, sleep,

connected standby, hibernate. Considering testing of each features are to be done

form system under test’s power down state, major steps would be common in these

test cases.

Possible steps in test case of power options

• boot to operating system

CHAPTER 4. AUTOMATION FRAMEWORK 31

• check if system is up?

• Put system into sleep/ shutdown/hibernate

• reboot the system back to os

• Check if system is in os or not?

• Results

Now from above test case steps maximum can be used for all other power option

test cases. So instead of writing redundant script for all power option we can split

it into functions and reuse it to great extend. A function can have its own script

file. This can be done for all the functions regarding a set of ingredients. we can

identify these functions with respect to bios and can prepare the scripts for them.

This will create a library of it. This library can be centralized in the framework for

all around access.

Automation can not be done using one implementation way and a single tool. There

can be more than one tool or way of performing validation dependent on the sce-

nario. this makes some test cases data dependent. With adapting data driven test

framework we can make our framework more flexible. With correct run time data

input correct library file can be chosen and a package can be generated for auto-

mated validation. The input data can also create hazards in testing. Input should

be in a way that frameworks understand.

So to avoid parameter miss match error the input pattern are defined. Proper syn-

tax have been developed for passing the parameter to the framework. It is called

parameter syntax and it has to be followed by every developer who has to use this

framework.This disciplines the process and increases the readability and eases the

debugging process.

The major Advantage of this framework is that if any changes in functionality oc-

curs it has to be changed at only one place for making it functioning for every test

CHAPTER 4. AUTOMATION FRAMEWORK 32

scenarios.

4.0.4 BIOS Automation Framework

We discussed various automation framework and also categorized them. Intel’s BIOS

automation framework is build upon hybrid automation framework model. Modular

representation of Automation framework is shown in the figure below.

Figure 4.3: BIOS Automation Framework

Framework Explained: Test case contains the details of what has to be performed

in a test case. There are input data and keywords associated with the test case which

are passed down to test package generator block.

Test generator block gets specific test scripts dependent on the input values and

keywords. Test package is generated and is passed to HOST and SUT.

Host runs the test package under a monitored environment. Logs and results are

generated for every test case weather it passes or fails.

Chapter 5

Automation tool kit

Remote access capability is widely used in validation process so is it in intel. But

There is no common solution for remote platform access. Various teams have de-

veloped personalized solutions to address this gap but it is typically platform and

environment dependent. This complicates the debug process across the team. A

common remote monitoring method was required to be developed.

ATK (Automation Tool Kit) is designed to solve this problem by standardizing

these features and provides common software interface. It is able to cover a wide

range of hardware requirements with minimal cost and high flexibility. The software

component has been designed to be generic that can be integrated easily into other

environments such as automation software and custom GUIs. A standard GUI is

provided for debugging and remote execution monitoring. This tool is in use by

several validation sites for multiple projects.

The operations that ATK can perform are listed below.

• Bios flashing

• Postcode reading

• Front panel control

• Clearing cmos

33

CHAPTER 5. AUTOMATION TOOL KIT 34

• AC connect/disconnect control

• Battery connect/disconnect control

• Sx , DSx state reading

• Relay control for any generic switching e.g. USB device plug unplug

5.0.1 Atk hardware and daughter cards

For accessing certain features of atk we require additional hardware. Atk device

comes with large number of connecting pins with which we can connect additional

hardwares. There are different kinds of hardware that are supported via atk software.

• For reading post code we have to connect Lpc glider card.

• For controlling power adapter power splitter is used.

• DC Relay board is used to control various buttons on platform.

• Usb splitter is used to control usb devices.

• Paddle board for flashing bios.

CHAPTER 5. AUTOMATION TOOL KIT 35

Figure 5.1: Atk highlevel overview [11]

Figure above is an example of ATK configuration where the user is connected

to computer network and performs above capabilities remotely. In this example,

multiple platforms are connected to the host computer through ATK hardware.

The user is equip with software (in this context, we will refer this as client software)

as interface to monitor, control and program the platform.

With one ATK server more than one platform can be controlled using client software.

There are two GUIs that can be used depended on the operation to be performed.

a. Bios programmer: for performing bios operations like flashing bios, clearing

cmos, reading bios version.

b. Client software: For controlling front panel, reading post code, voltage and

led status.

