
Hardware Based Implementation of
CCSDS Formatted Data Packets

Major Project Report

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology

in

Electronics & Communication Engineering

(Embedded Systems)

By

Princy Teli

(15MECE30)

Electronics & Communication Engineering Department

Institute of Technology

Nirma University

Ahmedabad-382481

May 2017

Hardware Based Implementation of
CCSDS Formatted Data Packets

Major Project Report

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology

in

Electronics & Communication Engineering

(Embedded Systems)

By

Princy Teli

(15MECE30)

Under the guidance of

External Project Guide: Internal Project Guide:

Mrs.Bela Vaidya Dr. N.P.Gajjar

Scientist Engineer(SF), Professor, EC Department,

SAC-ISRO, Institute of Technology,

Ahmedabad. Nirma University, Ahmedabad.

Electronics & Communication Engineering Department

Institute of Technology

Nirma University

Ahmedabad-382 481

May 2017

Declaration

This is to certify that

a. The thesis comprises my original work towards the degree of Master of Tech-

nology in Embedded Systems at Nirma University and has not been submitted

elsewhere for a degree.

b. Due acknowledgment has been made in the text to all other material used.

- Princy Teli

15MECE30

iii

Disclaimer

”The content of this thesis does not represent the technology, opinions,

beliefs, or positions of SAC-ISRO,its employees, vendors, customers, or

associates.”

iv

Certificate

This is to certify that the Major Project entitled “Hardware based Imple-

mentation of CCSDS Formatted Data Packets” submitted by Princy Teli

(15MECE30), towards the partial fulfillment of the requirements for the degree

of Master of Technology in Embedded Systems, Nirma University, Ahmedabad is

the record of work carried out by her under our supervision and guidance. In our

opinion, the submitted work has reached a level required for being accepted for

examination.The results embodied in this major project, to the best of our knowl-

edge,haven’t been submitted to any other university or institution for award of any

degree or diploma.

Date: Place: Ahmedabad

Dr. N.P.Gajjar

Internal Guide Program Coordinator

Dr. D.K.Kothari Dr. Alka Mahajan

Head, EC Director, IT

v

Certificate

This is to certify that the Major Project entitled “Hardware Based Imple-

mentation of CCSDS Formatted Data Packets” submitted by Princy Teli

(15MECE30), towards the partial fulfillment of the requirements for the degree

of Master of Technology in Embedded Systems, Nirma University, Ahmedabad is

the record of work carried out by her under our supervision and guidance. In our

opinion, the submitted work has reached a level required for being accepted for ex-

amination.

Mrs. Bela Vaidya

Scientist Engineering(SF),

SAC-ISRO,

Ahmedabad

vi

Acknowledgements

I would like to express my gratitude and sincere thanks to Dr. Alka Maha-

jan, Director, Institute of Technology Dr. Dilip Kothari Professor and Head of

Electronics and Communication Engineering Department, and PG Coordinator of

M.Tech Embedded Systems program for allowing me to undertake this thesis work

and for his guidelines during the review process.

I take this opportunity to express my profound gratitude and deep regards to-

wards Dr. N.P.Gajjar, guide of my major project for his exemplary guidance,

monitoring and constant encouragement throughout the course of this thesis. The

blessing, help, and guidance given by him time to time shall carry me a long way

in the journey of life on which I am about to embark. I heartily express my grati-

tude to the management and staff of Space Applications Centre, ISRO, Ahmedabad,

for providing the most compatible environment for working along with the bonus of

information about a very dynamic field of their latest works and providing their valu-

able resources for the implementation of Project work. I would like to thank, Mr.

D.R. Goswami (Group Director, PCEG) and Mr. Ashish Mishra (Head), for

their motivation and support throughout the course of project work at the PCSVD-

PCEG-SEDA, SAC. I particularly record my profound gratitude to Mrs. Bela

Vaidya, my project guide for her proficient and enthusiastic guidance, for always

helping, giving me good suggestions, solving my doubts and guide me to complete

my project in a better way.

Lastly, I thank almighty, my parents, brother and friends for their constant

encouragement without which this assignment would not be possible.

- Princy Teli

15MECE30

vii

Abstract

In the field of satellite-based Data Reception, two major parameters, rate, and

quality of data transmission are required to meet standard. CCSDS (Consultative

Committee for Space Data System) is a protocol for satellite Data Communication.

CCSDS standard allows configuring the rate and quality of data transmission across

various platforms of a satellite. It defines the implementation for data exchange,

in addition to facilitate interoperability between satellites as well as the satellite to

ground station.In order to support CCSDS in ground segment, the overall require-

ment can be split into two broad categories, namely (1) Real Time Data Acquisition

and (2) CCSDS Prescribed Processing.

The project is targeted to implement the CCSDS protocol in the ground segment

using the FPGA-based real-time platform at 50 MHz. CCSDS processing typically

comprises of Attach Sync Marker, Randomization and Reed-Solomon(RS) Encoding

at the transmitter side and the Frame Synchronization, De-randomization and the

Reed-Solomon Decoding and the Data acquisition System at the receiver side. The

Real Time data Acquisition is continuous DMA(Direct Memory Access) of decoded

data of satellite and sustained transfer to the host. Here the blocks of CCSDS at

transmitter and receiver side are designed, simulated and implemented using VHDL.

The hardware platform used is Xilinx based Zynq Soc (Z7020) and the simulation

is carried out using Xilinx VIVADO. The real-time data acquisition system is im-

plemented using the built-in ARM core of Zynq.

The testing of Transmitter side is carried out by implementation of ramp pattern

of 50 MHz. It is given as an input of RS encoder and generates the parities for

error correction of transmitted signal. At the receiver side encoded data is given as

an input of decoder. For the testing of data acquisition system AXI IP of Ramp

generator is implemented and that is given as input of AXI DMA.

