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Abstract 
 

Due to advancement in VLSI technology, transistors have been scaled down a lot incorporating 

more complex design in single System on Chip (SoC).  

As the complexity of designs increases, verification emerges as a dominant step concerned with 

time and cost in the development of a system-on-chip. Increased design complexity mandates the 

need for functional verification. 

The bug that is found at early level of abstraction will reduce the total cost incurred on a single 

chip so 70 % of the time is devoted in verifying the design.  

 

Aim of the project is to build a scalable verification infrastructure and verification component to 

meet the verification challenges faced during verification process and to increase the timing 

efficiency of the Verification Engineer in debugging. 

While verifying a complex design, many debugging challenges will be faced by a verification 

engineer. This report tries to discuss some of the verification and debugging challenges, faced 

during verification of a complex design and strategy to overcome this challenges. 
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Chapter 1 

INTRODUCTION 

1.1 Organization Profile  

Intel Corporation is the world's largest semiconductor company and the inventor of the x86 series 

of microprocessors, the processors found in most personal computers. For more than three decades, 

Intel Corporation has developed technology enabling the computer and Internet revolution that has 

changed the world. Founded in 1968 to build semiconductor memory products, Intel introduced 

the world’s first microprocessor in 1971. Today, Intel supplies the computing and 

telecommunications industries with chips, boards, systems, and software building blocks that are 

the ingredients of computers, servers and networking and communications products. 

 
Intel is a leader in semiconductor manufacturing and technology and has established a competitive 

advantage through its scale of operations, agility of its factory network, and consistent execution 

worldwide. Intel has 26 FABs (Fabrication Units) and 13 ATM (Assembly Test and 

Manufacturing) centers worldwide. Intel produces the silicon for its high-performance 

microprocessors, chipset and flash memory components in its fabrication facilities (FABs). After 

the silicon-based products are created, they are sent to Intel's assembly and test facilities (ATMs) 

where each wafer is cut into individual microprocessors, placed within external packages, and 

tested for functionality. 

 

Intel started its operations in India in 1988. Originally it was a sales and marketing office, Intel 

India soon expanded due to the country's I.T. and engineering talent pool. Now the majority of 

work done at Intel India is software and hardware engineering. Intel's Bangalore operations include 

the most Intel divisions in any country outside the United States. 
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1.2 Motivation  

In 1965, Gordon Moore observed that the number of transistors in a single integrated circuit was 

doubling every two years and he predicted that this exponential growth would continue in 

perpetuity. As advances in methodologies, tools and process have enabled this growth, the task of 

verifying the functionality of these designs has become increasingly complex. The verification 

challenges are described below – 

 As the number of transistors increases, the functionality is becoming more complex as 

more features are added. 

 The cost of errors is increasing rapidly as the cost of masks increases.  

 

The complexity of SoC devices are increasing day by day, along with them the time spent in 

verification is also increasing exponentially. According to recent statistics the mean time spent in 

verification of the total project time is more than 50%. As shown in the figure 1 the mean time 

spent in verification in the year 2007 was around 46 % which got increased to 51% in 2010 and to 

53% in 2012. Owing to this there is a very high need to speed up the verification process. 

1.3 Verification Process  

The entire verification process can be sub-divided as shown in figure 2: As depicted in the figure 

2 the major time spent in verification is in functional debugs, the next portion of time is taken by 

the test bench development the next is consumed by creating and running test cases and the 

remaining is consumed from test planning. A similar analogy can also be applied to developing a 

verification environment of a scaled up version. If some of these tasks can be automated the device 

can be verified faster. This is the main goal of project to automate as many tasks as possible and 

thereby speeding up the verification process. 
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1.4 Thesis Outline 

This thesis is divided into seven chapters.  

In this chapter (Chapter 1), we have presented the motivation and need for the project. 

Chapter 2 provides the brief description of the Pre-Silicon Verification Guidelines which include 

the basic verification flow and effective way of test bench development. 

Chapter 3 provides complete OVM Methodology, one of the popular Verification methodologies 

used in industries for the Verification and discusses its complete structure. 

Chapter 4 provides the complete overview of the project with the IP description 

Chapter 5 discusses the literature survey on the building blocks of an IP and other topics which 

helped in this project. 

Chapter 6 is the most important chapter in which the project is explained how to make the 

effective debugging and various verification challenges faced. 

Chapter 7 summaries the results on the debugging infrastructure built in the verification 

environment and followed by conclusion and references. 
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Chapter 2 

Pre-Silicon Verification Flow 

2.1 VLSI Flow Process 

 

Figure 1. VLSI Design Flow 

 

Below are the steps in the VLSI Design flow: - 

2.1.1 Design Specification 

 Goals and constraints of the design  

 Functionality (what will the chip do)  

 Performance figures like speed and power  

 Technology constraints like size and space (physical dimensions) 
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2.1.2 Structural and Functional Description 

Kind of architecture (structure) to be used for the design, example RISC/CISC, ALU, 

pipelining etc. To make it easier to design a complex system, it is normally broken down into 

several sub systems. The functionality of these subsystems should match the specifications. 

2.1.3 Logic Design/ Register Transfer Level 

The sub systems, top level systems once defined, need to be implemented. It is implemented 

using logic representation (Boolean Expressions), finite state machines, Combinational, 

sequential Logic, Schematics etc. Basically the RTL describes the several sub systems. It 

should match the functional description. RTL is expressed usually in Hardware Description 

Languages which is used to describe a digital system such as Verilog or VHDL. 

Functional/Logical Verification is performed at this stage to ensure the RTL designed matches 

the idea. 

2.1.4 Gate-Level Netlist 

Once Functional Verification is completed, the RTL is converted into an optimized Gate Level 

Netlist. This step is called Logic/RTL synthesis. This is done by Synthesis Tools such as 

Design Compiler (Synopsys), Blast Create (Magma), RTL Compiler (Cadence) etc. A 

synthesis tool takes an RTL hardware description and a standard cell library as input and 

produces a gate-level netlist as output. Standard cell library is the basic building block for 

today’s IC design. Constraints such as timing, area, testability, and power are considered. 

