
Migration of Diagnostics Application and
Feature Addition in Android TV

Submitted By

Toshika Jain

16MCEC25

DEPARTMENT OF COMPUTER ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2018

Migration of Diagnostics Application and
Feature Addition in Android TV

Thesis

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology in Computer Science and Engineering

Submitted By

Toshika Jain

(16MCEC25)

Guided By

Prof. Vishal Parikh Mrs. Anjuliz Ahmad

Nirma University, Ahmedabad. ARRIS India Pvt. Ltd.

DEPARTMENT OF COMPUTER ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2018

Certificate

This is to certify that the thesis entitled ”Migration of Diagnostics Application

and Feature Addition in Android TV” submitted by Toshika Jain (Roll No:

16MCEC25), towards the partial fulfillment of the requirements for the award of de-

gree of Master of Technology in Computer Science and Engineering of Nirma University,

Ahmedabad, is the record of work carried out by her under my supervision and guidance.

In my opinion, the submitted work has reached a level required for being accepted for

examination. The results embodied in this thesis, to the best of my knowledge, haven’t

been submitted to any other university or institution for award of any degree or diploma.

Prof. Vishal Parikh Dr. Priyanka Sharma

Guide & Assistant Professor, PG Coordinator-CSE,

Computer Engineering Department, Associate Professor,

Institute of Technology, Institute of Technology,

Nirma University, Ahmedabad. Nirma University, Ahmedabad

Dr. Sanjay Garg Dr. Alka Mahajan

Professor and Head, Director,

Computer Engineering Department, Institute of Technology,

Institute of Technology, Nirma University, Ahmedabad

Nirma University, Ahmedabad.

iii

Scanned by CamScanner

Statement of Originality
———————————————————————————————————————

I, Toshika Jain, Roll.No.16MCEC25, give undertaking that the Thesis entitled ”Migration

of Diagnostics Application and Feature Addition in Android TV” submitted by

me, towards the partial fulfillment of the requirements for the degree of Master of Tech-

nology in Computer Science and Engineering of Institute of Technology, Nirma

University, Ahmedabad, contains no material that has been awarded for any degree or

diploma in any university or school in any territory to the best of my knowledge. It is

the original work carried out by me and I give assurance that no attempt of plagiarism

has been made.It contains no material that is previously published or written, except

where reference has been made. I understand that in the event of any similarity found

subsequently with any published work or any dissertation work elsewhere; it will result

in severe disciplinary action.

———————–

Signature of Student

Date:

Place:

Endorsed by

Prof. Vishal Parikh

(Signature of Guide)

v

Acknowledgements

First and foremost, sincere thanks to Mr. Anil Radhakrishnan, Director, ARRIS In-

dia Private Limited, Bangalore.

I would like to thank, Mr. Santosh Honagudi and Mrs. AnjuLiz Ahmad, ARRIS

India Private Limited, Bangalore for their valuable guidance.They have given me much

valuable advice on this project work.

It gives me immense pleasure in expressing thanks and profound gratitude to Prof.

Vishal U. Parikh, Assistant Professor, Computer Engineering Department, Institute

of Technology, Nirma University, Ahmedabad for his valuable guidance and continual

encouragement throughout this work. The appreciation and continual support he has

imparted has been a great motivation to me in reaching a higher goal. His guidance has

triggered and nourished my intellectual maturity that I will benefit from, for a long time

to come.

It gives me an immense pleasure to thank Dr. Sanjay Garg, Head of Computer

Engineering Department, Institute of Technology, Nirma University, Ahmedabad for his

kind support and providing basic infrastructure and healthy research environment.

A special thank you is expressed wholeheartedly to Dr Alka Mahajan,Director, In-

stitute of Technology, Nirma University, Ahmedabad for the unmentionable motivation

she has extended throughout course of this work.

I would also thank the Institution, all faculty members of Computer Engineering

Department, Nirma University, Ahmedabad for their special attention and suggestions

towards the project work.

- Toshika Jain

16MCEC25

vi

Abstract

Phase I

The scope of the work is migration of Diagnostic software (Autodiag) from older Graphics

standard DirectFB to the latest standard OpenGL.In the process of migration, we may

need to adapt application layer interfaces to port it on above OpenGL component. It also

includes testing of necessary OpenGL graphics interfaces on the specified hardware plat-

form.Before doing the migration directly on any new project, proof of concept (POC) will

be done on one of the existing hardware platform (eg. Telefonica Hw) and use Diagnostic

Software (AutoDiag) on which porting OpenGL on URSR nexus platform release 17.1.As

part of this POC migration activity, we can also understand the performance of OpenGL

and also implement and test some of the Graphics features using demo applications.

Phase II

For feature addition in Android TV, the task list started with giving the POC for An-

droid TV with Android N, followed by adding the feature of Auto-Pairing in DEV cory

branch, the main reason for adding this feature in the particular branch was that, BLE

RCU can be paired with STBs but for pairing and connecting, manual settings has to be

done. So with this new feature as soon as the STB boots up, the BLE RCU should be

automatically paired and connected to the STB. The next task was to add other BLE

RCUs in this feature, followed by porting of the feature in Android O. The next task that

followed after this was to configure GPIOs with respect to the RCU pairing, connection

and disconnection. The last task was to test one app that is BCM OTA update app, so

that the platforms can be flashed without taking apart the front cover and without using

RS232.

