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Abstract

The quality of the netlist generated during synthesis has an enormous impact on the

rest of the physical design flow. For SoC’s designed at advanced nodes, it is very

essential to come out of synthesis with predictable timing and congestion estimates.

The quality of the netlist coming out of synthesis has a big impact on the speed

and predictability of the backend physical implementation. Optimizing at higher

abstraction levels offer more room for QoR improvement, in addition to enabling

faster runtimes. High quality physical RTL output makes the entire design flow more

predictable with shorter design cycles. Along with this achieving timing closure in

their first iteration is also a challenge. The design team must iterate by studying

the output of the physical synthesis run, then potentially massage the input, e.g., by

changing the floorplan, timing assertions, pin locations, logic structures, etc., in order

to hopefully achieve a better solution for the next iteration.

In this project we are studying the approaches to get better QoR in physical im-

plementation. The first approach is to facilitate family integration to get floorplan

definition early in the design cycle, in order to avoid major critical issues in the later

stage of the design cycle. The second approach is using Synopsys Physical Guidance

flow. This flow is jointly supported by DC and ICC to improve runtime, correlation

and routability and to reduce routing related congestion.
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Chapter 1

Introduction
Very Large Scale Integration (VLSI) is a technology domain in which significant

changes are happening every year. According to Moore’s law, the density of transis-

tors on a chip doubles every eighteen months. Even though this law appears to be

unrealistic beyond a point, utilizing the power of high quality designs, modern fabri-

cation technologies and availability of Design Automation (DA) tools have facilitated

the industry to keep up with Moore’s law. As the VLSI process technology node

shrinks, the fabrication technology and the VLSI design process becomes complex.

The design complexity is arising from the sheer fact that more functionality is in-

cluded in the same chip area where as parasitic elements (resistance and capacitance)

start dominating in design. Along with complexity of modern design,comes the issue

of quality and efficiency.

To combat these challenges, industry resorts to automation in various design phases

of a VLSI product. The complexity of modern day designs in VLSI is such that

any chip/design without using design automation tools/methodologies is unthinkable.

This project aims at improving the quality and efficiency in the backend design phase.

1.1 Problem Statement

In the initial stage of synthesis in ASIC design flow, due to lack of layer assignment and

buffering needs, the delay estimation of Family is poor. Family Integration happens

in later stage of design cycle, which is late to figure out major critical issues for timing

violations.The major issues (Figure 1.1) are:

∙ Figuring out the buffer distance.

∙ Figuring out channel width.

The second challenge is to improve runtime, correlation and routablity in physical

1
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Figure 1.1: Problem Flowchart

design, and to achieve better quality of results. For this we use Synopsys Physical

Guidance Flow (SPG). This flow significantly speeds up ICC runtime because ICC

uses the physical guidance information from DC as its seed placement and therefore

goes through fewer placement steps.

1.2 Motivation and Overview

In the initial stage of design cycle major focus is on RTL verification. During this

period the backend team focuses on estimating the pin locations, block placement,etc.

Routing cannot be done at this stage as we do not have concrete data required for it.

All the runs are running parallel to each other.

Now as the design advances in the later stage of design cycle, we can see that the
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timing models are present at the block level design, but the .lib file is not accurate.

So even though the timing model is present , the tool is not able to figure out the

accurate timing violations or the exact layer on which the signal should be routed.

Now here we do synthesis on Design Compiler in Topographical mode, which has the

capability to create a virtual layout and give post layout timing. The tool with the

.lib present for the block level is able to do so for the blocks, but this is not the case

at Family level.

At the Family level, the blocks are considered as black boxes. So now we do not have

any information for the timing of the family. All we have is the floorplan information

for it. Here the tool cannot assign layers to the signals as it does not have the accurate

.lib required for it. For this we depend on the feedback from the timing team. So our

intention here is to check the design for major critical issues related to timing, DRC

and area, earlier in the design cycle. And try to resolve the issue during Synthesis of

the design, and revert back to the RTL team if the issue cannot be resolved without

changing the RTL. This will save us significant amount of runtime.

The objective of this report is to do distance based buffering, which will influence the

floorplan and also it will give an estimate for the number of nets which will traverse

over the block, so that the channel width can be determined. This will help us to get

an estimate for the design area and avoid problems of congestion as well.

Moreover, our aim is to achieve better QoR in physical implementation, so we also

try to reduce the ICC runtime by reducing the number of placement steps which the

ICC tool has to undergo. This we are trying to achieve by passing the placement

information during the synthesis stage. Our aim through this is to get the placement

of standard cells from the synthesis stage and pass it to the place and route tool

and avoiding the coarse placement step in ICC. And using the netlist generated from

synthesis which contains the placement information as a seed placement for ICC, we

improve the coorelation between both the stages, which further enhances the Quality

of Results.



Chapter 2

Literature Review
A physical design flow consists of producing a production worthy layout from a gate-

level netlist subject to a set of constraints. This report focuses on the problems

imposed by shrinking technologies and it’s turnaround time.

As stated by Moore, the number of transistors per square inch will double approx-

imately every 18 months.Due to this design complexity is increased which in turn

affects the turnaround time. A flow consisting of logic synthesis followed by place-

and-route cannot work with deep submicron (DSM). At 0.18um and beyond, inter-

connect becomes a dominant factor and breaks the dichotomy between the logical

and physical domains.We can no longer neglect the impact of the interconnect on

timing: the gate delay depends mostly on the output capacitance it drives, of which

the net capacitance becomes the largest contributor; also the delay of long nets, which

depends on their capacitance and resistance, becomes larger than gate delays. More-

over, coupling capacitance (the capacitance between nets on the same layer) becomes

more dominant over inter-layer capacitance (the capacitance due to overlapping of

interconnect between different layers) with every new process technology. This is

because the nets are getting much closer to each other and the wire aspect ratio of

height to width is increasing. This means that the capacitance of a net cannot be

determined without knowing both its route and that of its neighbors.

The resistance of interconnect plays a vital role in the layer assignment for signals.

As the design geometries are shrinking,the area is decreasing.As a result of which the

wire resistance is increasing drastically as resistance is inversely proportional to area.

To accommodate the effect of high resistance, the critical signals are routed in higher

layers, where the resistance as compared to the lower layers is less.

Signal Integrity plays a key role in VLSI Design. Various signals have to traverse

through large distance to reach the desired flop. During this traversal, there is a

4
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high risk of the signal to get distorted due to the crosstalk, IR drop, electromigration

and self-heat. This problem must be identified as early as possible since it is very

costly and time consuming as it is very difficult to fix them during the final stages of

implementation.

Gradually the design architecture is moving towards higher complexity level. Pro-

duction designs today contain tens of millions of gates. Due to the overall complexity

of the chip design, it is often divided in several logic and physical blocks, with several

independent design teams working in parallel at a different pace. The number of

large chips being designed flat is very less. The trend is towards more hierarchical de-

signs. Hierarchical flow pose various problems like, how to handle timing constraints

between the chip level and the block level, how to verify the feasibility of the con-

straints at the chip level,etc. Floor-planning is still a difficult problem, especially

when it must be done considering timing and congestion.

