
Scalable and Modular Verification
Environment for the Next Generation

IP-Subsystems

Major Project Report
Submitted in partial fulfillment of the requirements

For the degree of

Masters of Technology
in

Electronics Communication Engineering
(VLSI Design)

By

Rupal Jain
(15MECV21)

Electronics & Communication Engineering Department
Institute of Technology

Nirma University
Ahmedabad-382481

May 2017

Scalable and Modular Verification
Environment for the Next Generation

IP-Subsystems

Major Project Report
Submitted in partial fulfillment of the requirements

For the degree of

Masters of Technology
in

Electronics Communication Engineering
(VLSI Design)

By

Rupal Jain
(15MECV21)

Under the Guidance of
Internal Guide External Guide
Dr. Usha Mehta Panchanathan, Srilatha
Professor (EC Dept.) Engineering Manager
ITNU - Nirma University Intel Technology Pvt. Ltd.

Electronics & Communication Engineering Department
Institute of Technology

Nirma University
Ahmedabad-382481

May 2017

Declaration

This is to certify that

1. The thesis comprises my original work towards the degree of Master of
Technology in Communication Engineering at Nirma University and has
not been submitted elsewhere for a degree.

2. Due acknowledgement has been made in the text to all other material
used.

Rupal Jain

Certificate

This is to certify that the Major Project entitled “Scalable & Modular Verifi-
cation Environment for the Next Generation IP Subsystem ” submitted by
Rupal Jain (15MECV21), towards the partial fulfillment of the requirements
for the degree of Master of Technology in VLSI Design , NIRMA University,
Ahmedabad is the record of work carried out by her under our supervision and
guidance. In our opinion, the submitted work has reached a level required for
being accepted for examination.The results embodied in this major project, to
the best of our knowledge,have not been submitted to any other university or
institution for award of any degree or diploma.

Dr. Usha Mehta Dr. N. M. Devashrayee
Internal Guide PG Coordinator (VLSI Design)

Dr. Dilip Kothari Dr. Alka Mahajan
Head, EC Dept. Director, IT-NU

Date: Place: Ahmedabad

Acknowledgement

It gives me immense pleasure to express my gratitude towards people who
have been a part of my internship journey. I consider my internship oppor-
tunity at Intel as a great milestone in my career. I am highly thankful to Mr.
Srinivas P Raghothaman (Project Manager) and Srilatha Panchanathan (Project
Guide) for their constant support and encouragement.I am also thankful to all
my team members for their needed help. I would like to thank Intel Ltd for
providing me this internship opportunity. I am highly indebted to Dr. Niranjan
M. Devashrayee and Dr. Usha Mehta for their timely guidance and support. I
am thankful to Dr. Dilip Kothari, Head of Electrical Engineering Department
for allowing me to undertake this thesis work.
Last, but not the least, I am thankful to my Parents for being a great source of
motivation in my life.

Rupal Jain
(15MECV21)

Abstract

Design reuse and verification reuse are important to satisfy time to market
requirements. Reuse of verification environment across different designs of
the domain improves the verification efficiency. This work will provide the
comprehensive approach to create a scalable and modular framework which
addresses the key challenges faced, with very little effort across multiple as-
pects of verification process. Re-usability in this work is been reflected in
reuse of verification components. Tools like Perl Template Toolkit were used
to because of its fast performance capability. It saved our coding time, effort
and coding related errors. The tool named as random test measurement was
developed to increase the debugging capabilities for the real time low power
requirement problems. It generated the coverage related statistics to calculate
average duration of simulation, number of its occurrence(sequences) and the
duration of those sequences which can predict the amount of power consump-
tion. Complex design of IP blocks involves multiple complex scenarios such as
connectivity break and multiple registers are present in the design and hence,
the connectivity check has been taken care by creating an interrupt connectiv-
ity checker, and different methods to test each and every register has been per-
formed thoroughly. Hence the verification environment in this project is made
scalable and modular so to make testbench components, register sequences and
tests, coverage model reusable.

Contents

Declaration . i
Certificate . iii
Acknowledgement . v
Abstract . vii

1 Introduction 1
1.1 Problem Statement . 1
1.2 Motivation . 2
1.3 Thesis Outline . 2

2 Literature Survey 3
2.1 Perl Template Toolkit . 3

2.1.1 Methods of Templating a Template 4
2.1.2 Default Style of Template . 4
2.1.3 Perl Style of Template . 5

2.2 Functional Coverage . 6
2.3 Register Verification . 7

2.3.1 Features of Register Verification 8
2.3.2 Method used in Register Verification 10

3 Pre-Silicon Verification 13
3.1 Basic Testbench Functionality . 14
3.2 Verification Methodology . 15

3.2.1 OVM Features . 15
3.2.2 OVM Phases . 16
3.2.3 OVM Testbench . 17

ix

4 Reusable Verification Environment 21
4.1 Need for Reusable Verification . 21
4.2 Techniques for Reusability . 22
4.3 Scalable and Modular Verification Environment 23