vii

Abbreviations

STB Set Top Box

AOSP Android Open Source Project

GTVS Google TV Services

BCM Broadcom

OTA Over The Air

BLE Bluetooth Low Energy

RCU Remote Control Unit

UEI Universal Electronics

AutoDiag Auto-Diagnostic Application

AF Application Framework

IF Interface Foundation

DFB DirectFB

BSG Broadcom Scene Graph
——————————————————————————————————————

–

viii

Contents

Certificate iii

Statement of Originality v

Acknowledgements vi

Abstract vii

Abbreviations viii

List of Figures xi

1 Phase I - Migration Of Auto-Diag Application 1
1.1 Overview . 1
1.2 Implementation for migration of platform from DirectFB to OpenGL . . 2

2 Phase II - Feature Addition in Android TV 5
2.1 Motivation . 5
2.2 Android TV . 6
2.3 Why Android TV? . 7

2.3.1 Android TV Benefits . 7
2.4 Outline Of Thesis . 9

3 Technical Specifications 10
3.1 Configurations Of Android Servers . 10
3.2 Tools . 10
3.3 Other Servers, Platforms and Remotes 10

3.3.1 Sweden Server . 10
3.3.2 Platforms . 11
3.3.3 Remotes . 11

4 Platforms 12
4.1 List of Platforms . 12
4.2 Askival . 12
4.3 VIP61n2 . 16
4.4 zh4515 . 19

4.4.1 Updating The STB With BCM OTA Update App 22

ix

5 Objectives Of Feature Addition 25
5.1 Objectives . 25

5.1.1 BLE RCU . 26

6 ArrisCustomizer Application 30
6.1 ArrisCustomizer Application . 30
6.2 Git Commit . 34

7 Configuration of GPIOs wrt BLE RCU 38

8 Conclusion 41
8.1 Conclusion . 41

Bibliography 42

x

List of Figures

1.1 Auto-Diag Application Block Diagram 2
1.2 Dependency of DirectFB in Auto-Diag 3
1.3 Text Rendering with BSG . 4

4.1 BSU loaded on HW platform . 14
4.2 Askival Board . 17
4.3 VIP61n2 Board . 19
4.4 F070(7268) Board . 20
4.5 F072(72604) Board . 21
4.6 BCM OTA Update App . 23

5.1 Ruwido BLE . 28
5.2 UEI Remote Control . 29

6.1 Devhub . 31
6.2 CSR Bluetooth Enabling . 31
6.3 Device name of STB . 32
6.4 STB in list of bluetooth devices . 32
6.5 Addition of ArrisCustomizer in zh4515 33
6.6 Support Addition for UEI Remote Control 35
6.7 JIRA for adding Auto-Pairing support 35
6.8 Comparison of performance between HW platforms 35
6.9 Git Commit . 36
6.10 ArrisCustomizer Application . 37

7.1 Flow diagram for GPIOs configuration 39
7.2 Changes done in ArrisCustomizer for GPIOs configuration 40

xi

Chapter 1

Phase I - Migration Of Auto-Diag

Application

1.1 Overview

When there is any problem in set-top box, the customer goes to service centre.If the

problem is related to any hardware components it is fixed at service centre and the box

is returned to customer, if the problem is related to any software component the set-top

box is sent to factory again.In factory, Auto-Diagnostic App is used to find any kind of

software related problem in STB.

As of now, Broadcom is delivering DirectFB software component ported, integrated

and delivered on top of every URSR Nexus release. Also, Broadcom supports every issue

observed and raised on DirectFB component and delivers respective patches.Broadcom is

clear on their roadmap to support DirectFB until end of this year(2017), and not sure of

this support beyond this year. Its a risk to deliver and support AutoDiag on the current

and new sets of platforms. Hence the advantage of moving to OpenGL is that Broadcom

has plans to continue their support on OpenGL, OpenGL full of festures, also supports

acceleration of 3D Graphics , and is supported on multiple platforms.In Arris, multiple

projects are integrated with DirectFB on URSR nexus release 15.x and 16.x.

1

Figure 1.1: Auto-Diag Application Block Diagram

1.2 Implementation for migration of platform from

DirectFB to OpenGL

First of all the code is checked out from server with the use of SVN main, it is build

and then flashed on the board to see the Auto-Diag UI. As soon as the UI comes up on

the TV, from there starts the research for finding the options for changing the platform.

Three approaches have been taken in this platform migration. Before this the dependency

of DirectFB has been found in the Auto-Diag Application.

Approaches taken for changing the Auto-Diag platform from DirectFB to OpenGL:

• Integrate OpenGL with Nexus.Build 3D examples and Converted the examples in

2D.

• Explore the Options for any above layer or libraries over OpenGL ES 2.0 for direct

2D rendering.(As there are no direct APIs for rendering 2D graphics in OpenGL

ES 2.0)

• Explore the source code itself for some inbuilt libraries if the 2nd Approach doesn’t

works.

All the three approaches have there advantages and disadvantages. In first approach

2

Figure 1.2: Dependency of DirectFB in Auto-Diag

the 2D drawing is done with the help of Nexus so it was not of much use, because Auto-

Diag App UI needs text, splash-screen and some other 2D renderings, which were not

possible with the help of Nexus APIs. Also in case of DirectFB, BCM is providing glue

layer which is present in the form of ’AF’ and ’IF’, and in this approach, the glue layer

is the egl which is the embedded glue layer, which is not widely used and also it hard

to use. Also before the first approach the V3D core was enabled, as because OpenGL is

using V3D core in background, and a list was prepared to with all the DirectFB APIs

used in the codebase.

