To Study the Design of Current Transformer and make the Improvement in Existing CT used in Air Circuit Breaker

Major Project Report

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF TECHNOLOGY IN ELECTRICAL ENGINEERING (Electrical Power Systems)

By

Uday Barad 15MEEE02

DEPARTMENT OF ELECTRICAL ENGINEERING INSTITUTE OF TECHNOLOGY NIRMA UNIVERSITY AHMEDABAD 382 481 MAY 2017

Certificate

This is to certify that the Major Project Report entitled **To Study the Design** of Current Transformer and make the Improvement in Existing CT used in Air Circuit Breaker submitted by Mr. Uday Barad (15MEEE02) towards the partial fulfillment of the requirements for the award of degree in Master of Technology (Electrical Engineering) in the field of Electrical Power Systems of Nirma University is the record of work carried out by him under our supervision and guidance. The work submitted has in our opinion reached a level required for being accepted for examination. The results embodied in this major project work to the best of our knowledge have not been submitted to any other University or Institution for award of any degree or diploma. Date:

Industrial Guide Mr. Kevin Patel Assistant Manager SDDC L & T Electrical and Automation Vadodara

Institute Guide

Prof. Shanker Godwal Associate Professor Department of Electrical Engineering Institute of Technology Nirma University Ahmedabad

Head of Department,

Electrical Engineering, Institute of Technology, Nirma University Ahmedabad **Director** Institute of Technology Nirma University Ahmedabad

Acknowledgement

With immense pleasure, I would like to present this report on the dissertation work related to "To Study the Design of Current Transformer and make the Improvement in Existing CT used in Air Circuit Breaker". I am very thankful to all those who helped me for the successful completion of the dissertation and for providing valuable guidance throughout the project work. It is a pleasant aspect that I have now the opportunity to express my gratitude towards them.

I offer my sincere and heartfelt gratitude to Prof. Shanker Godwal (Associate Professor, Electrical Engineering Department, IT, NU) for his valuable guidance, motivation and encouragement. My M.Tech dissertation work would not have been possible without his constant support and helpful discussions. His constant support and constructive criticism has been invaluable assets for my project work. He has shown keen interest in this dissertation work right from beginning and has been a great motivating factor in outlining the flow of my work.

I would also like to thank Larsen & Toubro Electrical and Automation, Switchgear Design and Development Center, Vadodara for allowing me to carry out my project work in industry. I am thankful for providing all kind of required resources.

I would also like to thank Mr. Kevin Patel, Asst. Manager, Larsen & Toubro Electrical and Automation for providing their valuable guidance to carry out my project work.

Abstract

Circuit Breaker is a switching device, capable of making, carrying and breaking current under normal circuit conditions, carrying fault current for a specified time and breaking currents under specified abnormal system conditions such as short circuit faults, ground faults etc. In Air Circuit Breaker, arc-quenching medium is air at atmospheric pressure.

Current Transformer (CT) is an integral part of air circuit breaker. It is use for measurement and protection purpose in Air Circuit Breakers. The output of the CT will be the input for Electronic Release. Electronic release is the heart of protection circuit. Based on the signal received from CT, Electronic release will give signal to Flux Shifting Device to Trip the breaker under faulty conditions. Under routine operation, the Electronic release displays the Current, Voltage, Power and other parameters of the system based on the inputs from CTs.

Present competitive market requires robust and accurate current monitoring and related functions. To cater this market requirement, the Current Transformer design needs to be reliable and satisfying the required customer demands. A need was felt for improvement in reliability and robustness of existing design of Current Transformer for Market requirement.

The existing CT design needs to be studied, analyzed and based on the requirement, new CT design needs to be developed. Prototype CT samples of new design to be tested validated for required performance. Post satisfactory validation of the new design of CT, it will be replacing the existing design.

Contents

Certifi	cate	ii
Acknow	wledgement	iii
Conter	nts	vi
List of	Figures	vii
List of	Tables	viii
1 INT 1.1 1.2 1.3	TRODUCTION TO LARSEN & TOUBRO LTD. TODAY:INTRODUCTION TO SWITCHGEAR DESIGN & DEVELOPMENTCENTRE (SDDC):CLASSIFICATION OF SDDC:1.3.1SDDC - A: Analysis1.3.2SDDC - S: Starter1.3.3SDDC - T: Switchboard1.3.4SDDC - L: Electronics1.3.5SDDC - R: Basic Research1.3.6SDDC - F: Switch Fuse	$ \begin{array}{c} 3 \\ 3 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \end{array} $
$2.1 \\ 2.2 \\ 2.3$	FRODUCTION TO AIR CIRCUIT BREAKER What is Circuit Breaker? . Features of Air Circuit Breaker: . Applications of Air Circuit Breaker: .	6 6
3 INT 3.1	 CRODUCTION TO U-POWER OMEGA AIR CIRCUIT BREA Classification of U-Power OMEGA Air Circuit Breakers	7 7

CONTENTS

4	\mathbf{CU}	RRENT TRANSFORMER	9
	4.1	Introduction:	9
5	CU 5.1	RRENT TRANSFORMER IN U-POWER OMEGA ACB Classification based on Current Rating:	11_{11}
	$5.1 \\ 5.2$	Iron Cored Current Transformer:	
	0.2	5.2.1 Construction:	11
		5.2.2 Design:	
		5.2.3 C.T. Saturation:	$12 \\ 12$
		5.2.4 Application of Iron C.T. in U-Power Omega ACB:	$12 \\ 12$
	5.3	Rogowski Coil:	13
	0.0	5.3.1 Construction:	13
		5.3.2 Introduction:	
		5.3.3 Application of Rogowski in U-Power Omega ACB:	14
	5.4	Standards:	
6		v Design of Iron CT	15
	6.1	Introduction:	15
		6.1.1 Factors to be consider for Iron CT Modification:	
	6.2	Existing Design:	16
	6.3	Procedure:	17
	6.4	Testing For Validation Of Samples	23
		6.4.1 Temperature rise test	25
7	Cor	iclusion:	28
8		v Design Of Rogowski For Neutral CT	29
	8.1	Introduction:	
	8.2	CT Theoritical Design:	
	8.3	Procedure:	
	8.4	Future Work:	32
9	Lite	erature Survey	35
10	\mathbf{FU}'	FURE WORK AND CONCLUSION	36
	10.1	Future Work:	36
	10.2	Conclusion:	36
11	Ref	erences	37

List of Figures

1.1	Classification of SDDC
$4.1 \\ 4.2$	Current Transformer 10 Basic Transformer Equation 10
5.1	Iron Cored C.T
5.2	Rogowski Coil
6.1	Iron CT
6.2	Core Dimension
6.3	Existing CT Design Dimension 17
6.4	Proposed Design Dimension
6.5	Finalised Proposed Design
6.6	Sample 2 Test Results
6.7	Sample 3 Test Results
6.8	Earth Fault I^2t
6.9	Earth Fault I^2t
6.10	Temperature Rise Test
8.1	Core Design

List of Tables

Ι	Existing Samples Test Data 1	8
II	Modified Samples Test Results	9
III	Sample 4 Test Results 1	9
IV	Sample 10 Test Results	9
V	Sample 11 Test Results	20
VI	Sample 1 Test Results	21
VII	Sample 2 Test Results	21
VIII	Sample 3 Test Results	22
IX	Sample 4 Test Results	22
Х	Sample 5 Test Results	22
XI	Sample 6 Test Results	23
XII	Sample 1 Test Results	23
XIII	Sample 2 Test Results	24
XIV	Sample 3 Test Results	24

Chapter 1 INTRODUCTION TO LARSEN & TOUBRO LTD.