The current flow iterates between gate-level synthesis and place-and route. After

place-and-route, if the constraints are not met, the netlist is back-annotated with the

actual wire load and re-synthesized. Signal integrity problems are usually handled

at the detailed routing level. Place and route data are necessary to determine the

timing. Trying to compensate for the lack of these data by driving synthesis with

pessimistic assumptions results in over-design. Extracting net capacitance after place

and route and feeding them back to synthesis in an attempt to seed synthesis with

more realistic capacitance estimations is not practical. This often results in a different

netlist, causing the placement and routing to change, which results in different wire

loads,and hence the timing is affected. There is no guarantee that this iterative

process will converge.

Most of the critical nets need to be buffered to satisfy one or more of these reasons:

restore signal levels, increase the drive strength, shield a critical path from a high-load

off-critical path. We can buffer the critical signals as per their layer requirement and

get the delay value. This delay value can be further used to estimate the timing and

avoid any major critical issues during the routing stage, as at this stage the actual
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timing can be estimated. So, if we are able to get information related to buffering

needs of critical nets, along with their layer requirement during the synthesis stage,

then we can estimate the timing to avoid the timing violations in the later stage of

design cycle and eventually save a significant amount of time. Along with this if

we get a better optimized netlist containing all the physical information from the

synthesis stage, which will act as a seed placement to the place and route tool, will

reduce the runtime and also boost the quality of results in physical implementation.



Chapter 3

Physical Design
Similar to any product development, VLSI project development also starts with de-

veloping a system level algorithm based on specifications. This algorithm is utilized

for the development of Register Transfer Level (RTL) code. All the steps from system

level algorithm development to generation of RTL code is considered as front end of

VLSI circuit design. In a VLSI product design, usually the bottleneck is back end

circuit design due to low efficiency. The various design steps from synthesis to tape

out (sign off) of the design is considered as back end design. A representative physical

design flow is shown in Figure 3.1. Each stage of back end design is discussed in the

following sections.

7
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Figure 3.1: Physical Design Flow

3.1 Synthesis

Synthesis is the process of converting the RTL code to a netlist as shown in Figure

3.2. This is a two step process which involves :

∙ Logic Synthesis

∙ Technology mapping

In logic synthesis RTL code is converted to a generic netlist consisting of gates and

sequential elements. The possible gates and sequential elements are obtained from
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Figure 3.2: Stages in Synthesis

the target library specified for logic synthesis. The general target is to minimize the

number of gates, number of levels and reduce signal activity. These three conditions

reduce the total area, power and delay requirements. Apart from this the designer

can also provide required constraints.

The second stage in synthesis is technology mapping. This is where the actual map-

ping of the generic netlist to the available cells in the library happens. Here various

gates and sequential elements are clubbed together (based on the constraints spec-

ified as well as synthesis algorithm) and technology dependent netlist is generated.

This technology mapping is also called as compiling in synthesis stage. For proper

synthesis, it is necessary to provide the timing, power, operating conditions and area

specifications.

Design for Testing (DFT) is critical for modern chips from debugging perspective.

This is achieved in the synthesis stage by scan chain insertion. In an ideal scenario

designers prefer to convert all the sequential cells in the design to be scannable. Since

that is impossible a selected number of flip-flops are made scannable and this happens

during the synthesis stage. Scan chains are inserted incrementally into the technology

mapped netlist to generate the final netlist.
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3.2 Formal Verification

The next step in the physical design flow is formal verification. In formal verification,

the compiled netlist is compared to the RTL code to ensure that both are function-

ally equivalent. Not only after synthesis, but after various design changes formal

verification is carried out to ensure that the logical functionality of the design hasn’t

deviated from the original RTL code. In short the purpose of this stage is to ensure

that the design and RTL code are functionally equivalent.

In large designs it is very difficult to carry out the formal verification of the complete

design. Thus for large designs, a divide and conquer approach is followed, which

allows the designer to break down the design into smaller chunks and perform formal

verification parallel on all the chunks. In this method, various critical nodes including

the interface pins in the design are mapped to RTL code and the entire circuit is

divided into large number of sub designs called cones. In the verification stage, the

mathematical equivalence of the cones from the design are matched with RTL. For

proper formal verification, it is necessary to have enough number of mapping points.

This requirement comes from the fact that small mismatches can be missed in the

mathematical model of a large block. By default all the outputs of sequential cells are

mapping points. It is always advisable to add more mapping points as this will ensure

that the mathematical equivalence of netist from design is matched with netlist from

RTL at more number of nodes. This reduces the probability of missing mismatches.

The advantage of dividing the design into FEV (Formal Equivalence Verification)

cones is that this will allow the equivalence checking of a large number of cones in

parallel which in turn will reduce the run time requirement as well as the memory

and machine requirement.

3.3 Pre-Layout STA

Static Timing Analysis (STA) is a step which is performed at different phases of the

physical design. pre-layout STA is a pure estimation based timing analysis performed
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on the netlist, since the placement and routing information is not available at this

stage. At this stage, the parasitic information is estimated utilizing wire load models

or the tool will perform a virtual (temporary) placement and routing to give the

timing picture at this stage. The method chosen to obtain pre-layout STA depends

on the tool. It is common practice to re-synthesize the design with a better set of

constraints, if the pre layout STA failed to meet the timing requirements.

3.4 Clock Tree Synthesis, Placement and Routing

The synthesized netlist is given to Placement and Routing (PnR) tool along with

the floor plan information. The PnR tool has complex algorithms to determine the

placement of various elements, taking into consideration the timing as well as power

aspect and area requirement which have been specified in the floor plan. Most of the

times the placement provided by the tool might not be optimum, but this is always

a good starting point.

Clock Tree Synthesis (CTS) is the next step in this group. The reason why clock tree

synthesis is preferred over regular signal routing is to ensure that, the most critical

signal in the design - clock, gets the best routing resources. This is a necessity to

achieve an even distribution of clock signal to all the sequential elements and gated

clock devices. The clock network is always preferred to generate the minimum latency

and skew at the sequential elements or in another way the design prefers the clock

signal to have the same arrival time at all the sequential elements. Even though this

is an unachievable requirement, to achieve minimum variation there are various clock

topologies followed by the industry. The two generic clock network types followed by

industry are clock tree and clock mesh (grid).

Clock tree and clock mesh have their own set of advantages and disadvantages. Clock

trees are preferred for small size ASICs. The main advantage is low routing require-

ment for tree networks, which in turn reduces the parasitic RC of clock network.

This advantage of clock tree is counter balanced by the difficulty in balancing the

path delays due to asymmetric placement of sequential elements as leafs in the design
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as well as tree networks’ high sensitivity to variations. For tree networks, the tools

usually depend on simulated annealing to achieve the optimum network. From the

clock source, these buffers are driven by a global H tree. There are various clock tree

networks available but H clock tree is one of the simplest and commonly used clock

network structures for small sized designs. An H clock tree is shown in Figure 3.3

Figure 3.3: H Clock Tree

The reason for choosing mesh approach for large designs is that it is always easier to

drive a finite set of buffers (global drivers) than a large number of sequential elements

in the design maintaining minimum skew. The advantage of mesh topology is that

the impact of skew is minimal as well as this topology offers excellent resistance

to variations. But these advantages are enjoyed at the cost of larger wiring area,

capacitance and power dissipation compared to tree topology. A mesh network and H

tree global driver network of mesh are shown in Figure 3.4 and Figure 3.5 respectively.