4.3.1 Verification Environment . 23
4.3.2 Modular Verification Environment 23

4.4 Reuse of Verification Components . 24
4.4.1 Essentials of Re-usable Verification Components 25

4.5 Conclusion . 26

5 Detailed Analysis of the Work 27
5.1 Perl Template Toolkit . 27
5.2 Random Test Measurement . 30

5.2.1 Power Management of Random Sequences 30
5.2.1.1 Simulation Result . 31

5.2.2 Coverage for Random Test Measurement 31
5.2.2.1 Coverage Reports . 32

5.3 Interrupt Connectivity Checker . 35
5.3.0.1 Objection Based Check 36
5.3.0.2 Procedure Check . 36

5.4 Interrupt Coverage . 37
5.5 Register Verification . 38

5.5.1 Results and Waveforms . 41

6 Conclusion 43

References 45

x

List of Figures

2.1 Coverage Convergence . 6
2.2 Procedure of Register Verification . 9

3.1 VLSI Design Flow . 13
3.2 Basic Testbench . 15
3.3 OVM Testbench . 18
3.4 OVM Class Hierarchy . 19

4.1 Benefits of Modularity . 23
4.2 The structure of module level verification 24
4.3 OVM Component Class . 25

5.1 Interrupt monitor . 28
5.2 Perl File for Assertions . 28
5.3 Template File for Assertions . 29
5.4 Output Assertions File . 29
5.5 Flow Chart of Random Sequences . 30
5.6 Results for Duration of Sequences . 31
5.7 Coverage Report for Loop Duration . 32
5.8 Coverage Report for the Thread Count of a Sequence 33
5.9 Coverage Report for the Duration of Uart Sequence 34
5.10 Functional Block of Interrupt Connectivity Checker 35
5.11 Functional Block of Interrupt Coverage 37
5.12 Interrupt Coverage for Level1, Interrupt routed to IP Processor 38
5.13 Block Diagram of Register Verification 39
5.14 Block Diagram of Register Verification 40
5.15 Result of Register Verification . 41

xi

Chapter 1

Introduction

According to the Moore’s law, transistors in an integrated circuit will double after every
18 months. With the increase in design complexity, verification complexity also increases
exponentially. As we know, 70% of the total time is devoted in verifying the design, re-
ducing this is essential to catch up time to market. Hence to reduce verification time and
complexity, different verification methodologies are used to verify a design like System
Verilog, OVM, VMM, UVM. In this project OVM methodology is used. The main intent
of this project is to increase re-usabilty. Various techniques and concepts like scalability,
modularity etc. are used to increase the re-usability which reduces the tremendous verifica-
tion effort. The major verification time is spent on functional debugs as well. Hence some
automated tools or features are added in the testbench environment so that the debugging
becomes faster and easier. During functional verification of IP blocks, connectivity break
or data lost issues can occur, so in such case the connectivity between the blocks in the IP
should be verified properly. Since registers also plays an important role in design, with the
increase in the complexity of design, the number of registers to be verified also increases.
Hence verification of registers becomes tedious task as there are thousands of registers in
a single IP which needs to verified. Hence various methods are used in this project to to
make this work simpler and easier.

1.1 Problem Statement

As Conventional verification methodologies cannot meet time to market demands of ver-
ifying the current multimillion gate SoCs. Recent industry research has already raised
flags for the lack of breakthroughs which are currently used verification methodologies.
Hence the inadequate verification capabilities is the main reason behind restricting the de-
sign complexity, rather than the technology. One of the biggest challenge is building a
flexible, scalable and modular testbench environment which is essential and hence reduces

1

the verification effort and time without compromising the quality of the verification block.
Automated techniques for reusable verification must be used for more effective results.

1.2 Motivation

To overcome such difficulties, verification environment should focus on the improving the
abstraction of verification, improving the reusability and introduction the automation. On
the basis of the above three method mentioned, the verification environment of IP is made
scalable and modular so as to increase re-usability and reduce verification time, keeping
low power in mind. Various debugging techniques, verification method and tools were
developed which helped in achieving the goals of this project.

1.3 Thesis Outline

This thesis is divided into eight chapters,
Chapter1 provides the problem which were faced earlier and the main objective of this
thesis to overcome them.
Chapter2 discusses the literature survey on the building blocks of an IP and other topics
which helped in this project.
Chapter3 provides the description of pre-silicon verification, verification testbench and the
methodology used(OVM).
Chapter4 provides why re-usability is essential and what all methods helps in making the
environment re-usable.
Chapter5 in this chapter the detailed analysis of project work and their corresponding re-
sults are explained, how to make the verification environment effective and techniques to
increase the efficiency of debugging time.
Chapter6 concludes the project followed by references

2

Chapter 2

Literature Survey

To accomplish this work efficiently, various methods like verification of registers by us-
ing RAL(Register Abstraction Language) methodology, knowledge of perl template toolkit
and system verilog coverage is required. Hence this chapter briefly discuss these method-
ologies. Various terminologies like scalability, modularity, verification environment, RAL
etc. are discussed in this chapter. These techniques were used in this project so as to make
the verification environment efficient and reusable.

2.1 Perl Template Toolkit

Perl template toolkit is the collection of perl modules which are flexible, fast, extensible
and powerful processing system. It is generally used for generating dynamic and static
contents of the web. It provides an easy way to process template files, filling in embedded
variable references with their equivalent values.
[1]This module defines an object class whose instances are the compiled template doc-
uments. The constructor method ”new()” expects a reference to be a hash array. The
”process()” method is then called on the object and by passing reference to that object as
the 1st parameter. This will install any locally defined blocks in the BLOCKS cache. The
main BLOCK subroutine is then executed by passing the reference on as a parameter. The
text returned from the template subroutine is then returned by the process() method. Hence
the template toolkit is a very powerful tool, it not only saved our coding time and effort but
also saved from making error. [1]It is fast, flexible and uses a fast parser which compiles
templates into Perl code for maximum run-time efficiency. The modules that have toolkit,
are highly configurable and the architecture around which they are built is designed to be
extensible. Hence if there are many files which needs to be generated or if the same code,
this is the best tool as it takes the input and the template, process it and generate outputs.