We make things that make INDIA proud

Larsen & Toubro's record of outstanding achievements coupled with its European name lead many to believe that it is an Indian arm of a foreign corporation. The truth is that the genesis is very much of an Indian soil in fact, in a tiny room in south Mumbai just a few hundred meters from where the corporate headquarters now stands. Two engineers set it from distant Denmark, Henning Holck Larsen and Soren Kirsten Toubro, men with the infallible prescience of visionaries and the daring of entrepreneurs. They also shared an abiding infatuation with the country that has become an adopted homeland India.

During the IInd World war, they bought a damaged Italian ship "M.V.HILDA"

& set up their floating workshop on the ship itself.

On 1st May 1938, they set up a partnership firm named Larsen & Toubro to repair market Danish dairy equipment. A legend was born. Gradually their enterprise progressed in 1941, they started manufacturing simple products of dairy plant and machinery. In 1944, the company went into construction business and started Engineering Construction Company (E.C.C). Later the company became Pvt. Ltd. In Feb. 1946. In early 1950s, L&T became a Public Ltd. Company.

The motto of L&T is "In service lies success", which is the embodiment of true culture pervading in today's cutthroat competition. L&T's distinction service outreach underlines its strong customer orientation. The network extends to virtually every district in the country. The company's products are doing record business and maintain their leading position in spite of stiff competition. The company has become Indias most diversified and multi product engineering organization that absorbs technology from collaboration worldwide.

L&T's strength lies in its widely diversified range of products services. With dynamic management heading it and positive attitude of its employees, L&T enjoys for five decades, leadership in design, manufacturing and installation of food, chemicals, petro-chemicals, fertilizers, steel and thermal power generation. L&T now have 23 manufacturing units spread all over the country. It has a network of 4 regional offices 10 resident representatives.

1.1 TODAY:

Over the years, the Company has grown up by leaps and bounds and has diversified into a range of products. The companys products are doing record business and maintain their leading position in spite of stiff competition. L&T Employees about 25000 personnel, which includes 8000 about Executive and Supervisory staff. L&T have 19 manufacturing units, spread in 7 states in the country. It has a network of 4 regional Offices, 05 Branch Offices and 12 Resident Representatives. L&T- Group of Companies includes 3 Subsidiary and 2 Associate Companies.

L&T VADODARA has a total built up area of 27,000 sq. meters. Over the years, the Company has established itself as one of the largest industries and Engineering Institutions of India. Currently it ranks among the top ten private sector companies in terms of sales & assets having an annual turnover about Seven Billion Dollars.

1.2 INTRODUCTION TO SWITCHGEAR DE-SIGN & DEVELOPMENT CENTRE (SDDC):

The Product Development of L&T's R&D is the nerve center of new product design and development. During the last two decades, this department has brought out several switchgear products through indigenous design as well as through absorption and adaptation of imported technology. Products developed through indigenous design effort alone account for a major share in the annual turnover of the company.

1.3 CLASSIFICATION OF SDDC:

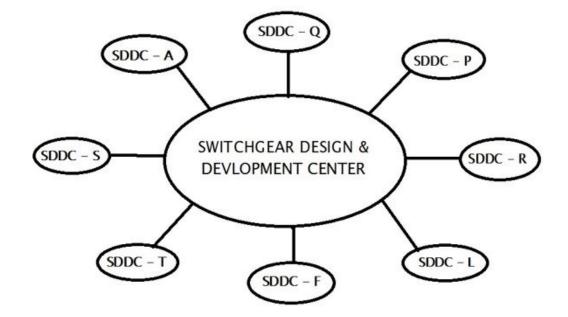


Figure 1.1: Classification of SDDC

1.3.1 SDDC - A: Analysis

This department deals with high breaking capacity products like ACB, MCCB and FUSES. New products as well as existing products are developed and modified.

1.3.2 SDDC - S: Starter

Starter group comprises of relays and starter. This works in idea of design and development of relays, DOL and Star - delta starters.

1.3.3 SDDC - T: Switchboard

Switchboard group works on optimum design of switchboards as per requirements of customers e.g. different effective way of mounting bus bars.

1.3.4 SDDC - L: Electronics

This department gives technical support and design electronic item

1.3.5 SDDC - R: Basic Research

Basic research group has been established for basic research. As the name suggests it is not directly related to any of the product range, but it can be used for any product research.

1.3.6 SDDC - Q: Query: Life Cycle Management

This department is specially meant for solving the customer queries and difficulties. The department does the product approval. The department also works for the certification of the products.

1.3.7 SDDC - F: Switch Fuse

This group works on design and development of switches, fuse switches and switch fuse.

INTRODUCTION TO AIR CIRCUIT BREAKER

2.1 What is Circuit Breaker?

Mechanical switching device, capable of making, carrying and breaking current under normal circuit condition, and making, carrying, breaking current under abnormal circuit condition such as short-circuit. A circuit breaker is a device, which can,

Make or Break a circuit manually or by remote control under normal conditions.
 Break a Circuit automatically under fault conditions (like over current, Short circuit, etc.).

3. Make a circuit manually or by remote control under fault conditions.

A circuit breaker is used for switching mechanism and protection of the system. Other associated devices and components are also used for this purpose associated with circuit breakers like fuses, relays, switches etc. Circuit breakers are widely used in industries as well as in Power system for controlling and protection of different parts of the circuit like Transformers, Motors, Generators/Alternator etc., which leads the system to be stable and reliable.

There are different types of Circuit Breakers available in the market.

2.2 Features of Air Circuit Breaker:

- High making and breaking capacity.
- High fault withstanding capacity.
- Robust design.
- Mechanical and Electrical life.
- Resistance to electrodynamics forces of short circuit
- Electronic device "Release" with wide range of setting. The Release for overload and short circuit protection, volt metric releases are the under voltage and shunt release.
- Easy maintenance.
- Capability of accepting a wide range of accessories for signaling, interlocking and automatic control.

2.3 Applications of Air Circuit Breaker:

- Power stations
- Process plants like steel, cements etc.
- Almost invariably by all industries where there is a demand for high current.
- Some machines such as blowers, large motors, conveyors and cooling plants themselves require a separate Air Circuit Breaker.

INTRODUCTION TO U-POWER OMEGA AIR CIRCUIT BREAKER

U-Power OMEGA employ state-of-the-art technology to offer a comprehensive system solutioN from intelligent protection to complete controL from installation to operating convenience from user safety to system security, all this in the most modular design of optimized dimensions just like a beehive.

3.1 Classification of U-Power OMEGA Air Circuit Breakers

U-Power OMEGA Air Circuit Breakers are classified on basis of its mounting arrangement, its current carrying capacity and the number of poles present. This classification is detailed as follows.

3.1.1 On basis of mounting arrangement

On basis of the mounting arrangement, U-Power OMEGA ACBs are classified as:

• Fixed Breakers:

In fixed breakers, the breaker terminals are connected directly to the terminal adapters. The advantage of fixed breakers is their low cost. But for maintenance, the power supply of the system must be cut off and the breaker must be disconnected from the terminal adapters. This is a major disadvantage of a fixed breaker.

