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Abstract

In ASIC design , verification is an essential step in the development of any product.it en-

sures that the product as designed is the same as the product as intended,by applying the

test signals to the design and check whether its matches with the golden output or not.

verification is an essential step in the development of any product. Verification ensures

that the product as designed is the same as the product as intended. Unfortunately, many

design projects do not complete thorough design qualification resulting in products that

do not meet customer expectations and require costly design modifications. More the

complex is design , the verification of design is also more complex and verification time

is also more.So to verify more corner cases easily , Random Instruction Sequence (RIS)

is more effective approach . Most of design bugs are flushed out by the deterministic ap-

proach, RIS tools are also highly effective in hitting obscure cases.The tool uses template

library that contains test-cases. A test file contains registers and memory values. Random

test generator never generates a test which is not a valid test.

A Translation lookaside buffer (TLB) is a memory cache that is used to reduce the time

taken to access a user memory location.so the second part is to analyse the TLB and how

the address translation works.Thesis also contains invalidation of the TLB. and affected

translation registers and attributes for the translation table walk and invalidation.
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Chapter 1

Introduction

1.1 Motivation

Random instruction sequence tools are widely used for processor verification and valida-

tion. RIS tools are mainly used to find bugs in RTL design. RIS tools generate situations

which are hard to imagine. RIS tools are very useful for hitting corner cases that are

very difficult to archive using directed testing. If bugs includes some specific sequence

of instructions in narrow time gape than RIS tools which generate random sequence of

instructions are very effective. Macros are useful for providing controlled randomness to

the test which is useful for targeting a specific area in the processor architecture.

RIS is widely recognized as an effective approach for verifying corner cases that are

hard to anticipate. RIS is also highly effective in hitting obscure cases. RIS tools uses

random test libraries to cover most of corner cases. Improvements in randomization of

RIS tools help us to increases the hit rate of different corner cases.

1



CHAPTER 1. INTRODUCTION 2

1.2 Problem Statement

The objective of this project is to develop test-cases that are either generated by MP Ran-

dom Instruction set tools or write test-cases for particular scenarios and verify the RTL.An

effectiveness of the test determines how suitable it is for the verification of targeted area.

1.3 Thesis Organization

This Thesis organized in to seven chapters, a brief info about them are discussed below:

Chapter 2, describes an introduction and general overview about the ARM v8 Archi-

tecture.

Chapter 3, describes about the ARM Virtual Memory System Architecture and how the

virtual to physical translation occurs and steps for that.

Chapter 4, describes an introduction about the Random Instruction Sequence Tool. It also

contains how it is an effective than the Deterministic approach to cover corner cases.

Chapter 5, describes about the AMBA Advanced Xtensible Interface protocol.

Chapter 6, describes about the Out of Order execution and how the barrier instruction

works.

Chapter 7, describes Concluding remarks and scope for future work.



Chapter 2

About ARM architecture

2.1 Introduction

ARM architecture is a Reduced Instruction Set Computer (RISC) architecture with the

following RISC architecture features:

• A large uniform register file.

• A load/store architecture, where data-processing operations only operate on register

contents, not directly on memory contents.

• Simple addressing modes, with all load/store addresses determined from register

contents and instruction fields only.

The ARMv8 architecture supports:

• A 64-bit Execution state, AArch64.

• A 32-bit Execution state, AArch32.

The generic names AArch64 and AArch32 describe the 64 and 32-bit Ex states:

• AArch64 Is the 64-bit Execution state, meaning addresses are held in 64-bit reg-

isters, and instructions in the base instruction set can use 64-bit registers for their

processing. AArch64 state supports the A64 instruction set.

3



CHAPTER 2. ABOUT ARM ARCHITECTURE 4

• AArch32 Is the 32-bit Execution state, meaning addresses are held in 32-bit regis-

ters, and instructions in the base instruction sets use 32-bit registers for their pro-

cessing. AArch32 state supports the T32 and A32 instruction sets.