viii

Contents

Declaration iii

Disclaimer iv

Certificate v

Certificate vi

Acknowledgements vii

Abstract viii

List of Figures xiv

List of Tables xv

Abbreviation Notation and Nomenclature xvi

1 Introduction 1

1.1 Motivation . 1

1.2 Objective . 1

1.3 Scope . 2

1.4 Requirements . 2

1.5 Thesis Organization . 2

ix

2 Literature Review 4

2.1 CCSDS Standard . 4

2.1.1 CCSDS Specified Data Transmission Process 5

2.1.2 CCSDS Specified Data Reception Process 7

2.2 Tools and Technology . 8

2.2.1 Processing System . 9

2.2.2 Processing System External Interface 10

2.2.3 Programmable Logic . 10

2.2.4 Special Resources . 11

2.2.5 Programmable Logic External Interfaces 12

2.3 Vivado IDE . 12

2.3.1 Vivado Design Flow for Zynq 12

2.3.2 System Setup and Requirements 15

2.3.3 An Outline of the Design Flow 16

3 Design and Implementation of FPGA-Based CCSDS Specified Base-

band DATA Simulator 17

3.1 Introduction . 17

3.2 Synchronization . 18

3.3 Pseudo Random Sequence Generator 18

3.4 RS-Encoding Algorithm . 20

3.5 Hardware Implementation in Xilinx FPGA using VHDL 25

3.6 Schematic View . 26

3.7 Device Utilization . 27

4 Implementation of FPGA-Based CCSDS Specified Baseband Data

Processing 28

4.1 Introduction . 28

4.2 Frame Synchronization . 29

4.3 De-Randomization . 29

x

4.4 RS-Decoding Algorithm . 30

4.5 Hardware Implementation in Xilinx FPGA using VHDL 38

4.6 Schematic View . 40

4.7 Device Utilization . 42

5 Hardware Based Data Acquisition System 43

5.1 Introduction . 43

5.2 Embedded Hardware Design and Interface with Zynq Processor . . . 45

5.2.1 AXI Standard . 45

5.2.2 AXI DMA . 47

6 Design Implementation of Data Acquisition System 50

6.1 DMA in Direct Register Mode . 50

6.1.1 Programmin Sequence for booting the linux with our hardware

on Zynq Processor . 51

6.1.2 Programming Sequence for DMA in Direct Register Mode . . 52

6.2 DMA in Scatter Gather Mode . 54

6.2.1 Programming Sequence for DMA in Scatter Gather Mode . . 54

7 Results 57

7.1 Results for Data Transmission Process 57

7.1.1 Simulation Results . 57

7.1.2 Implementation Results . 59

7.2 Results for Data Reception Process 61

7.2.1 Simulation Results . 61

7.3 Results for Data Acquisition System 62

7.3.1 Results for DMA in Direct Register mode 62

7.3.2 Results for DMA in Scatter-Gather mode 64

8 Conclusion and Future Scope 65

8.1 Conclusion . 65

xi

8.2 Future Scope . 65

Bibliography 66

xii

List of Figures

2.1 Data Transmission and Reception Process[1] 5

2.2 Frame Generation . 6

2.3 Frame Format[1] . 7

2.4 Zynq Architecture[2] . 9

2.5 Vivado Design Flow[3] . 13

2.6 System Setup[3] . 15

2.7 Design Flow [3] . 16

3.1 Block diagram of Pseudo Random Sequence Generator[1] 19

3.2 Reed-Solomon Encoder Block Diagram 21

3.3 RTL View for Data Transmission Process 27

4.1 Block Diagram of Syndrome Generation[5] 31

4.2 Block Diagram of Chain Search[5] . 34

4.3 Block Diagram of Data Reception Process 38

4.4 Schematic View for Data Reception Process 41

4.5 Schematic View for Data Reception Process 41

5.1 Block diagram . 44

5.2 AXI Signal for Transaction . 47

5.3 DMA Controlled Register in Direct Register Mode[11] 48

5.4 DMA Controlled Register in Scatter Gather Mode[11] 49

5.5 Controlled Register for Scatter Gather Discriptor[11] 49

xiii

6.1 Generalized Block diagram for DMA in Direct Register Mode 51

6.2 Implementation Block Diagram for DMA in Direct Register Mode . . 53

6.3 Generalized Block Diagram for DMA in Scatter Gather Mode 54

6.4 Implementation Block Diagram for DMA in Scatter Gather Mode . . 56

7.1 Simulation Result for Data Transmission Process at the start of packet 57

7.2 Simulation Result for Data Transmission Process at the end of the

Packet . 58

7.3 Implementation Result of continuous data transmission 59

7.4 Implementation Result at the start of the Packet 60

7.5 Implementation Result at the end of the packet 60

7.6 Simulation Results of Data Decoding Procedure 61

7.7 Simulation Results of Final Decoded Data 62

7.8 Transferred data with destination address at the start of frame 63

7.9 Transferred data with destination address at the end of frame 63

7.10 Transferred Data from the DMA in scatter-gather mode 64

xiv

List of Tables

3.1 Step to Step Procedure of encoder with respect to clock 24

3.2 Device Utilization . 27

4.1 Device Utilization . 42

xv

Abbreviation Notation and Nomenclature

ARM . Advanced RISC Machines

ASM . Attached Sync Marker

AXI .Amba Extensible Interface

BUFG . Global Buffer

CAN .Controller Area Network

CCSDS . Consultative Committee for space Data System

DMA . Direct Memory Access

ELF . Executable and Linking Format

FF . Flip Flop

FPGA . Field Programmable gate Array

GPIO .General Purpose Input Output

I2C . Inter Integrated Circuit

IDE . Integrated Development Environment

IO . Input Output

JTAG . Joint Test Action Group

LDPC . Low Density Parity Checker

LUT .Look Up Table

LUTRAM . Look Up Table based Random Access Memory

PL .Programmable Logic

PRBS .Pseudo Random Binary Sequence

PS . Processing System

RS . Reed Solomon

SD Card. .Secure Digital Secure Digital

SDK . Software Development Kit

SoC . System on Chip

SPI . Serial Peripheral Interface

VHDL . VHSIC Hardware Description Language

xvi

VHSIC .Very High Scale Integrated Circuit

UART . Universal Asynchronous receiver Transmitter

USB .Universal Serial Bus

ZedBoard . Zynq Evaluation and Development Board

xvii

Chapter 1

Introduction

1.1 Motivation

In recent times the number of Electro-Optical Imaging Sensors being developed by

ISRO has gone up substantially. Traditionally, the interfaces and formats related

to data were specific to different payloads. However, in order to meet shorter turn-

around time ISRO is adopting CCSDS standards. Data Acquisition and Testing are

extremely crucial activities in the process of sensor development.

So I have taken up the development of the real-time data acquisition system of

CCSDS formatted data streams, and the CCSDS Prescribed Processing that may

contribute to the development of future sensors being developed in ISRO.

1.2 Objective

The prime objective is the study of CCSDS standard and its implementation for

payload data acquisition and processing in Real time. While there can be different

implementations, one of them can be a solution comprising of FPGA and Microcon-

troller. To develop this type of an application, I need a development board, which

has FPGA and processor preferably, on a single platform. Xilinx Zedboard is one

such platform, which can fulfill this requirement and to develop an application, it

1

also provides a Xilinx Vivado IDE. So my second objective is to study the Zynq plat-

form and Vivado design suite and finally to develop and deliver a working solution,

meeting the above objectives.

1.3 Scope

This project can be used as a real-time high-speed data reception system of the

satellite. It can do data decoding and acquisition of the real-time data.

1.4 Requirements

Requirements are

• Knowledge of Windows and Linux Platform

• Xilinx Vivado IDE

• Each Device on Zynq Soc and Device Functionality

• Knowledge of C Language

• VHDL Programming

• Knowledge of FPGA

• Xilinx Software Development Kit

• Visual Studio

1.5 Thesis Organization

The rest of the thesis organized as follows.

2

Chapter 1 contains Motivation, Objective and the scope of the project also in-

cluding the requirements for the project.

Chapter 2 describes Literature review part, and the background study of the

CCSDS standard, Frame Formation in data transmission and reception process,

basic tools, technologies and hardware used in the data acquisition systems.

Chapter 3 describes the Design and Implementation of CCSDS specified baseband

data simulator with the brief description of all the processing blocks and algorithm

applied on the actual data to transmit also including the simulation and the imple-

mentation results.

Chapter 4 describes the Design and Implementation of CCSDS specified base-

band data processing with the brief description of all the processing blocks and the

algorithm applied to the received data to decode also including the simulation re-

sults.

Chapter 5 describes the interface and the hardware used of the data acquisition

system. It includes the description of DMA registers for the specific length of data

transfer says direct register mode of DMA and also includes the scatter-gather mode

of DMA for continuous data transfer.

Chapter 6 describes the hardware implementation for the data transfer, Processing

sequence and test results.

Chapter 7 contains conclusion and future scope of the project.

3

Chapter 2

Literature Review

2.1 CCSDS Standard

The Consultative Committee for Space Data System(CCSDS) has published a set

of standards for reliable space communication, which have been accepted world-

wide. The purpose of this proposed standard is to specify synchronization and

channel coding schemes used with telemetry space data link protocol[1] .The rec-

ommended standard proposed a packetized transmission scheme which provides the

specification in synchronization and channel coding scheme in terms of the data for-

mats and procedures. Standard provides the functions like frame synchronization,

pseudo-randomization, and channel coding scheme to enable a reliable data transfer

through space link[1]. It provides additional functionality necessary for transferring

data packets over a space link[1].

The CCSDS proposed standard provides frame synchronization using a sync marker.

It specifies a pseudo randomization to improve data reception using a random num-

ber generator[1]. And give an optional Reed-Solomon error correction codes to

provide noise immunity[1].

Figure 2.1 shows the layers of the data transmission and the reception process. At

the transmitter side how the data formatted and the at the reception side how it will

4

be decoded. Figure 2.2 shows how the frame generation of this layered architecture

implemented practically using a multiplexer. And Figure 2.3 shows the location of

frame sync, actual data and the parities for the error correction of transfer frame in

every data frame.

Figure 2.1: Data Transmission and Reception Process[1]

2.1.1 CCSDS Specified Data Transmission Process

Attached Sync Marker

Frame synchronization is necessary for proper decoding and subsequent processing

of the Transfer Frames[1]. Furthermore, it is necessary for synchronization of the

pseudo-random generator. The data unit consists of the ASM and the Transfer

Frame[1]. The Transfer Frame, Codeword, may or may not be randomized. The

ASM shall immediately follow the end of the preceding codeword[1].

Pseudo-Randomizer

In order for the receiver system to work properly, every data capture system at the

receiving end requires that the incoming signal have sufficient bit transition density

5

Figure 2.2: Frame Generation

[1]

and allow proper synchronization of the decoder[1]. In order to ensure proper re-

ceiver operation, the data stream must be sufficiently random[1].

The Pseudo-Randomizer defines the preferred method to ensure sufficient random-

ness for all combinations of CCSDS recommended modulation and coding schemes[1].The

presence or absence of pseudo-randomization is fixed for a Physical Channel and is

managed by the receiver. Transfer Frame shall be randomized by exclusive-Oring

the first bit of the Transfer Frame with the first bit of the pseudo-random sequence,

followed by the second bit of the Transfer Frame with the second bit of the pseudo-

random sequence, and so on[1]. On the receiving end, the original Transfer Frame

shall be reconstructed using the same pseudorandom sequence[1].

Reed-Solomon Encoding

With the Reed-Solomon Codes specified only certain specific lengths of Transfer

Frames may be contained within the codewords data space[1]. In some cases, these

lengths can be shortened at a small sacrifice in coding gain. Since these R-S codes

have a symbol length of 8 bits, the length of the codeword is a multiple of the in-

terleaving depth, which provides octet compatibility[1]. The Reed-Solomon encoder

reads in k data symbols, computes the (n - k) parity symbols, and appends the parity

6

Figure 2.3: Frame Format[1]

symbols to the k data symbols for a total of n symbols. The encoder is essentially

a 2t tap shift register where each register is m bits wide.

2.1.2 CCSDS Specified Data Reception Process

Synchronization

Codeblock synchronization of the Reed-Solomon decoder is achieved by Synchro-

nization of the Attached Sync Marker associated with each code block [1].

De-Randomizer

At the receiving end, the original Frame is reconstructed using the same pseudo

random sequence. After locating the ASM in the received data stream, the pseudo-

random sequence is exclusive-ORed with the data bits immediately following the

ASM[1]. The pseudorandom sequence is applied by exclusive-Oring the first bit fol-

lowing the ASM with the first bit of the pseudo-random sequence, followed by the

second bit of the data stream with the second bit of the pseudo-random sequence,

and so on[1].