• Draw Out Breakers:

The breaker is mounted on telescopic rails that can translate on the cradle side

plates guided by the protrusions present in the plate due to lancing operations. In order to create an electrical contact between the spring loaded jaws mounted on the cradle and the terminals present on the beaker, the breaker needs to be racked in the cradle.

Advantages of a Draw out Breaker compared to a Fixed Breaker:

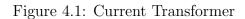
- During maintenance, the power supply need not be cut off, as the breaker can be racked out and locked in the ISOLATED position.
- If the breaker is being repaired, it can be replaced with a spare breaker of a similar rating.
- It is possible to check the operation of the control unit without switching ON the main power supply, by racking the breaker in the TEST position.
- For routine inspection, it can be totally racked out to the MAINTENANCE position.

3.1.2 On basis of its Current Carrying Capacity (Rating) and the Number of pole

Air Circuit Breakers are also differentiated on basis of its Frame i.e. its current carrying capacity and the number of poles.

- Frame 1: 400 3200 A
- Frame 2: 400 4000 A
- Frame 3: 3200 6300 A

Chapter 4 CURRENT TRANSFORMER


4.1 Introduction:

The transformer used for measurement of current is called a Current Transformer or C.T. The extension of instrument range, so that current, voltage, power and energy can be measured with instruments or meters of moderate size is of very great importance in commercial metering. In power systems, currents and voltage handled are very large and, therefore, direct measurements are not possible as these currents and voltages are far too large for any meter of reasonable size and cost. Current Transformers have basically extensive use in measuring of the currents in electrical circuits either for Metering or for Protection applications.

The Current Transformer is used with its primary winding connected in series with line carrying the current to be measured and, therefore, the primary current is dependent upon the load connected to the system and is not determined by the load(burden) connected on the secondary winding of the current transformer.

The primary winding consisting of very turns and, therefore, there is no appreciable voltage drop across it. The secondary winding of the current transformer has larger number of turns. Thus a current transformer operates its secondary winding nearly short circuit condition. Like any instrument, a CT involves certain values of error in measuring of the current. The two other main parameters of the CT: knee point voltage and the burden.

CT performance during normal fault conditions can be simply analyzed considering the linear region of the CT characteristic. However, this linear region ultimately ends up to a non-linear region known as saturation region on the CT curve discriminated by the knee point. A common method to ensure that the CT does not get in saturation is to calculate the secondary voltage for the maximum fault currents considering all the connected burden to the CT, and determine the knee point voltage so that to be above this operating voltage.

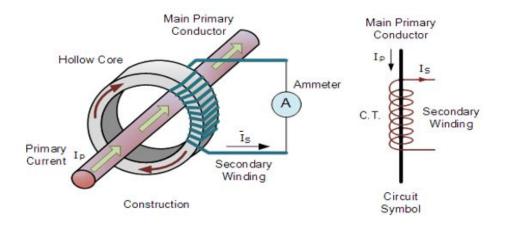
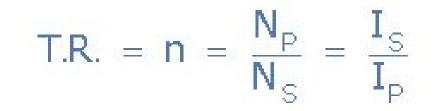
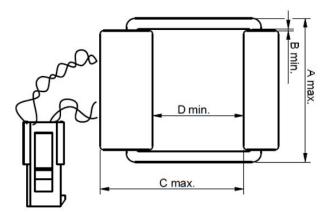



Figure 4.2: Basic Transformer Equation

CURRENT TRANSFORMER IN U-POWER OMEGA ACB


5.1 Classification based on Current Rating:

Frame Size	Current Rating
1	400-3200 A
2	400-4000 A
3	400-6300 A

5.2 Iron Cored Current Transformer:

5.2.1 Construction:

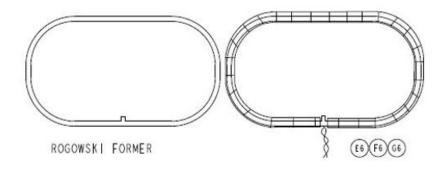
Figure 5.1: Iron Cored C.T.

5.2.2 Design:

- In this CT, Iron is used as Core Material.
- CT secondary winding shall be in layers of enameled copper wire.
- The Upper limb of the core shall be wound with the upper limb(UL) turns and also the lower limb(LL) of the core shall be wound with the lower limb turns specified in design.
- Connect the finish terminal of UL turns to the finish terminal of the LL turns insulate the joint properly.
- Final Terminations shall be from start terminals of both the UL LL windings and will be taken on the lower limb.
- Ends Of the winding shall be properly soldered insulated prior to termination in the connector.

5.2.3 C.T. Saturation:

- CT saturation is a term used to describe the state wherein a CT is no longer able to reproduce an output current in proportional to its primary current or as per its Ratio. The basic reason for CT saturation is due to the property of the core which goes to magnetic saturation due to number of reasons like large primary current or high burden at the secondary or an open circuit in the secondary.
- Characteristic will be Non Linear and as a result it cannot be used for metering purpose.


5.2.4 Application of Iron C.T. in U-Power Omega ACB:

• Used to power up the release as per designed condition.

5.3 Rogowski Coil:

5.3.1 Construction:

Figure 5.2: Rogowski Coil

5.3.2 Introduction:

Rogowski Coils operate on the same principles as conventional iron-core current transformers (CTs). The main difference between Rogowski Coils and CTs is that Rogowski Coil windings are wound over an (non-magnetic) air core, instead of over an iron core. As a result, Rogowski Coils are linear since the air core cannot saturate. However, the mutual coupling between the primary conductor and the secondary winding in Rogowski Coils is much smaller than in CTs. Therefore, Rogowski Coil output power is small, so it cannot drive current through low-resistance burden like CTs are able to drive. Rogowski Coils can provide input signals for microprocessor-based devices that have a high input resistance; therefore, these devices measure voltage across the Rogowski Coil secondary output terminals.

In general, Rogowski Coil current sensors have performance characteristics that are favorable when compared to conventional CTs. These characteristics include high measurement accuracy and a wide operating current range allowing the use of the same device for both metering and protection. This can result in reduced inventory costs since fewer sensors are needed for all applications.

In addition, Rogowski Coils make protection schemes possible that were not achievable by conventional CTs because of saturation, size, weight, and/or difficulty encountered when attempting to install current transformers around conductors that cannot be opened.

An additional advantage of Rogowski Coil current sensors is significantly lower power consumption during operation. Rogowski Coils are connected to devices that have high input resistance, resulting in negligible current flowing through the secondary circuit.

Conventional CTs contain a ferromagnetic core that also consumes energy/power due to hysteresis losses. Rogowski Coils have no core losses. In fact, an operating Rogowski Coil has much smaller power loss than conventional CTs which leads to significant savings of energy and ultimately reduced lifecycle costs. Rogowski Coils can replace conventional CTs for protection, metering, and control. Rogowski Coils have been applied at all voltage levels (low, medium, and high voltage).

5.3.3 Application of Rogowski in U-Power Omega ACB:

• Used for Metering purpose of the rated current flowing through the breaker.

5.4 Standards:

ANSI/IEEE Standard C57.13-2008 specifies CT accuracy class for steady state and symmetrical fault conditions. Accuracy class of the CT ratio error is specified to be $\pm 10\%$ or better for a fault current 20 times the CT rated current and up to the standard burden. CTs are designed to meet this requirement.

New Design of Iron CT

Aim: To reduce the depth of CT (Rating: 1000/1250/1600 A) from 41mm to 31mm.