There are various other clock architectures like Hybrid tree with local links, Hybrid

mesh with local tree etc. The choice of clock tree is always application specific and

depends on the complexity of the ASIC. After CTS, regular signal routing is carried

out. This is also algorithm based and the tool will try to optimize the routing based

on the various design constraints provided by the designer. Similar to placement,

routing rarely is optimal. After completion of PnR a formal verification is performed

to ensure that the design is consistent with RTL code.
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Figure 3.4: Clock Mesh

Figure 3.5: H tree global drivers of Clock Mesh

3.5 Static Timing Analysis

Static Timing Analysis (STA) is one of the critical steps in physical design. The

inputs required for STA are final netlist, good quality extraction data and various

timing constraints. Timing analysis ensures that the design meets the frequency

requirements without failure. Basically STA is performed to identify setup (max)

and hold (min) violations. Once all the violations are cleared, the design is said

to be timing converged. The post layout STA will have the accurate placement and

routing available with correct parasitic information available to the tool for calculating

interconnect delay. This is the actual timing picture which has good correlation with
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silicon.



Chapter 4

A Comprehensive Study of Static
Timing Analysis
Static timing analysis is an important step of Performance Verification (PV) for digital

integrated circuits. STA provides an efficient method to determine whether a design

can operate at the designated clock frequency without errors. The failure of a design

or subset to operate at designated frequency is known as timing violations.

Figure 4.1: Static Timing Analysis

There are two types of timing analysis: static and dynamic. Static Timing Analysis

is a non simulation based approach used to analyze the propagation of worst delays.

This is in contrast to the other methodology - dynamic timing analysis; where the

circuit is simulated with proper inputs. Compared to static analysis, dynamic timing

analysis is time consuming and hence this approach is utilized for small portions of

the circuit, especially when there is some ambiguity in the timing results. The main

drawback associated with dynamic timing analysis is that the total coverage of the

design depends on the selection of input test vectors. On the other hand STA is

a worst case based approach where all the cells and interconnects are assigned the

15
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worst case delay and slew as per the analysis. All other inputs along the path are

assumed to be stable and such that it enables the timing path. This may lead to

over-design, but will ensure that the circuit never fails from the timing perspective.

STA can’t handle scenarios like multi-input switching (MIS) where more than one

input of a standard cell undergoes transition simultaneously. The various input and

output collateral of STA are shown in Figure 4.1.

The basic timing analysis flow can be categorized into three steps:

∙ Reading all inputs and building the design

∙ Performing worst case analysis

∙ Generating reports

4.1 Input Collateral

The various input collaterals given to the STA tool for timing calculation are listed

below.

∙ Design Netlist

The tool reads the design from the netlist. The netlist provides the connectivity

information of all the cells and devices in the design.

∙ RC Extraction

The data generated by extraction engine is provided to the timing tool to cal-

culate the interconnect delay as well as standard cell delays. Without proper

parasitic data extraction, STA will be estimation based and inaccurate.

∙ Library Characterization

All the standard cells available for the design have their characteristics recorded

in a database. The purpose of standard cell characterization is to simplify the

timing calculation process by providing lookup table like system for cell delay

calculation.
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∙ Timing Constraints

These are the various user specified constraints provided to the tool for accurate

timing analysis. There are default configurations available for timing analysis

as part of tool, but sometimes the default ones may not be correct from design

perspective. In such scenarios, the user overrides or specifications are given to

the tool.

4.2 Output Collateral

The various outputs from STA are timing reports and timing constraints.

∙ Timing Reports

STA of a design dumps out various reports. The main reports are the setup

and hold reports which list out all the timing paths in the design and their

respective slack.

∙ Timing Constraints

The set of timing constraints dumped out as part of output are the timing

specifications for interface pins.

4.3 Timing Concepts

Timing Path: Any path from a generating node to sampling node is a timing path.

As shown in Figure 4.2, the generating and sampling node can be a sequential cell

like flip flop or a latch, interface pin or a gated clock cell.

Delay: The time taken for a signal to appear at the output pin of a standard cell

after applying all necessary inputs or the time required for a signal to be available at

the receiver side of a net after applying the stimuli at driving side is called delay.

Slack: Slack or margin is the delta time by which the signal is beating the require-

ment. The calculation is different for setup and hold analysis. For setup analysis, the

data is expected to be stable before the arrival of clock signal by a specified amount

of time. For hold analysis, the data has to remain stable for a specified amount of
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time after the application of clock signal. The Required time mentioned in eq. (4.1)

and eq. (4.2) is the time at which data is expected to change at the input pin in order

to avoid timing violations.

𝑆𝑙𝑎𝑐𝑘𝑆𝑒𝑡𝑢𝑝 = 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑇 𝑖𝑚𝑒− 𝐴𝑐𝑡𝑢𝑎𝑙𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑇 𝑖𝑚𝑒 (4.1)

𝑆𝑙𝑎𝑐𝑘𝐻𝑜𝑙𝑑 = 𝐴𝑐𝑡𝑢𝑎𝑙𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑇 𝑖𝑚𝑒−𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑇 𝑖𝑚𝑒 (4.2)

Figure 4.2: Example of Timing Path

Slew: Slew is a representation of the transition time for a signal. It is defined as

the inverse of transition time tr. Slew represents how fast a signal transition occurs.

Larger the slew value, faster will be the transitions. Depending on whether the signal

is at input or output, slew is further classified into input slew and output slew.

𝑆𝑙𝑒𝑤 = 1/𝑡𝑟 (4.3)

Timing Event: A timing event is the transition of the signal from one state to

the other. A timing event can be early or late. The earliest possible transition of a

signal is called early event and similarly the latest possible one is called late event.

These early and late transitions (worst case scenarios for) are utilized for setup and

hold analysis also known as max and min analysis respectively (where max and min
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represents maximum and minimum data path delay which is the criteria for these

analyses).

Timing Arcs: A timing arc at a pin specifies whether a change in signal at the pin

can influence the output (all logic cells can have multiple timing arcs depending on

the number of input pins). For sequential cells like flip-flop and latches, there is a

timing arc from clock to output also. There is also another property called unateness,

which specifies how signals’ transition at the input pin influences the output (the other

inputs should be such that the gate is activated). The timing arc is positive unate if a

rising signal at input pin results in a rising transition at the output. If the transition

at output was a falling once, the arc would be categorized as a negative unate one.

Figure 4.3: Timing Arcs

As shown in Figure 4.3.1 when one input of AND gate is at logic high, the output

follows the transitions at the other input. So the timing arc is positive unate. For

the NOR gate in Figure 4.3.2 when an input is at logic 0 state, the output transits

opposite to that of the input transition. So the timing arc in Figure 2.9 is negative

unite arc. For the XOR gate shown in Figure 4.3.3 the timing arc from selected input

to output can either be positive or negative unate depending on the value of the

second input. Such arcs are called non unate arcs.

Clock Skew: The variation in process and operating conditions can result in clock

tree device delay changes. These variations result in ambiguity in the arrival time of

clock signals and is called clock skew. The second clock variation comes from random

noise and is called jitter. Jitter impacts the time period of clock. Another difference

between skew and jitter is that skew is deterministic where as jitter is random. Clock

skew penalty is a factor employed by STA tools to ensure that the signals remain
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stable for an additional time to account for skew and jitter.