In the second approach, more options was searched to replace egl and also as OpenGL

does not have any direct 2D rendering APIs, so options was searched for some open-source

libraries to use OpenGL ES in the backend to do 2D rendering.With options like QT,

Skia, Nanovg etc., GLFW was preferred to use in replacement of egl, because GLFW can

be easily downloaded from the internet, also it is not as difficult to use as egl. GLFW

was used for window creation and context creation. But one more library is needed with

GLFW, because all GLFW can do is window and context creation so one more library is

needed for 2D rendering which can use GLFW and OpenGL in the backend. So Nanovg

is used above GLFW, as Nanovg has direct APIs to render 2D, also the dependencies it

has was GLFW. The dependencies for GLFW is only x-org package.This second approach

was rejected due to the dependencies of GLFW which was the x-org package which was

3

not in the codebase.

Figure 1.3: Text Rendering with BSG

In third approach, framework3d or BSG was used. BSG was there in the codebase it-

self, so there was no need to find dependencies because it was provided by BCM as a part

of package in the trellis folder which contains all the open source soft-wares. BSG was

able to draw all the 2D and 3D drawings. Some of the APIs that were used in DIrectFB

was also mapped in BSG. But the disadvantage with BSG was that it was in C++ and

DirectFB was in C so we need to write wrapper classes to implement the other APIs of

DirectFB. 2D text rendering and one splash screen rendering was showed in demo with

help of BSG.

At last a comparison table was made between the pros and cons of DirectFB, OpenGL,

Play-assure and Skia.

4

Chapter 2

Phase II - Feature Addition in

Android TV

2.1 Motivation

Android is normally known as a portable working framework created by Google. Android,

in any case, began as an autonomous organization in 2003 and was acquired by Google in

2005. The same number of other inserted working frameworks it depends on Linux and

acquires a great deal of the Linux qualities, obviously likewise includes a considerable

measure of gadget and industry particular highlights, and what you see on an Android

gadget is entirely different from what you see on a work area Linux PC.

There are essentially 3 things that describe Android :

• The multi screen or multi gadget bolster, with a steady end-client encounter. More

than 80 percent of cell phones shipped today accompanies Android and more than

half of the tablets.

• The broad access to applications, approximately 3M applications are accessible

through the Google Play Store today.

• Thirdly, Google. Google is available in a large number of the parts of Android.

This opens up bunches of potential outcomes and gives loads of highlights and

administrations with no permit costs, yet in addition makes a few questions and

vulnerabilities.

5

Since the presentation on the Smart Phone showcase in 2008, Android has now as-

sumed control over the scene. It has ventured into tablets, wearable (smart-watches),

autos, Internet of Things and as of late onto the TV screen through Android TV. The

street to enter the TV showcase has been somewhat unpleasant and Google has fizzled

two or three times (for example with Google TV). Be that as it may, Google has pos-

sessed the capacity to adjust to the administrators needs and with Android TV and the

most recent Operator Tier design, Android is certainly making a major passageway as

a working framework and structure on set-top boxes. Late insights demonstrates that

there are in excess of 2B dynamic Android clients in 190 nations. What’s more, on the

TV side, there are around 20 pay TV administrators who as of now has propelled or are

going to dispatch Android based set-top boxes.

From a product point of view, Android begins with AOSP, which is an open source

working framework, much the same as Linux (which AOSP really expands upon). AOSP

isn’t intended for a particular industry or reason, yet shapes the establishment for all

the business specific arrangements. With AOSP, we needn’t bother with any business or

specialized connection to Google, however then again we are ”all alone”. We don’t gain

admittance to Google’s restrictive administrations, the Google TV Services (or GTVS for

short). That implies no YouTube, no Cast usefulness and no Play Store. We additionally

need to connect with outsider application suppliers (like Netflix) our-self and secure our

own particular licenses for all the applications that we need to make accessible to our

end-clients. As a contrasting option to AOSP, we as an administrator, can utilize some

other Linux based TV working framework, similar to the ARRIS KreaTV IPTV software

stage.

2.2 Android TV

Android TV then again is an entire structure for pay TV administrations. It expands

on AOSP, yet includes a system and an arrangement of pre-incorporated TV highlights.

Most noticeable is of-course that we get full access to the GTVS. This incorporates

YouTube and the as of late propelled YouTube for Kids applications. We additionally

get Cast usefulness with an indistinguishable usefulness from the Google Chrome-cast

gadget. Through the Google Play Store we gain admittance to in excess of 3000 applica-

6

tions particularly intended for Android TV and the TV screen, with no compelling reason

to specifically arrange rights with the distinctive application suppliers.

In this way, in synopsis, Android comes in for the most part two flavors, AOSP and

Android TV. Android TV gives us a full TV system which by and large means a shorter

time to advertise. We likewise gain admittance to some fundamental Google includes

that are not accessible in the event that we utilize AOSP. With Android TV, ARRIS as

a provider and we as an administrator need to go along to a few necessities from Google.

We can not utilize an outsider application store for example and we can not keep outsider

applications from appearing in the Play Store. We likewise need to take after the Google

refresh and update plans. However as Google sees the TV, the STB and the administrator

condition as a magnificent stage for connecting with their own particular administrations,

they have found a way to limit this threshold and will no doubt keep on doing so.

With a specific end goal to make it easier for administrators to choose Android TV,

Google has as of late characterized a variation of Android TV called Android TV Opera-

tor Tier. With this variation, we as an administrator gain substantially more prominent

power of the client experience and look and feel. We likewise get the likelihood to get

Revenue Share through Direct Carrier Billing. For ARRIS, who is one of the universes

biggest supplier of Pay TV administrations and hardware, the regular concentration is

Android TV Operator Tier.