2.1.1 ARM defines three architecture profiles

• Application profile: Supports a Virtual Memory System Architecture (VMSA) based

on a Memory Management Unit (MMU).

• Real-time profile: Supports a Protected Memory System Architecture (PMSA)

based on a Memory Protection.

• Microcontroller profile: Implements a programmer’s model designed for low-latency

interrupt processing, with hardware stacking of registers and support for writing in-

terrupt handlers in high-level languages.

2.1.2 Execution states

Execution state defines the PE execution environment, including:

• The supported register widths.

• The supported instruction sets.

• Significant aspects of:

– The exception model.

– The Virtual Memory System Architecture (VMSA).

– The programmers model.

The Execution states are:

• The 64-bit Execution state. This Execution state:
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– Provides 31 64-bit general-purpose registers, of which X30 is used as the pro-

cedure link register.

– Provides a 64-bit program counter (PC), stack pointers (SPs), and exception

link registers (ELRs).

– Provides 32 128-bit registers for SIMD vector and scalar floating-point sup-

port.

– Defines the ARMv8 Exception model, with up to four Exception levels, EL0

- EL3, that provide an execution privilege hierarchy.

– Provides support for 64-bit virtual addressing. For more information, includ-

ing the limits on address ranges.

– Defines a number of Process state (PSTATE) elements that hold PE state.

The A64 instruction set includes instructions that operate directly on various

PSTATE elements.

– Names each system register using a suffix that indicates the lowest Exception

level at which the register can be accessed.

• The 32-bit Execution state. This Execution state:

– Provides 13 32-bit general-purpose registers, and a 32-bit PC, SP, and link

register (LR). The LR is used as both an ELR and a procedure link regis-

ter.Some of these registers have multiple banked instances for use in different

PE modes.

– Provides a single ELR, for exception returns from Hyp mode.

– Provides 32 64-bit registers for Advanced SIMD vector and scalar floating-

point support.

– Provides two instruction sets, A32 and T32.

– Supports the ARMv7-A exception model, based on PE modes, and maps this

onto the ARMv8 Exception model, that is based on the Exception levels. Pro-

vides support for 32-bit virtual addressing.



CHAPTER 2. ABOUT ARM ARCHITECTURE 6

– Defines a number of Process state (PSTATE) elements that hold PE state. The

A32 and T32 instruction sets include instructions that operate directly on var-

ious PSTATE elements, and instructions that access PSTATE by using the

Application Program Status Register (APSR) or the Current Program Status

Register (CPSR).

Transitioning between the AArch64 and AArch32 Execution states is known as

interprocessing. The PE can move between Execution states only on a change of

Exception level.This means different software layers, such as an application, an

operating system kernel, and a hypervisor, executing at different Exception levels,

can execute in different Execution states.
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2.2 ARMv8-A security model

Exception levels EL0 - EL3 :

• EL0 unprivileged execution, applications

• EL1 OS kernel

• EL2 supports virtualization of non-secure operation, hypervisor

• EL3 supports switching between two security states

All implementations must include EL0 and EL1 pointer register selection

– SP-ELx

Figure 2.1: Exception level model [2]

As from the above , The ARMv8 exception model defines Exception levels EL0-EL3,

where EL0 has the lowest software execution privilege, and execution at EL0 is called

unprivileged execution. Increased values of n, from 1 to 3, indicate increased software

execution privilege.EL2 provides support for processor virtualization. EL3 provides sup-

port for two security states, see Security state.



Chapter 3

Virtual Memory System Architecture

A VMSA provides a Memory Management Unit (MMU), that controls address transla-

tion, access permissions, and memory attribute determination and checking, for memory

accesses made by the PE.

3.1 Introduction

3.1.1 Virtual Address

• An address used in an instruction, as a data or instruction address, is a Virtual

Address .In computing, a virtual address or address space is the set of ranges of

virtual addresses that an operating system makes available to a process. The range

of virtual addresses usually starts at a low address and can extend to the highest

address allowed by the computer’s instruction set architecture.

