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Abstract

In application specific integrated circuit design , verification is a vital part in the

processor development. Verification ensures that the product is designed is the same as

it was intended, by applying the test signals to the design and check whether its matches

with the output or not. Unfortunately, many design projects do not complete thorough

design qualification resulting in products that does not meet customer expectations and

require costly design modifications. More the complex is design , the verification of design

is also more complex and verification time is also more.

Random stimulus generation or Random Instruction Sequence (RIS) is widely rec-

ognized as an effective approach for verifying corner cases that are hard to anticipate.

While most of design bugs are flushed out by the deterministic approach, RIS tools are

highly effective in hitting obscure cases. The work presented here uses the RIS tool to

solve the problem. The tool uses template library that contains test-cases. A test file

contains registers and memory values. Random test generator never generates a test

which is invalid. The work presented here can be subdivided into two parts, one is to

generate template (test-case) for specific conditions like instruction optimization, early

forward and cryptography. These templates are developed to increase the hit-rate of cor-

ner cases to meet required targets, which are required for verifying arm cores. It helps to

improve the randomization of RIS tools. These templates hit different conditions of early

forward with various instruction sets like Arch32 and Arch64, and also with different

subsets of instructions like branch, logical, arithmetic and load-store. The second part

is to analyze the cache and branch behaviour with some random test suits. It is very

tedious and time consuming task to find out behaviour for different types of templates.

So, automation is required. These automation scripts comes together to form a regression

framework, which handles everything from test preparation to test submission to clusters

for execution. Framework is generic which can work with almost every cores developed

by arm.
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AVS Architecture Validation Suites.
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Chapter 1

Introduction

1.1 Motivation

Random instruction stream (RIS) devices are generally utilized for arm processor check

and approval. RIS instruments are principally used to discover bugs in RTL( outlines cre-

ated utilizing equipment depiction dialects) plan. RIS apparatuses create circumstances

which are difficult to ponder. RIS apparatuses are exceptionally helpful for hitting corner

cases that are extremely hard to chronicle utilizing coordinated testing. On the off chance

that bugs incorporates some particular succession of instructions in limit time hole than

RIS devices which produce random arrangement of instructions are exceptionally power-

ful. Macros are valuable for giving controlled randomness to the test which is helpful for

focusing on a particular territory in the processor engineering.

1.2 Objective

RIS is broadly perceived as a successful approach for confirming corner cases that are

difficult to suspect. RIS is likewise very compelling in hitting dark cases. RIS appara-

tuses utilizes random test libraries to cover the greater part of corner cases. Changes in

randomization of RIS devices enable us to builds the hit to rate of various corner cases.

Current RIS instruments are great at focusing on pipelines for uniprocessor center and

memory pecking orders in multiprocessor center. Since multiprocessor frameworks in-

cludes numerous corner instances of coherency, stops and dangers which are not all that

simple to target physically.
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1.3 Problem Statement

As part of CPU top level verification team (CPG), understanding the various aspects

of Processor verification at the top level. This would include understanding the funda-

mentals of modern processor design, specifically understanding ARM architecture based

designs done within ARM. Understand the system verilog based environment used for

ARM CPU verification and related scripts. Develop the Regression Framework Manager

for handling the regressions and smokes done weekly to verify the developing processors.

1.4 Thesis Organization

The report is planned into multiple chapters explaining the arm v8 architecture, random

instruction stream tool and its working. Later the thesis explains the structure of Regres-

sion Framework Manager which exploits the RIS tools, concepts of machine learning to

improve regressions which in turn improves the cluster’s usage, failure managements and

also reduce the users involvement with regression management( So that they can work

on other issues).

CHAPTERS :-

• Engineering Specifications of ARM refrence CPU

• Porting from DVS to RIS

• RIS Tool

• Regression Management Framework

• Optimization of Random Test Constraints Using Machine learning Techniques

• Conclusion and Future Scope
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Chapter 2

Engineering Specifications of ARM

reference CPU

The core on which i am currently working on(Helios) is a power-efficient, mid-range,

throughput computing oriented, simultaneously multithreaded (SMT) core that imple-

ments the Aarch64 execution state of the ARMv8-A architecture. It supports the v8.2

extension, the RAS extension, and the RCpc Load acquire (LDAPR) instructions intro-

duced in the ARMv8.3 extension, and the Dot Product instructions introduced in the

ARMv8.4 extension. it does not implement the AArch32 execution state of the ARMv8-

A architecture. As an SMT core, Helios supports two execution threads on each core.