2.3 Why Android TV?

2.3.1 Android TV Benefits

Presently how about we plunge into the primary advantages of utilizing Android TV from

ARRIS. In short we will see that Android TV can help putting up down the Time For sale

to the public, increment Flexibility and Control and in addition the pace of Innovation. It

likewise gives best in class security and an unmatched access to TV related applications.

• Android TV accompanies a system planned with the motivation behind abbreviate

Time To Market for different TV administrations.

7

• It offers an unified and bland system, the TV Input Framework (or TIF for short)

for coordination of all TV related administrations.

• At the back end of TIF, ARRIS incorporates DVB tuners, SI parsers and multicast

IPTV arrangements. ARRIS additionally performs combination of CA and DRM

frameworks and also DVR and time move.

• At the opposite end, from the UI side, ARRIS works with Google standard appli-

cations and different accomplices keeping in mind the end goal to have the capacity

to offer an assortment of client experience and look and feel. On account of TIF,

distinctive blends of media circulation and UIs can be immediately consolidated

and conveyed.

• At the opposite end, from the UI side, ARRIS works with Google standard appli-

cations and different accomplices keeping in mind the end goal to have the capacity

to offer an assortment of client experience and look and feel. On account of TIF,

distinctive blends of media circulation and UIs can be immediately consolidated

and conveyed.

• To additionally enhance Time to Market, ARRIS has built up a wide arrangement

of equipment stages that are prepared to be conveyed inside segment lead times.

• On the product side, ARRIS is applying a product offering approach which implies

that we have full reuse of improvement and highlights over all equipment stages

and over every one of our clients, all adding to a Faster Time to Market.

• Development might be one of the primary attributes of Android. For each new

Android discharge new highlights and upgrades are propelled.

• We have as of late observed YouTube for Kids and another inquiry/aide include

being discharged. Moreover effectively existing highlights gets expanded. This is

particularly the case for the cast highlight, which now is bolstered in excess of 1000

Android and iOS advanced mobile phone and tablet applications.

• The same is valid for the Google Play Store, where TV related applications are

constantly included and has now achieved more than 3000. Esteem included ap-

plications are increasingly observed as an approach to keep control over HDMI 1

8

input and keep end clients from moving without end to another, non administrator

controlled, condition.

• Receptiveness does not really mean less secure. Android acquires security compo-

nents from the basic Linux working framework. Notwithstanding this Google has

found a way to expand the security through, for example, application sand-boxing,

marking and secure intercommunication.

• Updates are done in a secure path through Google Over The Air (or GOTA) re-

freshes or through administrator or provider restrictive arrangements with a similar

level of security. Google likewise discharges month to month security updates and

there is an all around characterized process for getting these updates sent in your

system.

ARRIS commitment to Innovation inside Android TV gets through the consistent

guide work, where we expand media bolster through TIF and different administrations

applicable for the TV business.

2.4 Outline Of Thesis

Chapter 3 (Technical Specifications) Technical specifications of servers used and soft wares

used are included in this chapter.

Chapter 4 (Platforms) Various Platforms, remotes used and their specifications are

included in this chapter.

Chapter 5 (Objectives of Feature Addition) The objectives of Feature Addition are

described in this chapter.

Chapter 6 (ArrisCustomizer Application) This chapter describes approach used to

integrate Auto-Pairing Application with DEV Cory branch, its POC with various platforms

and with various remotes, and the porting of Auto-Pairing Application on Android O.

Chapter 7 (Configuration Of GPIOs wrt BLE RCU) This chapter describes how

GPIOs are configured with respect to the BLE RCU behavior.

Chapter 8 (Conclusion And Future Scope) Conclusion of the work is described in this

chapter, and the future scope and maintenance of the work done.

9

Chapter 3

Technical Specifications

3.1 Configurations Of Android Servers

CPU i7, 16 GB RAM, Harddisk > 2TB
Ubuntu LTS 14.04.
Python 2.6 – 2.7 from python.org
GNU Make 3.81 – 3.82 from gnu.org
Git 2.9 or newer from git-scm.com
Ubuntu - OpenJDK 8
Java 1.8 or newer
Access/permission for Android repos in Devhub.

Table 3.1: Android Server Specifications

3.2 Tools

Source Insight
Putty
Notepad++
WinScp
Tera Term
BCompare
BroadBand Studio
Android Studio

3.3 Other Servers, Platforms and Remotes

3.3.1 Sweden Server

One of the Build server in Linkoping which is used is:

10

• benromach.lab.swelin.arrisi.com

3.3.2 Platforms

The platforms used in the Process are:

• Askival

• VIP61n2

• zh4515 - F070(7268), F079(7271), F072(72604)

3.3.3 Remotes

BLE RCUs used in the process are:

• Ruwido

• UEI Remote Control

11

Chapter 4

Platforms

4.1 List of Platforms

The platforms used in the process are:

• Askival

• VIP61n2

• zh4515 - F070(7268),F079(7271),F072(72604)

4.2 Askival

Askival Board has been shown in Figure 4.2.

Following steps should be taken to load the HW platform with Android Image:

• Update BOLT:

– In ./out/target/product/askival/ ofthe workspace, we should find some boot-

loader images called bolt-<X>.bin, where <X> indicates the different hard-

ware/chip variants. Depending on the target variant, we will need to pick the

corresponding image when upgrading bootloader on the platform. Accord-

ing to the current amount of memory, bolt-bb.bin has to be flashed on the

platform.

– Copy the right bootloader image to use on the TFTP server.

12

– In BOLT’s command prompt, issue the following command to flash the boot-

loader image to teh target platform.The following command assumes that the

platform is connected to some network via Ethernet that can communicate

with the TFTP server.