3

2.1.1 Methods of Templating a Template

There are two ways to template a file:

1. Default style of template.

2. Perl style of template.

2.1.2 Default Style of Template

By default, template directives are embedded within the character sequences [%... %].
Example:

1. Perl file:
my $vars = {
name =>’i2c0’,
address =>’56FF4’,
};

$tt->process(’$file,%i2cbase,$output file) or die $template->error();’, $vars);

2. Template file:
[%-FOREACH i2c = i2c base-%]
//————————————————————–
//[%i2c.name%] registers
//————————————————————
#define i2c I2C 2
#define [%i2c.name%] A (0x[%i2c.i2c address%])
#define [%i2c.name%] B ([%i2c.name%] BASE + 0x000)
#define [%i2c.name%] C ([%i2c.name%] BASE + 0x004)
#define [%i2c.name%] D ([%i2c.name%] BASE + 0x008)
//————————————————————–
[%-END-%]

3. Output file:
//——————————————————————-
//i2c0 registers
//——————————————————————-
#define i2c BASE 2
#define i2c0 A (0x00084AC)

4

#define i2c0 B (i2c0 BASE + 0x000)
#define i2c0 C (i2c0 BASE + 0x004)
#define i2c0 D (2c0 BASE + 0x008)
//——————————————————————-

2.1.3 Perl Style of Template

To use the perl style, set the INTERPOLATE option.

Example:

1. Perl file:
my $vars = {
name =>’i2c0’,
address =>’56FF4’,
};

$tt->process(’$file,%i2cbase,$output file) or die $template->error();’, $vars);

2. Template file:
[%-FOREACH i2c = i2c base-%]
//———————————————————————
//[%i2c.$name%] registers
//———————————————————————
#define i2c I2C 2
#define [%i2c.$name%] A (0x[%i2c.$i2c address%])
#define [%i2c.$name%] B ([%i2c.$name%] BASE + 0x000)
#define [%i2c.$name%] C ([%i2c.$name%] BASE + 0x004)
#define [%i2c.$name%] D ([%i2c.$name%] BASE + 0x008)
//———————————————————————-
[%-END-%]

3. Set Interpolate:
use Template;
my $Template = template->new({
Path =>’/user/bin/template’,
set interpolate =>1,
} or die ”$template::error received \n”;

5

4. Output file:
//————————————————————
//i2c0 registers
//————————————————————
#define i2c BASE 2
#define i2c0 A (0x00084AC)
#define i2c0 B (i2c0 BASE + 0x000)
#define i2c0 C (i2c0 BASE + 0x004)
#define i2c0 D (2c0 BASE + 0x008)
//————————————————————–

2.2 Functional Coverage

As design complexity increases, to increase the quality and completeness to testing, by
using constrained random testing (CRT). This approach reduces the tedious task of writing
directed test-cases which were earlier, one for every feature in design. Now if the testbench
uses random method to hit corner cases and the test stimulus is randomized then to measure
the progress of the design, coverage is used. Coverage is used for measuring the progress to
ensure the completeness of the design verification. The coverage tool that is URG(Unified
Coverage Report Generator) gathers the information during the simulation or regression
and then it post processes to produce the coverage report. With the help of this report,
coverage holes can be modified for the existing test cases or we can create new tests to fill
these holes. This iterative process continues till the desired coverage level is achieved.

Figure 2.1: Coverage Convergence

6

Functional coverage is used to measure the functionality achieved for the design. It is also
known as specification coverage. To increase the coverage percentage we need to increase
the random tests with the random seeds to generate new stimulus. Hence these random
tests should run again and again to generate new stimulus. Each simulation has coverage
information and this information is merged together by urg. The coverage information can
be only calculated if the test passes. If the simulation fails the coverage cannot be calculated
as the information is discarded.
Various coverage terminologies are:

1. Cover Group
Covergroup is like a class. Multiple covevergroup can be included in a class. The
covergroup like class can only use after new() method. Multiple coverpoints are
sampled by the triggering event at the same time.

2. Cover Points
The coverpoint takes the snapshot of the observed values for an expression or single
variable.

3. Bins
Bins are used for measuring or counting the functional coverage . The bins hit only
when the coverpoint expression matches. Each time the bins are hit, the functional
coverage increases.

2.3 Register Verification

With the increase in complexity of design, the number of registers per device increases.
These registers are very helpful in communicating information and to perform chip op-
eration. Hence the verification of these registers are very important and should be done
properly. As a single IP has thousands of registers to verify such large amount of resister is
very tedious. To do this the verification engineer should have knowledge of the specifica-
tion of IP and the test-bench should be hooked so that the access of these registers becomes
easy. As the number of registers are not fixed from project to project, the testbench should
be flexible enough. Also the design specifications keeps on changing during the design
development. A script is used to generates testbench component for these registers. This
register specification given by RTL design engineers is input to this script. This script gen-
erates a register abstraction layer file(RAL). This file changes with he change in design.
Hence each time the design changes the script is used to generate the updated RAL file.

7

Registers are mainly classified into categories:

1. Interrupt Registers(maskable and non-maskable).

2. Status Registers.

3. Configuration Registers.

4. Mask Registers.

2.3.1 Features of Register Verification

Features of Register Verification are as follows:

1. RAL has the entire description of the registers. It supports the data structure which
store the values of the configuration register. Sequence writes into the RAL registers
and the DUT registers at the same time. Hence these RAL registers are known as
shadow registers. The register name and the address of the shadow registers is same
as that of DUT registers, so it becomes easy to debug.

2. Backdoor Register Access: There are two type of register access. i) Frontdoor access,
and ii) Backdoor access. [2]Front door access uses physical bus . To write a value
in to DUT registers, it takes some clock cycles in front door access. And writing for
thousands of registers is resource consuming. Remember, only one register can be
assigned at a time. One cannot make sure that only one method is called at one time.
To make sure that only one method is assessing the bus, semaphore is used. In back
door access, registers are access directly. In zero time. Accessing to these locations
using back door will save simulation time. There should be a switch to control these
feature. So after verifying the actual access path of these registers, we can start using
back door access. In verilog, using Hierarchy reference to DUT register, we can
bypass this path.