CHAPTER 5. AUTOMATION TOOL KIT 36

Figure 5.2: ATK client software gui

Using ATK client software facilities like post code reading gpio pin read write,

AC control, front panel control can be accessed.

Figure 5.3: ATK bios programmer

Bios programmer is mainly used for bios options like reading and flashing of bios

changing mac address inside bios.We can customize batch options also.

CHAPTER 5. AUTOMATION TOOL KIT 37

5.0.2 Difference between ATK legacy and ATK2

There is no difference between atk legacy and atk2 in terms of hardware or features.

The gui and software implementation of atk 2 has been redefined. Atk can be used

form gui and api both. In atk we can build our api using Python and c-sharp. Gui

of atk2 is much simpler to use and better implementation technique. But major

difference is in using apis.

Figure 5.4: ATK v.2 API library files

Figure 5.5: ATK v.2 API examples

Api are implemented in modular form. Every feature has its own API file and DLL

file. For every major feature there is a separate library. So, to make a api we have

CHAPTER 5. AUTOMATION TOOL KIT 38

to call related library only. If any change are required in any feature related library

can be changed, this eases the work of migration in future.

Features on different platforms can be same or can also differ. For example size of

Bios image various as per platform. so flashing of Bios should be handled differently

for each platform. Here modularity plays its role. We need to make changes only in

Flashing APi for implement differently.

Atk software is built on c-# platform. For implementation of python api it uses .net

wrapper which interlinks both c-sharp and python.

Advantages of ATK2 over ATK legacy

• It has modularity

• Debugging is easy in ATK2

• Api can be created easily

• Api can be created in c-# also

• Better informative and interactive GUI.

So, those were the difference between ATK legacy and ATK V.2. Further we will

see where to apply these changes and what has to be modified in BIOS automation

framework for implementing of the ATK v.2.

In the last chapter we saw Bios automation framework block diagram. Library

contains all the scripts as per the keywords, functional keywords, config files. Those

are the scripts that are specifically needed to be modified as per new api’s. In all

the library that has bits and pieces of older ATK scripts has be modified with the

new api’s of ATK V.2.

Chapter 6

Fault Tolerance System

6.0.1 Introduction

Time is money. Execution speed can help reduce time. And processing speed can

only be increased in two ways parallel processing or distributed system. Parallel

processing being an expensive option industry utilizes the true benefits of distributed

system. Distributed system can be understood a resource sharing. While the number

of dependent hardware will increase possibility of failure will also increase. This

chapter will unveil the importance of fault tolerance system in distributed system.

Starting with some basic difference in fault, failure and error. We will see fault

classification and phases of fault tolerance system.

Distributed system is a model in which computing components are connected over

network or a bus. In this kind of model each processor has its own memory device.

If other node has to access data they have to talk through the processor. Distributed

system provides stability in system failure. On failure of one node other node can

carry on the task. In distributed system one host can maintain several clients.

39

CHAPTER 6. FAULT TOLERANCE SYSTEM 40

Figure 6.1: Fault tolerance in NUMA systems[12]

Numa is an example of distributed system architecture. Here each node has its

own memory and controller and works as a separate entity. Major issues faced in

establishing distributed system are

a. Fault tolerance

b. Communication primitive

c. Flexibility

d. Transparency

e. Stability

f. Scalability

The topic of interest for us would be fault tolerance.

CHAPTER 6. FAULT TOLERANCE SYSTEM 41

6.0.2 Fault,Error and Failure

Fault tolerance is a property of a system which helps a system keep going after any

event of failure too. Degradation in operating quality may be observed but system

halt will not be seen. Failures can be of software or hardware type. Fault tolerance

also ensures graceful degradation of the system in spite of sudden death.

Implicit is the systems specific behavior that is constituted as correct behavior,

which becomes a reference for checking the faults in the system. A failure occurs

when an actual running system deviates from this specified behavior and that cause

of a failure is called an error. An error can be defined as an invalid system state,the

state that is not allowed by the system behavior specification. whereas a fault is the

root cause of a failure. That means that an error is merely the symptom of a fault.

So a fault may not necessarily result in an error, but the same fault may result in

multiple errors. Similarly, a single error may end up producing multiple failures in

the system.[13]

For example, consider a software system in which an incorrectly written instruction

in a program decrements a value of a variable instead of incrementing it. if this

statement is executed, it will result in the incorrect value being written. If other

functions calls this value, the whole system will deviate from its desired behavior.