∗ BOLT> ifconfig eth0 -auto

∗ BOLT> flash <tftp-server-ip>:<path-to-bolt-xx.bin> flashxxx

– Reboot the target platform after the bootloader is successfully upgraded.

• Check Box Mode (RTS):

– To check which mode the platform is in, type ”rts” at BOLT’s command

prompt. Here is a sample of what the command returns from BOLT:

∗ BOLT> rts

∗ rts 00 [20160116022007 Box0 box0]

∗ BOX MODE: 1

∗ *** command status = 0

– If for whatever reasons we need to override the default box mode to some

other values, we can use the rts -set = <mode number> command from BOLTs

command prompt.

• Update Android’s partition table in the eMMC:

– Locate the Android BSU file in out/target/product/askival/android bsu.elf

of the workspace and copy it over to TFTP server.

– From BOLT command prompt, issue the following command to load the com-

piled Android BSU file from TFTP server:

∗ BOLT ifconfig eth0 -auto

∗ BOLT> boot -elf -noclose -bsu <tftp-server-ip>:<android bsu.elf>

– Once the BSU is successfully loaded, it should return to the BOLT command

prompt. Note the IP address assigned to the platform.

– Verify that BSU is loaded and that the ’android boot’ command is available

as shown in Figure 4.3:

13

Figure 4.1: BSU loaded on HW platform

– Once it is confirmed that Android BSU is properly loaded, the next step is to

use ”android fastboot” to update the partition table of the platform.

– Put the target platform into fast boot mode:

∗ BOLT> android fastboot -device=emmcflash0

– Use fastboot to flash ”gpt.bin” to target platform. In workspace, run the

following command from Linux build machine:<verbatim> as shown in Figure

4.4. If we have a platform that has never been used for Android before, it

is possible that there isnt a valid GPT pre-loaded to eMMC and we would

see a log message complaining that GPT Header signature is wrong. This is

harmless as long as we only update the ’gpt’ partition as per the instructions:

∗ croot

∗ sudo ./out/host/linux-x86/bin/fastboot flash gpt

./out/target/product/askival/gpt.bin

– Use fastboot to reboot target platform from the host machine: sudo ./out/host/linux-

x86/bin/fastboot reboot

– The partition table should have been updated by now. Run the ”show de-

14

vices” command in BOLT to confirm the newly created partitions to show up

properly.

– Lastly, check if the BOLT environment variables still carry a valid MAC ad-

dress. If we don’t see a MAC address listed from the ”printenv” command in

BOLT, then program the board with the MAC address we recorded in earlier

step or get BOLT to generate one for automatically based on the board se-

rial number as illustrated below: BOLT> macprog <board-type> <serial-num>

<board-rev>

• Flash Android BSU

– With the partition table properly created in eMMC, we can now flash Android

BSU to the ”bsu” partition from BOLT command prompt as follows. This

allows us to boot from the bsu partition instead of loading the Android BSU

from TFTP server everytime after reboot:

∗ BOLT> ifconfig eth0 -auto

∗ BOLT> flash <tftp-server-ip>:<path-to-android bsu.elf> emmcflash0.bsu

∗ BOLT> setenv -p FBDEVICE TYPE ”emmcflash0”

• Hardware configuration partition

– The hwcfg partition in eMMC device is specifically used for storing hardware

specific content such as DRM binaries (e.g. drm.bin and drm hdcp1x.bin)

and Wi-Fi configuration file (e.g. nvm.txt) that are unique to each platform.

This section describes all the steps for preparing and generating the hwcfg.img

image that is unique to HW platform:

∗ Create hwcfg.img

∗ Flash hwcfg.img

• Image Flashing

The following instructions outlines the steps we should use to flash compiled images

to the rest of system partitions:

– Load Android BSU from your previously flashed location:

15

∗ BOLT> boot -elf -noclose -bsu emmcflash0.bsu Once BSU is successfully

loaded, it should return to the BOLT command prompt.

∗ Put target platform in Fastboot mode:

· BOLT> android fastboot -transport=tcp -device=emmcflash0

– From the host machine, flash all the images (boot.img, hwcfg.bin, system.img;

userdata.img, cache.img and recovery.img). (Some images have to be flashed

twice, such as boot.img in boot i and boot e partitions.)

– Once you have flashed all the images, reboot the target from host machine:

∗ sudo ./out/host/linux-x86/bin/fastboot -s tcp:<target ip>:<port> reboot

Booting up your image

• From BOLT command prompt, issue the following command to load Android BSU

that was previously flashed to your system:

– BOLT> boot -elf -noclose -bsu emmcflash0.bsu

Once BSU is successfully loaded, it should return to the BOLT command prompt.

• Boot up Android.

– BOLT> android boot

• To start automatically Android, we can set STARTUP variable as follows:

– BOLT> setenv -p STARTUP=”boot -elf -noclose -bsu emmcflash0.bsu; an-

droid boot”

4.3 VIP61n2

VIP61n2 board has been shown in Figure 4.3. Following steps should be taken to load

the HW platform with Android Image:

• Update BOLT the steps for updating BOLT are same as Updating BOLT in Askival

Board.

• Install and run Android images from eMMC flash

16

Figure 4.2: Askival Board

17

– Build Android from source

∗ Android N: repo init -b DEV barracuda -u

ssh://git@git.arrisi.com/android/arris/manifest

∗ Android O: repo init -b DEV barracuda o -u

ssh://git@git.arrisi.com/android/arris/manifest

– Now lets sync and build it:

∗ repo sync -j8

∗ . build/envsetup.sh lunch vip6102w bell-userdebug

∗ make -j16

Once the branch has been build the images can be found in

out/target/product/vip61n2.