6.1 Introduction:

This CT is used in frame-1 breaker(400-3200A) and its rating is from 1000-1600 A.

CT is a combination of Iron Core and Rogowski Coil. As a result, both will contribute to the total depth of CT.

The Rogowski Coil deals with the metering purpose and occupies the space of 10mm while Iron CT used to power up the release having width (core + winding) of 28mm. After the complete potting the total width of the CT is 41mm.

Due to reliability and accuracy issues, Rogowski Coil modification is a constraint. Due to such constraint, modification of Iron Core needs to be done.

Before the new design development existing behavior of the CT is to be analyzed and required criteria for the performance of the electronic device working from the input of the CT is to be studied and maintained.

6.1.1 Factors to be consider for Iron CT Modification:

- Effective numbers of turns which will results into the total flux production the cause behind the secondary current of CT.
- Core width will behave as a medium for flux linkage between primary and secondary.

6.2 Existing Design:

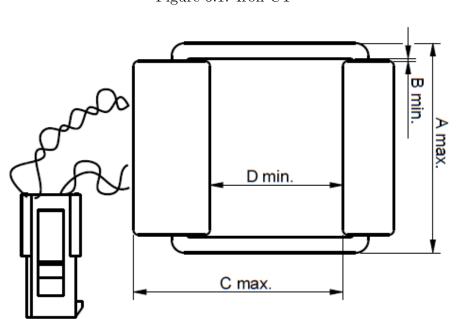
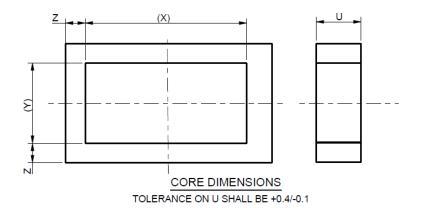



Figure 6.1: Iron CT

Figure 6.2: Core Dimension

Figure 6.3: Existing CT Design Dimension

6.3 Procedure:

• Step 1: At the initial stage, Test Report of the existing CT is studied and analyzed. As discussed the secondary current of Iron CT is responsible for the power up of the release.

The Iron CT characteristic are defined from core width, numbers of turns on LL UL, resistance of winding, VA output. These parameters set the secondary current of the CT which is the input to electronic release. These parameters need to be consider for modification to achieve the desired task.

Resistance Value= 11.3 to 13.3 ohm.

Criteria for Release:

- 1. For In (Rated Current=1600) secondary output current should be less than 1A.
- 2. For 2In (3200A) secondary output current should be less than 1.6A.

CL00	016-1	(Cl00016-2				
Ip	Is		Ip	Is			
206	0.128		208	0.116			
413	0.287		418	0.279			
612	0.386		617	0.367			
803	0.469		802	0.445			
1004	0.528	-	1006	0.515			
1244	0.591	-	1247	0.572			
1401	0.626	-	1402	0.607			
1600	0.67	1	604	0.65			
2011	0.754	-	1805	0.681			
3211	0.934	5	3192	0.913			
3922	1.021	4	4451	1.052			
4450	1.084	Į	5416	1.134			

Table I: Existing Samples Test Data

3. Step 2: From the analysis of existing CT design sheet, Lower Limb is having comparatively more turns (1420) than upper limb, LL turns acquires higher space.

Initial modification is carried out from the turns as it contributes more towards the depth of CT and manual modification of the turns is possible for the trail performance/testing. For Core width modification, vendor need to be consult as manual removal of core is not possible. Existing core is 11 mm in depth.

Existing Design Parameters: U=11mm, UL: 850 LL: 1420 TT: 2270 ET: 570

4. **Step 3**: By observing, the number of turns in one layer of the LLUL, its contribution in the width of the CT can be measured.

Based on the requirement for the experiment, removal of turns is carried out and the testing is performed to check the behavior of the CT under different modified turns and results are recorded for the analysis and for the new design purpose.

In achieving the desired task, the release constraint also needs to be follow to avoid improper functioning or damage to any electronic device.

Design	LL	UL	ТТ	ET	Core I	Depth	R	Delegge DerrorUn	
Design			11	EI	UL	$\mathbf{L}\mathbf{L}$	n	Release PowerUp	
Sample 1	1400	600	2000	800	27.2	19.2	11.2	80	
Sample 2	1300	600	1900	700	26.11	19.2	9.8	90	
Sample 3	1200	600	1800	600	25.1	19.2	8.7	85	
Sample 4	1100	600	1700	500	23.75	19.2	7.95	90	
Sample 5	1100	480	1580	620	23.75	18	7.5	85	
Sample 6	1000	480	1480	520	22.8	18	6.7	92	
Sample 7	1000	430	1380	520	22.8	18	6.4	90	
Sample 8	950	430	1330	470	22.8	18	6	95	
Sample 9	900	430	1330	470	21.5	18	5.7	95	
Sample 10	1000	600	1600	400	22.8	19.2	7	95	
Sample 11	900	500	1400	400	21.5	18	5.7	100	

Table II: Modified Samples Test Results

Table III: Sample 4 Test Results

Samp	$le \ 4 \ (LL: \ 1100 \ Turns, \ UL: \ 600 \ Turns)(R=7.95)$
Ip	Is
99	0.109
160	0.142
208	0.238
400	0.466
795	0.656
1577	0.943
2038	1.07

Table IV: Sample 10 Test Results

Samp	Sample 10(LL: 1100 Turns, UL: 600 Turns)(R=7)								
Ip	Is								
107	0.092								
151	0.115								
206	0.137								
417	0.365								
815	0.664								
1648	0.989								
2014	1.112								

Samp	le 11(LL: 900 Turns, UL: 500 Turns)(R=5.7)
Ip	Is
98	0.129
153	0.126
405	0.403
802	0.67
1618	0.927
2018	0.896

Table V: Sample 11 Test Results

In the tests performed the Core width is **11mm** constant for all the samples only modification is carried out in turns of winding of the CT.

From the different combination of UL & LL turns, test results are obtained and based on the results best samples are selected which followed the required criteria.

5. Step 4: From the analysis of the result obtained in the above tests, New design samples are developed at the vendor side by selecting the best combination of UL & LL turns along with the Core width modification.

Finalised Design samples are shown below:

Sr.	CT CAT	А	B	C ma	D mi	U	X mi	Y mi	Z	UL Tur	ш	Total	Effecti ve	sw		plete pth	Iron C	T Depth
no	NO.	max.	n.	х.	n.	Ū	n.	n.	n.	ns	Turns	Turns	Turns	G	1	2	1	2
•	CL00016	88	2	79	50	11	70	65	8.5	850	1420	2270	570	25				
1	Sample 1	88	2	79	50	10	70	65	8.5	600	1000	1600	400	25	28.8	31.2	21.3	21.7
2	Sample 2	88	2	79	50	10	70	65	8.5	500	1000	1500	500	25	30.1	27.6	22.2	23.2
3	Sample 3	88	2	79	50	9	70	65	8.5	500	1000	1500	500	25	28.4	27.3	20.5	20.8
4	Sample 4	88	2	79	50	11	70	65	8.5	500	900	1400	400	25	30.5	30.3	22.8	23
5	Sample 5	88	2	79	50	10	70	65	8.5	500	900	1400	400	25	27.5	26.5 5	20.5	20.2
6	Sample 6	88	2	79	50	9	70	65	8.5	500	900	1400	400	25	23.7 8	28.4	19.7	19.6