Here the incorrect statement is the fault, the invalid value is the error, and the

failure is the behavior that results from the error. Note that if the variable is never

read no failure will occur thought fault will be there. Or, if the invalid statement

is never executed, the fault will not lead to an error. Thus, the mere presence of

errors or faults does not necessarily imply system failure.[13]

The heart of all fault tolerance techniques is some form of masking redundancy to the

components that have probability to fail. This means we replicate the components

and algorithm which are prone to defects in such a way that if a component fails, the

redundant non-failed replicas will continue to provide service with no appreciable

disruption. There are many variations on this basic theme.

CHAPTER 6. FAULT TOLERANCE SYSTEM 42

6.0.3 Implementation of Fault tolerance System

Fault tolerance can be differentiated as

• Software fault tolerance

• Hardware fault tolerance

Software fault-tolerance:

software fault tolerance is an ability of a software to handle the fault occurrence in

the software or the hardware on which the software is performing. We will see the

degradation in the ability and performance of the system. Primarily fault tolerance

is implemented using redundancy. This will remain effective only when design de-

fects are there due to redundancy. N-1 version, rollback and checkpoint are some

example of software fault tolerance.

Hardware fault-tolerance:

Hardware fault tolerance is the ability of a hardware to keep on running even when

a failure is scene. This is achieved by implementing additional redundant hardware

which can take care of processing if one fails. Load sharing of work among n pro-

cessor is also an option where a backup hardware is not required instead jobs are

divided between them and on failure of one processor execution can still run on

others

Hardware Fault tolerance are costly as they require additional hardware for imple-

mentation of this technique. So software fault tolerance mechanism are majorly

used. The fault tolerance technique used in this Automation framework is software

fault tolerance with checkpoint. We will talk in detail about this. But before lets

see various software fault tolerance techniques

Recovery block:

Recovery block method is a simple method for fault tolerance. We can have more

than one ways to achieve a required result. The execution is done using the primary

method with less overheads to keep up the execution speed. At a point of failure

CHAPTER 6. FAULT TOLERANCE SYSTEM 43

system is rollback and secondary alternate is applied. If any alternate is not effec-

tive enough to overcome the failure exception handler is called indicating required

operation cannot be performed. Rolling back is also a complex process, hardware

assistance may also be required at certain times. Recovery block uses checkpoint

and recovery mechanism.

N-version software:

N-version software parallelizes n-version redundant hardware technique to imple-

ment software tolerance. There are N- different ways of implementation of a module.

Each variant completes the same task but in a different manner. Each variant sub-

mits there result were decider decides for the correct result and submits it a result

of that module. The n-version proves successful only when we have diversity in the

task performance. Increase in the version increases the true outcome of the system.

N-version may also have hardware dependency to get the task done.

Recovery block software fault tolerance is practical solution for less complex frame-

work to tackle fault tolerance. In a test execution process various checkpoints are

needed to be defined for the rollback to occur. We will further see different types

of recovery blocks being used in Bios Automation framework. As we know these

recovery blocks are run in sequential fashion each recovery block comes with a pri-

ority level that user can set. Priority once given becomes static throughout the test

package generation. It can only be changed for new set of packages to be generated

and tested.

The recovery blocks used in Automation framework.

• Cold reboot: System power is cut and it starts from initial boot sequence. In

this system starts from power off state. Initialization of devices POST check

is done. Memory reallocation is also done as part.

• Warm boot: Warm boot also known as restart is performed. Where system is

just restarted and power remains connected to the machine. Running software

are closed in this sequence. Warm reboots are required mostly when new

CHAPTER 6. FAULT TOLERANCE SYSTEM 44

software is installed or any software stops responding

• Flash bios: On many occasions Bios (Basic Input output) firmware crashes and

are needed to be flashed again. They have their dedicated flash chip in which

BIOS resided. We can flash bios from the test system itself also but major

test system have external port for bios to be flashed using external device

• Reset bios settings: Resetting the bios sets the default bios options. It is

equivalent to doing a factory resetting of BIOS options. This is done by

removing CMOS battery which saves settings in an external chip.

• Install/uninstall software: sometimes a software doesnt functions correctly,

this requires uninstalling of a software are then installing it in a safe environ-

ment.

These are 5 recovery block which are implemented at time of fault occurrence.