RS-Decoder

The Reed-Solomon decoder tries to correct errors and/or erasures by calculating

the syndromes for each codeword. Based upon the syndromes, the decoder is able to

determine the number of errors in the received block[6, 8]. If there are errors present,

the decoder tries to find the locations of the errors using the Berlekamp-Massey al-

gorithm by creating an error locator polynomial. The roots of this polynomial are

found using the Chien search algorithm. Using Forney’s algorithm, the symbol error

7

values are found and corrected. For an RS (n, k) code where n - k = 2T, the decoder

can correct up to T symbol errors in the code word. Given that errors may only

be corrected in units of single symbols (typically 8 data bits), Reed-Solomon codes

work best for correcting burst errors[9].

2.2 Tools and Technology

Zynq devices are newly proposed to be System-on-Programmable-Chip. The general

architecture of the Zynq comprises two sections: the Processing System (PS), and

the Programmable Logic (PL) and they can be used separately or together. And

each section has the separate power circuitry, which can enable either the PS or PL

and be supporting powered down mode if not in use[2]. However, when both parts

of the Zynq are used together represents the most compelling use and therefore it

is important to understand the reliable structure of both sections, as well as the

interfaces between them[2].

For high-speed logic the PL section is ideal for implementation. It has Configurable

Logic Blocks (CLBs) for arithmetic and data flow subsystems and Input/ Output

Blocks (IOBs) for interfacing, while the software routines and/or operating sys-

tems are supported by the PS section[2]. So the overall functionality of any fully

functioned and designed system can be efficiently partitioned between hardware and

software. Links between the PL and PS are made using industry standard Advanced

Extensible Interface (AXI) connections.[2] Figure 2.4 shows the Zynq Architecture

which contains Programmable Logic and the Processing System, which are con-

nected via AXI bus. All the hardware peripheral implemented on FPGA and the

process will operate it as per the requirement.

8

Figure 2.4: Zynq Architecture[2]

2.2.1 Processing System

All Zynq devices have almost same architecture, As an Application Processing unit

it contains a dual-core ARM Cortex-A9 processor[2]. It is a hard coded on the

device. It also consists soft processor like Xilinx MicroBlaze, which is formed by

combining the element of programmable logic elements. Hard coded processor can

achieve higher performance as compared to soft processor[2].

ARM processing unit contains processing engine, Floating point unit, Memory Man-

agement Unit, and cache memory[2]. It has Snoop Control Unit and some interfaces

with PL too. To program a deployed components on the Pl section there is a support

of Xilinx Software Development Kit which includes an ARM instruction set[2] .

9

2.2.2 Processing System External Interface

The Zynq Processing System has many interfaces by which it communicates with

external peripherals and also with the PL section. External interfaces is achieved

via Multiplexed Input/Output(MIO) and Extended MIO[2].

The Zynq PS features a variety of interfaces, both between the PS and PL, and

between the PS and external components[2].

I/O Interface:

• SPI (x2)

• I2C (x2)

• CAN (x2)

• UART (x2)

• GPIO

• SD (x2)

• USB (x2)

• Ethernet

2.2.3 Programmable Logic

The second principal part of the Zynq architecture is the programmable logic. This

is based on the Artix-7 and Kintex-7 FPGA fabric[2].

The Logic Fabric: The PL part of the Zynq device is depicted with various fea-

tures highlighted. The PL is predominantly composed of general purpose FPGA

logic fabric, which is composed of slices and Configurable Logic Blocks (CLBs), and

there are also Input/ Output Blocks (IOBs) for interfacing[2].

Configurable Logic Block (CLB) CLBs are small, regular groupings of

10

logic: Elements that are laid out in a two-dimensional array on the PL, and con-

nected to other similar resources via programmable interconnects. Each CLB is

positioned next to a switch matrix and contains two logic slices[2].

• Slice A sub-unit within the CLB, which contains resources for implementing

combinatorial and sequential logic circuits. Zynq slices are composed of 4

Lookup Tables, 8 Flip-Flops, and other logic[2].

• Lookup Table (LUT) A flexible resource capable of implementing (i) a logic

function of up to six inputs; (ii) a small Read Only Memory (ROM); (iii) a

small Random Access Memory (RAM); or (iv) a shift register. LUTs can be

combined together to form larger logic functions, memories, or shift registers,

as required.[2]

• Flip-flop (FF) A sequential circuit element implementing a 1-bit register,

with reset functionality. One of the FFs can optionally be used to implement

a latch[2].

• Switch Matrix A switch matrix sits next to each CLB, and provides a flexible

routing facility for making connections (i) between elements within a CLB;

and (ii) from one CLB to other resources on the PL[2].

2.2.4 Special Resources

The Block RAMs in the Zynq-7000 are equivalent to those on Xilinx 7 series FP-

GAs, and they can implement Random Access Memory (RAM), Read Only Memory

(ROM), and First In First Out (FIFO) buffers, while also supporting Error Correc-

tion Coding (ECC)[2].

11

2.2.5 Programmable Logic External Interfaces

The PL includes another hard IP component: the XADC block. This is a dedicated

set of Analogue to Digital Converter (ADC) mixed-signal hardware, which features

two separate 12-bit ADCs both capable of sampling external analogue input signals

at 1Msps[2].

clocks The PL receives four separate clock inputs from the PS, and additionally

has the facilities to generate and distribute its own clock signals independently of

the PS[2].

Programming and Debug A set of JTAG ports are provided in the PL section

to facilitate configuration and debugging of the PL[2].

2.3 Vivado IDE

Vivado IDE is an integrated development environment for creating the hardware

system part of the SoC design, i.e. the processor, memories, peripherals, external

interfaces and bus connections. Vivado IDE interacts with other tools in the Vivado

Design Suite, and also includes facilities for integrating and packaging IP, which

enhances possibilities for design reuse[3]. SDK is a software design suite based on

the popular Eclipse platform, which includes driver support for all Xilinx IPs, GCC

library support for ARM and NEON extensions using the C and C++ languages,

and tools for debugging and profiling[3].

2.3.1 Vivado Design Flow for Zynq

• The implementation process begins with launching Vivado, which is from de-

sign entry through bitstream generation[3].

• From Vivado, Create Block Design and configure settings to make the ap-

propriate design decisions such as selection/de-selection of dedicated PS I/O

peripherals, memory configurations, clock speeds, etc[3].

12

Figure 2.5: Vivado Design Flow[3]

• At this point, you may also optionally add IP from the IP catalog or create and

add your own customized IP. Connect the different blocks together by dragging

signals/nets from one port of an IP to another. Use the design automation

capability of the IP Integrator to automatically connect blocks together[3].

• When finished, generate a top-level HDL wrapper for the system[3].

• Ensure that the appropriate PL related design constraints are defined as re-

quired by the tools. If a supported evaluation board is specified during project

creation (i.e.: the ZedBoard) then constraints may not be needed since the

software is board aware[3]. If any signal coming from the PL section to an I/O

pin is not defined then the tools will generate an error during the bit-stream

generation[3]. Also, do not include pin constraints which are connected to

13

the dedicated pins as the tools will generate error messages. This is done

via creation/addition of a Xilinx Design Constraints (XDC) file to the Vivado

project[3].

• Generate the bit- stream for configuring the logic in the PL if soft peripherals or

other HDL are included in the design, or if any hard peripheral IO were routed

through the PL[3]. At this stage, the hardware has been defined in ¡system¿[3].

hdf, and if necessary a bit-stream ¡system¿.bit has been generated. The bit-

stream could be programmed into the FPGA from within Vivado, or it could

be done from within SDK[3].

• Now that the hardware portion of the embedded system design has been built,

export the design to the SDK to create the software design. A convenient

method to ensure that the hardware for this design is automatically integrated

with the software portion is achieved by Exporting the Hardware[3]. In order

to export the design successfully, the Design Block MUST be open and the

implemented design, if exists, MUST be open, otherwise the tools will report

an error. Once the hardware has been exported, as a separate step, the SDK

can then be launched[3].

Figure 2.5 shows the graphical representation of this Vivado design flow for

creating any system on the Zync board.

14

2.3.2 System Setup and Requirements

Figure 2.6 shows the setup for the development of the any system based on the Zynq

Board.

Figure 2.6: System Setup[3]

15

2.3.3 An Outline of the Design Flow

Figure 2.7 shows the work flow to develop any system. It shows the step to step

procedure for implementation of any new system to follow.

Figure 2.7: Design Flow [3]

16

Chapter 3

Design and Implementation of

FPGA-Based CCSDS Specified

Baseband DATA Simulator

3.1 Introduction

CCSDS based data transmission standard is planned for future programs such as

GISAT. The space data link protocols are defined for creating transfer frames from

the space sensor data, received from the space packet service defined by the Space

Packet Protocol, these transfer frames can be transmitted, they must be encoded

using error correction codes, Synchronized using CCSDS specified Sync Marker and

Randomize using Pseudo Random Sequence. Sync marker provides the synchroniza-

tion between two frames in the space data packets. Randomization is used for the

proper transition of bits in the communication channel. And the encoder facilitates

the reception of the Baseband data stream in the event of any errors which are in-

troduced due to the noisy channel environment of the space link. For this purpose,

the transfer frame is encoded using the ReedSolomon(RS) Code as defined for the

CCSDS data transmission standard.

17

The reception and baseband data acquisition of such CCSDS encoded serial streams

with RS coding requires the design and development of RS decoder unit. Before

that, it is required to develop a Data Simulator with CCSDS RS encoding, equiv-

alent to that proposed for the satellite sensor. The subsequent sections in this

technical note provide a brief on RS Coding and explain the design, development

and implementation details of FPGA-based of RS Encoder (255,223).The design of

the RS encoder is general purpose in nature.