Figure 6.4: Proposed Design Dimension

	U=10mm, UL: 600LL: 1000 TT: 1600 ET:400													
Sam	ple 1 (1) D: 21.	3mm		Sample 1 (2) D: 21.7mm									
Ip	Is	Rele	ase		Ip	Is	Release							
IP	15	$3.5\mathrm{EC}$	$1.5\mathrm{G}$		тр	15	3.5EC	$1.5\mathrm{G}$						
95	0.142	325	75	75		99	0.171							
153	0.27				75		155	0.272						
197	0.312					75	75	75	75		212	0.362	315	77
409	0.482								394	.464	515	11		
811	0.656							801 0.663						
1595	0.945				1592	0.951								

Table VI: Sample 1 Test Results

Table VII: Sample 2 Test Results

	U=10n	nm, UL:	500LL	: 1	L000 T'	T: 1500	ET:500							
Sam	Sample 2 (1) D: 22.2mm				Sample 2 (2) D: 23.2mm									
In	Is	Release			In	Ip Is	Release							
Ip	15	3.5EC	1.5G		Ip	15	3.5EC	1.5G						
109	0.058		97	97	97						98	0.183		
156	0.198							151	0.274					
198	0.238	340				07 196 0.342 1	165	65						
411	0.497	040				91	91		402	0.52	105	05		
794	0.637					794	0.704							
1617	0.951				1594	1.054								

After performing the test on the developed samples and from the analysis of the results obtained the design samples which satisfy the required criteria is to be finalized.

From the test result following conclusion is obtained:

1. Samples 1,4,5 doesn't satisfy the required criteria of In and 2In.

2. Sample 6 output current is not sufficient to power up the release at the required current (approx. 80-85A).

3. Sample 1 is not suitable for the Release 3.5EC power up.

The sample 3 design is preferred over all the developed samples. Sample 3 is satisfying the criteria of In and 2In and the release power up is occurring at lower current value compared to other samples and existing samples too.

Presently Release 1.5G is consider for the for the prototype testing. Finalized Design from the developed samples are as follow.

	U=9mm, UL: 500 LL: 1000 TT: 1500ET:500											
Sample 3 (1) D: 22.2mm				Sample 3 (2) D: 23.2mm								
In	La La Release		ase		In	Is	Release					
Ip	Is	3.5EC	$1.5\mathrm{G}$		Ip	15	3.5EC	1.5G				
100	0.182		56	56		108	0.182					
160	0.287				56				150	0.262		
207	0.348	250					206	0.351	240	80		
403	0.51	230				50		400	0.484	240	80	
806	0.7						804	0.692				
1600	0.978				1600	0.984						

Table VIII: Sample 3 Test Results

Table IX: Sample 4 Test Results

	U=11mm, UL: 500 LL: 900 TT: 1400 ET:400											
Sam	Sample 4 (1) D: 22.2mm				Sample 4 (2) D: 23.2mm							
In	Is	Release		T		Is	T _a Release					
Ip	15	3.5EC	$1.5\mathrm{G}$		Ip	15	3.5EC	1.5G				
100	0.229		74		107	0.253						
157	0.337			74	74		154	0.338				
200	0.39	195				74	74		195	0.397	195	80
411	0.584	190							412	0.616		00
803	0.793						803	0.825				
1595	1.133				1607	1.205						

Table X: Sample 5 Test Results

	U=10mm, UL: 500 LL: 900 TT: 1400 ET:400										
Sample 5 (1) D: 20.5mm				Sample 5 (2) D: 20.2mm							
Ip	Is	Rele	ase		In	Ip Is	Release				
тр	15	3.5EC	1.5G		ID		3.5EC	1.5G			
95	0.108				95	0.089					
155	0.295				152	0.263					
195	0.334	340	76	76	76	76		194	0.329	350	76
405	0.522	040					10	70	10	10	10
803	0.693				796	0.73	1				
1609	1.012				1611	1.021					

	U=9mm, UL: 500 LL: 900 TT: 1400 ET:400										
Sample 6 (1) D: 19.7mm				Sample 6 (2) D: 19.6mm							
Ip	Is	Rele	ase		Ip	Is	Release				
IP IP	15	$3.5\mathrm{EC}$	1.5G				3.5EC	1.5G			
104	0.067		110	110	104	0.069					
149	0.068				110			155	0.123		
202	0.160	750					200	0.252	535	110	
410	0.388	750					406	0.45	000	110	
795	0.567			812	0.684						
1598	0.81				1593	0.942					

Table XI: Sample 6 Test Results

Figure 6.5: Finalised Proposed Design

Frame Size	CT CAT NO.	A max.	B min.	C max.	D min.	U	X min.	Y min.	Z min.	UL Turns	LL Turns	Total Turns	Effective Turns	SWG
Ι	CL00016 new	88	2	79	50	9	70	65	8.5	500	1000	1500	500	25

6.4 Testing For Validation Of Samples

Validation of samples for following approval tests:

- 1. Iron CT characteristics till 6In
- 2. VA characteristics
- 3. Earth fault tripping at minimum setting
- 4. Temperature rise test

Table XII: Sample	1	Test	Results
-------------------	---	------	---------

Sample 1						
Resistance	6.5 ohm					
Thickness	21mm					
Primary Current	Secondary Current					
105	0.2					
150	0.261					
206	0.344					
403	0.461					
800	0.644					
1592	0.922					

San	ple 2
Resistance	6.4 ohm
Thickness	21mm
Primary Current	Secondary Current
102	0.175
148	0.254
201	0.32
401	0.453
797	0.617
1605	0.902

Table XIII: Sample 2 Test Results

Table XIV: Sample 3 Test Results

Sample 3						
Resistance	6.5 ohm					
Thickness	20.9mm					
Primary Current	Secondary Current					
101	0.184					
151	0.265					
207	0.352					
398	0.459					
798	0.653					
1602	0.932					

Sample 2							
Primary Current	Secondary Current	Secondary Voltage	VA				
100	0.181	12.15	2.20				
156	0.271	10.15	2.75				
205	0.321	9.46	3.04				
406	0.479	7.88	3.77				
807	0.482	7.71	3.72				
1596	0.965	5.74	5.54				
2007	1.101	5.53	6.09				
2503	1.242	5.5	6.83				
3064	1.327	6.07	8.05				
3556	1.412	5.26	7.43				
4449	1.526	5.24	8.00				
5311	1.631	4.49	7.32				
6200	1.7	5.43	9.23				
6820	1.76	4.85	8.54				
7137	1.79	4.76	8.52				
7850	1.84	4.74	8.72				
8850	1.92	4.74	9.10				

Figure 6.6: Sample 2 Test Results

6.4.1 Temperature rise test

Temperature raise test was carried out by passing rated current in primary (2800A) for 4 hrs. Through link, till the temperature of the CT body had reached steady state condition. CT mounted in breaker. The temperature raise observed as below against specified limit of 105C mentioned in CD sheet.

6. Metering test

3 samples to be submitted to Quality for independent validation the new design.