3. Shadow registers should always contain default value of the register. This default
value of the register should be specified in RAL and should match RTL specification.
These default values are read back from shadow register and DUT registers and then
compared. The values should match. This check should happen after reset takes
place.

4. Tasks for read and write operations to the RTL registers should be made. The read
and write to the register happens by the name and the address of the register. For
reading and writing in bulk locations looping is used.

8

5. Every register in the test-bench should contain these information. RAL should have
address, offset, width, reset value or default value, access permissions or the attribute
of registers, register value, register name as string, description of register.

Figure 2.2: Procedure of Register Verification

9

2.3.2 Method used in Register Verification

Tasks should be developed to accomplish the task of Register Verification.

1. Read task

2. Write task

3. Update and predict task

4. Print task

5. Check and compare function

6. randomize task

Write random task:
Write values in the registers are randomized. But there are some registers which can have
some restrictions of the data or the values while writing to the register. Hence these regis-
ters are constrained to some values. Some registers values can be any constrained random
value. Randomization should be done while writing to the register.

Update task:
Control registers like enable register, interrupt register and its status register can affect the
functionality of the RTL, hence update and predict value of the register should be used.
When writing to such register, RTL values are compared with the RAL’s expected values
of the register.Update only happens when predict flag is set to 1.

Check and compare task:
This task compares the value of RTL registers with the RAL registers. These values are
checked if they are matching or not. For configuration register predict flag is made zero but
for interrupt and its status register predict flag is 1 and hence it is checked with expected
value.

Access permission or the attributes:
Each register should have attribute mentioned in RAL as well as RTL. These access type
or the permission will decide when only read is allowed and when to write.

10

Types of attributes:

1. Read/Write(RW).

2. Read Only(RO).

3. Write Only(WO).

4. Read Only, Write is Done by Hardware(RO/V).

5. Clear on Read(RO/C).

6. Writing 1 clears the register(RW/1C).

7. set config val sets the value to 1 or 0.

8. Not applicable (NA)

By default the access type of register RW if not defined, but if entire field is not defined
the access type is NA. The access type NA is used only in case like when the register
is accessible by IP and not by SoC. The procedure for register verification is explained
in figure2.2. The RAL is the feature of UVM. Hence a cross module reference module
language is used to make RAL file compatible with OVM.

11

Chapter 3

Pre-Silicon Verification

Due to the advancement in the technologies functional requirements in designs are increas-
ing day by day which leads to more complex designs. More and more logic gates are
getting embedded into a chip to achieve performance and functionality of the device.

Figure 3.1: VLSI Design Flow

Specifications describe the architecture, functionality and the interface of the circuit to
be designed. Then behavioral description of the design with the help of specifications is

13

created in architectural designs. Then comes functional design in which the RTL descrip-
tion is written using Hardware Description Language. This description is then simulated to
check the functionality. Now in logic design, with the help of EDA tools RTL description
will be converted into gate level netlist. A gate level netlist is the description of circuits in
terms of the gates and the connections between them. These connections should be made
by keeping power, timing and area specifications in mind. After logic design the design is
converted into transistor level. The physical layout from the transistor level is made, which
will be sent to the fabrication. Finally the testing and packaging of the chip is done.

3.1 Basic Testbench Functionality

SystemVerilog is specially developed for the verification purpose. Complexity of testbench
increases rapidly to reduce the difficulty during the development, testbench is created from
the scratch and the method is adopted in OVM. OVM uses system Verilog as HVL.
Coverage plays very important role in deciding the functional verification. SystemVerilog
provides cover group concept in the language. Registers are used to take the samples of the
cover groups because the designs is configured using these registers only. The SystemVer-
ilog OVM Class Library provides all building blocks to quickly develop the reusable, test
environments and the well constructed verification components. The library consists of
macros, base classes, and utilities.
Design is verified by following these steps:

• Generate the stimulus vectors.

• Send the Stimulus to the DUT.

• Monitor the response generated by the DUT.

• Verify the response generated.

• Generate report about the DUT performance.

• Some kind of feedback to show the quality of testbench.

The testbench is built to verify the functionality of the design by generating corner cases
and test scenarios. The stimulus is provided by the stimulus generator in the testbench to
exercise the DUT through driver. The stimulus from the driver is given to the DUT and the
scoreboard. The data from the DUT is collected by the monitor through mailbox. Then the
data is compared in the scoreboard.

14

Figure 3.2: Basic Testbench

3.2 Verification Methodology

OVM is a methodology for functional verification using SystemVerilog, complete with a
supporting library of SystemVerilog code. The letters OVM stand for the Open Verifica-
tion Methodology. OVM was created by Cadence and Mentor based on existing verifica-
tion methodologies originating within those two companies. The methodology used in this
project is OVM(Open Verification Methodology). OVM is a methodology for the func-
tional verification of digital hardware, primarily using simulation. The hardware or system
to be verified would typically be described using Verilog, SystemVerilog, VHDL or Sys-
temC at any appropriate abstraction level. This could be behavioral, register transfer level,
or gate level.

3.2.1 OVM Features

Features of OVM are:

• Verification quality is dramatically improved by constrained random verification and
the verification environment becomes more flexible and transparent.

• Accurate feedback(result) is provided by the automated coverage collection report
which helps in improving the verification by emphasising the verification plan.

• OVM facilitates verification reuse by using modular verification environment. Reusabilty
helps in saving time and effort.

15

Three C’s that is, Checker, coverage and constraints plays important role in verification.