Synthesis tools try to meet constraints, by calculating the cost of various implementations. It 

then tries to generate the best gate level implementation for a given set of constraints, target 

process. The resulting gate-level netlist is a completely structural description with only 

standard cells at the leaves of the design. At this stage, it is also verified whether the Gate 

Level Conversion has been correctly performed by doing simulation (GLS Gate Level 

Simulation). 

2.1.5 Physical Implementation 

The next step in the ASIC flow is the Physical Implementation of the Gate Level Netlist. The 

Gate level Netlist is converted into geometric representation that is the layout of the design. 
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The layout is designed according to the design rules specified in the library. The design rules 

are nothing but guidelines based on the limitations of the fabrication process. 

The Physical Implementation step consists of three sub steps:  

 Floor planning.  

 Placement.  

 Routing  

The file produced at the output of the Physical Implementation is the GDSII file. It is the file 

used by the foundry to fabricate the ASIC. This step is performed by tools such as Blast Fusion 

(Magma), IC Compiler (Synopsys), and Encounter (Cadence) etc. Physical Verification is 

performed to verify whether the layout is designed according the rules. 

 

2.2 The Verification Process 

What is the goal of verification? Is it, “Finding bugs,” then it is only partly correct. The goal of 

hardware design is to create a device that performs a particular task, such as a network router, or 

radar signal processor based on a design specification. The purpose as a verification engineer is to 

make sure the device can accomplish that task successfully i.e., the design is an accurate 

representation of the specification. Bugs are what we get when there is a discrepancy. The behavior 

of the device when used outside of its original purpose is not the verifier’s responsibility, although 

he/she wants to know where those boundaries lie. 

The process of verification parallels the design creation process. A designer reads the hardware 

specification for a block, interprets the human language description, and creates the corresponding 

logic in a machine-readable form, usually RTL code. A verification engineer must also read the 

hardware specification, create the verification plan, and then follow it to build tests showing the 

RTL code correctly implements the features. 

There are different ways to test the design. The easiest ones to detect are at the block level, in modules 

created by a single person. It is almost trivial to write directed tests to find these bugs, as they are 

contained entirely within one block of the design. After the block level, the next place to look for 

discrepancies is at boundaries between blocks. Interesting problems arise when two or more designers 

read the same description yet have different interpretations. The first designer builds a bus driver with 

one view of the specification, while a second builds a receiver with a slightly different view. The 
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Verification Engineer’s job is to find the disputed areas of logic and maybe even help reconcile these 

two different views. When the DUT is complex then the directed test will become a tedious job. 

So it demands a specific pre-planned verification plan for the testing all the scenarios in the DUT. 

2.3 Basic Test-bench Functionality 

The purpose of a test bench is to determine the correctness of the design under test (DUT). This is 

accomplished by the following steps.  

 Generate stimulus  

 Apply stimulus to the DUT  

 Capture the response  

 Check for correctness  

2.4 Directed Testing & Constrained Random testing 

     2.4.1 Directed Testing 

Traditionally, the task of verifying the correctness of a design, probably used directed tests. 

Using this approach, verification engineer look at the hardware specification and write a 

verification plan with a list of tests, each of which concentrated on a set of related features. 

Armed with this plan, he/she write stimulus vectors that exercise these features in the DUT. 

Then simulate the DUT with these vectors and manually review the resulting log files and 

waveforms to make sure the design does what is expected. Once the test works correctly, check 

it off in the verification plan and move to the next one. Figure 4 shows how directed tests 

incrementally cover the features in the verification plan. Each test is targeted at a very specific 

set of design elements. If there is enough time, it is able to write all the tests needed for 100% 

coverage of the entire verification plan. 

What if we do not have the necessary time or resources to carry out the directed testing 

approach? When the design complexity doubles, it takes twice as long to complete or requires 

twice as many people to implement it. Neither of these situations is desirable. It demands a 

methodology that finds bugs faster in order to reach the goal of 100% coverage. 
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Figure 2. Directed Test Progress over Time 

 

    2.4.2 Constrained-Random Testing 

Although it requires the simulator to generate the stimulus, it doesn’t want totally random 

values. The Use of System Verilog language to describe the format of the stimulus (Eg: 

“address is 32-bits; Op-code is ADD, SUB or STORE; length < 32 bytes”), and then simulator 

picks values that meet the constraints. Constraining the random values to become relevant 

stimuli is one the key feature of System Verilog. These values are sent into the design, and are 

also sent into a high-level model that predicts what the result should be. The design’s actual 

output is compared with the predicted output. 

Figure 5 shows the paths to achieve complete coverage. Start at the upper left with basic 

constrained-random tests. Run them with many different seeds. From the functional coverage 

reports, find the holes where there are gaps in the coverage. Now make minimal code changes, 

perhaps by using new constraints, or by injecting errors or delays into the DUT. Spend most 

of the time in this outer loop by writing directed tests for only the few features that are very 

unlikely to be reached by random tests. 
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2.5 Testbench Components 

In simulation, the test bench wraps around the DUT, just as a hardware tester connects to a physical 

chip, as shown in Figure 6. Both the test bench and tester provide stimulus and capture responses. 

The difference between them is that test bench needs to work over a wide range of levels of 

abstraction, creating transactions and sequences, which are eventually transformed into bit vectors. 

A tester just works at the bit level. 

 

Figure 3. Test Bench Component – A design Environment 

2.6 Summary 

 The continuous growth in complexity of electronic designs requires a modern, systematic, 

and automated approach to create test benches.  

 The cost of fixing a bug grows by tenfold as a project moves from each step of specification 

to RTL coding, gate synthesis, fabrication, and finally into the users hands.  

 Directed tests only test one feature at a time and cannot create the complex stimulus and 

configurations that the device would be subjected in the real world.  