3.2 Synchronization

Synchronization is necessary for proper decoding of any transmitted code-blocks or

the transfer frames. Here synchronization is necessary for Reed-Solomon code-blocks

and subsequent processing of the Transfer Frames[1]. Furthermore, it is necessary for

synchronization of the pseudo-random sequence generator because after the attach-

ment of sync the random number generation and simultaneously the randomization

of encoded data will start. If the Physical Channel is not Reed-Solomon, turbo

or LDPC coded the synchronization is achieved by using a stream of fixed-length

Frames with an Attached Sync Marker (ASM) between them[1]. The data unit that

consists of the ASM and the Frame is called the Channel Access Data Unit. The

ASM is NOT a part of the encoded data space of the Reed-Solomon Codeblock, and

it is not presented to the input of the Reed-Solomon encoder or decoder[1].

3.3 Pseudo Random Sequence Generator

In order for the receiver system to work properly, every data capture system at the re-

ceiving end requires that the incoming signal has sufficient bit transition density, and

allow proper synchronization of the decoder[1]. In order to ensure proper receiver

operation, the data stream must be sufficiently random. The Pseudo-Randomizer

defined in this section is the preferred method to ensure sufficient randomness for

18

Figure 3.1: Block diagram of Pseudo Random Sequence Generator[1]

all combinations of CCSDS-recommended modulation and coding schemes. The

method for ensuring sufficient transitions is to exclusive-OR each bit of the Frame

with a standard pseudo-random sequence[1]. If the pseudo-randomizer is used, on

the sending end it is applied to the Reed-Solomon code block after encoding. On

the receiving end, it is applied to derandomize the data after Frame synchronization

but before Reed-Solomon decoding.The pseudo-random sequence is applied starting

with the first bit of the Frame[1]. On the sending end, the Frame is randomized by

exclusive-Oring the first bit of the Frame with the first bit of the pseudo-random

sequence, followed by the second bit of the Frame with the second bit of the pseudo-

random sequence, and so on. The pseudo-random sequence shall NOT be exclusive-

ORed with the ASM[1]. Figure 3.1 shows the block diagram of Pseudo Random

Sequence Generator in HDL using the simple D flip-flop. Initially, the value of the

register is one and with respect to clock it will generate a random sequence of bits

and after implementation, we will be noticed that it will repeat the bits after 255

clock cycles.

19

3.4 RS-Encoding Algorithm

The ReedSolomon (RS) codes are particularly useful when the communication chan-

nel is prone to burst errors, and on channels where the set of input symbols is large.

RS codes are nonbinary cyclic BCH codes i.e. the symbols made of mbit binary

sequences, where m2. There are 2m1 symbols in an RS codeword[4]. To be able to

correct errors in t symbols, there must be r = 2t parity check symbols among the

2m1 symbols. These mbit symbols are considered as elements of a finite field of 2m1

elements, also called a ’Galois Field’ which is explained in the next section[4].

An important characteristic of RS codes which makes them desirable to be used is

that they have the largest possible code minimum distance among all block codes,

in terms of number of symbols in which two codewords differ, for the same input

and output block length[4]. For RS Codes, this code minimum distance dmin = n

- k + 1. So, this code is capable of correcting t or fewer errors where, t = (dmin

- 1)/2 = (n - k)/2. The most attractive RS codes have high code rates (k/n), i.e.

low redundancy. The (255, 223) RS code, i.e. with m = 8, t = 16 has become a

standard and widely used code. A modified version of this code suited to needs of

space data systems is defined by CCSDS[4].

Linear Feedback Shift Register Method In the linear feedback shift register

method [10], the polynomial division can be achieved efficiently by means of an n -

k stage shift register. This method lends itself to easier hardware implementation as

shown in Figure 3.2, as the process is divided into unit processes, which are in the

form of either combinational (XOR, AND, OR) or sequential logic elements (latches)

and hence, this method is more amenable for implementation in programmable dig-

ital logic devices described in VHDL or Verilog[10]. In the figure below, the block

diagram for (255, 223) RS Encoder is given which is implemented using n - k =

32 stage shift register. Each stage stores an 8bit symbol (m=8). Two multiplexers

control the inputs to the shift register as well as the output that is shifted out[10].

20

Figure 3.2: Reed-Solomon Encoder Block Diagram

[1]

Introduction to Galois Fields A finite field with pn elements is denoted by GF

(pn), where p is a prime number and is also called the Galois Field, in honor of

the founder of finite field theory, variste Galois[4]. Arithmetic operations (addition,

subtraction, multiplication) on integers are done, as usual, followed by reduction

modulo p. For instance, in GF (5), 4+3 = (7 modulo 5) = 2. Division is mul-

tiplication by the inverse modulo p. Elements of GF(pn) may be represented as

polynomials of degree strictly less than n with coefficients in GF(p). Operations

are then performed modulo R where R is an irreducible polynomial of degree n over

GF(p)[4]. The addition of two polynomials P and Q are done as usual i.e. W = P

+ Q. The multiplication may be done by first computing W = P ·Q as usual, then

computing the remainder modulo R. But there exist better ways to implement this

more efficiently[4]. A particular case of interest is GF(2) i.e. when the prime is 2,

where addition is exclusive OR (XOR) and multiplication is AND. It is conventional

to express elements of GF(2n) as binary numbers. They can also be expressed as

21

polynomials where the coefficient of each term of the polynomial is same as the

corresponding bit in element’s binary expression[4].

Obtaining Galois field GF (2n) The field GF (2n) is called the extension of the

binary field GF(2)[4]. Besides the numbers 0 and 1, there are additional unique

elements in the extension field that represented with a new symbol α, called the

primitive element of the field. Each nonzero element in GF (2n) can be represented

by a power of α. To obtain the field GF (2n), an infinite set of elements F is formed

by starting with the elements 0, 1, α, and generating additional elements by progres-

sively multiplying the last entry by α[4], which yields the following:

F= 0, 1, α, α2, α3, ..., αj = 0, α0, α1, α2, α3, ..., αj

To obtain the finite set of elements of GF (2n) from F, a condition must be imposed

on F so that it may contain only 2m elements and is closed under multiplication. The

condition that closes the set of field elements under multiplication is characterized

by the irreducible polynomial shown below[4]:

α2m−1 + 1 = 0orequivalently, α2m−1 = 1 = α0 (3.1)

Using this polynomial constraint, any field element that has a power equal to or

greater than 2m1 can be reduced to an element with a power less than 2m1, as

follows[4]:

α2m+n = α2m−1αn+1 (3.2)

Therefore, the elements of a finite field[4],

GF (2n) = 0, α0, α1, α2, α3, ..., αj, ..., α2n−1 (3.3)

Obtaining the polynomial representation using a Primitive polynomial

An irreducible polynomial f(X) of degree m is said to be primitive if the smallest

positive integer n for which f(X) divides Xn+1 is n = 2m − 1. A polynomial A

divides B if the division yields a nonzero quotient and a zero remainder[4]. Also,

the primitive element is a root of the primitive polynomial i.e. f(α).i.e. f(α) = 0

This equation can be used to represent each element of the Galois Field as distinct

22

polynomial of degree m1 or less as illustrated by the following example[4]: Let us

take the example of GF (23) i.e. m=3, for which we have primitive polynomial f(X)

= 1 +X +X3. In this case, we will have 23 = 8 elements which can be represented

as distinct polynomials of degree m - 1 = 2. Using the above relation by putting X

= α, polynomial becomes[4], α3 + α + 1 = 0 So,

α3 = α + 1 (3.4)

α4 = α3 · α = (α + 1) · α = α2 + α (3.5)

Similarly,

α5 = α4 · α = (α2 + α) · α = α2 + α + 1 (3.6)

α6 = α5 · α = (α2 + α + 1) · α = α2 + 1 (3.7)

α7 = α6 · α = (α2 + 1) · α = 1 = α0 (3.8)

Since, α7 = α0, we have only 8 elements in GF (23)[4].

ENCODING PROCEDURE

• (n , k) = (2(m−1), 2(m−1−2t)) = (7 , 3) double symbol error correcting RS code

Where 2t = n - k is number of parity symbol and t is symbol error here 2t =

4 roots[4]

• Input message symbol sequence : 010 110 111

• Input symbol length : 3

• Generator Polynomial:

G(x) = (x− α1)(x− α2)(x− α3)(x− α4) (3.9)

= α3 + α1x+ α0x2 + α3x3 + x4 (3.10)

= g0 + g1x+ g2x
2 + g3x

3 + ..[4] (3.11)

23

Table 3.1: Step to Step Procedure of encoder with respect to clock

[4]

Input Register Content Feedback O

α1 α3 α5 0 0 0 0 α5 α5

α1 α3 α5 · α3 = α1 α5 · α1 = α6 α5 · α0 = α5 α5 · α3 = α1 α1 + α3 = α0 α5

α6 + α0 = α6 α5 + 0 = α5 α1 + 0 = α1

α1 α0 · α3 = α3 α0 · α1 = α1 α0 · α0 = α0 α0 · α3 = α3 α2 + α1 = α4 α3

α1 + α1 = 0 α6 + α0 = α2 α5 + α3 = α2

α4 · α3 = α0 α4 · α1 = α5 α4 · α0 = α4 α4 · α3 = α0 α1

α5 + α3 = α2 α4 + 0 = α4 α0 + α2 = α6

α6

α4

α2

α0

Table 3.1 shows the step to step encoding procedure with respect to the clock.