1. Checker: Checkers check the functional correctness of the design. Implementation
of checker can be done by using system verilog assertions or by using some regular
procedural code.

2. Coverage: Coverage determines the functional completeness of the verification. It
tells us how much goals has been achieved and how much more is required.

3. Constraints: Constraints help to shape the stimulus which is to be provided to DUT.
It helps in generating interesting corner cases.

3.2.2 OVM Phases

OVM uses predefined phases for testbench. Each phase is determined by its virtual method
whose derived component can overridden to incorporate the specific behavior of the com-
ponent.

1. build() phase : This phase is used for constructing and configuring the child’s com-
ponent.

2. connect() phase :This phase is used for connecting ports and exports of the testbench
components.

3. end of elaboration() phase : This phase is used for the final modification in the
configuration.

4. start of simulation() phase : This phase is used for printing hierarchical topologies
and table.

5. run() phase : This is the main phase of the testbench where actual verification by
passing the stimulus takes place.

6. extract() phase : This phase gathers all the required information.

7. check() phase : This phase checks the compared data is matching or not and it also
checks for the errors, and fatal.

8. report() phase : It is the last phase, it reports the pass/fail of the test.

16

Only build() method is the only phase which follows top down approach. All other
phases follows bottom up approach. The run() phase consumes time as all the verification
related functionality are done in this phase. If forking is used, then all he forked off threads
are completed first then this phase ends. Except run phase all other phases are of 0 time
consuming.

3.2.3 OVM Testbench

The OVM verification components (OVCs) are written in SystemVerilog which is struc-
tured as follows:

1. Design under test or DUT.

2. Interface to the DUT.

3. Top level module

(a) Process to run the test.

(b) Instantiation of interface.

(c) Tests which instantiates the verification environment.

(d) Instantiation of DUT.

4. Verification environment (or testbench)

(a) Instantiation of driver.

(b) Transaction of the data item.

(c) Driver

(d) Instantiation of sequencer.

(e) Top-level of verification environment.

(f) Sequencer or the stimulus generator.

5. Response checking

(a) Scoreboard

(b) Monitor

The entire hierarchy of the OVM testbench is defined as follows:

17

Figure 3.3: OVM Testbench

1. Sequence item The sequence library will have one or more sequence items which
are used to either define what pin level activity will be generated by the agent or to
report on what pin level activity has been observed by the agent.

2. Sequencer The role of the sequencer is to route sequence items from a sequence
where they are generated to/from a driver.

3. Driver The driver is responsible for converting the data inside a series of sequence
items into pin level transactions.

4. Monitor The monitor observes pin level activity and converts its observations into
sequence items or packets which are sent to components such as scoreboards which
use them to analyze what is happening in the test-bench.

5. Agent : It instantiates Sequencer, Driver and Monitor. There are two types of agents
one is active which has sequencer, driver and monitor, the other one is passive which
consists of monitor.

6. Scoreboard : A scoreboard is an analysis component that checks that the DUT is be-
having correctly. A scoreboard will usually compare transactions taken from master
and a slave agent.

7. Coverage Collector :A functional coverage monitor analysis component contains
one or more cover groups which are used to gather functional coverage information
relating to what has happened in a test-bench during a test case. A functional cover-
age monitor is usually specific to a DUT

18

Figure 3.4: OVM Class Hierarchy

8. Environment : It instantiates the agent, scoreboard and the coverage collector. It
consist of one or more agent. It configures the the type of agent required that is
active or passive. All the internal component connection takes place at this hierarchy
level.

9. Test : Test configures the environment. It instantiates the environment and sequence
item.

19

Chapter 4

Reusable Verification Environment

With the increase in design complexity, verification complexity increases exponentially.
Hence to catch up with time to market, the verification environment of the IP should be
made re-usable. [3]Verification reuse deals with reusing the existing verification environ-
ments, components of verification environments which are developed for the other blocks
or designs. It consists of verification code reuse for modules like scoreboard, monitor, data
items, bus functional model [BFM], assertions, test case reuse, coverage and simulation
script reuse.
[3] Functional verification for IP can be classified into three types:

1. IP block verification

2. IP integration or inter-blocks verification

3. System verification

4.1 Need for Reusable Verification

Verification reuse can drastically reduce the verification time, verification environment
build effort, reduce verification risk and improves the product quality. Considering that
verification consumes 50% to 80% of the total development effort hence verification reuse
brings tremendous benefits to the verification team.
For the reuse of verification components, number of requirements must be met from the
perspective of verification component users.
They include:

• The ability to integrate with design which implements the specific interface.

• The ability to integrate with other verification environments.

21

• Allows multiple instantiations.

• A user friendly interface for writing tests.

• A clear interface for extensions.

The verification process generally depends on the following factors:

• Quality of the testbench and the test plan.

• Robustness of reusable IP blocks.

• Robustness of the verification flow.

4.2 Techniques for Reusability

Different techniques for reusability are used for verification environment. This means that
any particular reuse technique or concept may have different importance depending on
how we anticipate the code. Hence it is recommended to incorporate as many of the subse-
quently listed reuse techniques as possible.
Verification code reuse migration can take many paths. Some examples are:

• From basic module level to chip level within the same project.

• From first generation project to the second generation project with modified func-
tionality.

• From project X to project Y and then to project Z, each with possible individual
variations as required.

Within these migration paths, there are be different reuse strategies. Some examples of
these strategies are:

• Use original code as a templates, and then create new independent copy of files.

• Modify existing code to handle new cases and functionality. Modifications are not
backward compatible as methods may have new parameters or fields/structures re-
moved, added or changed.

22

4.3 Scalable and Modular Verification Environment

Scalable and modular verification environment leads to verification reuse. Setting up con-
strained random test environment, however, seems like a difficult task, especially when we
consider that environment needs to be flexible and scalable.