3.1.2 Intermediate Physical Address

• In a translation regime that provides two stages of address translation, the IPA is:

– The OA from the stage 1 translation.

– The IA for the stage 2 translation.

8
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a translation regime that provides only one stage of address translation, the IPA is

identical to the PA. Alternatively, the translation regime can be considered as having

no concept of IPAs.

3.1.3 Physical Address :

• The address of a location in a physical memory map. That is an output address from

the PE to the memory system.

3.1.4 Memory management unit :

• A memory management unit , sometimes called paged memory management unit

, is a computer hardware unit having all memory references passed through itself,

primarily performing the translation of virtual memory addresses to physical ad-

dresses. It is usually implemented as part of the central processing unit , but it also

can be in the form of a separate integrated circuit. An MMU effectively performs

virtual memory management, handling at the same time memory protection, cache

control, bus arbitration and, in simpler computer architectures (especially 8-bit sys-

tems), bank switching.

3.1.5 Page Table :

• In operating systems that use virtual memory, every process is given the impression

that it is working with large, contiguous sections of memory. Physically, the mem-

ory of each process may be dispersed across different areas of physical memory,

or may have been moved to another storage, typically to a hard disk drive. When

a process requests access to data in its memory, it is the responsibility of the op-

erating system to map the virtual address provided by the process to the physical

address of the actual memory where that data is stored. The page table is where

the operating system stores its mappings of virtual addresses to physical addresses,
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with each mapping also known as a page table entry.

3.1.6 The translation process :

• The CPU’s memory management unit stores a cache of recently used mappings

from the operating system’s page table. This is called the translation lookaside

buffer , which is an associative cache.When a virtual address needs to be translated

into a physical address, the TLB is searched first. If a match is found then its a TLB

hit, the physical address is returned and memory access can continue. However, if

there is no match then its a TLB miss, the handler will typically look up the address

mapping in the page table to see whether a mapping exists. If one exists, it is written

back to the TLB and this must be done as the hardware accesses memory through

the TLB in a virtual memory system, and the faulting instruction is restarted and

this may happen in parallel as well. This subsequent translation will find a TLB hit,

and the memory access will continue.
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3.2 Address translation

A VMSA provides a Memory Management Unit , that controls address translation, ac-

cess permissions, and memory attribute determination and checking, for memory accesses

made by the PE. The process of address translation maps the virtual addresses used by

the PE onto the physical addresses of the physical memory system. These translations

are defined independently for different Exception levels and Security states, and Fig.3.1

shows:

Figure 3.1: Address translations for different Exception levels and Security states [3]

The memory translation granule size defines both:

• The maximum size of a single translation table.

• The memory page size. That is, the granularity of a translation table lookup.

VMSAv8-64 supports translation granule sizes of 4KB, 16KB, and 64KB, and each trans-

lation stage is configured to use one of these granule sizes. Using a larger granule size

can reduce the maximum required number of levels of address lookup because:

• The increased translation table size means the translation table holds more entries.

This means a single lookup can resolve more bits of the input address.

• The increased page size means more of the least-significant address bits are required

to address a page.
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• These address bits are flat mapped from the input address to the output address, and

therefore do not require translation.

Figure 3.2: Effect of granule size on a stage of address translation [3]

As Fig.3.2 shows, the translation granule determines the number of address bits:

• Required to address a memory page.

• That can be resolved in a single translation table lookup.

This means the translation granule determines how the input address (IA) is resolved to an

output address (OA) by the translation process. The following diagrams show this model,

for 4KB of the permitted granule sizes. shows how a 48-bit IA is resolved when using the

4KB translation granule.

Figure 3.3: How the IA is resolved when using the 4KB translation granule [3]
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3.3 Translation table walks

A translation table walk comprises one or more translation table lookups. The translation

table walk is the set of lookups that are required to translate the virtual address to the

physical address. For the Non-secure EL10 translation regime, this set includes lookups

for both the stage1 translation and the stage 2 translation. The information returned by a

successful translation table walk is:

• The required physical address. If the access is from Secure state this includes iden-

tifying whether the access is to the Secure physical address space or the Non-secure

physical address space.