	Sample	3	
Primary Current	Secondary Current	Secondary Voltage	VA
101	0.185	12.026	2.22
149	0.27	10.2	2.75
200	0.322	9.358	3.01
401	0.478	7.968	3.81
812	0.673	6.174	4.16
1623	0.959	6.123	5.87
2011	1.07	5.978	6.40
2508	1.196	5.876	7.03
4660	1.41	5.845	8.24
5100	1.564	5.43	8.49
5634	1.633	5.05	8.25
6300	1.676	5.03	8.43
7010	1.719	5.29	9.09
7990	1.792	5	8.96
8775	1.855	4.72	8.76

Figure 6.7: Sample 3 Test Results

Figure 6.8: Earth Fault $\mathrm{I}^2 t$

CL00016 (1000,1250,1600A)

Test conducted on MTX 1.5G release Rev-03 919651000112140008 with In setting-1000A, Earth fault setting : Pickup-0.2In, Delay 0.1(I2T ON)

		Resistan	ce(Ohm)		Test paran	neters	
Sample No.	Discription	Iron Core	Rogowski	Current (A)	Iron core output(mA)	Metering(A)	Trip time(sec)
				204	320	208	1.38
1	Existing CL00016	12.24	313.3	220	321	225	1.22
1	Existing CLOODIO	12.24	515.5	275	303	290	0.75
				346	382	365	0.52
2	Tape-wound CL00701	12.11	504.7	210	230	171	0.28
2	Tape-would CL00701	12.11	504.7	221	275	169	-
3	New CT CL00016 Sample No. 4	6.97	293	208	328	197	1.76 to 1.84
3	New CT CLOUDE Sample No. 4	0.97	293	220	241	215	1.26
4	New CT CL00016 Sample No. 6	7.02	297.7	222	341	210	1.43
5	New CT CL00016 Sample No. 2	7.02	202	203	335	174	-
5	New CI CLUUU16 Sample No. 2	7.02	293	220	358	213	1.26

		Resistan	ice(Ohm)			Test para	ameters			
Sample No.	Discription	Iron Core	Rogowski	Release	Setting	Current (A)	Iron core output(mA)	Metering(A)	Trip time(sec)	% error
				1.5G	0.2In, I2T OFF, delay 0.1sec	198	306	203	0.136	36
1	Existing CL00016	12.24	313.3	1.56	0.2In, I2T OFF, delay 0.2sec	197	306	201	0.248	24
				3.5EC	0.2In, I2T OFF, delay 0.1sec	195	243	203	0.188	88
				1.5G	0.2In, I2T OFF, delay 0.1sec	200	225	166	No trip	
2	Tape-wound CL00701	12.11	504.7	1.56	0.211, 121 OFF, delay 0.15ec	247	309	196	0.14	40
2	Tape-wound clouror	12.11	504.7	3.5EC	0.2In, I2T OFF, delay 0.1sec	248	294	206	0.144	44
				5.5EC	0.2m, 121 OFF, delay 0.1sec	218	256	180	No trip	
				1.5G	0.2In, I2T OFF, delay 0.1sec	201	330	201	0.14	40
3	New CT CL00016 Sample No. 4	6.97	293	1.56	0.2In, I2T OFF, delay 0.2sec	202	330	203	0.25	25
2	New CI CLOUDIB Sample NO. 4	0.97	295	3.5EC	0.2In, I2T OFF, delay 0.1sec	202	145	No navigation	0.204	104
				5.5EC	0.2m, 121 OFF, delay 0.1sec	229	195	239	0.19	90
				1.5G	0.2In, I2T OFF, delay 0.1sec	211	343	204	0.14	40
4	New CT CL00016 Sample No. 6	7.02	297.7	1.56	0.2In, I2T OFF, delay 0.2sec	210	343	204	0.24	20
4	New CI CLOUDIB Sample No. 8	7.02	297.7	3.5EC	0.2In, I2T OFF, delay 0.1sec	221	150	No navigation	0.18	80
				5.5EC	0.2m, 121 OFF, delay 0.1sec	249	176	258	0.18	80
					0.2In, I2T OFF, delay 0.1sec	205	350	204	0.14	40
				1.5G	0.211, 121 OFF, delay 0.15ec	223	364	221	0.14	40
5	New CT CL00016 Sample No. 2	7.02	293		0.2In, I2T OFF, delay 0.2sec	220	361	219	0.24	20
				3.5EC	0.31a, 13T.OFF, dataw0.1aas	351	355	349	0.18	80
				5.5EC	0.2In, I2T OFF, delay 0.1sec	220	165	230	0.19	90

Figure 6.9: Earth Fault $I^2 t$

Figure 6.10: Temperature Rise Test

Before start of test n	neasured parameter	After 4 hr. measured p	arameters
Rogowski Temperature	21.7 'C	Rogowski Temperature	50.87 'C
Rogowski Resistance	302.56 Ohm	Rogowski Resistance	362.65 Ohm
Iron CT Temperature	21.7 'C	Iron CT Temperature	38.68 'C
Iron CT Resistance	11.99 Ohm	Iron CT Resistance	13.8 Ohm

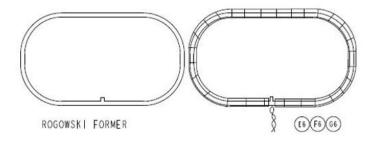
Chapter 7 Conclusion:

By modification of the total numbers of turns and core width, the characteristics of CT has changed. Behavior of new developed CT has been analyzed with the electronic devices. Final Test Report will conclude the task.

New Design Of Rogowski For Neutral CT

Aim: Elimination of Iron CT from Neutral CT.

8.1 Introduction:


Presently in neutral pole, Neutral CT comes in a combination of Rogowski Coil and Iron Cored CT. The Purpose of Rogowski Coil is metering while of Iron Cored CT is to power Up the release.

Under the faulty condition individual neutral fault will never occur, it always comes along with any of the one phases. Due to such condition Power up current required for the release will be provided by the Iron CT of that phase which is with the neutral pole in the faulty condition. Therefore, Iron CT of the neutral pole will remain unused.

In order to overcome such condition new neutral CT to be developed which consists only Rogowski Coil for metering purpose. This implementation will save the cost of manufacturing and falls under the category of Value Engineering (VE).

8.2 CT Theoritical Design:

Figure 8.1: Core Design

Expression for induced emf in rogowski coil

$$E = \frac{-A * N * \mu_0}{l} * \frac{\mathrm{d}I}{\mathrm{d}t}$$

Where,

A: Area of cross section of coil $(17.5 \times 2 = 35 \text{mm}^2)$ N : Number of turns in coil $\mu_o : 12.56 \times 10^{-7}$ l: length of winding (Differ as per the CAT no. Of CT)

EMF Induced Calculation (CL00015):

Expression for induced emf in rogowski coil.

$$E = \frac{-A * N * \mu_0}{l} * \frac{\mathrm{d}I}{\mathrm{d}t}$$

Where,

A: Area of cross section of coil (35mm)I: Current (800A) N: Number of turns in coil (1920*6=11520) $\mu_0: 12.56X10^{-7}$ I: Length of winding 262mm as specified in Drawing

$$EMF = \frac{35 * 10^{-6} * 11520 * 12.56 * 10^{-7} * 6.28 * 50 * 800}{262 * 10^{-3}}$$

$$EMF = 0.4855V$$

Rogowski Criteria:

- Initially mV band defined for the Rogowski Coil is **530** mV.
- Modified mV band selected for the Rogowski is from **505-525 mV**.
- At defined mV rated current will be displayed on the release and due to the linear characteristics of the Rogowski Coil at the any value of the current flowing in the breaker mV output will be generated with respect to that current.
- From the value of mV obtained in the above equation the number of turns can be found out.
- With respect to the 0.4855mV output 0.4755 mV to be considered as band needs to be decreased by 10mV.