Each thread is a separate architectural Processing Element (PE), and so has a complete

copy of the architectural state. The core is used with cluster level logic to create a pro-

cessor cluster. It is aimed at the networking data-plane market, ADAS, storage, image

processing and HPC markets among others. While it is not expected to be used in a

typical big.LITTLE configuration as seen in mobile devices, it will be used in hetero-

geneous systems and supports heterogeneous cluster configurations, and so has full ISA

compatibility with Prometheus and Ares (other than AArch32 support), and aligns on

key microarchitectural features visible to software.

2.1 Architecture and Configurable Options

This section details the features supported by Helios and the configurable options.

3



2.1.1 Supported Architectural options

• Implements the ARMv8-A architecture

– AArch64 only no support for AArch32.

– All exception levels, EL0-EL3 are supported

– Advanced SIMD/Floating point support is optional.

– Including optional support for the cryptographic instructions.

– All translation granule sizes (4KB, 16KB, 64KB) are supported.

• Including the ARMv8.1 extensions

– Hardware updates of page table access bits are supported.

– 4 Limited Ordering Regions are supported.

• Including the ARMv8.2 extensions

– The CnP page table bit is supported.

– The 16-bit floating-point instructions are supported.

– Statistical profiling is not supported.

• The VA size is 48-bit per page table.

• The PA size is 44-bit.

• GICv4 is implemented (and is backward-compatible with GICv3).

– Memory-mapped accessed to the GIC registers is not supported.

• ETMv4.2 is implemented.

– Only instruction trace is implemented, data trace is not supported.

– System register access to the ETM is not supported.

4



2.1.2 Configurable Options

The Helios core implements the following build time configuration options:

• Optional Advanced-SIMD Floating-Point extensions (unlike Apollo, these are not

separately licensable).

• Optional and separately licensable cryptographic extensions.

• Configurable L1 instruction cache size 32KB-64KB.

• Configurable L1 data cache size 32KB-64KB

• Optional per-core L2 unified cache with size range: 64KB-256KB

• Optional ECC/parity cache protection on core RAMs.

• Cores can be configured to either interface synchronously to the cluster, or to have

an asynchronous bridge allowing independent clocking.The asynchronous bridges

can be configured to use 2-flop synchronizers or 3-flop synchronizers.

• Optional support for integrating the ELA-500 Embedded Logic Analyser.

2.1.3 Core Configuration

Cores must have identical configurations, with the exception of the L2 cache size. That

is, all cores have AdvancedSIMD/FP, or do not, have cryptography support, or do not,

and all cores have the same size L1 caches as each other.

The core is designed so that it can be implemented once and then instantiated multiple

times. Indeed, any multicore implementation is likely to use a hierarchical implementation

approach.

2.2 Microarchitecture Overview

2.2.1 Multithreading

Helios supports two execution threads on each core. Each thread is a separate architec-

tural Processing Element (PE), and so has a complete copy of the architectural state.

Thus software sees the threads on a Helios core in the same way as multiple cores in a

cluster on existing single-threaded processors, and so existing multicore software should
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be able to run unmodified on Helios. This threading model matches that used on mul-

tithreaded processors from other architectures, and so the existing OS software support

for multithreaded processors should require minimal porting to run on a Helios system

2.2.2 Cluster

Helios is delivered as a processor cluster. The cluster consists of between one and eight

Helios cores, plus cluster level logic (referred to as Corinth) that contains the snoop

control unit (SCU) and L3 cache, as well as clock, reset, power management, and other

miscellaneous features. shows two example clusters that contain Helios.

Figure 2.1: Example clusters, quad-core Helios and octa-core big.LITTLE (2 big and 6
LITTLE cores)

In addition to just Helios cores, if another compatible product such as Prometheus is

also licenced then the two processors can be combined in the same cluster connected to

a single Corinth SCU-L3, giving in-cluster big.LITTLE. When compared to the previous

generation of big.LITTLE processors, this provides:

• Improved performance when sharing data between big and LITTLE cores

• More efficient use of area by sharing a large cache between more cores

• Simplified integration of the big and LITTLE cores together

6



• More opportunities for end product differentiation with different combinations of

cores

The interface between the cores and Corinth supports an asynchronous interface which

allows:

• Simplified implementation and timing closure across the cluster

• Different frequency, power, and area implementation points for different cores. In

particular the big cores can run at a higher maximum frequency than the LITTLE

Helios cores.

• Each core to be run at a different frequency and (optionally) at a different voltage,

giving per-core DVFS capabilities.