 To produce robust designs, it is mandatory to use constrained-random stimulus combined 

with functional coverage to create the widest possible range of stimulus. 
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Chapter 3 

Verification Methodology 

3.1 Introduction to Open Verification Methodology 

Traditionally RTL simulations are performed in Verilog or VHDL, now System Verilog and OVM 

as replacing whatever language and coding style that used for the test benches. OVM test benches 

are more than traditional HDL test benches, which might wiggle pins on the design-under-test 

(DUT) and rely on the designer to inspect a waveform diagram to verify correct operation. OVM 

test benches are complete verification environments composed of reusable verification 

components, and used as part of an overarching methodology of constrained random, coverage-

driven, verification. 

The key objectives of OVM are to enable productivity and verification component reuse within 

the verification environment. This is achieved through the separation of tests from the test bench, 

through having standardized conventions for assembling verification components, by allowing 

verification components to be highly configurable, and through the addition of automation features 

not provided natively by System Verilog. 

OVM is supported by a library of System Verilog classes. OVM was created by Mentor Graphics 

and Cadence based on existing verification methodologies originating within those two companies, 

including Mentor’s AVM, and consists of System Verilog code and documentation supplied under 

the Apache open-source license. 

     3.1.1 Features of OVM Methodology 

OVM Methodology is a widely used Verification Methodology in all the semi-conductor 

industry. The features or advantages of OVM Methodology are as follow: 

 Reusable across abstraction layers and design (parameterization, generalization, 

minimize dependencies, well defined semantics)  

 Modular (localization of functionality, localization of data, communication through 

well-defined interfaces)  

 Use standard interfaces (provide external view of object, hide implementation details 

and define interface semantics) 

 Support stepwise refinement and abstraction (keep things at the highest level possible) 
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 Implemented in System Verilog and currently supported by VCSMX 

     3.1.2 OVM and Coverage-Driven Verification 

OVM provides the best framework to achieve coverage-driven verification (CDV). CDV 

combines automatic test generation, self-checking test benches, and coverage metrics to 

significantly reduce the time spent verifying a design. The purpose of CDV is to: 

 Eliminate the effort and time spent creating hundreds of tests  

 Ensure thorough verification using up-front goal setting  

 Receive early error notifications and deploy run-time checking and error analysis to 

simplify debugging 

Using CDV, it is possible to thoroughly verify the design by changing test bench parameters 

or changing the randomization seed. CDV environments support both directed and 

constrained-random testing. However, the preferred approach is to let constrained-random 

testing to do most of the work before devoting effort to writing time-consuming, deterministic 

tests to reach specific scenarios that are too difficult to reach randomly 

 

     3.1.3 OVM Test bench and Environments 

An OVM test bench is composed of reusable verification environments called OVM 

verification components (OVCs). An OVC is an encapsulated, ready-to-use, configurable 

verification environment for an interface protocol, a design sub module, or a full system. Each 

OVC follows a consistent architecture and consists of a complete set of elements for 

stimulating, checking, and collecting coverage information for a specific protocol or design. 

The OVC is applied to the device under test (DUT) to verify the implementation of the protocol 

or design architecture. OVCs expedite creation of efficient test benches for the DUT and are 

structured to work with any hardware description language (HDL) and high-level verification 

language (HVL) including Verilog, VHDL, e, System Verilog, and System C. Figure 7 shows 

an example of a verification environment with three interface OVCs. These OVCs might be 

stored in a company repository and reused for multiple verification environments. The 

interface OVC is instantiated and configured for a desired operational mode.  
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Figure 4.  Typical Verification Environment 

 

The verification environment also contains a multi-channel sequence mechanism (that is, 

virtual sequencer) which synchronizes the timing and the data between the different interfaces 

and allows fine control of the test environment for a particular test. In the figure 5 the agent is 

an OVC and the components inside the Agent are also OVC’s 
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3.2 OVM Overview 

The main components of an OVC are as follows: 

 Data Item(Transaction) 

 Driver(BFM) 

 Sequencer 

 Monitor 

 Agent 

 Environment 

 

     3.2.1 Data Item (transaction) 

Data items represent the input to the DUT. Examples include networking packets, bus 

transactions, and instructions. The fields and attributes of a data item are derived from the data 

item’s specification. For example, the Ethernet protocol specification defines valid values and 

attributes for an Ethernet data packet. In a typical test, many data items are generated and sent 

to the DUT. 

 

     3.2.2 Driver (BFM) 

A driver is an active entity that emulates logic that drives the DUT. A typical driver repeatedly 

receives a data item and drives it to the DUT by sampling and driving the DUT signals. For 

example, a driver controls the read/write signal, address bus, and data bus for a number of 

clocks cycles to perform a write transfer. 

 

     3.2.3 Sequencer 

A sequencer is an advanced stimulus generator that controls the items that are provided to the 

driver for execution. By default, a sequencer behaves similarly to a simple stimulus generator 

and returns a random data item upon request from the driver. This default behavior allows 

adding constraints to the data item class in order to control the distribution of randomized 

values. 

A partial list of the sequencer’s built-in capabilities includes:  
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 Ability to react to the current state of the DUT for every data item generated.  

 Captures the order between data items in user-defined sequences, which forms a more 

structured and meaningful stimulus pattern.  

 Enables time modeling in reusable scenarios.  

 Supports declarative and procedural constraints for the same scenario.  

 Allows system-level synchronization and control of multiple interfaces.  

     3.2.4 Monitor 

A monitor is a passive entity that samples DUT signals but does not drive them. Monitors 

collect coverage information and perform checking. A monitor: 

 Collects transactions (data items). A monitor extracts signal information from a bus 

and translates the information into a transaction that can be made available to other 

components and to the test writer  

 Extracts events. The monitor detects the availability of information (such as a 

transaction), structures the data, and emits an event to notify other components of the 

availability of the transaction. A monitor also captures status information so it is 

available to other components and to the test writer.  