False Paths: In STA, the methodology followed is worst case delay propagation

through the timing paths. In such an approach it is highly possible for the algorithm

to analyze paths which can never exist in a real circuit. To exclude these paths, it

is necessary for the designer to specify the false paths, so that the timing engine will

ignore those false paths from timing calculation and reporting. Consider a circuit

scenario as shown in Figure 4.4

Figure 4.4: Example of False Path

From the circuit logic it is understood that data can propagate through A-M1-C-M2-

Out or B-M1-D-M2-Out. Since STA doesn’t perform logic analysis on the circuit,

unless specified the tool will analyze the timing for data propagation through A-

M1-D-M2-Out and B-M1-C-M2-Out. If the designer wants the tool to ignore these

false paths, this should be specified in the timing constrains given as input to the

tool. Specifying false paths is highly recommended as this will reduce the number of

unnecessary timing calculations as well as timing fixes.

Operating Conditions: STA is performed on specific operating conditions. Pro-

cess, Voltage and Temperature or in short PVT is alternatively called as operating

conditions. Taking all the variability factors into consideration will lead to large num-

ber of combinations and is practically unfeasible. Taking large number of factors can

result in a multi corner multi mode design, which is cumbersome and difficult to con-

verge. So modern day ASICs have reduced the number of variability factors to ease

the timing convergence but have added guard bands to ensure that the variability
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consideration is not ignored in margin analysis.

Max and Min Analysis: Max analysis is the setup analysis and min analysis is

the hold analysis. Max and min essentially represent the delay of data path in the

circuit. For max analysis the data generating path and data path is assumed to have

maximum delay and sampling clock path has minimum delay (worst case scenario

for setup analysis). In Figure 4.2, the generating path is Clk - CBuf1 - FF1 - U1 -

U2. The sampling path is Clk - CBuf1 - CBuf2 - FF2. Here FF represents a Flip

Flop, Clk represents clock and CBuf represents clock buffer. For min analysis the

generating path and data path is assumed to have minimum delay and sampling path

has maximum delay.

4.4 Delay Analysis

For timing analysis, design netlist, RC extraction, timing constraints and standard cell

library characterization are required. The netlist and RC extraction data provides the

design information to the timing analysis tool. The library characterization provides

modeling information for calculating stage delays (cell delay). The timing constraints

provided to the STA tool helps in simplifying the timing calculations and the usual

constraints provided are multi cycle path overrides (by default, tools assume paths to

be of length one cycle), false paths, dc signals etc. Another category of constraints

that needs to be provided are environmental constraints which specify the timing

requirements or arrival of signals from external world. For simplifying the physical

design process, most of the modern day ASICs are partitioned into smaller blocks.

While a designer is working on his block, there may be a large number of signals

coming from and going to the neighboring blocks. For proper STA on the block, it is

necessary to have the timing specifications available on all these interface pins. These

specifications are also known as environmental constraints.

The outputs of STA are essentially the timing reports and timing constraints. The

bare basic reports are setup and hold reports. Based on requirements, there can be

various reports like capacitance reports of nets, resistance of nets etc dumped from
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the tool. The second set of outputs is timing constraints, similar to the environmental

constraints which were fed as input for STA. As a part of timing analysis, a set of

timing specifications on all the interface pins are produced which will be required by

the relevant neighboring blocks (if these blocks have signals interacting each other).

The input environmental constraints will specify the earliest and latest time a signal

can be expected to be stable at the input interface pin and the earliest and latest

time a signal is required to be stable at the output interface pin. The environmental

constrains generated as a part of the output will also provide similar specifications as

the input ones, but from the design block’s perspective. This will specify the earliest

and latest time a signal is required at the input pin of the block and earliest and

latest time a signal will be stable at the output interface pin.

All the standard cells are characterized in such a way that the timing tool can calculate

the stage delay without actually simulating it. STA tools have internal mechanism

which could read the characterization and provide the stage delay based on circuit

parameters. For stage delay calculation, the basic circuit parameters required are

slew of the signal at the input of standard cell and load capacitance at the output

pin. The characterization acts as a lookup table for the timing tool on which it will

do interpolation or extrapolation to obtain delay and slew corresponding to the input

signal slew and load capacitance.

Figure 4.5: Circuit for calculating cell delays

While evaluating the cell delays (stage delays), a real circuit with R and C is viewed

as a capacitor only network as shown in Figure 4.5. The output load capacitance
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is not the total capacitance but an effective capacitance representing the total load

impedance. This effective capacitance is a function of

∙ Drive strength of cell

∙ Input impedance of the load seen from the driving cell

For a given interconnect, a cell with weak drive will have larger Ceff than strong

driver. This can be easily understood with the help of Elmore delay modeling.

So the standard cells characterization can be represented as

𝐶𝑒𝑙𝑙𝐷𝑒𝑙𝑎𝑦 = 𝑓(𝑖𝑛𝑝𝑢𝑡𝑠𝑙𝑒𝑤, 𝑙𝑜𝑎𝑑𝑐𝑎𝑝) (4.4)

𝑂𝑢𝑡𝑝𝑢𝑡𝑆𝑙𝑒𝑤 = 𝑓(𝑖𝑛𝑝𝑢𝑡𝑠𝑙𝑒𝑤, 𝑙𝑜𝑎𝑑𝑐𝑎𝑝) (4.5)

The timing tool performs analysis on individual timing paths instead of the whole

design. A timing path is essentially a path from generating node to sampling node.

The generating and sampling nodes can be anything from sequential cells like flops or

latches or interface pins or gated clock cells. The timing engine identifies the possible

timing paths from the netlist and user defined timing constraints. Once the tool

identifies the timing paths, the next step is to calculate delay. For delay calculation,

the modeling information like library characterization and extraction data is used.

The extraction data is usually scaled and used for timing calculations. This scaling

is carried out to ensure that the timing analysis captures the impacts of noise as the

total capacitance value of a net can increase or decrease depending up on the cross

coupled capacitance with neighboring signal nets. Further, the real R and C provided

by the extraction can be highly segmented and complex for timing engine to operate

upon. So before timing analysis the tool tries to simplify the extracted R and C by

reducing the segmentation.
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4.4.1 Interconnects Parasitics

In digital designs, a wire connecting pins of standard cells and blocks is referred to

as a net. A net typically has only one driver while it can drive a number of fanout

cells or blocks. After physical implementation, the net can travel on multiple metal

layers of the chip. Various metal layers can have different resistance and capacitance

values.

RLC for Interconnect: The interconnect resistance comes from the interconnect

traces in various metal layers and vias in the design implementation. Figure 4.6

shows example nets traversing various metal layers and vias. Thus, the interconnect

resistance can be considered as resistance between the output pin of a cell and the

input pins of the fanout cells.

Figure 4.6: Nets on Metal Layers

The interconnect capacitance contribution is also from the metal traces and is com-

prised of grounded capacitance as well as capacitance between neighboring signal

routes.

The inductance arises due to current loops. Typically the effect of inductance can be

ignored within the chip and is only considered for package and board level analysis.

In chip level designs, the current loops are narrow and short - which means that the
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Figure 4.7: Interconnect Trace

current return path is through a power or ground signal routed in close proximity. In

most cases, the on-chip inductance is not considered for the timing analysis.

The resistance and capacitance (RC) for a section of interconnect trace is ideally

represented by a distributed RC tree as shown in Figure 4.7. In this figure, the total

resistance and capacitance of the RC tree - Rt and Ct respectively - correspond to Rp

* L and Cp * L where Rp, Cp are per unit length values of interconnect resistance and

capacitance for the trace and L is the trace length. The Rp, Cp values are typically

obtained from the extracted parasitics for various configurations and is provided by

the ASIC foundry.