It shows the Input sequence, register contents, Feedback and the Output at every

clock cycle.

After the third clock cycle, the register contents are the four parity symbols, Then

switch in RS encoder block is change its position and the parities symbols contained

in the register are shifted to the output. So the output of the encoder will be[4],

U(x) = α0 + α2x+ α4x2 + α6x3 + α1x4 + α3x5 + α5x6 (3.12)

24

3.5 Hardware Implementation in Xilinx FPGA

using VHDL

The Hardware based CCSDS ReedSolomon Encoder is implemented in FPGA and

described in VHDL. It is based on the linear feedback shift register implementation.

VHDL Blocks The entire design, development is carried out using VHDL (Xilinx).

The task has been divided into the following functional blocks to facilitate the

modular implementation, and ease of simulation and final testing.

encoder top.vhd: This is the top module of RSEncoder which contains many

sub-modules:

• Test Stimulus module

• Data Encoder module.

• PRBS Generator

• Mux

• Clock Divider module

• Parallel to Serial Converter and Randomizer module

Test Stimulus.vhd:

This module implements control logic for RS Encoder it generates controls signals

like start, reset data input and data output registers data path as well as it generates

input block sequence of rs encoder. For this Design and implementation, the ramp

signal of 50 MHz is generated as an input of (255,223) RS encoder block design.

data encoder.vhd:

Implements data path for RS Encoder in 32 LFSR architecture, which reduces the

latency of RS Encoder to 3 clock pulses. Input and output message data are regis-

tered through input and output registers which ensure glitch free operation and both

the registers are controlled by enable signals which avoid unnecessary switching of

25

the data path and in turn saves power.

mux.vhd:

This module implements the parametric multiplexer that is used to implement

switches in the data path. It selects either data or parities goes out and also selects

either sync or encoded data goes out.

clk divider.vhd:

This module divides the onboard clock frequency by eight because RS-Encoder per-

forms byte operations and finally output will be serial.

parl ser conv.vhd:

This module converts byte of encoded data into the serial stream of bits.

DATA shifter:

This module performs shift operation of serial data to manage the sync period.

rs encode pack.vhd:

The package that defines data types and functions for projects. This VHDL package

has been developed to provide the RS encoder functions. It provides Galois addition

and multiplication functions.

3.6 Schematic View

Figure 3.3 shows the schematic view of the data simulator. As shown in the figure,

the clock is taken as an input of a data encoder from the onboard clock oscillator.

It shows the implemented components for data simulator. and we get an encoded,

randomized and frame synchronized serial data as an output.

26

Figure 3.3: RTL View for Data Transmission Process

3.7 Device Utilization

Table 3.2 shows the available Devices on Zed board to implement our logic and how

much are used in the implementation of Data Simulator.

Table 3.2: Device Utilization

Resources Utilization Available Utilization %

LUT 334 53200 0.63

LUTRAM 2 17400 0.01

FF 399 106400 0.38

IO 29 200 14.50

BUFG 6 32 18.75

27

Chapter 4

Implementation of FPGA-Based

CCSDS Specified Baseband Data

Processing

4.1 Introduction

As a part of the design and development efforts towards the realization of the ground

data reception systems for the future Remote Sensing Sensors, which will transmit

the data in the CCSDS formats, the design and development were taken up for

the individual hardware modules required to be implemented for the total data

reception chain. CCSDS standards propose a packetized transmission scheme con-

sisting of independent layers which separately process the data. This packetized

data are attached with sync marker, randomized and encoded with CCSDS Pre-

scribed processing. So the satellite data reception scheme consisting of the frame

synchronization, de-randomization and the decoding of the transmitted data. For

the encoding of the space data Forward error correcting codes have become com-

monplace in modern digital communications. These codes work by adding extra

information (redundancy) to the original data. The encoded data can then be

28

stored or transmitted. When data is recovered it may have errors introduced, be-

cause of radio frequency interference noise in the transmission channel. The added

redundancy allows a decoder (with certain restrictions) to detect which parts of the

received data are corrupted and correct them. The number of errors the code can

correct depends on the amount of redundancy added. As a part of the design and

development efforts towards the realization of the ground data reception systems

for the future Remote Sensing Sensors, which will transmit the data in the CCSDS

formats, the design and development were taken up for the individual hardware

modules required to be implemented for the total data reception chain. The RS

decoder module is one such element which is required to realize the error correction

before the formation of the actual information/data packets can be done.

4.2 Frame Synchronization

The Frame Synchronization is one such module which is essential to synchronize the

data frame before the actual decoding procedure starts[1]. At the transmitter side,

it has attached the some specified known bit pattern to synchronize the data frame

so at the ground data reception system it should be identified and removed for the

further processing of the actual data. For that digital correlator is designed and

implemented using VHDL[1].

4.3 De-Randomization

In order for the receiver system to work properly, every data capture system at the

receiving end requires that the incoming signal has sufficient bit transition density,

and allow proper synchronization of the decoder[1]. The data stream is sufficiently

random. The method for ensuring sufficient transitions is to exclusive-OR each

bit of the Received Frame with a standard pseudo-random sequence.The pseudo-

randomizer is used, on the sending end so it is required to de-randomize the data

29

after Frame synchronization but before Reed-Solomon decoding.The pseudo-random

sequence is applied starting with the first bit of the Frame. Implementation of the

standard sequence is same as done for transmitting side[1].

4.4 RS-Decoding Algorithm

The RS decoder module is one such element which is required to realize the error

correction before the formation of the actual information/data packets can be done.

The design, development, and realization of RS decoder are implemented in FPGA

using the hardware description language (VHDL). A top-down approach has been

followed while describing the functionality of the module.The desired parameters

of the Reed-Solomon decoder are code word length, error correcting capability, the

initial root of the code generator polynomial, the size of the Galois field and the

field generator polynomial. The decoding procedure consists of the following steps

• Syndrome Calculation:

The first step is the generation of syndromes from the received input sym-

bols. These are obtained by evaluating the polynomial representation of the

input received symbols by the roots of the generator polynomial[5]. In the

case of no error, the syndromes will be zero while non-zero syndromes indi-

cate the presence of an error in the codeword. The syndromes depend only

on the errors, not on the underlying encoded data. Syndrome calculation can

be done by an iterative process, such that the answer (2t syndrome symbols)

is available as soon as the last parity has been read in. The circuit below

will generate the ith syndrome[5]. To correct t errors, t error locations and t

error magnitudes are to be found i.e. 2t unknowns. The syndromes actually

represent polynomial equations of t error locations and t error values[5]. So

to find 2t unknowns, these 2t simultaneous equations are to be solved. Figure

4.1 shows the hardware implementation of the syndrome generation block to

30

know whether received data is satisfying the roots of the input polynomial or

not.

Working principle: The syndrome generator module is made of 2t syn-

Figure 4.1: Block Diagram of Syndrome Generation[5]

drome cells into all of which the received code symbols are fed as input.

After symbols have been input, the final syndromes are available in the 2t

registers[5]. The syndrome cells calculate the syndromes in an iterative fash-

ion, which can be described as follows:

for j= 1 to n, Sj = (Sj−1+rj)* 2t such syndrome cells generate 2t syndromes

which are used by the Key Equation Solver Module to generate the error

locator and evaluator polynomials[5].

• Error locator Polynomial:

The next step, after the computing the syndrome polynomial is to calculate

the error values and their respective locations. This stage involves the solving

31

of the 2t syndrome polynomials, formed in the previous stage[5]. These poly-

nomials have ’v unknowns, where v is the number of unknown errors prior to

decoding. If the unknown locations are (i1, i2, iv,) the error polynomial can

be expressed as[5],

e(x) = Y1x
1i + Y2x

2i + Y3x
3i + ...+ Yvx

vi (4.1)

where Y1 is the magnitude of the 1th error location. If X1 is the field element

associated with the error location 1, then the syndrome coefficients are given

by[5],

Sj =
v∑

t=1

YlX
t
l (4.2)

Where, j=1,2,.,2t. And Yl is the error value and Xl is the error location of the

lth error symbol. The expansion of gives the following set of 2t equations in the

v unknown error locations X1, X2,Xv and v unknown error magnitudes

Y1, Y2,Yv[5].

S1(x) = Y1x1 + Y2x2 + Y3x3 + ...+ Yvxv

S2(x) = Y1x
2
1 + Y2x

2
2 + Y3x

2
3 + ...+ Yvx

2
v

.

.

.

S2t(x) = Y1x
2t
1 + Y2x

2t
2 + Y3x

2t
3 + ...+ Yvx

2t
v

(4.3)

The above set of equations must have at least one solution because of the way

the syndromes are defined. This solution is unique. Thus the decoders task is

to find the unknowns given the syndromes[5]. This is equivalent to the problem

in solving a system of non-linear equations. Clearly, the direct solution of the

system of nonlinear equations is too difficult for large values of v. Instead,

intermediate variables can be computed using the syndrome coefficients Sj

32

from which the error locations, X1, X2,, Xv , can be determined. The

error-locator polynomial is introduced as,σ(x) = 1 + σ1x + σ2x
2 +...+σvx

v

[5] The polynomial is defined with roots at the error locations 1 i.e X−1
l for

l=1,2,v. The error location numbers l, X indicate errors at locations il for l=1,

2, v This can be written as[5],

σ(x) = (1− xX1)(1− xX2)....(1− xXv) (4.4)

The process of solving the simultaneous equations consists of two stages[5].