 Performs checking and coverage  

i. Checking typically consists of protocol and data checkers to verify that the DUT 

output meets the protocol specification 

ii. Coverage also is collected in the monitor  

 

     3.2.5 Agent 

Sequencers, drivers, and monitors can be reused independently, but this requires the 

environment integrator to learn the names, roles, configuration, and hookup of each of these 

entities. To reduce the amount of work and knowledge required by the test writer, OVM 

recommends that environment developers create a more abstract container called an agent. 

Agents can emulate and verify DUT devices. They encapsulate a driver, sequencer, and 

monitor. OVCs can contain more than one agent. Some agents (for example, master or transmit 

agents) initiate transactions to the DUT, while other agents (slave  or receive agents) 

react to transaction requests. Agents should be configurable so that they can be either active or 
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passive. Active agents emulate devices and drive transactions according to test directives. 

Passive agents only monitor DUT activity 

 

     3.2.6 Environment 

The environment (env) is the top-level component of the OVC. It contains one or more agents, 

as well as other components such as a bus monitor. The env contains configuration properties 

that enable to customize the topology and behavior and make it reusable. For example, active 

agents can be changed into passive agents when the verification environment is reused in 

system verification. Figure 8 illustrates the structure of a reusable verification environment. 

Notice that an OVC may contain an environment-level monitor. This bus-level monitor 

performs checking and coverage for activities that are not necessarily related to a single agent. 

An agent’s monitors can leverage data and events collected by the global monitor. The 

environment class (ovm_env) is architected to provide a flexible, reusable, and extendable 

verification component. The main function of the environment class is to model behavior by 

generating constrained-random traffic, monitoring DUT responses, checking the validity of the 

protocol activity, and collecting coverage. 

 

Figure 5. OVC Environment 
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3.3 System Verilog Class Library 

The System Verilog OVM Class Library provides all the building blocks that are needed to quickly 

develop well-constructed, reusable, verification components and test environments. The library 

consists of base classes, utilities, and macros. 

Components may be encapsulated and instantiated hierarchically and are controlled through an 

extendable set of phases to initialize, run, and complete each test. These phases are defined in the 

base class library but can be extended to meet specific project needs. 

 

 

Figure 6.  OVM Class Hierarchy 

The advantages of using the System Verilog OVM Class Library include:  

 A robust set of built-in features The System Verilogma OVM Class Library provides many 

features that are required for verification, including complete implementation of printing, 

copying, test phases, factory methods, and more.  

 Correctly implemented OVM concepts each component in the block diagram in Figure 8 

is derived from a corresponding System Verilog OVM Class Library component. Figure 9 
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shows the same diagram using the derived System Verilog OVM Class Library base 

classes. Using these base-class elements increases the readability of the code since each 

component’s role is predetermined by its parent class. 

     3.3.1 Other OVM Facility 

The System Verilog OVM Class Library also provides various utilities to simplify the 

development and use of verification environments. These utilities support debugging by 

providing a user-controllable messaging utility. They support development by providing a 

standard communication infrastructure between verification components (TLM) and flexible 

verification environment construction (OVM factory). 

The System Verilog OVM Class Library provides global messaging facilities that can be used 

for failure reporting and general reporting purposes. Both messages and reporting are important 

aspects of ease of use. 

It Includes: 

 OVM Factory 

 TLM(Transaction Level Modelling) 

     3.3.2 OVM Factory 

The factory method is a classic software design pattern that is used to create generic code, 

deferring to run time the exact specification of the object that will be created. In functional 

verification, introducing class variations is frequently needed. For example, in many tests it 

might want to derive from the generic data item definition and add more constraints or fields 

to it; or it might want to use the new derived class in the entire environment or only in single 

interface; or perhaps it must modify the way data is sent to the DUT by deriving a new driver. 

The factory allows substituting the verification component without having to provide a derived 

version of the parent component as well. 

The System Verilog OVM Class Library provides a built-in central factory that allows: 

 Controlling object allocation in the entire environment or for specific objects. 

 Modifying stimulus data items as well as infrastructure components (for example, a 

driver).  
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     3.3.3 Transaction Level Modelling (TLM) 

OVM components communicate via standard a TLM interface, which improves reuse. Using 

a System Verilog implementation of TLM in OVM, a component may communicate via its 

interface to any other component that implements that interface. Each TLM interface consists 

of one or more methods used to transport data. TLM specifies the required behavior (semantic) 

of each method but does not define their implementation. Classes inheriting a TLM interface 

must provide an implementation that meets the specified semantic. 

Thus, one component may be connected at the transaction level to others that are implemented 

at multiple levels of abstraction. The common semantics of TLM communication permit 

components to be swapped in and out without affecting the rest of the environment. 

 

3.4 Summary 

 This chapter summarized various OVM based components and explained each and every 

component.  

 The advantages of using a System Verilog class based structure and OVM gives enough 

flexibility and randomness in the present verification environment.  

 Explained how to develop each and every component in the OVM Environment for the 

development of the Verification.  

 OVM gives the power of re-usability and randomness which helps to find the hidden bugs 

in the RTL Design  
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Chapter 4 

IP Description 

4.1 IP Overview & Features: 

It is a Soft IP, which is designed with the goal of “Always On, Always Sensing” and it provides 

the following functions to support this goal: 

1. Acquisition / sampling of sensor data.  

2. Low power operation through clock and power gating of the different blocks  

3. The ability to operate independently when the main processor is in a low power state  

4. Compatibility with various operating systems, such as Win 7, Windows 8, and Android  

5. Ability to provide sensor-related data to other subsystems. 

It consists of the following key components: 

A processor with a combined cache for instructions and data.  

 ROM space intended for the boot loader.  

 SRAM space for code and data.  