Representation of Extracted Parasitics

Parasitics extracted from a layout can be described in three formats:

∙ Detailed Standard Parasitic Format (DSPF)

∙ Reduced Standard Parasitic Format (RSPF)

∙ Standard Parasitic Extraction Format (SPEF)

Here in Synopsis tools we use SPEF format.
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Standard Parasitic Exchange Format

The SPEF is a compact format which allows the representation of the detailed para-

sitics. An example of a net with two fanouts is shown below.

*D_NET NET_27 0.77181

*CONN

*I *8:Q O *L 0 *D CELL1

*I *10:I I*L 12.3

*CAP

1 *9:0 0.00372945

2 *9:1 0.0206066

3 *9:2 0.035503

4 *9:3 0.0186259

5 *9:4 0.0117878

6 *9:5 0.0189788

7 *9:6 0.0194256

8 *9:7 0.0122347

9 *9:8 0.00972101

10 *9:9 0.298681

11 *9:10 0.305738

12 *9:11 0.0167775

*RES

1 *9:0 *9:1 0.0327394

2 *9:1 *9:2 0.116926

3 *9:2 *9:3 0.119265

4 *9:4 *9:5 0.0122066

5 *9:5 *9:6 0.0122066

6 *9:6 *9:7 0.0122066

7 *9:8 *9:9 0.142205

8 *9:9 *9:10 3.85904
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9 *9:10 *9:11 0.142205

10 *9:12 *9:2 1.33151

11 *9:13 *9:6 1.33151

12 *9:1 *9:9 1.33151

13 *9:5 *9:10 1.33151

14 *9:12 *8:Q 0

15 *9:13 *10:I 0

*END

The units of the parasitics R and C are specified at the beginning of the SPEF file.

Due to its compactness and completeness of representation, SPEF is the format of

choice for representing the parasitics in a design.
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Synopsys Physical Guidance
Design Compiler and IC Compiler together support the physical guidance flow to

improve routability, runtime, correlation, along with reducing routing-related conges-

tion. Physical Guidance speeds up IC Compiler runtime because the output from

Design Compiler Graphical acts as a seed placement for IC Compiler and hence goes

through fewer placement steps.

There must be consistency of design and tool setup between Design Compiler and

IC Compiler for ensuring good Qor and correlation between both the tools. We

have to use consistent library settings along with the same sets of logic and physical

libraries, and consistent design goal specifications such as design rule settings and

timing constraints for logical and physical implementation through both tools.

You enable the physical guidance flow by using the -spg option with the compile_ultra

command in Design Compiler Graphical and by using the -spg option with the

place_opt command in IC Compiler. The -spg option works seamlessly with the

existing compile_ultra options in Design Compiler and with the place_opt options

in IC Compiler.Physical guidance performs the following functions:

∙ In Design Compiler Graphical, the -spg option provides the following:

– Further refined placement that is consistent with the place_opt command

in IC Compiler

– Enhanced post-placement delay optimization to provide a better optimized

starting netlist for physical implementation

– Optimizes the design for congestion to improve routability

∙ In IC Compiler, the -spg option enables the place_opt command to use the

Design Compiler Graphical placement as its seed placement. The place_opt

28
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command is enhanced to use topographical mode placement as the starting

point in physical guidance mode.

You can save the placement information derived by Design Compiler Graphical in

binary format, in a .ddc file or a Milkyway CEL view, or you can save it in a .def file.

Figure 5.1: Physical Guidance Flow

The physical guidance flow in IC Compiler supports all the compile options used by

Design Compiler in topographical mode, such as -scan, -clock_gate, and -incremental.

In addition, the flow supports the -congestion option, which reduces routing-related

congestion. Note that the -congestion option is not needed in Design Compiler be-

cause Design Compiler reduces routing-related congestion by default with the -spg

option.The physical guidance flow in IC Compiler also supports the multicorner-

multimode based flow, the multivoltage-UPF flow, the power flow, the DFT flow,

and the hierarchical flow.

Use the following guidelines to maintain good QoR and correlation between Design
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Compiler and IC Compiler when you use the physical guidance flow:

∙ Use consistent design and tool setup between Design Compiler topographical

mode and IC Compiler. That is, you should use the same sets of logic and phys-

ical libraries to drive both tools and use consistent library settings, including

the dont_use list. Also, use consistent design goal specifications, such as timing

constraints and design rule settings to drive logical and physical implementa-

tion. You should load the same sets of the following files in both tools:

– Logic library (.db)

– Milkyway reference library

– Technology file (.tf)

– Mapping file (maps the technology file layer names to TLUPlus layer

names)

– Min and max TLUPlus files for net parasitics

Make sure that each standard cell and macro in the logic libraries has a corre-

sponding abstract physical view in the Milkyway reference library. Otherwise,

the cells are treated as dont_use cells for mapping and optimization.In addition,

you should use consistent library-specific attribute settings with IC Compiler.

For instance, your library cell dont_use list, dont_touch settings, and design

rule settings (maximum allowable fanout load and transition time) should be

aligned with the settings used in IC Compiler.

∙ Apply a complete set of physical constraints by using a floorplan DEF file or Tcl

commands before the first compile_ultra command step in Design Compiler.

Also, reapply the same sets of physical constraints in IC Compiler to preserve

the placement consistency for physical guidance.The same DEF file must be

used by both tools. The DEF file contains floorplan information that must be

consistent between tools. The tools issue various errors and warnings if your

constraints, floorplan information, and libraries are not consistent.
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∙ Since the physical guidance information is restored when you run the IC Com-

piler place_opt command, it is recommended that you run the place_opt -spg

command as the first placement-related command in IC Compiler so that De-

sign Compiler placement is restored properly. Using other placement-related

commands (such as create_placement, remove_buffer_tree, and so on) might

degrade correlation and can lead to the loss of some physical guidance informa-

tion.

5.1 Reducing Routing Congestion

Wire-routing congestion in a design occurs when the number of wires traversing a

particular region is greater than the capacity of the region. If the ratio of usage-

to-capacity is greater than 1, the region is considered to have congestion problems.

Congestion can be caused by standard cells or the floorplan. Typically, standard

cell congestion is caused by the netlist topology, for example, large multiplexer trees,

large sums of products (ROMs), test decompression logic, or test compression logic.

Floorplan congestion can be caused by macro placement or port location.

If Design Compiler passes a congested design to IC Compiler, it might be difficult

and time consuming for IC Compiler to reduce the congestion. Design Compiler

can reduce congestion more easily than IC Compiler because Design Compiler can

optimize RTL structures. Traditionally, to minimize congestion related to the netlist

topology, you would use scripting solutions to restrict technology mapping tools, such

as Design Compiler and IC Compiler, from choosing library cells that you perceive

as poor for congestion. But these solutions do not significantly improve congestion;

instead, they often create poor timing or area results.

Design Compiler Graphical predicts wire-routing congestion hot spots during RTL

synthesis and uses its interactive capability to visualize the designâĂŹs congestion.

When the tool determines that the design has congestion problems, it minimizes

congestion through congestion optimization, resulting in a better starting point for

layout.
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Design Compiler uses the Synopsys virtual routing technology to predict wire-routing

congestion. In this technology, congestion is estimated by dividing the design into

a virtual grid of global routing cells followed by a global route to count the number

of wires crossing each grid edge. The capacity and size of each global routing cell is

calculated by using the physical library information. A cell is considered congested if

the number of wires passing through it is greater than the number of available tracks.