• Support for running the SCU-L3 logic at a synchronous 1:1 or integer multiple of

the system interconnect frequency, thus eliminating the need in many systems for

an asynchronous bridge between the cluster and interconnect.

• Simplified system integration for other interfaces such as debug and trace which are

already in the correct clock domain at the output of the cluster.

A key feature to support this change in topology is the introduction of private, per-core

L2 caches. The latency of the L2 cache is important for processor performance, and

placing an asynchronous bridge between L1 and L2 would impact this performance too

much. Additionally, by making the L2 cache private, the latency can be reduced further,

improving performance over previous generations of processors.

2.3 Micro-Architecture

2.3.1 Introduction

A Helios cluster consists of between one and eight cores coherently connected by a com-

bined cluster L3 cache which includes a Snoop Control Unit (SCU). The cluster integrates

CoreSight components such as ETM. Within a Helios core there are nine units:

• IFU (Instruction Fetch Unit)

• DPU (Data Processing Unit)

7



• DCU (Data Cache Unit)

• STB (Store Buffer)

• TLB (Translation Lookaside Buffer)

• BIU (Bus Interface Unit)

• ETM (Embedded Trace Macrocell)

• GIC (Generic Interrupt Controller CPU interface)

• L2 (Level 2 cache controller)

• CBU (CPU Bridge Unit between L2 and L3, and core level power management)

Within the cluster level logic:

• SCU (Snoop Control Unit, including L3 cache controller)

• SBU (SCU Bridge Unit, containing cluster level power management)

Outside the cluster:

• DebugBlock (containing debug-over-powerdown support, and other debug compo-

nents such as CTI)

The constituent units and blocks of a dual-core Helios cluster are shown in Figure. Some

of these blocks are optional, for example the L2 cache.
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Figure 2.2: Helios Cluster (dual-core)
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Figure 2.3: Pipeline Overview
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Chapter 3

Porting from DVS to RIS

The chapter discusses about different types of tests that are used in verification process

and trade-offs between them. This chapter includes advantages of porting of tests from

DVS to RIS.

3.1 Verification

A critical and most important aspect of any VIP (Verification Intellectual Property) is the

test suite. To verify design optimally, selection of appropriate type of tests are important.

The verifier must ensure that tests cover all important areas of design that needs to be

verified.[?]

Tests are fall into mainly three categories:

• Architecture Validation Suites (AVS)

• Device Validation Suites (DVS)

• Random Instruction Stream (RIS)

All Architecture Validation Suites check engineering usefulness, for example, the ISA

(32-bit and 16-bit Thumb), the troubleshoot display, and the exemption design. Gad-

get Validation Suites center around the conduct of particular centers and confirm corner

cases emerging from the specific execution. The scope accomplished by this immediate

grouping is high, however not finish. In this way, we need to take after other approach

to fill scope gaps. Irregular boost age or Random Instruction Sequence (RIS) is broadly

perceived as a powerful approach for checking corner cases that are difficult to envision.
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While the vast majority of configuration bugs are flushed out by the deterministic ap-

proach, RIS are likewise exceedingly viable in hitting dark cases.

3.1.1 Architecture Validation Suites

AVS refers to Architecture Validation Suites. These suites are comprised of tests that

are intended to cover the architecture features for ARM. In general, AVS tests are self-

checking; an AVS test provides both the stimulus and the expected results within the

test itself. Any mismatch between the behaviour of the RTL and the behaviour expected

by the test will produce a failure message.[?]

3.1.2 Device Validation Suites

DVS refers to Device Validation Suites. These suites are comprised of tests that are in-

tended to cover the features which are difficult to cover using RIS either due to limitation

of RIS tool ability to generate the stimulus or due to limitation in checking.[?]

3.2 Porting Tests from DVS to RIS

DVS tests are very simple test, where particular scenario is implemented for a known

feature, whereas RIS tests cover more numbers of scenarios with different configuration.

It is possible because of scenario is generated with random constraints with restricting

parameters to values. There is always trade-off between direct and random test. With

more directed tests, it is possible that we miss out some important permutations whereas

with more constraint random tests, the complexity is greatly increases. Directed tests

are used to verify whether feature have been implemented correctly or not. For each

unique feature there is one or more dedicated directed test. It helps to getting clear

picture of various functionalities. Directed tests are convenient during starting stage

of development, where each feature should be tested separately to verify correctness of

feature. Random test are important to ensure that whether design behaviour is follows

design specification or not.
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Chapter 4

Random Instruction Stream Tool

RIS test generator is for approval of Multi-preparing or Cluster frameworks through RTL

simulations,and focusing on high guideline age rate 1000IPS.