• Install on eMMC flash

– Copy out/target/product/vip61n2/android bsu.elf to TFTP root and run the

following in the BOLT prompt:

∗ BOLT> ifconfig eth0 -auto

∗ BOLT> boot -kelf -noclose -bsu <tftp-server-ip>:android bsu.elf

∗ BOLT> android fastboot -transport=tcp -device=flash0

– Now device is ready to receive fastboot flash commands from computer via

TCP.

– In the out/target/product/vip61n2 directory, type the following command:

∗ ./arris-provision-device -i <stb-ip>

The script above would call fastboot utility with the required args. The actual

fast boot command would look something like this:

∗ fastboot -s tcp:<IP of the STB>

∗ flash gpt gpt.bin

∗ flash boot boot.img

∗ flash bsu android bsu.elf

∗ flash system system.img

18

Figure 4.3: VIP61n2 Board

∗ flash userdata userdata.img

∗ flash cache cache.img

∗ flash hwcfg hwcfg.img

∗ flash recovery recovery.img

4.4 zh4515

zh4515 boards have been shown in Figure 4.4 and Figure 4.5.

The steps for loading the Android Image on these HW platforms are same as Askival

Board. Just at every place where askival is there in the steps, we have to replace it with

zh4515.

Steps to checkout the code and build image for zh4515:

• repo init -b DEV cory -u

ssh://git@git.arrisi.com/android/platform/vendor/arris/manifest

19

Figure 4.4: F070(7268) Board

20

Figure 4.5: F072(72604) Board

21

• repo sync -j8

• . build/envsetup.sh lunch elements-userdebug

• make -j8 — tee build.log

4.4.1 Updating The STB With BCM OTA Update App

From the top of workspace, the OTA package can be built with the following command:

• source ./build/envsetup.sh

• lunch zh4515-userdebug

• make otapackage

After the build completes, an OTA package should be generated at the

out/target/product/zh4515 directory.

There are two options to apply this zip file:

• Option 1:

– Push the zip file to cache partition and trigger the update through console as

follows:

∗ On the host computer:

adb push <my ota package>.zip /cache/update.zip

∗ On the box:

· mkdir -pv /cache/recovery

· echo update package=/cache/update.zip > /cache/recovery/command

· reboot recovery

After the ”reboot recovery” command, system will reboot into recovery

mode, and apply the update.zip file. If cache partition is NOT large

enough to hold the entire OTA package, we can use the sdcard instead of

cache partition in this method.

– Option 2:

22

Figure 4.6: BCM OTA Update App

∗ Use the built-in BcmOtaUpdate app. The app is in

vendor/broadcom/bcm platform/apks/BcmOtaUpdater. If we don’t have

this application installed on your STB, we can build the latter with the

”mm” command in the directory of this application. Once we have checked

the application is available, we need to setup an HTTP Server to host the

update file.

– On the box:

∗ Navigate to ”Settings” -> ”Apps” -> ”System apps” (or ”Downloaded

apps” if installed manually)

∗ Look for ”OtaUpdater” apk, and open it

∗ Input the URL to the http server and update file:

ie : http://<http server address>/<my ota package>.zip

∗ Then click on Download Button

∗ The Apk will download the package, and when finished, it will prompt for

23

installation confirmation.

∗ The STB will reboot in ”recovery” mode to update the different partitions

with the appropriate images.

24

Chapter 5

Objectives Of Feature Addition

5.1 Objectives

• This Feature Addition task has been divided into various sub-tasks. But the main

task, was to add Auto-Paring feature in Android TV.

• ” What is Auto-Pairing ?

Auto-Pairing: Connect and pair the Bluetooth device manually and then just turn

off and on Bluetooth and it will auto connect.

• ” What are the use-cases for this feature in Android TV ?

One of the use-case can be: We can connect our Bluetooth headphones with STB,

and there is no need to pair it every time whenever we want to use headphones.

Use-case decided, keeping business in mind - To connect a Bluetooth remote as

soon as it comes in vicinity of STB.

• Everytime when the STB is powered on/wakes up, it should automatically pair

with the Bluetooth remote, so that the end user dont have to use an IR Remote to

go to Settings and then pair the box with Bluetooth remote.

• Subtasks decided for this end goal:

– Give a demo with Pre-Built images.

– Checkout code and build the code for different-different platforms.

25

– Platforms decided were under the product name zh4515 and the boards are

F070 (7268), F072 (72604), and F079 (7271).

– Checkout Auto-pairing app from DEV barracuda and integrate it with DEV

cory.

– Update the Jiras.

– POC for different remotes on different platforms.

– Update the Jiras for comparison and performance of different remotes on Dif-

ferent platforms.

– Currently the bluetooth remotes available are: Ruwido BLE RCU, UEI Re-

mote Control.

– Push the code for Auto-Pairing App in DEV cory and fix any issues after that.

– For beginning, all this work will be done with Android N, as soon as Android

O is available, try to port that app on Android O.

• After Auto-Pairing is finished, the next task was to configure the GPIOs with

behavior of BLE RCU with the STB.

• After configuration of GPIOs the expected behavior was that until the booting

animation is there the LED should blink and as soon as the android logo comes up

the LED should still be on, now as we start pairing the BLE RCU with the STB,

led should start blinking on the board and as soon as the RCU connects the LED

on the board should be on. If the BLE RCU disconnects from the board the LED

should be off.