Design Compiler predicts the congestion number by subtracting the maximum wires

allowed for a particular edge direction from the total number of wires crossing per

edge. Any number over zero is a congestion violation. This calculation is represented

by the following equation:

𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 = (𝑁𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑤𝑖𝑟𝑒𝑠)− (𝑀𝑎𝑥𝑖𝑚𝑢𝑚_𝑤𝑖𝑟𝑒𝑠_𝑎𝑙𝑙𝑜𝑤𝑒𝑑) (5.1)

The tool considers floorplan-related physical constraints when it estimates routing

congestion. In particular, the wiring keepout physical constraint ensures that the

tool is aware of areas that must be avoided during routing. This physical constraint

helps to achieve consistent congestion correlation with layout.
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Figure 5.2: Predicting Congestion Using Virtual Grid Route

5.2 Controlling Placement Density

You can control how densely cells can be packed during placement by setting the

placer_max_cell_density_threshold variable. This variable enables a mode of coarse

placement in which cells are not distributed evenly across the surface of the chip, but

are allowed to clump together. The value you specify sets the threshold of how tightly

the cells are allowed to clump. The default is -1, which disables this feature, and cells

are distributed evenly across the surface of the chip.

A reasonable value is one that is above the overall utilization of the design but below

1.0. For example, if your overall utilization is 50%, or 0.5, a reasonable value for this

variable is a value between 0.5 and 1.0. The higher the value, the more tightly the

cells clump together.

For example, if the global utilization is 50 percent, choose a value between 0.5 and 1:
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dc_shell-topo> set_app_var placer_max_cell_density_threshold 0.7

If you have not set this variable and the tool detects a design with low utilization,

the tool automatically uses a value of 0.5 internally during optimization. This check

avoids long route QoR issues for low-utilization designs. The check occurs during

the compile_ultra -spg (full and incremental) and place_opt -spg commands. The

variable is reset to its default of -1 when the command completes.

The placer_max_cell_density_threshold value is not transferred to the IC Compiler

tool. You must set it to be consistent with Design Compiler Graphical.

As with Design Compiler Graphical, the IC Compiler user-specified placer_max_cell-

_density_threshold value takes precedence even if the design has low utilization and

the user-specified value is set lower than 0.5; however, the tool issues a warning.

5.3 Using Layer Optimization to Increase the Accu-

racy of Net Delay Estimation

When Design Compiler computes the resistance and capacitance of a net, it uses an

average based on the resistance and capacitance of all available layers from the logic

library. That average works well when all layers have the same or close enough unit

resistance and capacitance value. However, with submicron technologies, the layer

characteristics can vary greatly. Such variation can cause correlation or timing issues

for nets that are known to be routed with only some specified layers. In this case,

averaging is not an appropriate solution.

Layer optimization in Design Compiler Graphical allows you to define specific layer

assignment constraints and apply them to nets. This increases the accuracy of net

delay estimation during optimization. Layer optimization is supported only in Design

Compiler Graphical, and it is performed automatically when you use the -spg option

with the compile_ultra command. To disable automatic layer optimization, use the

-no_auto_layer_optimization option when you run the compile_ultra -spg or the

compile_ultra -spg-incremental command.
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You can perform layer optimization with the following methods:

∙ A net pattern

∙ User constraints

∙ Automatic recognition

In the net pattern methodology, you use the create_net_search_pattern command to

define a pattern to identify nets, and you use the set_net_search_pattern_delay_estim-

ation_options command to define which layers to use for a specific pattern.

In the user constraints methodology, you use the set_net_routing_layer_constraints

command to specify which nets will have specific layer assignment constraints applied

to them.

In the automatic recognition methodology, you allow Design Compiler Graphical to

automatically identify nets and assign them to specific layers to reduce the resistance

and capacitance on those nets, instead of using the averaging technique.

Regardless of the methodology you use, layer optimization can have an effect on

runtime.
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Implementation
As prerequisite for project, the proper understanding of the backend flow,i.e, from

RTL to GDS2 is required. The logical synthesis and place and route steps play a

key role in design flow. Using a block level design we learnt synthesis on Design

Compiler-topographical tool, provided by Synopsys and the place and route through

IC Compiler tool, also provided by Synopsys.

Now in the following sections the actions taken towards the completion of the project

are portrayed.

6.1 Figuring Out Buffering Requirement For Critical

Signals During Synthesis

6.1.1 Gate Level Netlist

To get a gate level netlist for an IC design from it’s RTL is synthesis. We use Synopsys

Design Compiler tool for synthesis. The inputs required for synthesis are RTL list,

library files and constraints file. There are three type of libraries required by the

DC tool. The first one is Technology Libraries, which contains basic logic gates and

flip-flop.It can be given as Target library and Link library. It is used for technology

mapping. The second is DesignWare libraries which contains complex cells like adders,

comparators, etc. It is also called Synthetic library. The last is Symbol library.

Constraints are the designer’s specification and environmental restrictions under which

synthesis is to be performed. For optimum results, designers have to methodically

constraint their design by describing the design environment, target objectives and

design rules. Define the environment by specifying operating conditions, wireload

models and system interface characteristics. Operating conditions include PVT con-

ditions. System interface characteristics include input drives, input and output loads

36
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and fanout loads. Design Constraints consist of

∙ Timing

∙ Power

∙ Area

Timing constraints include clock frequency, input and output delay, max and min

transitions. Area is set to zero to maximize efficiency. In power constraint we define

maximum leakage power. The highest priority is given to timing during optimization.

For giving the clock information to the tool , we have gathered the complete data

which is used to define clocks and their relationship into one central location, .xls file.

Now using a script this file is converted to a TCL file which contains all the proce-

dures related to generation of the clocks. This is beneficial as to debug or understand

a script is rather difficult than to go through a excel spreadsheet. Any new data can

be easily uploaded and easy review process.

The outputs for synthesis are

∙ Gate level netlist

∙ *.sdc file

∙ *.def file

Reports generated:

∙ Timing Report

∙ Area Report

∙ Power Report
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∙ Quality of Report-Overall quality of synthesis

DC synthesis is important as the timing if satisfied here, then only this generated

netlist is given as input to place and route tool.

6.1.2 Fetching the Coordinates

After generating the gate-level netlist for the family design, we need the pin coordi-

nates of each block wrt to family.

To achieve this, we have to write a TCl script. In the script first we have to read the

DEF or LEF file for each block and fetching it’s pin coordinates. Then we need to

get the location of these pins wrt family. So, we read the floorplan file for the family

and then get the exact coordinates for the pins wrt family floorplan.

A Library Exchange Format (LEF) file contains library information for a class of

designs. It defines the elements of an IC process technology and associated library

of cell models. Library data includes layer, via, placement site type, and macro cell

definitions.LEF inputs are in ASCII form.

General Rules for creating a LEF file:

∙ Indentifiers like net names and cell names are limited to 2,048 characters.

∙ Distance is specified in microns.

∙ Distance precision is controlled by the UNITS statement.

∙ LEF statements end with a semicolon ( ; ). Space must be left between the last

character in the statement and the semicolon.

You can define all of your library information in a single LEF file; however this creates

a large file that can be complex and hard to manage. Instead, you can divide the

information into two files, a âĂĲtechnologyâĂİ LEF file and a âĂĲcell libraryâĂİ

LEF file. A technology LEF file contains all of the LEF technology information for

a design, such as placement and routing design rules, and process information for
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layers.