First, the error locator polynomial σ is calculated, the roots of which are the

error locations and then the error evaluator polynomial Ω are calculated, which

helps in calculating the error values at each of the error locations, in the error

evaluation stage[5]. There are several methods of finding the error locator

polynomial σ, the two most popular are Euclids algorithm (easier to imple-

ment) and the Berlekamp-Massey algorithm (more efficient use of hardware

resources)[5].The Berlekamp-Massey algorithm iteratively solves the error lo-

cator polynomial σ by solving one equation after another and updating the

error locator polynomial σ. If it turns out that it cannot solve the equation at

some step, then it computes a discrepancy to correct the error locator poly-

nomial, thereby increasing the size of the polynomial, and iterates again[5].

A maximum of 2t iterations are required. For n symbol errors, the algorithm

gives a polynomial with n coefficients[5]. At this point the decoder fails if there

are more than t errors, and no corrections can be made. It will introduce more

errors than there were originally[5].

Working Principle

Inversion less Berlekamp-Massey Algorithm

Initial Condition:

Where, σ is the error locator polynomial, τ(x) is the error locator support

polynomial, ω(x)is the error evaluator polynomial, ∆(i) is the ith step dis-

crepancy, δ is the previous nonzero discrepancy, D is the degree of the error

33

locator polynomial[5]. D−1 = 0, δ = 1, δ−1(x) = τ−1(x) = 1,∆(0) = S1

for (i=0 to 2t-1)

σ(i)(x) = δσ(i−1)(x) + ∆(i)xτ (i−1)(x), (4.5)

∆(i+ 1) = Si+2σ
(i)
0 + Si+1σ

(i)
1 + ...+ Si−t+2σ

(i)
t (4.6)

if (∆(i) = 0or2D(i−1) ≥ i+ 1) then

D(i) = ∆(i−1), τ i(x) = xτ (i−1)(x) (4.7)

else

∆(i) = i+ 1−∆(i−1), δ = ∆(i), τ i(x) = σ(i−1)(x) (4.8)

Finding the Error locator Polynomial Roots by Chien Search Once the error

locator polynomial is known, we can find the location of the errors in the re-

Figure 4.2: Block Diagram of Chain Search[5]

ceived symbol block by evaluating the roots of the polynomial[5]. The most

commonly used algorithm for this is the Chien search which employs exhaus-

tive search of the roots among the n possible error locations. Figure 4.2 shows

34

the hardware implementation block for the chien search algorithm[5].

• Finding the Error Magnitudes:

Once, the error locations are known, the next step is to use the syndromes

and the error polynomial roots to derive the error values. This is usually done

using the Forney algorithm. This algorithm is an efficient way of performing a

matrix inversion. The algorithm first calculates an error evaluator polynomial

ω by convolving the syndromes with the error locator polynomial σ (from the

Berlekamp-Massey results). ω is then evaluated at each error location, and

divided by the derivative of σ to give the error symbol at that location[5]. To

correct the received symbols, the symbols are read again from an intermediate

store, and at each error location, the received symbols are subtracted (by

performing XOR operation) with the error symbol. The parity symbols are

usually stripped off[5].

Decoding Procedure

• Earlier a test message encoded using (n , k) = (2(m−1), 2(m−1−2t)) = (7 , 3)

double symbol error correcting RS code

Where 2t = n - k is number of parity symbol and t is symbol error here 2t =

4 roots

• Now, assume that during transmission this code word becomes corrupted so

that two symbols are received in error[4]. For this example let the error pattern

e(x) be such that,

e(x) = 0 + 0x+ 0x2 + α2x3 + α5x4 + 0x5 + 0x6 (4.9)

• Received message symbol sequence

r(x) = U(x) + e(x) = α0 + α2x+ α4x2 + α0x3 + α6x4 + α3x5 + α5x6 (4.10)

35

• syndrome calculation: The syndrome is the results of parity check per-

formed on r to determine whether r is a valid member of the codeword set[4].

If in fact r is a member, the syndrome S has value 0. Any nonzero value of S

indicates the presence of errors. S is made up of n-k symbols.

• U(x)=m(x)g(x) from this structure it can be seen that every valid codeword

is multiple of generator polynomial so the roots of g(x) must also be the roots

of U(x).

• For this example the four syndrome are found as follows[4]:

S1 = e1β1 + e2β2 = r(α) = α3, (4.11)

S2 = e1β
2
1 + e2β

2
2 = r(α2) = α5, (4.12)

S3 = e1β
3
1 + e2β

3
2 = r(α3) = α6, (4.13)

S4 = e1β
4
1 + e2β

4
2 = r(α4) = 0 (4.14)

the results says that the received codeword contains an error.

• Error Location: Once a nonzero syndrome vector has been computed, that

signifies that an error has been received. Next we have to find error location

of error[4]. An error-locator polynomial,

σ(x) = 1 + σ1x+ σ2x
2 + ...+ σvx

v (4.15)

There are 2t unknowns (t error value and t error locations), and 2t simulta-

neous equations[4],

• we form the matrix from the syndrome using autoregressive method S1 S2

S2 S3

 σ2

σ1

 =

 S3

S4

 (4.16)

 α3 α5

α5 α6

 σ2

σ1

 =

 α6

0

 (4.17)

36

We begin our search for the error location by solving for the coefficient of the

error-locator polynomial,σ(x)[4]. σ2

σ1

 =

 α1 α0

α0 α5

 α6

0

 (4.18)

From equation 4.17,

σ(x) = α0 + σ1x+ σ2x
2 = α0 + α6x+ α0x2 (4.19)

• Testing of σ(x) polynomial with each of the field elements, σ(α0) = α6 6= 0,

σ(α1) = α2 6= 0, σ(α2) = α6 6= 0, σ(α3) = 0, σ(α4) = 0, σ(α5) = α2 6= 0,

σ(α6) = α0 6= 0,[4]

The error locations are at the inverse of the roots of the polynomial so error

locations are 3 and 4.

• Error Value: we have to use two equation from any of four equations, let use

S1 and S2. so[4],  β1 β2

β2
1 β2

2

 e1

e2

 =

 S3

S4

 (4.20)

 α3 α4

α6 α8

 e1

e2

 =

 α3

α5

 (4.21)

• From the equation the error polynomial is ê(x)=α2x3+α5x4 by adding error

polynomial to the received polynomial it repairs the received polynomial and

correct the received data and finally delivers the actual data[4]. That is,

U(x) = r(x) + ê(x) =α0 + α2x + α4x2 + α0x3 + α6x4 + α3x5 + α5 x6 + α2x3

+ α5x4 = α0 + α2x + α4x2 + α6 x3 + α1x4 + α3x5 +α5x6 [4]

37

4.5 Hardware Implementation in Xilinx FPGA

using VHDL

The Hardware based CCSDS ReedSolomon Decoder is implemented in FPGA and

described in VHDL. It is based on the Syndrome Generation, Chain Searcher, RS

Decoder, Error Location and Error Evaluator polynomial implementation.

VHDL Blocks The entire design, development is carried out using VHDL (Xilinx).

The task has been divided into the following functional blocks to facilitate the mod-

ular implementation, and ease of simulation and final testing.

Figure 4.3: Block Diagram of Data Reception Process

Figure 4.3 shows the block diagram for the data reception system. It shows the data

flow from one block to other and the generated output signals after completion of

the every block. Description of every block are as below,

decoder top.vhd: This is top module of RS-Decoder which contains many sub mod-

ules:

38

• Correlator Module

• PRBS Generation Module

• Syndrome Generation Module

• Error locator Module

• Chain Searcher Module

• Error Evaluator module

• clock divider module

Correlator.vhd:

Correlator module is implemented to synchronize the data in data reception system.

It will find the sync from the received data using the correlation between sync and

incoming data and it will count the number of one in the match if there is a match

of minimum 29 bit it will generate one sync flag at the end of the sync and it will

be treated as a start pulse of a syndrome generation module.

PRBS Generator.vhd:

After getting the start pulse from the correlator Pseudo Random Sequence will start

its generation as per the CCSDS standard specification and the encoded data will be

De randomize this Pseudo Random Sequence. Simultaneously De-randomize Serial

data will be converted into the byte of eight bit.

Syndrome Generation.vhd:

The Parallel Byte of De-randomized data is latched and it will go to the Syndrome

Generation Block. In this module, the roots of the encoded data are put down in

the received data if the roots will satisfy the polynomial that means there is no error

and the syndromes are zero otherwise we will get some non-zero value of syndromes.

It will take the 255 cycles after that it will generate end flag.

Error Locator.vhd:

This module will find the error location polynomial using the Berlekamp-Massey

39

algorithm if we get the non-zero value of syndrome and the end flag of syndrome

module is treated as a start of the error locator module.

Chain Searcher.vhd:

This module is used to find the roots of the error locator polynomial. The roots of

the polynomials are the actual location of the error. After the completion of the

process of finding the roots of the polynomial, it will give the end of the flag after

the 255 cycles.

Error Evaluator.vhd:

This module will find the error evaluator polynomial using the same hardware which

is used for the error locator module. chain search mode will find the roots of the

Error evaluator polynomial. It is at the place of error location. After that, if we

ex-or with the original message symbol it will give the corrected data.