Priority can be set by user and as previously mentioned once priority set it becomes

static. Priority goes from f1-f5. We will see a scenario in which on failure various

recovery blocks are applied. In this report we go with one priority sequence

• T1- Warm Reset

• T2- Cold reset

• T3- Reset Bios Options

• T4- Flash Bios

• T5- Install/ Uninstall software

We see an example test case. Test case contains several steps. It fails at flashing

BIOS. Failure scenario is the system ain’t booting after that. which leads to the

failure of further test steps. FTS is applied from the inception of the failure till the

system gets alive again. If FTS is not able to fix the failure it throws exception.

CHAPTER 6. FAULT TOLERANCE SYSTEM 45

Figure 6.2: Fault tolerance algorithm example 1

In the above test case example, system failed after flashing BIOS. but applying T2

recovery block system booted up and further execution proceeded.

Touchless toolkit is capable of monitoring and control of a device under test. In

implementing fault tolerance system in Bios automation framework touchless toolkit

plays a very important role. From monitoring the Postcode to implementing the

recovery blocks ATK is used. Let us see the role of ATK 2 in implementing of

recovery blocks.

• Warm reboot: ATK 2 front panel header is used in restarting the system.

CHAPTER 6. FAULT TOLERANCE SYSTEM 46

• Cold reboot- Ac connect/disconnect cable is used to perform cold reboot on

system.

• Reset Bios options: Clear CMOS jumper pin is used to set default bios options.

• Flash bios: Paddle board connector for flashing bios.

In one more example we will see the application of FTS system where the failure is

same, system is not booting after flashing the bios.

CHAPTER 6. FAULT TOLERANCE SYSTEM 47

Figure 6.3: Fault tolerance algorithm example 2

We can see that after applying fourth recovery block system failure is handled.

This surely takes time and processing. many times processing is not a questionable

parameter but time certainly is. If one recovery block takes roughly 5 minute to

execute, as the effort increases time utilized also increase. In second scenario FTS

doesn’t proves much effective. It requires enhancement in implementation technique

to reduce time. this will be covered in next chapter system death level detection.

Chapter 7

System Death Level Detection

7.0.1 Introduction

Fault tolerance helps system function after failure also. This reduces the execution

time due to any failure. Implementation of fault tolerance system can have advan-

tages and disadvantages as well. Though it helps system fix the faults on its own

but in a diverse system which can have varieties of failure can increase number of

recovery blocks as well. This adds heavy overheads in the fault recovery scenario.

It may successfully diagnose the fault and overcome it but the time taken would be

far greater than required. In the end it may even not be successful in analyzing the

correct fault and all the time utilized result in zero output.

This situation forces diverse systems to adopt smart fault tolerance system which

can reduce the implementation of time on recovery block. Intelligence of FTS system

can be increased by detecting the system death reason and then applying recovery

block rather than implementing all the recovery blocks sequentially in a predefined

order. As, not always we will face the same scenario and same sequence will prove

beneficial.

48

CHAPTER 7. SYSTEM DEATH LEVEL DETECTION 49

7.0.2 Algorithm

The recovery blocks will be the same as we discussed in the last chapter just there

sequence will change. How detection of the system death level takes place using

POSTCODE will be discussed further in this chapter. After reading postcode,

sequence of recovery block is decided which helps overcome failure at minimum

iteration. It is as per the user how intelligently they club the postcode to define a

sequence of recovery block to make work done with minimum efforts.

Postcode reader tool reads the postcode at the death time of the system. This

works as an input for the sequence decider which gives sequence of recovery block

as output.

Figure 7.1: Death level detection algorithm

CHAPTER 7. SYSTEM DEATH LEVEL DETECTION 50

Recovery blocks are applied as per the run time defined sequence. The probability of

removal of fault using system death level detection is much higher than implementing

only FTS system.

7.0.3 Postcode Tool

POST (power-on-self test) is a diagnostic test that BIOS runs to check its hardware

functionality. In proper operation and failure of the hardware bios returns a 4 digit

Hex code i.e. POSTCODE. If self-diagnosis completes without any error system

boots to operating system else specific error code is thrown. This gives in-depth

information about system and system failure. So reading Post code of a system

helps in diagnosis and implementation of the fault tolerance system.

Postcode tool helps read the postcode and decide the recovery block sequence. Post-

code tool provides the sequence of recovery block as an output. Postcode tool has

been written in C.Below is a code snippet of POSTCODE tool.