Figure 3.4: Generalized view of a stage of address translation [3]

• The access permissions for the target memory regions.The translation table walk

starts with a read of the translation table for the initial lookup. The TTBR for

the stage of translation holds the base address of this table. Each translation table

lookup returns a descriptor, that indicates one of the following:

• The entry is the final entry of the walk. In this case, the entry contains the OA, and

the permissions and attributes for the access.
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3.3.1 Full translation Table Walk (Flowchart):

Figure 3.5: Flowchart of complete translation table walk [part 1] [3]
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Figure 3.6: Flowchart of complete translation table walk [part 2] [3]



Chapter 4

RIS test generator

4.1 Introduction

RIS test generator is for validation of Multi-processing or Cluster systems via RTL simu-

lations,and targeting high instruction generation rate ≥ 1000IPS

ARMs next-generation MP RIS verification tool focusing on memory sub-system opera-

tions and cross-PE coherency transactions in Multi-Processor/Cluster systems.Its a server-

class static RIS generator that achieves high instruction generationrates (greater that 1000

IPS) and designed to allow derived test sequences to quickly achieve their desired intent,

while also allowing maximum re-use of generated scenarios for faster overage closure.

It offers full support of ARMv8-A AArch64 execution state. The AArch32 A32 (ARM)

ISA is partially supported, and no support is available for AArch32 T32 (Thumb) ISA.

Instruction groupings can be defined to target specific operations and micro-architectural

features. The following are additional high-level features targeted by ARM’s new MP

RIS Tool:

• Multi-processor memory coherency.

• Barriers.

16
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• Cache and TLB maintenance operations.

• Message passing (Exclusive operations, Load Acquire or Store Release, Atomics).

• Load-store dependencies and hazards.

• Generate traffic to maximize use of load-store pipeline and evictions.

• Used in Server class coherency verification tool.

• 1-32 PEs (Cores), multiple cache hierarchies, sharing domains and interconnects.

• Efficient run time stimulus reaching test intent in less cycles.

• Maximum re-use of generated scenarios through code re-execution.

• Enables faster bug reproduction and randomization around buggy scenario.

4.2 Random Instruction Sequence (RIS) Generation

Random instruction sequence (RIS) tools are widely used across the industry for processor

verification and validation. These tools are often used to find design bugs in a relatively

stable but not yet mature RTL design. RIS tools are very effective in generating test

scenarios that are hard to envision. However, quite often completely random instruction

sequences are of little test value for exposing corner cases in the design, especially if

the bug involves a sequence of events happening in a narrow timing window. Macros

can help enhance the test quality of the generated instruction sequences by providing

controlled randomness around a specific sequence of instructions targeting a specific area

in the processor architecture.
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4.3 Random Vs Deterministic stimulus generation

Random stimulus generation is widely recognized as an effective approach for verifying

corner cases that are hard to anticipate. We found that, while most of design bugs are

used out by the deterministic approach, random instruction sequences are also highly ef-

fective in hitting obscure cases, often finding bugs that may lay undetected for years in

real-life applications. ARM has an internal tool that can generate targeted random code

sequences known as RIS. With RIS, we pre-generate self-checking tests using an ISS as

the reference design. This technique won’t catch design errors that are present in both

the ISS and the HDL model, but in practice this situation is rare and these sequences are

likely to show design errors in either model when enough sequences have been simulated.

The mainstay methodology that we have used since the early days of the first ARM CPU

design is deterministic simulation. This is a common and well understood methodology

that offers a number of advantages, although it’s limited by the amount of effort required

to generate test cases and the performance of simulation tools. At ARM, we develop test

cases as self-checking assembler sequences. We then replay these code sequences on a

simple simulation testbench consisting of the ARM CPU, a simple memory model, and

some simple memory-mapped peripherals. Our tests fall into two categories, AVS (Archi-

tecture Validation Suites) and DVS (Device Validation Suites). ARM’s all AVS class tests

check architectural functionality such as the instruction set architecture (32-bit and 16-bit