4.3.1 Verification Environment

The verification environment consists of an automatic verification control system driven by
a series of test cases which are usually a set of constraints or a set of scripts containing func-
tion calls to class member in object oriented environment. For reusability, the verification
environment should be modeled with modular, configurable and completeness.

4.3.2 Modular Verification Environment

[4]Modularity requires specification of the module interfaces. In order to achieve modular-
ity in verification the module interfaces have to provide the right amount of information. If
the interfaces provide too much information then they are not helpful in achieving modu-
larity in verification. On the other hand, if they provide too less information then they are
not helpful in verifying interesting properties. Modular verification task is necessary for its
scalability.

Figure 4.1: Benefits of Modularity

23

This approach enables the re-usability for the verification components which are associated
with the DUT in the SOC and across various SOC where the same IP is being re-used.
[5]The main advantage of re-usability is that the IP level test-cases can be easily used as
is(or ported) in SoC environment. The scripts are written to convert these tests from IP
level to system level. The main use of these tests are to run sanity test list on the module.
Sanity tests run on a small area to check the functionality of the module.

Figure 4.2: The structure of module level verification

Ample amount of time is saved by using these tests. These tests are already present in the
SoC environment and hence the verification engineer can focus on other checks.

4.4 Reuse of Verification Components

All the verification components are inherited from ovm component class. This is the stan-
dard class. In figure 4.3, the relation of specific inheritance is clearly seen. [6]In the OVM
methodology the environment is instantiated in the test class. The environment instantiate
the agent, the scoreboard and the coverage collector. The agent instantiate the sequencer,
the driver and the monitor. There are two types of agent, passive and active. In passive
agent, only monitor is used while in active driver, monitor and sequencer are used. As
OVM provides factory mechanism and hence all the components are registered to the fac-
tory. This factory mechanism helps in creating reusable platform. Hence agent can be
reused as active and passive where ever required and it is configured in the environment.
The following code shows the factory method:

24

Figure 4.3: OVM Component Class

class class env extends ovm env;
‘ovm component utils(class env)
class master agent master a[];
class slave agent slave a[];
function build phase();
master a[i] = class master agent::type id::create(inst name, this);
slave a[i] = class slave agent::type id::create(ints name, this);
endfunction
endclass

From the above code we can see that the class of the environment is registered into the
factory by using the predefined macro ‘ovm component utils. The ovm master agent and
ovm slave agent is the same agent class with different configuration. Then the master and
slave agent is created and the memory is allocated for each agent. The is active enum
is used for the configuration of the agent which is defined in environment. This agent is
component is reused as slave.

4.4.1 Essentials of Re-usable Verification Components

[7]The obvious benefit of reuse on productivity has to do with reducing or eliminating
some of the traditional steps of developing the verification environment. The danger is with

25

making the assumption that the components which are reused are assumed to be tested well
enough. Hence while reusing the verification components various things should be kept in
mind. The two major concern of reusing the verification components is adaptability and
portability. Adaptability is when the components are reused into the different environment,
they should work for which it was intended to work. By portability it means that the
language should be supportive. For example, the RAL is an UVM feature but it can be
used by OVM test with the help of cross module language.

4.5 Conclusion

Reusing verification code from module level to the SoC level is now the highly expected.[7]The
five classes of reasons for reusing verification components and environment are productiv-
ity, reliability, consistency, manageability, and standardization. This level of reuse is the
most simplest way to reduce effort and spend time on improving the verification plan. If
modules are completely reused in different projects or is expected to be reused in new gen-
eration subsystems or products then both verification components and the corresponding
design modules needs some amount of functional improvisation.

26

Chapter 5

Detailed Analysis of the Work

This chapter will discuss the work and their corresponding results. The mail goal of this
work is to achieve reusable verification environment in terms of verification components
reuse and to save verification time. Verification components like interrupt connectivity
checker, coverage model, sequences and its test are written which can be further used in
different projects. Tools like perl template toolkit is used to obtain the assertions for 128
interrupts coming from different IP’s can just be using a single generalized template. The
random test measurement tool is created to increase the efficiency of debugging time.

5.1 Perl Template Toolkit

As there are many interrupts which were routed from different IP’s to IP processor, the as-
sertions for each IP interrupt was written. Assertions are used to validate the behaviour of
a design, whether the design is working correctly or not. In System Verilog, the assertions
are of two type:
1). immediate (assert)
2). concurrent (assert property).
These assertions will check the connectivity between the ip and the programmable interrupt
controller.

As there were 128 IP’s and the assertions were required to be written for the interrupts
coming from these IP’s and all these assertions are same except for the interrupt name, hi-
erarchical path, clock and RTE number. Hence, with the help of template toolkit assertions
for all the interrupts were written. In template file, template of concurrent assertions were
used with dynamic variable used are IP name, clock, RTE(redirection table entry) number
and the hierarchical path was given in the input file. Then the input file and the template file

27

Figure 5.1: Interrupt monitor

are processed by the perl file to generate output .sv(extension) file which has the complete
assertions for all the interrupt connectivity.

Figure 5.2: Perl File for Assertions

28

Figure 5.3: Template File for Assertions

Figure 5.4: Output Assertions File

29

5.2 Random Test Measurement

[8]Debugging is twice as hard as writing the code in the first place. Therefore, if you write
the code as cleverly as possible, you are, by definition, not smart enough to debug it.

– Brian W. Kernighan.
Hence timing efficiency of debugging has been increased by creating a random test mea-
surement tool.