4.6 Schematic View

Figure 4.4 and Figure 4.5 shows the schematic view of the data reception. As shown

in the figure, the encoded data is taken as an input of a data receiver system. It

shows the implemented components for synchronization, de-randomization and error

correction block for data decoding procedure. we get decoded data as an output.

40

Figure 4.4: Schematic View for Data Reception Process

Figure 4.5: Schematic View for Data Reception Process

41

4.7 Device Utilization

Table 4.1 shows the available Devices on Zed board to implement our logic and how

much are used in the implementation of Data Reception System. As we know that

data reception system is complicated than data formation so the device utilization

is also very high then data formation unit.

Table 4.1: Device Utilization

Resources Utilization Available Utilization %

LUT 4415 53200 8.30

LUTRAM 223 17400 1.28

FF 2938 106400 2.76

BRAM 0.50 140 0.36

IO 16 200 8.00

BUFG 6 32 18.75

42

Chapter 5

Hardware Based Data Acquisition

System

5.1 Introduction

A Communication system is meant to transport the information from source to user

destination via preferably a reliable communication channel. But that is not always

the case. However, error free communication can still be achieved even through a

non-ideal channel, by means of certain techniques. Before data transmission, the

encoder attaches parity symbols, does randomization and synchronization using the

pre-determined and prescribed algorithm. At the receiving side, the major tasks are

to synchronize, de-randomize and decoding of the received data. Subsequent to the

above processing, the data is still required to be transferred to host at real time and

on sustained basis for implementation of an operational reception system.

The performance of the communication can be increased by performing the compute-

intensive tasks on the FPGA, as all the processing load required to decode and trans-

mit the data may not be possible without a very high-end processor system. So,

it is preferable to do it on hardware and can be achieved through parallelism with

control and monitoring by the processor. This idea will bring us to the requirement

43

of the combination of programmable logic and the processing system on the same

platform.

Such a requirement can be met by Zynq device, which is intended for the wide vari-

ety of application as a flexible and is a compelling platform. Just same as metal zinc,

that can be mixed with various other metals to form alloys with differing desirable

properties, single silicon chip can be used to implement the functionality of an entire

system. A specific flavor of SoC is implemented on a programmable, reconfigurable

device. The natural solution has long been the FPGA. FPGAs are inherently flex-

ible devices that can be configured to implement any arbitrary system, including

embedded processors if needed.

As per my requirement, it performs the CCSDS prescribed processing on the pro-

Figure 5.1: Block diagram

grammable logic of the Zed board and transfers the processed data to the memory of

the processing system for further use. But in the continuous data transfer hardware

will interrupt the processor every time and it should be served by the processor, as

44

it will take multiple cycles of the processor. To overcome the drawback it should

be transferred by the DMA (Direct Memory Access) in which processor access it

separately via DMA. The data so acquired in the memory can then be streamed out

to a host over 1G Ethernet provided on the Zed board.

5.2 Embedded Hardware Design and Interface with

Zynq Processor

Embedded Hardware and the software was implemented on the real-time platform

like Zedboard which can receive the data from the outside source. The received data

can be processed on FPGA and the processor can transmit the data to the host.

To meet the requirement whole system is developed on Vivado IDE. Zynq processor

is the centralized processor which is hard coded on the board. For the system,

the communication between the processor and the peripherals are on AXI(Amba

Extensible Interface) bus. So the all the components are AXI. Here AXI DMA is

used for the direct data transfer to the memory. The peripherals used in the system

are programmed by the zynq processor. Linux is taken as an operating system of

the processor.All the blocks which will be used in the system are described below.

5.2.1 AXI Standard

On any SoC, there are many components like UART, Memory, Ethernet, CPU,

ADC/DAC etc.So, the major task is how they are connected to each other, how

they communicate with each other.There is a kind of interface that all of the units

talk to each other it is a bus which obeys a set of rules as per the design.There are

many SoC buses like IBM core connect, Wishbone, AXI etc. Here in Zynq SoC it

obeys AXI Standard[2].

45

AXI Interfaces

The transaction of data from one point to another point on the hardware is possible

by AXI Interfaces. Transactions are either read or write. The module which initiates

the transaction is called AXI master and the module which receives and respond to

the transaction is called AXI slave. So it is a Point-to-point connection for passing

data, addresses, and hand-shaking signals between master and slave clients within

the system[2]. Master should send set of command for example if read transaction it

should send read address to the slave and slave provides the read data and read the

response to the master. for write transaction master should send write address and

write data to the slave and slave provide write the response to the master. There

are two type of Interface Stream Interface and Memory mapped Interface[2].

Stream interface: Stream Interface has No addresses just data is flowing one block

to other. It has only two signals to initiate the transaction for read and write

transaction. READY and VALID signal[2]. Memory mapped interface: In memory

mapped interface there is address allocation to every slave. It have many signals for

transaction like AWVALID, AWLEN, AWREADY, AWID, AWADDR etc..for write

transaction and ARVALID, ARREADY, ARID, ARADDR etc. are for reading

transaction[2].

AXI Interconnect

An interconnect is effectively a switch which manages and directs traffic between at-

tached AXI interfaces. The connections between these interconnects are also formed

using AXI interfaces.One master and slave talk to each other with AXI Intercon-

nect.It is a unit which connects two master and slave[2]. It is a slave device for AXI

master and Master device for AXI slave.The possible connection is up to 16 Master

and Slaves through one AXI interconnect.It will be Slave device for AXI Master and

Master device for AXI Slave.It should do the transaction according to address the

range of AXI Slave.It can also perform Width Conversion, Clock Domain Transfor-

46

Figure 5.2: AXI Signal for Transaction

mation etc..[2].

AXI interconnect has to address decoding table when any master wants to initiate

the transaction the interconnect first look at the address of the transaction and

then puts the transaction to the specific slave. AXI interconnect is responsible for

connecting multiple masters and slave also useful for width conversations and also

responsible for clock domain transaction. Also, Contains Register Slices (To im-

prove performance)[2]. Figure 5.2 shows the read and write transaction signal for

the stream and memory map interface.

5.2.2 AXI DMA

Direct Register Mode

Direct Register mode of DMA provides a lower performance but it uses less FPGA

resource. It performs data transfer by providing destination address and the length

of the transfer to the DMA controlled register[11]. Suppose a data stream is entering

47

to a system or our DMA engine and CPU defines the transfer task for each packet

meaning it tells the DMA engine where the packet should go. So after sending ev-

ery single packet, DMA engine interrupts the CPU for next transfer task. So after

every completion of task CPU reprogram the DMA[11]. Figure 5.3 shows the DMA

controlled register in the direct register mode which will be programmed for the

operation of the DMA.

Figure 5.3: DMA Controlled Register in Direct Register Mode[11]

Scatter Gather Mode

The AXI DMA provides the high bandwidth direct memory access between the AXI

interfaces and it will support the scatter-gather mode, which offload the CPU from

the data movement tasks. Suppose the data stream is entering the system from

the source, the source can be any data from USB, PCI slot or any connectors here

in my implementation the source is sample generator[11]. As per the application

data should be processed and to be stored somewhere, can be dram memory of

processor so the data stored in memory but the memory blocks are not necessarily

continuous it can be distributed across the entire physical memory[11]. So basically

our DMA engine or DMA controller or any subsystem receives the data which are

coming and scattering it in different physical locations after entering to a system

and processed. But in reverse direction when the data stored in different physical

memory and want to gather the data, DMA controller will gather the data from

48

Figure 5.4: DMA Controlled Register in Scatter Gather Mode[11]

Figure 5.5: Controlled Register for Scatter Gather Discriptor[11]

different location and put it together and make a stream of data. Here the header

of data is coming from DRAM memory but body of the packets are coming from

actual physical memory[11]. Figure 5.4 shows the controlled register in the scatter

gather mode for the DMA to program and work. Figure 5.5 shows the controlled

register for the discriptor which provides the information about the data transfer

length through each discriptor and it also tells the processor whether the transfered

data has start of frame or end of frame or both.

49

Chapter 6

Design Implementation of Data

Acquisition System

The data acquisition system for the satellite data communication system is imple-

mented in the two ways. (1) Using direct register mode of DMA, in this the specific

length of the data can be transferred to the memory and after that, we have to repro-

gram the DMA for the further data transfer. So it is not a continuous data transfer.

(2) Using the scatter-gather mode of DMA, in this mode, the continuous data can

be transferred to the memory via the each descriptor. descriptor are defined in the

block RAM and the processor just tells the DMA to perform the operation as per

the descriptor.

6.1 DMA in Direct Register Mode

Figure 6.1 represents the generalized block diagram of the data acquisition sys-

tem which will be implemented on the hardware for the DMA in direct register

mode. AXI IP of Sample Generator is implemented using VHDL which generates

the continuous data after we provide the enable signal via the AXI GPIO using the

processor.

50

Figure 6.1: Generalized Block diagram for DMA in Direct Register Mode

6.1.1 Programmin Sequence for booting the linux with our

hardware on Zynq Processor

Programming Sequence:

• Create a hardware as shown in Figure 6.2 in Vivado. Follows the basic steps

for creating it.

• Generate a bitstream for hardware. From the file menu exports the hardware,

include bitstream and then launch the SDK[3].

• Set the jumper for the booting Linux from the SD card.

• In SDK first the FSBL(First Stage Boot Loader) will need to be created.