 Interfaces to Sensor peripherals. (I2C, SPI, UART, GPIO) 

Block Diagram:- 

 

Figure 7. Block Diagram of an IP 
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4.2 Project Overview 

As the complexity of designs increases, verification emerges as a dominant step concerned with 

time and cost in the development of a system-on-chip. So different verification strategies need to 

be implemented to verify a complex design. While verifying a complex design, many debugging 

challenges will be faced by a verification engineer. This report tries to discuss some of the 

debugging challenges faced during verification of a complex design. 

In the present IP subsystems as shown in the block diagram, subIPs such as DMA, SPI, I2C, GPIO, 

UART, Corex86, SRAM etc. will be present for different purposes. 

DMA helps in transferring data between the memories, either between internal memories or from 

external memory to internal memory. SPI bus is a synchronous serial communication interface 

used for short distance communication. I2C is typically used for attaching lower-speed peripheral 

ICs to processors. SRAM is used to store the data. 

The communication between each of these subIPs will take place consistently for data transactions 

either for transmitting or receiving the data. Data transactions maybe from external memory to the 

internal memory through DMA, any data which is coming from outside of the IP through I2C, any 

data transactions within the IP through SPI or any GPIO transactions. 

In verification environment, for random test cases a random stimulus will be created for such 

transactions. These stimulus are constrained randomized to meet the particular functionality and 

hit the scenario. As the complexity of the design increases, constraints of the random stimulus 

become more complex. After the regression run for a large amount of the time if scenario doesn’t 

hit it costs verification engineer lot of wastage of time. There is no proper tool exists that can solve 

these complex constraints. So, we developed such tool which can solve these constraints. And this 

in turn help us to know if any of these specified constraints fails. This will help a verification 

engineer to check whether the intent of the stimulus is met or not and also shows the quality of the 

stimulus created to verify the design. 

As soon as we start running a test case, the corex86 starts executing the important functions which 

maybe either an API of each subIP or an Interrupt handler to service the interrupts. For verification 

engineer it is very difficult to know when these important functions are being called. Instruction 
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Debugger tool helps in finding the regime of these important functions in the simulation window 

which are executed by the corex86 during the simulation. 

Sometimes just by knowing the regime of important functions is not enough to debug the issues. 

Hence the monitor at the corex86 interface helps to know whether the function is enabled and 

scheduled for execution by the core. This helps the verifier to debug very fast and efficiently. 

One of the verification challenge is when moving from old project to the new project with different 

set of specifications. It is very difficult to port the test cases to the new project as the project 

specification has changed. If we are having a project specific parameters, which can be used to 

stamping out these test cases, then porting from old project to new project becomes very easy. 
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Chapter 5 

Literature Review 

5.1 GPIO 

A general-purpose I/O (GPIO) controller for use in generating and capturing application specific 

input and output signals.  The GPIO controller is connected to the OCP Fabric.  When the pin 

mode is chosen as GPIO it can be programmed as an output or input.  

 When programmed as an input, a GPIO can serve as an interrupt source. For example, GPIO when 

configured as inputs & connected to the interrupt outputs from sensors. When programmed as an 

output, GPIO pins can be connected to the power control pins on sensors or to external FETs that 

can gate the power to the external sensors.  

 

Figure 8. GPIO Controller Block Diagram 
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5.2 Random Constraints 

5.2.1 Random Variables 

 Random variables within class can be declared using rand or randc. 

 Variables declared with rand are uniformly distributed over their range.  

o Example :-   

rand byte header; 

Header will be 8 bit unsigned integer with the range from 0-255. 

 Variables declared with randc are random cyclic variables that cycle through all 

the values in a random permutation of their declared range and never repeat in a 

iteration. They can only be of type bit or enumerated types and can be limited to a 

maximum size.  

o Example :- 

randc bit [1:0] length; 

Length can take values 0,1,2,3. 

5.2.2 Constraint Block 

 Constraint expressions defined in Constraint blocks determine the values of random 

variables.  

 Constraint blocks are class members, like tasks, functions, and variables.  

 Multiple constraint can be defined within a class  

 Constraint block names must be unique within a class  

o Example : - 

rand integer x,y,z; 

constraint c1{ x > 0 ; x< 500; 

  y < x; z > x; } 

   Value of x 1-499, Value of y less than x & Value of z greater than x. 
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5.2.3 inside Operator 

 All values specified by the inside operator have an equal probability of being 

Chosen. 

o Example :- 

rand bit[7:0] z; 

constraint c1 { z inside {5,10,[12:15],20}; } 

   Z will be assigned the values specified with equal probability. 

5.2.4 Distribution – dist. Operator 

 Distribution is a form of constraints that support sets of weighted values. 

 The := operator assigns the specified weight to the item, or if the item is a range, to 

every value in the range. 

 The :/ operator assigns the specified weight, or if the item is a range, to the range 

as a whole. So the weight of each value in the range is range_weight/n. 

o Example : - 

rand bit[7:0] y; 

constraint c1{ y dist {5:=1, 7:=2, 9:=5} }; 

   Value of y will be 5, 7, and 9 with ratios of 1, 2, and 5. 

5.2.5 Randomization 

 Variables in an object are randomized using randomize() class method 

 Every class contains pre_randomize() and post_randomize() methods, which are 

automatically called by randomize() before and after computing new random values 

o Example : - 

Class packet;  //Class definition 

rand bit [7:0] data; 

endclass 

task data_generator; //Task to Generate Random data packets 

packet  p;                 // Object of the class packet 

p.randomize(data); //Randomize the data variable. 

endtask 
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5.3 Functional Coverage 

Functional verification comprises a large portion of the resources required to design and validate 

a complex system. Often, the validation must be comprehensive without redundant effort. To 

minimize wasted effort, coverage is used as a guide for directing verification resources by 

identifying tested and untested portions of the design. 

Coverage is defined as the percentage of verification objectives that have been met. It is used as a 

metric for evaluating the progress of a verification project, in order to reduce the number of 

simulation cycles spent in verifying a design. 