Thumb), the exception model, and the debug architecture. Our DVS tests focus on the

behaviour of specific cores and check corner cases arising from the particular implemen-

tation. An advantage of this type of test case is that tests are self-contained and portable

from ISS (Instruction Set Simulator) environments to Verilog or VHDL test bench envi-

ronments, or to FPGA prototypes and eventually to silicon. Thus, our customers and we

can verify the functional equivalence of all these design views. These suites of tests are

effectively the ARM architecture compliance suites.
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4.4 Test Topology

The typical structure of Test Topology in RIS tool Fig.4.1.

Following are the steps :-

Figure 4.1: Test topology

a. Initialization sets up test environment

b. Threads executed in each PE

c. All threads synchronized globally

• Partitions test flow into Zones

• Zone order defines initial test sequence

d. Scenarios include one or multiple PEs

• Define memory dependencies between PEs

e. Re-execution of Zones in Random order

f. Finalization sequence cleans up
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AMBA AXI Protocol

The AMBA AXI protocol supports high-performance, high-frequency system designs.

The AXI protocol:

• is suitable for high-bandwidth and low-latency designs

• provides high-frequency operation without using complex bridges

• meets the interface requirements of a wide range of components

• is suitable for memory controllers with high initial access latency

• provides flexibility in the implementation of interconnect architectures

• is backward-compatible with existing AHB and APB interfaces.

The key features of the AXI protocol are:

• separate address/control and data phases

• support for unaligned data transfers, using byte strobes

• uses burst-based transactions with only the start address issued

• separate read and write data channels, that can provide low-cost Direct Memory

Access (DMA)

20
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• support for issuing multiple outstanding addresses

• support for out-of-order transaction completion

• permits easy addition of register stages to provide timing closure.

The AXI protocol includes the optional extensions that cover signaling for low-power

operation.

5.1 AXI Architecture

The AXI protocol is burst-based and defines the following independent transaction chan-

nels:

• read address

• read data

• write address

• write data

• write response

An address channel carries control information that describes the nature of the data to

be transferred. The data is transferred between master and slave using either:

• A write data channel to transfer data from the master to the slave. In a write trans-

action, the slave uses the write response channel to signal the completion of the

transfer to the master.

• A read data channel to transfer data from the slave to the master.

The AXI protocol:

• permits address information to be issued ahead of the actual data transfer
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• supports multiple outstanding transactions

• supports out-of-order completion of transactions.

Figure 5.1: Channel architecture of reads

shows how a write transaction uses the write address, write data, and write response chan-

nels.

Figure 5.2: Channel architecture of writes
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5.2 Basic read and write transactions

This section defines the basic mechanisms for AXI protocol transactions. The basic mech-

anisms are:

• the Handshake process

• the Channel signaling requirements

5.2.1 Handshake process

All transaction channels use the VALID/READY handshake process to transfer address,

data, and control information. This two-way flow control mechanism means both the

master and slave can control the rate at which the information moves between master and

slave. The source generates the VALID signal to indicate when the address, data or con-

trol information is available. The destination generates the READY signal to indicate that

it can accept the information. Transfer occurs only when both the VALID and READY

signals are HIGH. On master and slave interfaces there must be no combinatorial paths

between input and output signals. data or control information after T1 and asserts the

VALID signal. The destination asserts the READY signal after T2, and the source must

keep its information stable until the transfer occurs at T3, when this assertion is recog-

nized.

Figure 5.3: VALID before READY handshake

A source is not permitted to wait until READY is asserted before asserting VALID.

Once VALID is asserted it must remain asserted until the handshake occurs, at a ris-
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ing clock edge at which VALID and READY are both asserted. the destination asserts

READY, after T1, before the address, data or control information is valid,indicating that

it can accept the information. The source presents the information, and asserts VALID,

after T2, and the transfer occurs at T3, when this assertion is recognized. In this case,

transfer occurs in a single cycle.