5.2.1 Power Management of Random Sequences

The IP on which the work has been carried out enable a ”always-on-always-sensing” fea-
ture. Since the IP is always on and always sensing the battery or power used will be high,
hence some techniques are used to reduce this power. Now while verifying such IP random
traffics are generated to check whether IP is going under power gated state or sleep state
etc. Various IP’s sends traffic to verify the entire device hence it takes large simulation
time. Simulation time depends on the amount of time each IP is kept awake by the traffic
sent. Longer the thread(sequence) is the simulation time is more. And hence it was very
difficult to figure out which IP is taking was taking longer time.

Figure 5.5: Flow Chart of Random Sequences

Figure 4.1 shows the working of the tool, it takes the sequences(random traffic) by run-
ningrandom seeds of tests. Then this sequence is randomized and the triggering of se-
quencestakes place and then it waits for the sequence to end. After that it checks for the

30

presence ofany other sequence. If yes then it repeats the loop otherwise the end of test state
is called.
To increase the timing efficiency of debugging by creating a tool known as random test
measurement. It performs the following tasks:

1. It gives the number of IP’s which are active.

2. It checks the concurrency of the occurrence of threads, i.e, how many threads started
parallel.

3. Time taken by each thread

5.2.1.1 Simulation Result

Figure 5.6: Results for Duration of Sequences

Here the fsm have three loops which defines, when SoC is in power off state then the
time taken by the IP to go under power off. And each sub loop will contain multiple threads
from each IP.

5.2.2 Coverage for Random Test Measurement

The random test measurement tool can not provide enough information with signal simula-
tion as it is used to calculate information from random tests. Hence for multiple seeds the

31

result will be different. Hence coverage collector is used to calculate average information
for all the seeds.
The coverage collector for random tests measurement gives three information. It calculates:

1. duration of each loop

2. total number of threads(count) in each loop.

3. duration of each thread.

5.2.2.1 Coverage Reports

Figure 5.7: Coverage Report for Loop Duration

32

Figure 5.8: Coverage Report for the Thread Count of a Sequence

33

Figure 5.9: Coverage Report for the Duration of Uart Sequence

34

5.3 Interrupt Connectivity Checker

Connectivity checker, as the name suggest is used to check the connectivity between the
source and the destination. The source will be the periphery of different IP blocks. There
are four destination path so, the destination for the single IP will be passed through the
de-multiplexer and hence to the desired path. The de-multiplexer will have 4-bit selection
logic to select the desired path. Based on this selection logic the desired path is selected.
This checker is scalable, as it can check the interrupt connectivity for any number of IP’s.
There are three methods to check the connectivity: assertions, objections and with the help
system verilog procedural code. In this project, objection based and the procedural method
were used to check the connectivity of the of the IP block.

Figure 5.10: Functional Block of Interrupt Connectivity Checker

Interrupt connectivity checker should perform four checks:

1. Check1: The interrupt signal at the peripheral should match with the signal at the
destination.

2. Check2: The interrupt signal is serviced by the ISR or not.

3. Check3: The unconnected interrupt pins should not toggle.

35

4. Check4: There are many interrupts which are ored and are given to the mux logic.
Hence assertion based check is performed to check the interrupt connectivity from
IP peripheral to the or gate logic.

5.3.0.1 Objection Based Check

1. Check1: In objection based method, the checker raises the objection at the periphery
of IP, on the positive edge(and negative edge) of interrupt, waits for a clock and then
drops the objection at the positive level triggered(and negative level triggered) at the
destination.

2. Check2: To check whether the interrupt is serviced or not, the objection is raised on
the posed of interrupt and the objection is dropped at the negative edge of interrupt.

3. Check3: It checks for the unconnected pin status.

This method of checking was not correct as it skipped many bugs. So the other way of
implementation was procedural check.

5.3.0.2 Procedure Check

By using this method the checker performed all four checks. It used if..else and for condi-
tion. All checks are same except for the check1. The check1 checks for all interrupts, that
source interrupt(IP level interrupt) should be equal to destination interrupt. The destination
is chosen by mux logic.

36

5.4 Interrupt Coverage

Coverage provides the measure of the functional completeness of the verification and it
determines when the set goals of the verification plan is been meet. Interrupt coverage
measures the quality of the test which generates an interrupt that are routed to various
destinations, like fabric, SoC, IP processor.

Figure 5.11: Functional Block of Interrupt Coverage

As shown in the Figure 5.11, coverage collector is made modular such that it can be
re-used as and when required by different project. It consist of top file which instantiate
three sub level coverage collector modules: Levl1, level2 and level3 coverage modules.

Level1 Coverage determines every IP interrupt crossed with the interrupt routing (se-
lection logic of the demux). It stress the demux logic. It checks the stimulus generated
by the tests are able to route the interrupt to the proper destination. If all the interrupts
are covered by the tests, 100% coverage can be achieved The covergroup is sampled at
the posedge of each interrupt which makes it scalable. And the destination is kept as bins,
hence when posedge of interrupt coincides with the routing logic bin count is increased.
Level2 coverage determines the coverage for the concurrency of occurrence of interrupt at
same time. It stress the bridge to measure the efficiency of fabric by sending one interrupt
and multiple interrupt.

37

In level3 coverage counters at the destinations are used to count number of interrupts
are sent to the particular destination. It takes the snapshot whenever a counter changes by
sampling it for 3 “destination”. It basically measures the requirement of interrupt to be sent
at the destination.

Figure 5.12: Interrupt Coverage for Level1, Interrupt routed to IP Processor

5.5 Register Verification

Register description file contains register name, register description, fields of register, offset
value of register. Each register is of 32 bits and the register is divided into fields. Each fields
contains field name, field description, field size, bit position inside register, its access type
or attribute, its default value. Default value of the register will be combined from the fields
default value. This register description cannot be directly used as it is not compatible with
the testbench environment. Hence it is converted into RAL(Register Abstraction Layer) by
using a script, which can be directly used by the testbench.