For CL00015:

$$E = \frac{-A * N * \mu_0}{l} * \frac{\mathrm{d}I}{\mathrm{d}t}$$

N=11281.69 For 6 layers Number of turns/Layers=1880 Initial Turns N/Layers= 1920 for 6 layers.

8.3 Procedure:

For other CAT No. CT turns are calculated in the similar manner and new developed turns design is shown below.

CAT No.	Turns	Layers	Total Turns	Rated Current	EMF	Actual EMF	New Turns	Per Layer	Ordered
CL00015	1920	6	11520	800	0.487	0.477	11283	1881	1880
CL00016	1130	5	5650	1600	0.478	0.468	5532	1106	1110
CL00017	1480	2	2960	3200	0.501	0.491	2901	1450	
CL00018	2340	6	14040	800	0.594	0.584	13803	2301	
CL00019	1410	5	7050	1600	0.596	0.586	6932	1386	
CL00020	1480	2	2960	4000	0.626	0.616	2913	1456	1450
CL00021	1950	6	11700	800	0.495	0.485	11463	1911	
CL00022	1470	4	5880	1600	0.497	0.487	5762	1440	
CL00023	1190	2	2380	4000	0.503	0.493	2333	1166	
CL00024	752	2	1504	6300	0.501	0.491	1474	737	

Design.PNG

CAT No.	Rated Current		E	xisting Des	sign		New Desig	n 1			New Desig	n 2
CAT NO.	Rated Current		Turns	Layers	Total Turns	Turns	Layers	Total Turns		Turns	Layers	Total Turns
CL00015	800	1	1920	6	11520	1850	6	11100		1800	6	10800
CL00016	1600		1130	5	5650	1110	5	5550		1110	5	5550
CL00017	3200		1480	2	2960	1450	2	2900		1450	2	2900
CL00018	800		2340	6	14040	2300	6	13800		2200	6	13200
CL00019	1600		1410	5	7050	1380	5	6900		1410	5	7050
CL00020	4000		1480	2	2960	1450	2	2900		1450	2	2900
CL00021	800		1950	6	11700	1910	6	11460	ſ	1800	6	10800
CL00022	1600		1470	4	5880	1440	4	5760		1440	4	5760
CL00023	4000		1190	2	2380	1165	2	2330		1165	2	2330
CL00024	6300		752	2	1504	735	2	1470		735	2	1470

8.4 Future Work:

1. Quality Approval.

2. Required Tests on test bench at the breaker.

						CLUUU	13(400	10301	500) (.	1850*6	-11100/						
		Sa	mple 1					Sar	nple 2					Sam	nple 3	1	4
Current	Release Current	mV Output	Actual mV	%Error	%Error In Metering	Current	Release Current	mV Output	Actual mV	%Error	%Error In Metering	Current	Release Current	mV Output	Actual mV	%Errror	%Error I Meterin
408		291.1	255	14.16%		409	457	275.8	255.6	7.89%	12%	405	441	266.7	253.1	5.36%	9%
625		446.7	390.625	14.36%		633	705	427.4	395.6	8.03%	11%	630	681	412	393.8	4.63%	8%
797		568.1	498.125	14.05%		800	888	540	500	8.00%	11%	795	858	519	496.9	4.45%	8%
		-				CL0001	6(1000) (1110)*5=5550)						
	1	Sa	mple 1			CL0001	6(1000		/1600) (1110)*5=5550)			Sam	nple 3		
	Release	mV	Actual		%Error In		Release	Sar mV	nple 2 Actual		%Error In		Release	mV	Actual		
Current	Current	mV Output	Actual mV	%Error	Metering	Current	Release Current	Sar mV Output	Actual mV	%Error	%Error In Metering	Current	Current	mV Output	Actual mV	%Error	Meterin
Current 200		mV	Actual	%Error -0.80%			Release	Sar mV	nple 2 Actual		%Error In	Current 198		mV	Actual	%Error -0.44%	
	Current	mV Output	Actual mV		Metering	Current	Release Current	Sar mV Output	Actual mV	%Error	%Error In Metering		Current	mV Output	Actual mV		Meterin
200	Current 203	mV Output 62	Actual mV 62.5	-0.80%	Metering 2%	Current 1000	Release Current 1032	Sar mV Output 311	Actual mV 312.5	%Error -0.48%	%Error In Metering 3%	198	Current 207	mV Output 61.6	Actual mV 61.88	-0.44%	Meterin 5%
200 409	Current 203 424	mV Output 62 127	Actual mV 62.5 127.813	-0.80% -0.64%	Metering 2% 4%	Current 1000 1261	Release Current 1032 1289	Sar mV Output 311 390	Actual mV 312.5 394.1	%Error -0.48% -1.03%	%Error In Metering 3% 2%	198 395	Current 207 413	mV Output 61.6 123	Actual mV 61.88 123.4	-0.44% -0.35%	Meterin 5% 5%
200 409 815	Current 203 424 836	mV Output 62 127 251	Actual mV 62.5 127.813 254.688	-0.80% -0.64% -1.45%	Metering 2% 4% 3%	Current 1000 1261	Release Current 1032 1289	Sar mV Output 311 390	Actual mV 312.5 394.1	%Error -0.48% -1.03%	%Error In Metering 3% 2%	198 395 804	Current 207 413 832	mV Output 61.6 123 250	Actual mV 61.88 123.4 251.3	-0.44% -0.35% -0.50%	5% 3%

							CLOOC	019(100	00/125	0/160	0) (138	80*5=6900	J)						
		Sar	mple 1					1	Sar	nple 2						Samp	le 3		
	Release Current	mV Output	Actual mV	%Error	%Error In Metering		Current	Release Current	mV Output	Actual mV	%Error	%Error In Metering	Cu	rrent	Release Current	mV Output	Actual mV	%Error	%Error In Metering
197	194	57.6	61.5625	-6.44%	-2%		196	193	57.6	61.25	-5.96%	-2%	1	197	194	57.5	61.56	-6.60%	-2%
405	398	118	126.563	-6.77%	-2%		404	396	118	126.3	-6.53%	-2%	4	103	395	117.6	125.9	-6.62%	-2%
807	789	235	252.188	-6.82%	-2%		817	801	238	255.3	-6.78%	-2%	8	808	787	234.8	252.5	-7.01%	-3%
1010	985	293	315.625	-7.17%	-2%		1017	982	297	317.8	-6.55%	-3%	1	019	989	295.4	318.4	-7.23%	-3%
1240	1200	360	387.5	-7.10%	-3%		1251	1200	365	390.9	-6.63%	-4%	1	240	1184	359	387.5	-7.35%	-5%
1600	1550	465	500	-7.00%	-3%		1610	1535	462	503.1	-8.17%	-5%	1	610	1584	468	503.1	-6.98%	-2%
						C	L00020	(2000/			4000) (1450*2=2	900)						
		Sar	nple 1		~				Sar	nple 2		-		1		Samp	le 3		-
	Release Current	mV Output	Actual mV	%Error	%Error In Metering		Current	Release Current	mV Output	Actual mV	%Error	%Error In Metering	Cu	rrent	Release Current	mV Output	Actual mV	%Error	%Error In Metering
1610	1668	200	201.25	-0.62%	4%		1600	1626	195	200	-2.50%	2%	1	604	1660	198	200.5	-1.25%	3%
2000	2080	251	250	0.40%	4%		2010	2040	245	251.3	-2.49%	1%	2	000	2040	251	250	0.40%	2%
2480	2558	310	310	0.00%	3%		2510	2550	307	313.8	-2.15%	2%	2	520	2580	310	315	-1.59%	2%
3180	3254	391	397.5	-1.64%	2%		3220	3276	394	402.5	-2.11%	2%	2	200	3294	397	400	-0.75%	3%