• Configuration of GPIOs should be done on two platforms namely - F070(7268) and

F072(72604).

5.1.1 BLE RCU

Two BLE RCUs used for the POC were:

• Ruwido

• UEI Remote Control

26

5.1.1.1 Ruwido

LED behavior:

• Red LED will blink when the remote is in pairing mode.

• Green LED will blink when the remote is in IR mode.

Ruwido can be put in pairing mode by pressing ”play/pause” and ”home” buttons. For

deleting the pairing ”4” and ”6” should be pressed.

5.1.1.2 UEI Remote Control

LED behavior :

• When the remote is in pairing mode Green LED will blink, if the remote is connected

to STB then by pressing any key GREEN LED will be there as an indiaction.

For putting the remote in pairing mode press ”OK” and ”O” buttons and for deleting

the pairing press ”OK” and ”back” buttons.

27

Figure 5.1: Ruwido BLE

28

Figure 5.2: UEI Remote Control

29

Chapter 6

ArrisCustomizer Application

6.1 ArrisCustomizer Application

ArrisCustomizer is an system application which runs in the backend of the system and

provides auto-pairing feature to Android.For cloning the app the following command was

used : git clone -b DEV barracuda ssh://git@git.arrisi.com/android/vendor/arris/hals.

This command will make a folder in the vendor/arris/ location named hals with apks in

it. One of the apks will be ArrisCustomizer.

Before cloning the app, public key should be generated and copied to the devhub

profile account.Initially ArrisCustomizer was containing many java files like for LED, IR

mode, Auto-pairing feature etc. But as the requirement was only to port Auto-Pairing

on DEV cory branch so only some features was cherrypicked from the app. Rest all for

beginning was deleted from the app.

But for first whole app was ported on the platform. For this the starting was done

with testing the bluetooth of the box.Initially bluetooth of zh4515 was not enabled be-

cause it was enabled for BCM bluetooth chip and zh4515 has CSR Bluetooth so bluetooth

was not working for STB, it was enabled by enabling the CSR bluetooth chip of STB.

For changing the platform, we have to change the export NEXUS PLATFORM variable of

zh4515.mk. If the platform is 72604, change it to 9760, if the platform is 7268, change it

to 97268.The changes for enabling CSR bluetooth was also done in zh4515.mk. Now the

30

Figure 6.1: Devhub

Figure 6.2: CSR Bluetooth Enabling

next task was to check whether the bluetooth for STB is discoverable or not. So it was

checked with the help of phone, as before STB was not coming up in the list of bluetooth

devices, now it was showing in the list of bluetooth devices.

Now as the STB is showing in the list of bluetooth devices.The next task was to add

ArrisCustomizer in the code and to add it in zh4515.mk as PRODUCT PACKAGES and then

build again the code and flash the images on the board.

31

Figure 6.3: Device name of STB

Figure 6.4: STB in list of bluetooth devices

But as soon as the image was flashed on the board, the app was getting crashed. So

after this I started taking logs as soon as the box boots up. The box is then connected

through adb and the logs are taken with the help of adb logcat. After taking logs the

first keyword to search was ArrisCustomizer, and then noting down the process number

of this app and then again find the logs with this process number.After going through the

logs it was found that as platform is in search of input device that was device4 and as it

was not able to find it so the app was crashing as soon as the box boots up. This crashing

issue was solved with the help of a hack in which as soon as the code starts to find that

32

Figure 6.5: Addition of ArrisCustomizer in zh4515

particular input device it comes out from the loop, as because this input device was last in

the list so as code was not able to find this it comes out of the loop. Now again after this

fix, the code was again build and then flashed on the board to test if it was working or not.

This time the fix worked, but now we got to know that there was an update to the app

so the app also and the full codebase was synced with git repository, now again the code

was build and flashed on to the board to check if the new version of the app is working

fine, this time as soon as the box boots up the App was crashed, so after taking the logs

with the adb logcat we got to know that as the new version of the app has some extra

features like wifi thread, network examination and led support. Among these features

the led support feature was dependent on the codebase itself and it was talking to the

platform with the help of nexus with setLed API. So setLed API was calling in one of

the java files in the ArrisCustomizer app and from where it was going to jni layer and

from there as it was a native call it was going to nexus to find the defination of setLed

API. As DEV cory nexus layer does not have setLed API so the ArrisCustomizer app was

crashing.[1]

So the solution was this was to keep the app as minimum as possible and to cherrypick

the features we need. So the setLed API was removed from the app, all the java files that

was calling the setLed API was removed, jni layed was removed because at that time led

33

support was not required. Now again the code was build after this fix and reflashed on

box and this time ArrisCustomizer app didn’t crashed.

So now when the ruwido was put in the pairing mode then as soon as the box boots

up ruwido was connected to the STB, this task was done with platform F079(7271).Some

of the errors faced during this:

• Pre-Built images not working with 7268. As here 7268 is Askival board so there is

hardware difference between Askival and F070 (7268).

• Not able to discover STB bluetooth with any other android device. As bluetooth

was not configured for F079 (7271) because 7271 has different bluetooth chipset

from 7268 and 72604, so they fixed the issue by configuring CSR bluetooth chip for

F079 (7271).

• While building sandbox for 7271, facing some unexpected error due to Fedora ver-

sion, later the build was transferred to Ubuntu 14 version and the build worked

well.

• Changing the jack-port numbers, as default jack-port numbers for all were 8076

and 8077, the jack-port numbers were changed by going in jack-settings and then

changing the jack-port numbers[2].