The ovm based test is created, which contains ovm phases.

38

Figure 5.13: Block Diagram of Register Verification

1. Build Phase: In this phase the environment of the test is created and configured
according to the project requirement.

2. Connect Phase: This phase calls the sequence, determines the amount of time the
test should run that is the drain-out time which is generally kept as 100microsecond.
This drain out time should be selected carefully because this determines the amount
of time the test should take. Hence the intent of the test should be achieved.

The sequence for the test is created. This sequence is assigned to the proper sequencer
by ovm factory method that is ‘ovm sequence utils(sequence name, sequencer used). This
is a self-checking test. It means that it does not use the third component of the testbench
like scoreboard, monitor. These tests frontdoor access method. That is each register will
be called and if any activity in the bus transaction is captured. This sequence creates the
pointer to the RAL file and by using this pointer all the registers in the RAL file is popu-
lated in an array with all information like, name, base address, offset address, width of the
registers, filed of register, and its attributes. This populated register is then randomized.
Some registers and the bits of the registers are masked or sometimes skipped for checking.
This is done because we do not want to enable the functionality of the RTL. For this case
the dummy model or the IP is required and hence registers or the filed like enable bit, reset
bits, interrupt registers or interrupt bits are masked. Now the task which contains read write
function will be called. The three checks are performed:

39

Figure 5.14: Block Diagram of Register Verification

1. Reset Value Check: It checks the default value of register. This happens as soon
as the IP powers up and the reset happens. In this check only the register address is
required. Then the read and compare happens. If the value compare does not matches
the ‘ovm error is called.

2. Attribute Check:In this check the write to the register is done and we read back the
entire register. The write value will be random value and the register locations will
be random. The read only bits will not be modified and hence the will be treated as
0. Here when we write to the RTL register, the shadow copy of the register that is
RAL register also gets updated. Then we compare the value of the shadow register
and the RTL register. So in this check we write to one register and we read back the
value of register and then we compare the value of the register.

3. Write All, Read All Check: Some errors were not captured while performing at-
tribute check. The bugs like, if two register locations are shorted, writing one and
reading one register will not be able to catch such bugs. Hence we write to all regis-
ters and read all registers back.

40

Figure 5.15: Result of Register Verification

5.5.1 Results and Waveforms

From the above figure it can be seen that there is error while testing register with address
1060000010.
The error from the log is:
OVM ERROR (path of flie)(1096) @ 2551428: reporter [PMU INTR] RAL¿ [Attribute] -
[Attr=RW] Read Data Mismatch: File =map pmu config i, Register name=PMU GENERAL INTR[31:16],
Field name=PMU INTR, Access =sequencer type, RTL VALUE=0000000000000007, DE-
SIRED=00000000000001c7

OVM INFO pmu sequence file.sv(97) @ 2551428: reporter [pmu seq] :: :: reg: PMU GENERAL INTR
:: :: op: READ AND CHECK :: :: rd val= 0000000000070002, wr val = 0000000001c7d88e.

It is an attribute check with write one read one register. Here in register PMU GENERAL INTR
from bit 16 to bit 31, bit 16 to bit 19 is RW, which is read correctly but from bit 20 to bit 27
is RW in specification that is RAL but RO in RTL. Hence from bit 20 to bit 27 is modified
to 0.

41

Chapter 6

Conclusion

With the advancement of tools and technologies in design, the necessity for reusable ver-
ification has araised. The main focus of this project was towards the reuse of components
created in verification environment and to save verification time. Hence the components
discussed like interrupt connectivity checker, interrupt coverage, register tests and their se-
quences can be used in different projects. The register tests and their sequences are also
used at the SoC level. Various techniques are discussed which can be very useful to in-
crease the reuasbility. The significant amount of time spent in verification can also be
saved in debugs. Hence a random test measurement tool is developed to reduce the effort
for debugging hence it saved time for verification. Tools like perl template toolkit is used
in which assertions for 128 interrupt were processed by using single interrupt template and
more number of interrupts can be generated as per the project requirement. Some reusable
tests and sequences were written to verify each and every registers in the IP.

43

References

[1] Andy Wardley. ”Template-Toolkit Tutorial”. 2.27, 2013.

[2] Gopikrishna and Naresh Maddipati. ”Register Verification Tutorial”.
http://www.testbench.in/TB 32 REGISTER VERIFICATION.html.

[3] Jia Wei Han Qi, Zheng Jiang. ”IP Reusable Design Methodology”. IEEE.

[4] C. Heitmeyer Tevfik Bultan and J. O’Leary. ”Panel on design for verification”. IEEE,
2005.

[5] Rizal Prasetyokusuma Ranga Kadambi Teng-Peow Ng, Anjali Vishwanath. ”Reusable
Verification Environment for Core based Designs”. Development Centre, Microcon-

troller, Infineon Technologies Asia Pacific Pte Ltd, Singapore.

[6] W. Ni and J. Zhang. ”Research of reusability based on UVM verification,”. IEEE 11th

International Conference on ASIC (ASICON), pages pp. 1–4, 2015.

[7] W. M. McCracken D. S. Guindi, W. B. Ligong and S. Rugaber. ”The Impact of Verifica-
tion and Validation of Reusable Components on Software Productivity”. Proceedings

of the Twenty-Second Annual Hawaii International Conference on System Sciences. :

Software Track, Kailua-Kona, Volume II:pp. 1016–1024, 1989.

[8] Harry Foster Chief Scientist Verification Design Verification Technology. ”Verification
is a Problem, but is Debug the Root Cause?”. Mentor Graphics, 2010.

45