Broadly speaking, there are two types of coverage metrics. Those that can be automatically 

extracted from the design code, such as code coverage, and those that are user-specified in order 

to tie the verification environment to the design intent or functionality. This latter form is referred 

to as Functional Coverage, and is the topic of this section. 

Functional coverage is a user-defined metric that measures how much of the design specification, 

as enumerated by features in the test plan, has been exercised. It can be used to measure whether 

interesting scenarios, corner cases, specification invariants, or other applicable design 

conditions—captured as features of the test plan—have been observed, validated and tested. 

The key aspects of functional coverage are: 

 It is user-specified, and is not automatically inferred from the design.  

 It is based on the design specification (i.e., its intent) and is thus independent of the actual 

design code or its structure.  

Since it is fully specified by the user, functional coverage requires more up front effort (someone 

has to write the coverage model). Functional coverage also requires a more structured approach to 

verification. Although functional coverage can shorten the overall verification effort and yield 

higher quality designs, these shortcomings can impede its adoption. 

The System Verilog functional coverage extensions address these shortcomings by providing 

language constructs for easy specification of functional coverage models. This specification can 

be efficiently executed by the System Verilog simulation engine, thus, enabling coverage data 
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manipulation and analysis tools that speed up the development of high quality tests. The improved 

set of tests can exercise more corner cases and required scenarios, without redundant work. 

The System Verilog functional coverage constructs enable: 

 Coverage of variables and expressions, as well as cross coverage between them.  

 Automatic as well as user-defined coverage bins  

 Associate bins with sets of values, transitions, or cross products.  

 Filtering conditions at multiple levels.  

 Events and sequences to automatically trigger coverage sampling.  

 Procedural activation and query of coverage.  

 Optional directives to control and regulate coverage.  

 

5.4 Unified Coverage Report 

VCS can monitor and evaluate the coverage metrics of Verilog, VHDL, and mixed HDL designs 

during simulation to determine which portions of the design have not been tested. The results of 

the analysis are reported in a number of ways that allow you to see the shortcomings in your 

testbench and improve tests as needed to obtain the complete coverage. Functional coverage is the 

determination of how much functionality of the design has been exercised by the verification 

environment. 

The Unified Report Generator (URG) generates combined reports for all types of coverage – (Line, 

Toggle, Condition, FSM, Branch, Assertion) information. The reports may be viewed through the 

design hierarchy, module lists, coverage groups, or through an overall summary "dashboard" for 

the entire design/test bench. 

The reports consist of a set of HTML or text files. The HTML version of the reports take the form 

of multiple interlinked HTML files. For example, a "hierarchy.html" page shows the design’s 

hierarchy and contains links to individual pages for each module and its instances. The HTML file 

that the URG writes can be read by any web browser. 
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Figure 9. A High Level Picture of the VCS Coverage Flow 

 

5.5 Register Abstraction Layer (RAL) 

The Register Abstraction Layer (RAL) is a System Verilog or application package used to 

automate the creation of a high-level, object-oriented abstraction layer for memory-mapped 

registers and memories in a design under verification (DUV). The abstraction mechanism allows 

verification environments and tests to be migrated from block to system levels without any 

modifications. It also allows fields to be moved between physical registers without requiring 

modifications in the verification environment or tests. 
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Figure 10. Structure of the RAL based Environment 

The RAL includes predefined testcases that you can use to verify the correct operation of registers 

and memories in a design under verification. It includes usage assertions to detect incorrect register 

and memory accesses. A functional coverage model is included to accurately measure how 

thoroughly the registers and memories have been exercised. The RAL supports front-door and 

back-door access to provide redundant paths to the register and memory implementation, and 

verify the correctness of the decoding and access paths. The RAL also supports designs with 

multiple physical interfaces, as well as registers, register files and memories shared across multiple 

interfaces. 

5.6 On Chip Bus Interconnect Protocol Overview 

5.6.1 OCP Specifications 

The Open Core Protocol (OCP) defines a high-performance, bus independent interface between 

IP cores and OCP is composed of uni-directional signals driven, and sampled by the rising edge 

of the OCP clock. The OCP is fully synchronous (with the exception of reset) and contains no 

multi-cycle timing paths with respect to the OCP clock. All signals other than the clock signal are 

strictly point-to-point. 
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Figure 11. OCP on Chip Bus Architecture 

The OCP defines a point-to-point interface between two communicating entities such as IP cores 

and bus interface modules (bus wrappers). One entity acts as the master of the OCP instance, and 

the other as the slave. Only the master can present commands and is the controlling entity. The 

slave responds to commands presented to it, either by accepting data from the master, or presenting 

data to the master. For two entities to communicate in a peer-to-peer fashion, there need to be two 

instances of the OCP connecting them - one where the first entity is a master, and one where the 

first entity is a slave. 

5.6.2 AMBA AXI 4.0 Specifications 

The AMBA AXI protocol supports high-performance, high-frequency system designs. 

The AXI protocol: 

• is suitable for high-bandwidth and low-latency designs 

• provides high-frequency operation without using complex bridges 

• meets the interface requirements of a wide range of components 

The key features of the AXI protocol are: -  

• separate address/control and data phases 

• support for unaligned data transfers, using byte strobes 

• uses burst-based transactions with only the start address issued 

• separate read and write data channels that can provide low-cost Direct Memory Access (DMA) 
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• support for issuing multiple outstanding addresses 

• support for out-of-order transaction completion 

• permits easy addition of register stages to provide timing closure. 

 

Figure 12. Read Channel Architecture 

 

Figure 13. Write Channel Architecture. 
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5.7 Power Aware Verification Terminology 

5.7.1 Isolation Cell 

Isolation cells are used to prevent short circuit current. As the name indicates these cells isolate 

power gated block from the normally powered on block. Isolation cells are specially designed for 

low short circuit current when input is at threshold voltage level. Isolation control signals are 

provided by power gating controller. Isolation of the signals of a switchable module is essential to 

preserve design integrity. Usually a simple OR or AND logic can function as an output isolation 

device. 