						CLUC				120.70	*6=11460	11.						
		Sar	mple 1					Sar	nple 2						Samp	le 3		
	Release	mV	Actual		%Error In	100000	Release	mV	Actual		%Error In			Release		Actual		%Error In
Current	Current	Output	mV	%Error	Metering	Current	Current	Output	mV	%Error	Metering		Current	Current	mV Output	mV	%Error	Metering
197	232	138	123.125	12.08%	18%	195	260	137	121.9	12.41%	33%		196	228	136	122.5	11.02%	16%
402	470	280	251.25	11.44%	17%	404	500	282	252.5	11.68%	24%		404	470	280	252.5	10.89%	16%
668	740	445	417.5	6.59%	11%	640	743	446	400	11.50%	16%		639	738	443	399.4	10.92%	15%
804	927	560	502.5	11.44%	15%	807	933	562	504.4	11.43%	16%		810	932	560	506.3	10.62%	15%

		Sa	mple 1	2	ç			San	nple 2					Samp	le 3		
	Release Current	mV Output	Actual mV	%Error	%Error In Metering	Current	Release Current	mV Output	Actual mV	%Error	%Error In Metering	Current	Release Current	mV Output	Actual mV	%Error	%Error Ir Metering
810	870	263	253.125	3.90%	7%	805	873	261	251.6	3.75%	8%	811	873	260	253.4	2.59%	8%
1017	1099	238	317.813	-25.11%	8%	1013	1195	327	316.6	3.30%	18%	1005	1065	322	314.1	2.53%	6%
1250	1316	401	390.625	2.66%	5%	1254	1355	405	391.9	3.35%	8%	1257	1350	403	392.8	2.59%	7%
1610	1729	518	503.125	2.96%	7%	1608	1721	519	502.5	3.28%	7%	1610	1719	517	503.1	2.76%	7%

						CI	L00023	(2000/	2500/3	3200/	4000) (1165*2=2	330))					
-		Sar	mple 1						Sar	nple 2						Samp	le 3	1	,
Current	Release Current	mV Output	Actual mV	%Error	%Error In Metering		Current	Release Current	mV Output	Actual mV	%Error	%Error In Metering		Current	Release Current	mV Output	Actual mV	%Error	%Error In Metering
1018	1048	124.6	127.25	-2.08%	3%		1609	1644	245	201.1	21.81%	2%		2050	2140	257	256.3	0.29%	4%
1257	1292	153	157.125	-2.63%	3%		2510	2562	310	313.8	-1.20%	2%		2530	2620	314	316.3	-0.71%	4%
1598	1632	195	199.75	-2.38%	2%		3200	3284	395	400	-1.25%	3%		3189	3288	396	398.6	-0.66%	3%
2006	2052	245	250.75	-2.29%	2%		4010	4112	496	501.3	-1.05%	3%		3980	4120	496	497.5	-0.30%	4%
2490	2550	307	311.25	-1.37%	2%														
3200	3250	390	400	-2.50%	2%														
4040	4072	490	505	-2.97%	1%														
							CI	.00024	5000/	6300)	(735*2	2=1470)							
		Sar	mple 1						Sar	nple 2			-	-		Samp	le 3		
	Release	mV	Actual	0/5	%Error In		.	Release	mV	Actual	0/5	%Error In			Release	NOT	Actual	0/5	%Error In
Current	Current	Output	mV	%Error	Metering 1%		Current	Current	Output	mV	%Error	Metering		Current		mV Output	mV	%Error	Metering
2020	2050	156	160.32	-2.69%	1%		2020	2150	164	######	2.30%	6%		1995	2045	154	158.33		3%
2460	2490	189	195.24	-3.20%			2523	2700	205	######	2.38%	7%		2500	2580	195	198.41	-1.72%	3%
3250	3280	249	257.94	-3.46%	1% 1%		3260	3500	267	#####	3.20%	7%		3220	3300	257	255.56		2%
3990	4025	307	316.67	-3.05%			5040	5280	402	#####	0.50%	5%		4040	4130	317	320.63		2%
5000	5025	387	396.83	-2.48%	1%									5040	5140	393	400.00	-1.75%	2%

Literature Survey

[Ljubomir A. KOJOVIC, Martin T. BISHOP], Comparative Characteristics of Iron-Core Current Transformers and Rogowski Coils for Applications for Protective Relaying Purposes., IEEE.

- (1) Comparison between Rogowski and Iron C.T.
- (2) Formulae.
- (3) Characteristic of C.T.
- (4) Saturation Phenomenon.
- (5) Advantages and Application.

[Mehdi Yahyavi, Farshid Brojeni, Mohammad Vaziri], **Basic Theory and Practical Considerations in a Current Transformer, IEEE.**

- (1) Fundamentals of Current Transformer.
- (2) Working Principles.
- (3) Design Criteria.

[C D M Oates, A J Burnett, C James], **THE DESIGN OF HIGH PERFORMANCE ROGOWSKI COILS**, ALSTOM Research Technology Centre, UK.

- (1) Basics Rogowski Coils design.
- (2) Industrial Implementation.
- (3) Standard for Low Voltage Air Circuit Breaker.
- (4) L T U-Power Omega ACB catalogue.
- (5) IEC-60947 Part-I II.

FUTURE WORK AND CONCLUSION

10.1 Future Work:

Implementation and Observation of the Design samples to be done and if any necessary modification is required according to the need/demand or for some special feature in the Release then design to be change accordingly.

10.2 Conclusion:

Basics of Current Transformer used in Air Circuit Breaker (U-Power OMEGA) and its Applications are studied. From the literature survey, theoretical knowledge of Current Transformers is obtained. Problem Identification is done and accordingly the prototype is developed in order to make the effective improvement on existing design to overcome the errors faced in the existing Current Transformer.

From the various samples developed, the samples which match the desired characteristic are selected. On the selected samples, validation testing is carried such as VA characteristics, 6In characteristics, Temperature Rise Test, Metering, Earth Fault Testing. etc for the successful implementation of the design samples in the breaker.

References

1.[Mehdi Yahyavi, Farshid Brojeni, Mohammad Vaziri], **Basic Theory** and Practical Considerations in a Current Transformer, IEEE.

2.[Ljubomir A. KOJOVIC, Martin T. BISHOP], Comparative Characteristics of Iron-Core Current Transformers and Rogowski Coils for Applications for Protective Relaying Purposes., IEEE.

3.[C D M Oates, A J Burnett, C James], **THE DESIGN OF HIGH PERFORMANCE ROGOWSKI COILS**, ALSTOM Research Technology Centre, UK.

 $4.\mathrm{IEC}$ 60947 Low-voltage switch gear and control gear, Part 1: General rules, 2006

5.IEC 60947 Low-voltage switchgear and control gear, Part 2: Circuit breakers,2006

6. L& T ACB U-Power OMEGA catalogue.