• Now we have to prepare an SD card for booting the Linux from that which

contains BOOT.bin, devicetree.dtb, ramdisk.image.gz, zimage and zmage.bin.

BOOT.bin : Which is created by zynq boot image utility under a xilinx

tools[3].

51

BOOT.bin includes FSBL, generated in SDK, system wrapper.bit was ex-

ported to SDK and U-boot.elf provided with the software[3].

• Copy all the above files to the SD card and and insert to the SD card slot on

the board. Now switch on the board and Linux will be booted on the processor

any terminal can show the booting process.

6.1.2 Programming Sequence for DMA in Direct Register

Mode

Programming Sequence:

• Define the base address of DMA and GPIO, destination address and the offset

of the DMA registers before main function.

• In the main define the pointer which will be used to assign a virtual address

to all the components of the hardware.

• Using a mmap function map a physical address of a components to the virtual

address.

follow the below sequence for programming the DMA and program the virtual

address for all the register and buffer using pointer.

• Start the S2MM channel running by setting the run/stop bit to 1 (S2MM

DMACR.RS = 1)[11].

• Enable interrupts by writing a 1 to S2MM DMACR.IOC IrqEn and S2MM

DMACR.Err IrqEn[11]. NOTE: The delay interrupt, delay count, and thresh-

old count are not used when the AXI DMA is configured for Simple DMA

mode[11].

• Write a valid destination address to the S2MM DA register[11].

• Write the length in bytes of the receive buffer in the S2MM LENGTH register[11].

52

Figure 6.2: Implementation Block Diagram for DMA in Direct Register Mode

• NOTE: A value greater than or equal to the largest received packet must

be written to S2MM LENGTH. A receive buffer length value written that is

less than the number of bytes received produces undefined results[11]. Figure

6.2 shows the hardware blocks, interface and the interconnection for DMA in

direct register mode which was developed in Vivado.

53

6.2 DMA in Scatter Gather Mode

Figure 6.3: Generalized Block Diagram for DMA in Scatter Gather Mode

6.2.1 Programming Sequence for DMA in Scatter Gather

Mode

Programming Sequence:

AXI DMA in scatter gather mode requires a memory it consists the list of operations

which should be performed. Operation begins with the setting up a control register

and descriptor pointer[11].

• Define the base address of DMA,Descriptor,GPIO, destination address. Define

the offset of the DMA registers before main function.

• In the main define the pointer which will be used to assign a virtual address

to all the components of the hardware.

• Using a mmap function map a physical address of a components to the virtual

address.

54

follow the below sequence for programming the DMA and program the virtual

address for all the register and buffer using pointer.

• Write the address of the starting descriptor to the current descriptor register[11].

• Start the S2MM channel running by setting the run/stop bit to 1 (S2MM

DMACR.RS = 1)[11].

• Enable interrupts by writing a 1 to S2MM DMACR.IOC IrqEn and S2MM

DMACR.Err IrqEn[11].

• Write a valid address to the tail Descriptor register meaning next descriptor

pointer or in the case of only one descriptor tail descriptor is same as current

descriptor pointer[11].

Programming of descriptor field

• Write the address of the next descriptor to the current descriptor register[11].

• Write the buffer address at the eighth offset of the descriptor pointer[11].

• Write the buffer length and the control field like start of frame and end of

frame flag at the eighteenth offset of the descriptor pointer[11].

Figure 6.5 shows the hardware blocks used for the DMA in scatter-gather mode

and the Figure 6.6 shows the same blocks implemented on Vivado.

55

Figure 6.4: Implementation Block Diagram for DMA in Scatter Gather Mode

56

Chapter 7

Results

7.1 Results for Data Transmission Process

7.1.1 Simulation Results

Figure 7.1: Simulation Result for Data Transmission Process at the start of packet

57

Figure 7.2: Simulation Result for Data Transmission Process at the end of the Packet

Figure 3.4 shows the simulation results for the data transmission process. For

the simulation, Testbench was implemented in VHDL. Ramp signal of 100MHz was

taken as an input to the encoder. The figure shows the final serial, randomized,

encoded data signal with attached sync marker at the start of packet as an output

of data encoder.

Figure 3.5 shows the same results at the end of the frame. Here as one packet

finished new packet will start so the real-time data transmission system is achieved.

58

7.1.2 Implementation Results

Figure 3.6 shows the implementation results for the data transmission process. It

shows that as one packet finished new packet will start so the real time continuous

data is being generated for transmission. Figure 3.7 shows the actual results of the

Figure 7.3: Implementation Result of continuous data transmission

implementation on the hardware. The first channel (green signal) shows the master

reset for the whole implementation. The second channel (yellow signal) shows the

serial, encoded and randomized final output. The third channel (purple signal)

shows the serial output of encoded data for reference. The fourth channel (pink

signal) shows the random number generation at the start of frame. Figure 3.8

shows the same result as shown in figure 3.7, but it is at the end of the frame.

59

Figure 7.4: Implementation Result at the start of the Packet

Figure 7.5: Implementation Result at the end of the packet

60

7.2 Results for Data Reception Process

7.2.1 Simulation Results

Figure 4.5 shows the simulation results for the data reception process. For the sim-

ulation, encoded data with some error was given as an input of data decoder. and

the figure shows the internal signals generated for the data decoding at the start of

the Berlekamp-Massey algorithm. As a final output, we get the new value of error

locator polynomial at every clock cycle.

Figure 7.6: Simulation Results of Data Decoding Procedure

Figure 4.6 shows the results at the end of the decoding procedure. It shows

the final output with error correction and also showing the error location and error

correction value. It shows the initial latency before getting final output but after

that we get the continuous output.

61

Figure 7.7: Simulation Results of Final Decoded Data

7.3 Results for Data Acquisition System

7.3.1 Results for DMA in Direct Register mode

Figure 6.3 Shows the implementation results after programming of the all blocks

which are implemented on the hardware. Here linux is the operating system of the

zynq processor. Figure 6.4 shows the same implementation results as figure 6.3 but

it is at the end of frame.

62

Figure 7.8: Transferred data with destination address at the start of frame

Figure 7.9: Transferred data with destination address at the end of frame

63

7.3.2 Results for DMA in Scatter-Gather mode

Figure 6.7 shows the final output for the DMA in scatter gather mode of DMA

which shows the continuous data transfer from source to the destination memory

buffer.

Figure 7.10: Transferred Data from the DMA in scatter-gather mode

64

Chapter 8

Conclusion and Future Scope

8.1 Conclusion

Real-time CCSDS specified baseband data transmission and reception system has

been successfully designed developed and implemented at 50 MHz on the reconfig-

urable platform using VHDL. The real-time data acquisition system based on con-

tinuous DMA of data has been experimentally tested to work satisfactorily. Through

this there are several learning outcomes such as new tools have been studied, boards

have been explored. This would help in the real-time data reception system of the

satellite.

8.2 Future Scope

In this project, the main focus is on data transmission and reception system of

the future satellite like GISAT and the high-speed data acquisition system now the

communication of target system SoC to host PC will be implemented in a manner

such can be used in data reception system.

65

Bibliography

[1] ”TM SYNCHRONIZATION AND CHANNEL CODING”, [Online], Website,

May 1997, https://public.ccsds.org

[2] ”The Zynq Book ebook”,

http : //www.zynqbook.com

[3] zedboard refdoc Vivado 2014-2 [Online],Website, 9th March 2014,

https://weble.upc.edu/asig/ESDC/ Tutorials/zedboard refdoc Vivado 2014-

2/zedboard refdoc Vivado 2014-2.pdf

[4] Sklar, Bernard. ”Reed-solomon codes.” URL http://www. informit.

com/content/images/art. sub.–sklar7. sub.–reed-solomo-n/elementLinks/art.

sub.–sklar7. sub.–reed-solomon. pdf (2001): 1-33.

[5] Hsie-chia Chang, CB Shung, Chen yi lee, A reed-solomon product code (RS-

PC) decoder chip for DVD application, (IEEE) Journal of Solid State Circuits,

(Volume: 36, Issue: 2, Feb 2001).

[6] Reed-Solomon(RS) Coding Overview, VOCAL Technologies, Ltd., Rev. 2.28n,

2010.

[7] J.Y Chang and C. Shung, ”A high speed Reed-Solomon codec chip using look

forward architecture ”, IEEE APC CAS94, PP. 212-217, Dec. 1994.

66

[8] Lee H., ”A high speed, low complexity Reed-Solomon decoder for optical com-

munications”, IEEE Transactions on Circuits and Systems II, PP. 461-465,

2005.

[9] J. I. Hall, ”Notes on Coding Theory”, Dept. of Mathematics, Michigan State

University, East Lansing, MI 48824 USA, Jan. 3, 2003–”Chapter 5: Generalized

Reed-Solomon Codes” Internet Article, pp. 63-76, Jan. 3, 2003.

[10] J. I. Hall, ”Notes on Coding Theory”, Dept. of Mathematics, Michigan State

University, East Lansing, MI 48824 USA, Jan. 3, 2003–”Chapter 5: General-

ized Reed-Solomon Codes” Internet Article, pp. 63-76, Jan. 3, 2003. Sklar, B.,

”Digital Communications: Fundamentals and Applications”, Second Edition;

Prentice Hall, 2001.

[11] pg021 axi dma, [Online], Website, 5th october 2016, https: //www.xilinx.com

/support/ documentation /ip documentation /axi dma/ v7 1/ pg021

axi dma.pdf

67