Figure 5.4: READY before VALID handshake

A destination is permitted to wait for VALID to be asserted before asserting the cor-

responding READY.If READY is asserted, it is permitted to deassert READY before

VALID is asserted.

both the source and destination happen to indicate, after T1, that they can transfer the

address, data or control information. In this case the transfer occurs at the rising clock

edge when the assertion of both VALID and READY can be recognized. This means the

transfer occurs at T2.

Figure 5.5: VALID with READY handshake
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5.2.2 Channel Signaling

• Read transaction dependencies

Fig shows the read transaction handshake signal dependencies, and shows that,

in a read transaction:

– the master must not wait for the slave to assert ARREADY before asserting

ARVALID

– the slave can wait for ARVALID to be asserted before it asserts ARREADY

– the slave can assert ARREADY before ARVALID is asserted

– the slave must wait for both ARVALID and ARREADY to be asserted before

it asserts RVALID to indicate that valid data is available

– the slave must not wait for the master to assert RREADY before asserting

RVALID

– the master can wait for RVALID to be asserted before it asserts RREADY

– the master can assert RREADY before RVALID is asserted.

Figure 5.6: Read transaction handshake dependencies

• Write transaction dependencies

Fig shows the write transaction handshake signal dependencies, and shows that in

a write transaction:

– the master must not wait for the slave to assert AWREADY or WREADY

before asserting AWVALID or WVALID

– the slave can wait for AWVALID or WVALID, or both before asserting AWREADY
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– the slave can assert AWREADY before AWVALID or WVALID, or both, are

asserted

– the slave can wait for AWVALID or WVALID, or both, before asserting WREADY

– the slave can assert WREADY before AWVALID or WVALID, or both, are

asserted

– the slave must wait for both WVALID and WREADY to be asserted before

asserting BVALID the slave must also wait for WLAST to be asserted before

asserting BVALID, because the write response, BRESP, must be signaled only

after the last data transfer of a write transaction

– the slave must not wait for the master to assert BREADY before asserting

BVALID

– the master can wait for BVALID before asserting BREADY

– the master can assert BREADY before BVALID is asserted.

Figure 5.7: Write transaction handshake dependencies
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Out of Order Execution

Earlier computer programs behaved in practice pretty much the way we might expect

them to from looking at the source code.

1) Things happened in the way specified in the program.

2) Things happened in the order specified in the program.

3) Things happened the number of times specified in the program (no more, no less).

4) Things happened one at a time.

6.1 Out Of Order

In order for existing programs and programming models to remain functional, even the

most extreme modern processors will attempt to preserve the illusion of Sequential Exe-

cution from within the executing program. However, in underneath, lot of things will be

going on that cannot be hidden from outside the processor.

Consider the following code-snippet, which has a couple of instructions that could poten-

tially take more than one cycle before the result is available to subsequent instructions.

Both a mul and a ldr can on several architectures require multiple cycles before their re-

sults are available. In this case we assume 2 cycles for each.

27
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Figure 6.1: Assembly code for execution

If we execute this code on an in-order processor, the execution will look something like

the following:

Figure 6.2: Assembly code for in-order execution

While if we execute it on an out-of-order processor, we might see something more like

Figure 6.3: Assembly code for out-of- order execution

By permitting the ldr to execute while we wait for the mul to complete so that the str can

progress, we have also given more time for the ldr to complete before its value is needed.
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6.2 Need of Barriers

A barrier, in some architectures called a fence, is an operation that explicitly enforces

some type of ordering of memory accesses. On the higher level this can mean com-

piler directives preventing load/store operations from being reordered across a line in the

source code, but leaving the compiler free to rearrange memory accesses on either side

with other accesses on the same side. On the lower level, this can mean dedicated instruc-

tions stopping execution on a core until all previous memory accesses are guaranteed to

be visible to other agents in the system. An agent is any device in the system capable of

initiating bus transactions - for example a processor or a DMA controller.

Figure shows an example of a barrier affecting the ordering of load-store instructions.