Figure 7.2: Postcode tool snippet

CHAPTER 7. SYSTEM DEATH LEVEL DETECTION 51

Below figure shows the white box representation of Postcode tool. The sequence

of recovery block depends upon the past provided data to the tool using which it

decides the sequence. Tool has a database which stores the postcodes information

and what sequence has to be applied with respect to following achieved postcode.

Figure 7.3: Postcode tool white box

Currently system death level is implemented with basic understanding only. Further

in-depth analysis can be done to increase the accuracy of recovery block sequence

to decrease the fault run time. This requires more test case run and there failure

analysis. This will eventually help in increasing the accuracy of the FTS system.

Chapter 8

Results

An every undergoing project is expected to give an outcome either it be success or

failure. We can present result in qualitative as well as quantitative measure. This

section will discuss the quantitative results that are and will be achieved by this

project.

Number of test cases unblocked.

a. Bios flashing : 67 test cases

b. Relay control : 134 test cases

c. Postcode Reading : 48 test cases

d. Mac update : Enabled

Further test cases related to MAC update can be written.

Implementation of fault tolerance system will result in decrease in fault analysis

and recovery time. With implementation of system death level detection in fault

tolerance idle improvement in time is 80% but in practical we see improvement of

25% to 35% only.

Improvement in Automation framework with fault tolerance system.

52

CHAPTER 8. RESULTS 53

a. It increases the probability of any system being available at any given time.

b. Extendible to handle ’N’ number of crash scenarios.

c. Analysis done easy, reports and logs help debugging the failure.

Chapter 9

Conclusion

In this thesis work we had detailed study about the tool to be used and automation

framework being used. For migrating from one version to another in depth analysis

is required, of areas being effected and parts to be altered. This clears the cloud for

porting process.

Different automation framework, importance of choosing correct automation frame-

work as per requirement and how important can automation tools be, can be well

understood from this thesis.Automation Tool kit v.2 has been implemented after do-

ing the required script modification and unit testing in the automation framework.

Enhancing the fault tolerance system using Automation tool kit was a challenge.

Testing of system death level detection in bios automation framework with basic

functionality has to be well structured and performed to to performance analysis of

enhancement system.

54

Chapter 10

Future Scope

Automation tool kit is a controlling and monitoring purpose tool with wide utility.

But as in result we saw not all features are being used currently after migrating

from ATK legacy to ATK v.2.

The future work for this project can be implementing of the blocked features once

they are compatible with the platform. Enhancement of the system death level

detection can also be done to increase its database for accurate detection of the

fault in the system.

55

Bibliography

[1] ”What is bios”[Online], website, December,2016

http : //www.computerhope.com/jargon/b/bios.htm

[2] ”INTEL architecture white paper ”,December 2016,

IA− introduction− basics− paper.pdf

[3] ”What is gop”[online], Website, December 2016

http : //www.intel.com/content/www/us/en/intelligent − systems/intel −

embedded− graphics− drivers/faq − bios− firmware.html

[4] ”Different Bios components”

http : //www.intel.com/content/dam/support/us/en/documents/motherboards/desktop/sb/biosglossarybymenuv13.pdf

[5] ”Automation Definition”

http : //www.oracle.com/technetwork/articles/entarch/shrivastava −

automated− frameworks− 1692936.html

[6] ”Types of automation Framework”

http : //www.softwaretestinghelp.com/test − automation − frameworks −

selenium− tutorial − 20/

[7] ”Intel advanced bios options” [Image][online], December 2016

https : //docs.oracle.com/cd/E19269 − 01/820 − 5830 − 13/appbios.html

[8] ”Comparison between uefi and legacy”[online][Image],December 2016 http :

//www.keywordsking.com/dWVmaSB2cyBiaW9z/

56

BIBLIOGRAPHY 57

[9] ”Xiorant automation Framework”[online][Image], November 2016

http : //www.xoriant.com/brochures/xoriant − test − automation −

framework − xtaf

[10] ”Python”[Online], December 2016

https : //en.wikipedia.org/wiki/Python(programminglanguage)

[11] ”Intel documents”

[12] ”Distributed system architecture”[Online][Image],

http : //www.iue.tuwien.ac.at/phd/weinbub/dissertationsu16.html

[13] ”@article aksu 2005 fault, title=Fault Tolerance in Distributed Systems,

author=Aksu, Naima, journal=Term Project, year=2005”