• Bash was not reflecting due to which build was getting disrupted, this was fixed by

giving bash command to the console and exporting the CCACHE DIR and USE CCACHE

to the bashrc.

The next task was to add support for UEI Remote control and to test it with F070 and

F072. After adding the support for it was observed that F070 and F072 cant be paired and

connected with ruwido. Before this one JIRA was created to follow this issue. After the

observation of both the remotes with all the platforms one Comparison table was created.

6.2 Git Commit

After the demo on all the three platforms with both remotes, code was pushed in de-

vhub, but one new issue was found with UEI in both F070and F072. The issue was after

34

Figure 6.6: Support Addition for UEI Remote Control

Figure 6.7: JIRA for adding Auto-Pairing support

Figure 6.8: Comparison of performance between HW platforms

35

connection of UEI in both the platforms, the remote was getting itself disconnected after

some time.The reason behind this was, UEI was going in dead mode after some time

and UEI comes only in pairing mode after you press both keys for putting it in pairing

mode, so auto-pairing app was not able to connect to UEI again, once it is connected

from the STB. Now this was the main function of auto-pairing app, even if the remote is

disconnected the app will again try to connect with the remote if it is pairing mode. For

ruwido, this was not the problem, because ruwido remains in pairing mode all the time,

so even if it is disconnected it can again be connected with the help of auto-pairing app

by itself without any manual settings.but for UEI, as after disconnection it was not going

in pairing mode so auto-pairing app was not able to connect with UEI.

This issue was fixed by removing the part in the ArrisCustomizer which was removing

the dead remotes and again a git commit was done to push the code in devhub.

Figure 6.9: Git Commit

In between all this procedure logs were also added to ArrisCustomizer app to under-

stand the flow of the code. After the App was successfully tested on Android N it was

ported to Android O.In Android O, one issue came in auto-pairing app, that after UEI

is disconnected, another UEI remote was anot able to connect withour reboot,also one

more scenario was there that after UEI was disconnected, ruwido was not able to connect.

Although this issue was not fixed but these scenario was also tested with manual settings

36

and there also happens to be same thing, so this was not the problem with auto-pairing

app.In Android O, there was no problem like one remote is working with a specific board

and the remote was working with other board. In Android O, both the remotes were

working with all the three boards, and also auto-pairing app was working fine.

Figure 6.10: ArrisCustomizer Application

37

Chapter 7

Configuration of GPIOs wrt BLE

RCU

An open point of discussion was left in the end of previos task that although the remote

was connected, there was no sign on UI also there was no signal on STB that the remote

is connected. So this task comes into consideration, starting with the signal on STB with

remote connection, following end goal was designed for this task:

• The LED on STB should blink once remote and STB are in pairing mode.

• The LED should be in ’ON’ state, once remote is connected to STB.

• The LED should be in ’OFF’ state, once remote is disconnected from the STB.

This task started with following one JIRA and porting the setLed API from DEV barracuda

branch to DEV cory branch. For porting the setLed API, setLed API was added to Ar-

risCustomizerReceiver.java, ArrisCustomizerService.java. Two new files were added to

ArrisCustomizer App - ArrisLedType.java and ArrisLedColour.java. The jni layer which

was initially deleted from the code was also restored back.

After figuring the flow of the code given in the JIRA, the next task was to figure out

the pin mapping of the GPIOs in 72604 board. The pin mapping was figured out, and

the changes were made and the final end goal was completed for this task.

38

The GPIO for 72604 which is used in this configuration of GPIOs was GPIO 48. Im-

ages were sent and demo was given and now pin mapping is being done on 7268 platform.

Figure 7.1: Flow diagram for GPIOs configuration

39

Figure 7.2: Changes done in ArrisCustomizer for GPIOs configuration

40

Chapter 8

Conclusion

8.1 Conclusion

The conclusion for this Task is that Auto-Paing app is working fine with both the remotes

and with all the three platforms, also LED indication has also been added to application

so that there is some indication on the platform side that the remote is connected, paired

or disconnected.

Some future work is also needed in the direction that there should be some notification

on the UI that the remotes has been connected or disconnected. Also for now, some of the

remotes are working with some of the platforms only, although ideally both the remotes

should work with all three platforms.

41

Bibliography

[1] “Installing Repo Tool.” https://source.android.com/setup/build/downloading.

[2] “Jack server.” https://android.googlesource.com/platform/prebuilts/sdk/+/

master/tools/README-jack-server.md.

42

https://source.android.com/setup/build/downloading
https://android.googlesource.com/platform/prebuilts/sdk/+/master/tools/README-jack-server.md
https://android.googlesource.com/platform/prebuilts/sdk/+/master/tools/README-jack-server.md

	Certificate
	Statement of Originality
	Acknowledgements
	Abstract
	Abbreviations
	List of Figures
	Phase I - Migration Of Auto-Diag Application
	Overview
	Implementation for migration of platform from DirectFB to OpenGL

	Phase II - Feature Addition in Android TV
	Motivation
	Android TV
	Why Android TV?
	Android TV Benefits

	Outline Of Thesis

	Technical Specifications
	Configurations Of Android Servers
	Tools
	Other Servers, Platforms and Remotes
	Sweden Server
	Platforms
	Remotes

	Platforms
	List of Platforms
	Askival
	VIP61n2
	zh4515
	Updating The STB With BCM OTA Update App

	Objectives Of Feature Addition
	Objectives
	BLE RCU

	ArrisCustomizer Application
	ArrisCustomizer Application
	Git Commit

	Configuration of GPIOs wrt BLE RCU
	Conclusion
	Conclusion

	Bibliography