Figure 6.4: Example of Barrier Effect

There is an ordering dependency that the effects of Store 1 are visible to Load 2. For

example, Store 1 might be a write to a configuration register that remaps the physical

address of a peripheral that is then read from by Load 2. Note that accesses on either side

of the barrier can still be freely reordered where there are no address dependencies.
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6.3 Barriers

Barriers were introduced progressively into the ARM architecture.

• Instruction Synchronization Barrier (ISB)

The Instruction Synchronization Barrier ensures that any subsequent instructions

are fetched anew from cache in order that privilege and access is checked with the

current MMU configuration. It is used to ensure any previously executed context

changing operations (including cp15 operations) will have completed by the time

the ISB completed.

• Data Memory Barrier (DMB)

The basic functionality of a DMB is as follows:

It prevents reordering of data accesses instructions across itself. All data accesses

by this processor/core before the DMB will be visible to all other masters within

the specified shareability domain before any of the data accesses after it. It also

ensures that any explicit preceding data (or unified) cache maintenance operations

have completed before any subsequent data accesses are executed.

The DMB instruction takes two optional parameters: an operation type (stores only

- ’ST’ - or loads and stores) and a domain. The default operation type is loads and

stores and the default domain is System. So, in effect DMB is shorthand for DMB

SY. All possible combinations of types and domains are legal operations on any

processor, even if it does not implement the specific functionality described, and

can be substituted internally for any stronger barrier.

• Data Synchronization Barrier (DSB)

The Data Synchronization Barrier enforces the same ordering as the Data Memory

Barrier, but it also blocks execution of any further instructions until synchronization

is complete. It also waits until all cache and branch predictor maintenance opera-

tions have completed for the specified shareability domain. If the access type is

load and store then it also waits for any TLB maintenance operations to complete.



Chapter 7

Conclusion and Future Scope

7.1 Conclusion

Random instruction sequence (RIS) tools are widely used across the industry for processor

verification and validation. RIS tools are very effective to generate test scenarios that are

hard to envision. Improvement in randomization of RIS tool helps us to increases hit

rate of different corner cases. Some templates are written in such way that it forces the

simulator to generate fixed scenarios to hit corner cases like instruction optimization,

crypto, early forward.

7.2 Future Scope

• Generate testcases from RIS tool that is targeted to memory area and debug the

failed testcases.

• Analysis of different features of memory management unit. Analysis of Cache

hierarchy and translation from virtual address to physical address and page table

replacement policy.

• Understanding of micro-architecture and various components of it.

31



References

[1] ARM Architecture Reference Manual (Beta) for ARMv8-A. Available:

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset .architec-

ture.reference/index.html

[2] www.verificationacademy.com

[3] http://www.verificationguide.com/p/home.html

[4] Jhon L. Hennessy, David A. Patterson, ”Data-Level Parallelism in Vector, SIMD

GPU Architecture”. in Computer Architecture: A Quantitative Approach, 5th ed.,

MA: Morgan Kaufmann, 2012.

[5] AMBA AXI and ACE Protocol Specification

32


	Declaration
	Disclaimer
	Certificate
	Certificate
	Declaration
	Acknowledgements
	Abstract
	List of Figures
	Abbreviation Notation and Nomenclature
	Introduction
	Motivation
	Problem Statement
	Thesis Organization

	About ARM architecture
	Introduction
	ARM defines three architecture profiles
	Execution states

	ARMv8-A security model 

	Virtual Memory System Architecture
	Introduction
	Virtual Address
	Intermediate Physical Address
	Physical Address :
	Memory management unit :
	Page Table :
	The translation process :

	Address translation
	Translation table walks
	Full translation Table Walk (Flowchart):


	RIS test generator
	Introduction
	Random Instruction Sequence (RIS) Generation
	Random Vs Deterministic stimulus generation
	Test Topology

	AMBA AXI Protocol
	AXI Architecture
	Basic read and write transactions
	Handshake process
	Channel Signaling


	Out of Order Execution
	Out Of Order
	Need of Barriers
	Barriers

	Conclusion and Future Scope
	Conclusion
	Future Scope

	References