A technology LEF file can include any of the following LEF statements:

[VERSION statement]

[BUSBITCHARS statement]

[DIVIDERCHAR statement]

[UNITS statement]

[MANUFACTURINGGRID statement]

[USEMINSPACING statement]

[CLEARANCEMEASURE statement ;]

[PROPERTYDEFINITIONS statement]

[LAYER (Nonrouting) statement

| LAYER (Routing) statement] ...

[MAXVIASTACK statement]

[VIA statement] ...

[VIARULE statement] ...

[VIARULE GENERATE statement] ...

[NONDEFAULTRULE statement] ...

[SITE statement] ...

[BEGINEXT statement] ...

[END LIBRARY]

A cell library LEF file contains the macro and standard cell information for a design.

A library LEF file can include any of the following statements:

[VERSION statement]

[BUSBITCHARS statement]

[DIVIDERCHAR statement]

[VIA statement] ...

[SITE statement]

[MACRO statement

[PIN statement] ...
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[OBS statement ...] ] ...

[BEGINEXT statement] ...

[END LIBRARY]

When reading in LEF files, always read in the technology LEF file first. Statements

in LEF file can be defined in any order, but the data must be defined before it is

used.For example, the UNITS statement must be defined before any statements that

use values that are dependent on UNITS values, LAYER statements must be defined

before statements that use the layer names.

The PIN statement which contains the information of pin name , its assigned layer

and its coordinates, is included in the LEF specification for each macro. The PIN

statement defines the pins for the macro. All pins including the VSS and VDD must

be specified.

The pinname specifies the name for the library pin.

The statement of our concern within the PIN section is PORT. This defines a col-

lection of geometries that are electrically equivalent points (strongly connected). A

pin can have multiple ports. Each PORT of the same PIN is considered weakly con-

nected to the other PORTs, and should already be connected inside the MACRO

(often through a resistive path). Strongly connected shapes (that is, multiple shapes

of one PORT) indicate that a signal router is allowed to connect to one shape of

the PORT, and continue routing from another shape of the same PORT. Weakly

connected shapes should not be used by routers. The syntax for describing pin port

statements is defined as follows:

PORT

[CLASS NONE | CORE | BUMP ;]

{layerGeometries} ...

END ...

layerGeometries defines port geometries for the pin.

A port can be one of the following:

∙ BUMP - Specifies the port is a bump connection point. A bump port should
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only be connected by routing to a bump (normally a MACRO CLASS COVER

BUMP cell).

∙ CORE - Specifies the port is a core ring connection point. A core port is used

only on power and ground I/O drivers used around the periphery. The core

port indicates which power or ground port to connect to a core ring for the chip

(inside the I/O pads).

∙ NONE - Specifies the port is a default port that is connected by normal "default"

routing. NONE is the default value if no PORT CLASS statement is specified.

A Design Exchange Format (DEF) file contains the design-specific information of a

circuit and is a representation of the design at any point during the layout process. It

defines the elements of an IC design relevant to physical layout, including the netlist

and design constraints. The DEF inputs are in ASCII form.

DEF conveys logical design data to, and physical design data from, place-and-route

tools. Logical design data can include internal connectivity (represented by a netlist),

grouping information, and physical constraints. Physical data includes placement

locations and orientations, routing geometry data, and logical design changes for back-

annotation. Place-and-route tools also can read physical design data, for example,

to perform ECO changes. For standard-cell-based/ASIC flow tools, floorplanning is

part of the design flow. You typically use the various floorplanning commands to

interactively create a floorplan. This data then becomes part of the physical data

output for the design using the ROWS, TRACKS, GCELLGRID, and DIEAREA

statements. You also can manually enter this data into DEF to create the floorplan.

It is legal for a DEF file to contain only floorplanning information, such as ROWS.

In many cases, the DEF netlist information is in a separate format, such as Verilog,

or in a separate DEF file. It is also common to have a DEF file that only contains a

COMPONENTS section to pass placement information. General Rules for creating

a DEF file:

∙ Indentifiers like net names and cell names are limited to 2,048 characters.
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∙ DEF statements end with a semicolon ( ; ). You must leave a space before the

semicolon.

∙ Each section can be specified only once. Sections end with END SECTION.

∙ One must define all objects before referencing them except for the + ORIGINAL

argument in the NETS section.

∙ No regular expressions or wildcard characters are recognized except for ( *

pinName ) in the SPECIALNETS section.

The information which we want to extract is present in the PINS section. It defines

external pins. Each pin definition assigns a pin name for the external pin and asso-

ciates the pin name with a corresponding internal net name. The pin name and the

net name can be the same. When the design is a chip rather than a block, the PINS

statement describes logical pins, without placement or physical information. Within

this the PORT section conatins all the LAYER, POLYGON, and VIA statements

are all part of one PORT connection, until another PORT statement occurs. If this

statement is missing, all of the LAYER, POLYGON, and VIA statements are part

of a single implicit PORT for the PIN. This commonly occurs for power and ground

pins. All of the shapes of one port (rectangles, polygons, and vias) should already be

connected with just the port shapes; therefore, the router only needs to connect to

one of the shapes for the port. Separate ports should each be connected by routing

inside the block (and each DEF PORT should map to a single LEF PORT in the

equivalent LEF abstract for this block). The syntax for describing PORT statements

is defined as follows:

[[+ PORT]

[ + LAYER layerName

[ SPACING minSpacing

| DESIGNRULEWIDTH effectiveWidth]

pt pt
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| + POLYGON layerName

[ SPACING minSpacing

| DESIGNRULEWIDTH effectiveWidth]

pt pt pt

| + VIA viaName pt

] ...

]

LAYER layerName pt pt : Specifies the routing layer used for the pin, and the pin

geometry on that layer. If you specify a placement status for a pin, you must include

a LAYER statement.

POLYGON layerName pt pt pt : Specifies the layer and a sequence of at least three

points to generate a polygon for this pin. The polygon edges must be parallel to the

x axis, the y axis, or at a 45-degree angle.

The floorplan file for the family consists of the instances fr each of the block, along

with the block’s coordinates. Now we read the floorplan file and fetch the coordinate

of each instance of the blocks. Using this coordinate as the reference coordinate wrt

to family, we manipulate the coordinates extracted from the DEF/LEF files for the

block.

6.2 Generating Optimized Netlist Using SPG

6.2.1 Enabling the Physical Guidance Flow

To enable physical guidance in Design Compiler, use the compile_ultra command

with the -spg option. You must specify the die area at a minimum to ensure floorplan

consistency between Design Compiler and IC Compiler. It is recommended that you

also specify the macro and block abstraction locations, the site arrays, and the port

locations for all primary I/Os.

Design Compiler performs explicit physical guidance usability checks the first time you

run the compile_ultra -spg command in topographical mode to ensure that you have
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provided the required floorplan information, and error messages and warning messages

are issued for any missing floorplan information. For example, Design Compiler issues

a warning message if a macro location is missing during a physical guidance flow;

however, the compile_ultra -spg command assigns the macro location automatically.

If a port, macro, or block abstraction location is missing, you can proceed with synthe-

sis. However, you must provide the location information in IC Compiler. Otherwise,

correlation could be affected. Alternatively, you can use Design Compiler Graphical

floorplan exploration to place the ports, macros, or block abstractions. After you

specify the physical constraints, update the floorplan in floorplan exploration. The

compile_ultra -spg command can move ports incrementally to enhance timing if the

port locations have not been defined.