ARMs front line MP RIS check mechanical assembly focusing on memory sub-structure

operations and cross-PE coherency trades in Multi-Processor/Cluster systems.Its a server-

class static RIS generator that finishes high rule age rates (more essential that 100 IPS)

and proposed to allow deduced test groupings to quickly fulfill their pined for point,

while moreover allowing most outrageous re-use of made circumstances for snappier over-

age conclusion. It offers full help of ARMv8-An AArch64 execution state. The AArch32

A32 (ARM) ISA is to some degree maintained, and no assistance is open for AArch32

T32 (Thumb) ISA. Rule groupings can be described to target specific operations and

little scale configuration features. The going with are additional irregular state features

centered by ARM’s new MP RIS Tool:

• Multiprocessor memory consistency.

• Constraints

• Cache and TLB stressing

• Message passing (Exclusive operations, Load Acquire or Store Release, Atomics).

• Load-store dependencies and hazards.

• Stress use of load-store pipeline and evictions.

13



• Used in Server class consistency verification.

• 1-32 processing elements (Cores), multiple cache hierarchies, sharing domains and

interfaces.

• Efficient run time stimulus reaching test intent in minimum iterations.

• Max reuse of generated instances through code re-execution.

4.1 Random Instruction Sequence (RIS) Generation

RIS apparatuses are generally utilized over the business for processor confirmation and

underwriting. These instruments are as frequently as conceivable used to discover con-

figuration bugs in generally reliable however not yet make RTL plan. RIS devices are

exceptionally persuading in making test conditions that are difficult to imagine. In any

case, routinely completely erratic run courses of action are of little test a force for un-

covering corner cases in the plan, particularly if the bug fuses a social event of occasions

occurring in a tight organizing window. Macros can help update the test thought of the

made govern movements by giving controlled affirmation around a particular game-plan

of direction

4.2 Random Vs Deterministic stimulus generation

RIS-GEN is by and large seen as a capable approach for affirming corner cases that are

hard to imagine. We found that, while an expansive bit of design bugs are used out

by the deterministic approach, sporadic rule progressions are furthermore exceedingly

capable in hitting dim cases, much of the time finding bugs that may lay undetected

for an impressive period of time, everything considered, applications. ARM has an in-

side mechanical assembly that can deliver concentrated on self-assertive code groupings

known as RIS. With RIS, we pre-make self-checking tests using an ISS as the reference

diagram. This framework won’t get design botches that are accessible in both the ISS

and the HDL show, yet for all intents and purposes this condition is phenomenal and

these groupings are most likely going to demonstrate diagram bumbles in either exhibit

when enough progressions have been copied. The column method that we have used since

the start of the key ARM CPU setup is deterministic amusement. This is a common and

without a doubt knew framework that offers different purposes of enthusiasm, regardless
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of the way that it’s limited by the measure of effort required to deliver test cases and the

execution of reenactment instruments. At ARM, we make test cases as self-checking de-

veloping specialist progressions. We by then replay these code groupings on an essential

reenactment testbench containing the ARM CPU, a fundamental memory model, and

some direct memory-mapped peripherals. Our tests fall into two classes, AVS (Architec-

ture Validation Suites) and DVS (Device Validation Suites). ARM’s all AVS class tests

check building value, for instance, the rule set outline (32-bit and 16-bit Thumb), the

exceptional case appear, and the investigate outline. Our DVS tests focus on the direct

of specific focuses and check corner cases rising up out of the particular use. Inclination

of this sort of test is that tests are autonomous and adaptable from ISS (Instruction Set

Simulator) conditions to Verilog or VHDL test situate circumstances, or to FPGA models

and at last to silicon. Along these lines, our customers and we can check the utilitarian

proportionality of all these diagram sees. These suites of tests are effectively the ARM

building consistence suites.
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Chapter 5

Regression Management Framework

5.1 Introduction

Regression management framework ensure all possible hardware builds are regressed.It en-

sure all possible configurations and simulation options for a particular hardware build are

regressed. It remove manual errors eg. Not passing correct simulation options/configuration

for the particular hardware build, etc. It is able to run the complete regression with a

single regression command.

5.1.1 Challenges

Figure 5.1: Traditional Flow Issues
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5.1.2 Objectives

Figure 5.2: Objectives

5.2 Why it is needed?

• To ensure all possible hardware builds are regressed.

• To ensure all possible configs and simopts for a particular hardware build are re-

gressed.