5.7.2 Retention Registers 

Multiple state retention schemes are available in practice to preserve the state before a module 

shuts down. The simplest technique is to scan out the register values into a memory before shutting 

down a module. When the module wakes up, the values are scanned back from the memory. That 

memory cells which holds the values of the power gated cells during PG state are inferred as a 

retention registers. 

When power gating is used, the system needs some form of state retention, such as scanning out 

data to a RAM, then scanning it back in when the system is reawakened. For critical applications, 

the memory states must be maintained within the cell, a condition that requires a retention flop to 

store bits in a table. That makes it possible to restore the bits very quickly during wakeup. 

Retention registers are special low leakage flip-flops used to hold the data of main register of the 

power gated block. Thus internal state of the block during power down mode can be retained and 

loaded back to it when the block is reactivated. Retention registers are always powered up. The 

retention strategy is design dependent. During the power gating data can be retained and 

transferred back to block when power gating is withdrawn. Power gating controller controls the 

retention mechanism such as when to save the current contents of the power gating block and when 

to restore it back. 
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Chapter 6 

Verification & Debugging Strategy 

6.1 Complex Constraints solver 

Constraint solver is a tool which is used for solving very complex constraints statically before 

running the long regression run. It reduces the debugging time if the scenario doesn’t hit. 

 Solver Tool Flow : - 

 

Figure 14. Flow Chart of Constraint solver 

 

Pcregrep is the command used in the Linux command line interface which searches files for 

character patterns, in the same way as other grep commands do, but it uses the PCRE regular 

expression library to support patterns that are compatible with the regular expressions of Perl. 
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6.2 Coverage Report Parser 

Unified Report Generator (URG) generates Coverage Report form the coverage database for all 

types of the coverage. It generate report in the two format 1. HTML file format 2.txt file format. 

URG can generate the difference of the two coverage database of the same executable which is 

simulated for two different seeds. But it cannot generate the difference of the two different 

coverage database of the two different executables. 

Coverage Report parser is the tool which helps verifier in knowing if there is any other cover 

groups or variable added or deleted and difference in the coverage statistics as well. 

This tool is based on the HTML Parser, HTML TableExtract – CPAN Perl based Modules used to 

parse out the useful data from the coverage report (HTML format). And that Extracted data can be 

diff. by tkdiff tool. 

 Tool Flow :-  

 

Figure 15. Coverage Parser Tool Flow 
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6.3 Scalability of the GPIO test cases  

One of the verification challenge is when moving from old project to the new project with different 

set of specifications. It is very difficult to port the test cases to the new project as the project 

specification has changed. If we are having a project specific parameters, which can be used to 

stamping out these test cases, then porting from old project to new project becomes very easy and 

make the verification environment more scalable.  

 GPIO Test cases 

In the Previous Project only 32 pins of the GPIO were supported by the IP. As new 

project came in, specifications revised and it requires the 128 pins of the GPIO to 

be supported by the IP. In order to meet the specification, test cases of the GPIO 

need to be scaled to 128 pins. 

Test cases contains two part 1.SV part 2. C part 

C part is used to configure the control registers, and it is compiled by the GCC 

compiler which load the data & instructions into memory. Processor executes them 

and to read and write to control registers and message registers. 

SV part is used to generate the sequences and these sequences (transaction) are 

driven by sequencer and driver to the DUT. There are some of the assertions and 

checkers are introduced for checking the condition and intent of the test is met or 

not. 

Test cases ate of two types 1. Focused tests 2. Random Tests 

1. Focused tests: - These tests are used to verify the particular functionality/feature 

of the GPIO in which at a time single pin is asserted and if the pin is configure to 

generate the interrupt, interrupt monitor check for it. 

2. Random Tests: - Random tests are used to verify the design’s most of all features 

exhaustively. Here Random stimulus are generated using System Verilog’s 

Constraint Randomization feature. GPIO pins are selected randomly to assert the 

pulses. 
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6.4 RAL Based Register Verification 

Register description file contains register name, register description, fields of register, offset value 

of register. Each register is of 32 bits and the register is divided into fields. Each fields contains 

field name, field description, field size, bit position inside register, its access type or attribute, its 

default value. Default value of the register will be combined from the fields default value. The 

register description cannot be directly used as it is converted into RAL (Register Abstraction 

Layer) by using a script, which can be directly used by the test bench. 

The OVM based test is cleared, which contains own phases. 

 

Figure 16. Block diagram of Register Verification 

1. Build Phase: - In this phase the environment of the test is created and configured according 

to the project requirement. 

2. Connect Phase: This phase calls the sequence, determines the amount of time the test 

should run that is the drain-out time which is generally kept as 100ms. 

This drain out time should be selected carefully because this determines the amount of the 

time the test should take. Hence the intent of the test should be achieved. 

The Sequence for the test is created. This sequence is assigned to the proper sequencer by ovm 

factory method that is ‘ovm_sequence_utils (sequence_name , sequencer_used). This is a self –

checking test. It means that it does not use the third component of the testbench like scoreboard, 

monitor. These tests frontdoor access method. That is each register will be called and if any activity 

in the bus transaction is captured. This sequence creates the pointer to the RAL file and by using 

this pointer all the registers in the RAL file is populated in an array with all information like, 

name, base address, offset address, width of the registers, field of register, and its attributes. This 
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populated register is then randomized. Some registers and the bits of the registers are masked or 

sometimes skipped for the checking. This is done because we do not want to enable the 

functionality of the RTL. For this case the dummy model or the IP is required and hence registers 

or the field like enable bit, reset bits, interrupt bits are masked. Now the task which contains read 

write function will be called. The three checks are performed. 

1. Reset Value Check: It checks the default value of register. This happens as soon as the IP 

powers up and the reset happens. In this checks only the register address is required. Then the read 

and compare happens, If the value compare does not matched the ‘ovm_error’ is called. 