The IC Compiler restore_spg_placement command restores the port locations cre-

ated by the Design Compiler compile_ultra -spg command for ports that were not

constrained by the create_terminal command or defined in the DEF file. The re-

store_spg_placement command also restores the standard cell placement created by

the compile_ultra -spg command. For more information, see the IC Compiler docu-

mentation.

In the physical guidance flow, the tool uses both RTL congestion optimization and

congestion-aware cell placement to consider cell density and provide a more accurate

net model for optimization in topographical mode. This helps to ensure that timing

is consistent between the endpoint in Design Compiler and the startpoint in IC Com-

piler. In addition, placement and placement-based optimization in physical guidance

enhances the delay optimization effort in Design Compiler so it is consistent with IC

Compiler behavior.

At the end of the compile_ultra -spg command run, Design Compiler creates signa-

tures of the physical constraints that were used. The signatures are saved in binary

format, in either the .ddc file or the Milkyway CEL, to be later matched in IC Com-

piler against the physical constraints used for the place_opt -spg command run. This

allows you to ensure that the physical constraints used in Design Compiler match the
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physical constraints used in IC Compiler.

At this point in the flow, the mapped top-level design is marked with a read-only

dct_spg_flow_done attribute to signify that the design was implemented with phys-

ical guidance. You can query the attribute to help determine if your design .ddc file

or Milkyway CEL was generated using physical guidance.

The derived placement for standard cells and the design floorplan information used

to drive synthesis are retained on the in-memory implemented design. You can save

the physical guidance information in a .ddc file by using the write_file command

or to a Milkyway CEL view by using the write_milkyway command. In the ASCII

flow, you can save the physical guidance information in a .def file by using floorplan

exploration.

6.2.2 Enhancing Placement in Synthesis

Once the design floorplan information is read in the tool for synthesis flow, we aim to

enhance the placement of standard cells in synthesis. Generally the DC tool places

the standard cells in the centre of the design. But our aim is to place the standard

cells in synthesis and then pass this information to place and route tool through a

more optimized netlist. Once we place these standard cells in the synthesis stage, then

we can estimate the timing and also it will help prevent the creation of hot-spots and

routing congestion.

Now once the tool places all the macros after reading the floorplan information

through a tcl file or def file, we create major bounds for all the major macros present

in the design. For this we need to know the core area and along with it we must have

the location for tha macros. These major bounds are created such that all the stan-

dard cells interacting with a particular macro is placed in the bound created above

that macro.

For creation of macros we need to write a TCL script. In this first we get collection

of ports and for those ports we create a collection of all the cells. Then we create

the bounds using create_bounds command. Similarly we create the TX-RX bounds.
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These bounds are necessary as the major timing delay comes from the TX-RX data

paths. So if during synthesis we place the standard cells in the proper TX-RX region,

reducing the data path to be traversed by the signal, we reduce the delay and hence

getting a better timing closure.

Now, once the bounds are created, we must take care that the standard cells placed

within the bounds do not cluster too close to each other. If such condition arises

then there is a high possibility of routing congestion and the placement density will

also be affected. In order to avoid these problems, we write out a TCL script for

staggered placement blockage. Staggered placement blockage term points to the idea

that partial blockages will be created throughout the bounds region, barring the tool

from placing the standard cells within the blockages.Now due to this, the standard

cells will be at a proper distance avoiding high placement density issues. In this script

we have the choice of specifying the percentage of blockage we need for creating

the partial blockages. The create_placement_blockages command along with the

coordinates and the type of blockages will be used for creation of staggered placement

blockages.

6.2.3 Exporting the Design

Saving in Binary Format: You can save standard cell placement in .ddc format

by using the write_file -format ddc command, or save it in Milkyway CEL format by

using the write_milkyway command.

In regular topographical mode, the standard cell placement can only be used by

Design Compiler for further optimization. IC Compiler does not use it. However, in

the physical guidance flow, the standard cell placement information is propagated to

IC Compiler through the .ddc file or the Milkyway CEL.

The physical constraints and floorplan information used for synthesis are not passed

from Design Compiler to IC Compiler. However, physical constraint signatures are

created from the physical constraints at the end of the compile_ultra -spg and the

compile_ultra -incremental-spg command steps in the physical guidance flow. These
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signatures are saved in the .ddc file or Milkyway CEL view. IC Compiler reads the

signatures when the physical guidance information is restored and matches them to

the physical guidance information in IC Compiler to ensure consistency between the

floorplan used in synthesis and the floorplan used for physical implementation.

All binary netlists that are generated in the physical guidance synthesis flow, whether

a .ddc file or a Milkyway CEL, also contain a read-only dct_spg_flow_done attribute

to signify that the design was implemented with the physical guidance flow. You

can query the attribute to determine if your design .ddc file or Milkyway CEL was

generated using the physical guidance flow.

Saving in ASCII Format: When you save the design in ASCII format, either in

a Verilog or a VHDL netlist, the file that is created does not contain standard cell

placement information or physical constraint signatures.

You can save the standard cell placement information in a DEF file by using the

write_def command in Design Compiler or in floorplan exploration. You can then

read the DEF file, along with the ASCII netlist, back into Design Compiler to be

optimized with the compile_ultra -incremental -spg command, or you can read it

into IC Compiler before the place_opt -spg step.

6.2.4 Using Physical Guidance in IC Compiler

To enable physical guidance in IC Compiler, use the -spg option with the place_opt

command. When you run the place_opt -spg command, the stored physical guidance

information from Design Compiler is used as the initial seed placement.

In Design Compiler, we have passed the floorplan information, along with the bounds

as well as the staggered blockages information due to which the standard cells place-

ment is affected. All this inofrmation is passed to the ICC and then we compare the

results.
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Results

7.1 Reporting Physical Guidance Information

The physical guidance information is stored with the design in binary format. It is

not available as a standalone file. To view the physical guidance information, you

must run IC Compiler and execute the place_opt -spg command.

For correlation result comparison between non-physical guidance and physical guid-

ance flows, you should compare post-synthesis results against respective post-placement

results for each flow. However, you should measure and compare post-placement re-

sults instead of post-synthesis results when looking at overall QoR comparison be-

tween non-physical guidance and physical guidance flows.

Figure 7.1: Correlation Measurement Between Design Compiler and IC Compiler

48
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Figure 7.2: Comparison of Synthesis

Figure 7.3: Percentage Change in Synthesis
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Figure 7.4: Comparison of PnR Runs

Figure 7.5: Percentage Change in PnR
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Conclusion
From the results we can conclude that the floorplan aware synthesis degrades the

WNS but reduces the number of violating paths along with the cell area by .24% .

Now this newly optimized netlist when taken to PnR, we see that WNS is improved

along with major improvement in TNS. We can also see that there is improvement

in the violating paths for both min and max, which will help in timing closure of the

block. As the violating paths are getting reduced so it will be easier for fixing the

setup violations with the PT-ECO Flow on this.

The main problem that we see is the power dissipation increment with the SPG flow.

The reason behind this is due to the usage of Low VT Cells in the design during the

optimization.

The main objective was to reduce the runtime. The usual spg flow improves the

runtime by 1.5%, but due to the modifications we can see that we have achieved a

improvement of 2.3%.
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