2. Attribute Check: In this check the write to the register is done and we read back the entire 

register. The write value will be random value and the register locations will be random. The read 

only bits will not be modified and hence the bit will be treated as 0. Here when we write the RTL 

register, the shadow copy of the register that is RAL register also gets updated. Then we compare 

the value of the shadow register and the RTL register. So in this check we write to one register and 

we read back the value of register and then we compare the value of the register. 

3. Write All Read All Check: - Some errors were not captured while performing attribute check. 

The bugs like, if two register locations are shorted, writing one and reading one register will not 

be able to catch such bugs. Hence we write to all registers and read all registers back. 
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6.5 AXI to OCP Converter 

Need for Protocol Conversion:-  

Generally Embedded IP and SoC both have different on chip bus Connects. When SoC’s one of 

the IPs try to communicate with another IP’s any device it can be done through the Bus 

Interconnect. But due to different Bus protocols it’s mandatory to use the some bridge or converter 

between them which translates the one protocol to another. 

 

 

Figure 17. General Arch. Diagram of the IP blocks Interfacing with Fabric 

Upstream & Downstream Flow of the AXI to OCP Monitor:- 

 

Figure 18. Functional Diagram of the AXI to OCP converter 
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As shown in the Block diagram Upstream Flow Includes the Upstream Write and Upstream Read 

transfers. For Upstream transactions IP blocks serves as master quantity whereas bridge acts as a 

slave, here DMA(master) can send the command to the bridge IP (slave) for Read from Memory 

location or Write to the Memory location. Same way Downstream Flow includes the downstream 

read and write transfers. For downstream, Bridge is master and IP blocks of the whole IP is serve 

as a slave. Here Host would like to access the some of the Sensor data acquired by the IP via Bridge 

depends on the Use-case. These communication with the IP can be done through the Inter process 

communication (IPC).  IPC controls the flow of the inbound and outbound transfers based on 

request. 

6.6 Retention & Isolation Checking Strategy:- 

Nowadays Power targets of a product have equal importance with feature set of a product. Battery 

life is playing key role in product success.  

Some of the common low power techniques are:-  

 Clock gating 

 Supply Voltage Reduction 

 Power switching 

 Logic Power gating  

o SW controlled power gating  

o HW Autonomous Power gating etc. 

Hardware Autonomous Power gating Technique is one of the fine techniques in which device will 

be in the power gated state but transparent to the Software. In the Technique portion of the Gated 

domain logic is retained, rest of the logic will be in the power gated state. 

Challenges in Verifying Retention list:-  

 Issues with Retention flop list: 

o Missing retention flops [Results in Functional failures] 

o Over retention [No-functional issue but impacts Die size. Retention flop area is 2 x 

normal flop] 

 Propagation of incorrect state after power down exit to a visible checkpoint is not 

guaranteed even with exhaustive stimulus. Hence all missing retention flops may not yield 

into test/check failures. 

 Debugging functional failure due to missing retention flop is very costly in-terms of time 

and resources at Gate level verification or on Silicon. 
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Isolation & Retention Checker Generation Flow: - 

 

Figure 19. Flow for Isolation and Retention Checker Generation 
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Chapter 7 

Simulation Results & Coverage Results 

7.1 Constraint Solver Results 

 Compile & simulation Result 

 

Figure 20. Simulation Result generated by VCS-Mx 

 

 Processed Output 

 

Figure 21. Filtered Output generated by Script 
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 Variable Probability Result 

 

Figure 22. Variables which All values & Probability 

7.2 Coverage results 

 URG Coverage Report 

 

Figure 23. URG Coverage Report Format 
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 Tkdiff  Result 

 

Figure 24.  Tkdiff Result (Coverage and Cover group Difference) 

7.3 Converter Upstream and Downstream Transaction Waveforms 

 Signals for the Upstream Write Transactions 

 

Figure 25. AXI Slave Write Interface Signals  
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 Signals for the Upstream Read Transaction 

 

Figure 26. AXI Slave Read Interface Signals 

As shown in the above figure for the Upstream read transfer at the end of the completion 

of the test, though ARLEN == 0, RLAST signal is getting high(protocol compliance 

violations). This test issue is due to the Burst Narrow transfer happening in the test which 

is not supported by the bridge IP. 

7.4 Retention Verification Results:- 

 

Figure 27. Retention/Isolation bug Distribution for IP Blocks 

This methodology is used in at the IP Level and delivered to other SOC Level. Found ~170 missing 

retention flops and ~20 missing isolation cells. 
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Conclusion 

Due to increase in design complexity and time to market, and need of the low power features by 

using the various verification strategies will help the verification engineer to verify the complex 

design in a short period of time.  

Various verification and debugging approaches will help in reducing the effort put by the 

verification engineer in solving the debugging issues. Some of the debugging issues mentioned 

above can be overcome by having the mentioned debugging infrastructure and tools in the Scalable 

verification environment.  

Also, a significant amount of time spent on verification can be saved by having these various 

metrics with proper architecture, flexible test benches, smoke & sanity check tests plays a vital 

role in delivering a quality product on time. 

Future Work 

As thesis is related to the verification challenges, everyday verification engineers run the 

regression for the every new design changes (in parallel to the designing process) and plans to 

verify design changes accordingly. During this process, various challenges encounter by 

verification engineers to verify and to debug the complex design features and flow.  

Using different automation techniques and tool methodologies verification efforts put by the 

verification engineers can be reduced and TTM (Time to Market) can be achieved as per the 

planning. Due to the Scalability of the verification environment and components it will be easier 

to migrate from one projects to other projects which have identical specifications. 

In the power aware verification techniques mentioned have the limitations to correlating of the 

post synthesis flop list to the UPF Flop list and RTL signals. (E.g. complex data structures such as 

nested arrays used and dealing with it is not a robust method).  Currently A project specific lookup 

table is used to overcome this difficulty And exploring on ways to overcome this limitations by 

using other tools instead of the post- synthesis report to extract out the flop list and making ot 

project agnostic. 
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