• To ensure all TB features are exercised efficiently for a feature.

• To remove manual errors eg. Not passing correct simulation options/configurations

for the particular hardware build, etc.

• To be able to run the complete regression with a single regression command.
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Figure 5.3: Effectively Resolving the Random Space

5.3 Framework Flow

Figure 5.4: Framework flow
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5.3.1 Cluster Usage

Figure 5.5: Cluster usage before the Flow was Adapted

Figure 5.6: Cluster Usage After the Flow was Adapted

5.3.2 Flow In Detail

Usually regressions are very costly to manage as it takes a lot of human overhead and

computation too. Idea behind regression management framework is to eliminate such

factor. Since engineer can spend a lot more time on writing better tests than managing

the regressions.

Regressions management framework takes few parameters(area, feature, cores, tool, project)

as an input. Based on the inputs it will generate the rtls and fetch the respective test

configurations files. After fetching the test configuration files, it sorts out tests based on

builds, then it passes the files to the tools(ris tools) to generate .s files which are further

converted to lower level target form called .elfs which are compatible to be executed on

testbenches. Regression management framework has different modes for test generation:

• Batch mode

• Single mode
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Once the tests are generated they are passed on cluster for execution. Regression man-

agement framework monitors the clusters as well as the framework’s health and calculates

certain parameters from the result of regressions and health reports. Then those parame-

ters are given as a feedback to the framework to train its regression model, which inturns

improves the consequent regressions.

5.3.3 Flow Chart

Figure 5.7: Flow Chart part1
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Figure 5.8: Flow Chart part2

Figure 5.9: Flow Chart part3
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Figure 5.10: Flow Chart part4
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Chapter 6

Optimization of Random Test

Constraints Using Machine Learning

Techniques

6.1 Introduction

• Modern designs are extremely convoluted

– Impossible to come up with every viable combination of stimulus

• Constrained random simulation is a staple of verification

– Generation of random instruction streams controlled through a set of tuned

constraints

– Great at hitting many common and uncommon design corners

• However, random testing is also inefficient and expensive!

• Random distributions hit most common cases most often, spending majority of the

time testing the same things over and over

– Hard to find bugs take a long time to find!

6.2 The Testing Loop

A new type of coverage is a way to extract information about a single test, to provide

feedback on its quality. Testing loop is a way to use this feedback in machine learning
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algorithms by optimization of designed to find hard to find bugs quicker.

6.2.1 Finding hard-to-find bugs

• Non-trivial bugs require a combination of events and state changes to occur in close

proximity

• Most bugs arent particularly deep, it takes a couple of things to line up that we

usually havent thought to line up

• Verification engineers bias stimulus towards areas that are likely to cause bugs

– Great use of experience and knowledge to find most bugs

– However, we cant just keep running the same things

• Need an objective way to evaluate test variety and coverage

– Objective is the key we must eliminate the bias from hand-written functional

coverage to find the hard-to-find corner cases

6.2.2 Exploring the state space

• One objective view of design coverage is its state space

– State space of the design is represented by all of its flops

– The total space size is 2flops, which is not practical to track

• The interesting things happen when state changes

– Flop toggle coverage good start, but too simple, like CCOV

6.2.3 Lining things up

• Approximation for events lining up that takes design state into account: Two flops

toggling in close proximity in time

• Still fairly simple to track (state space is flops**2), but much more interesting than

single flop toggle

• Very objective requires no understanding of the design
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6.3 Machine Learning through a Genetic Algorithm

• A type of reinforced learning algorithm

– Select a random population of tests, and evaluate each

– Create the next generation of tests by:

∗ mutating (slightly adjusting constraints) current tests

∗ mating (take an average of two tests) current tests

– The evaluation score dictates the chance of a test participating in the next

generation

– Toggle pair coverage score used to select tests
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Chapter 7

Conclusion and Future Scope

7.1 Conclusion

Arbitrary guideline grouping apparatuses are generally utilized over the business for pro-

cessor check and approval. RIS instruments are extremely compelling to create test sit-

uations that are difficult to imagine. Change in randomization of RIS apparatus causes

us to builds hit rate of various corner cases. A few formats are composed in such way

that it powers the test system to create settled situations to hit corner cases like direc-

tion improvement, crypto, right on time forward. Further we are planning to integrate

tensorflow in the framework in order to make it intelligent. That will indirectly help the

regressions to get better after every sessions

7.2 Future Scope

• Generate testcases from RIS tool that is targeted to memory area and debug the

failed testcases.

• Analysis of different features of memory management unit. Analysis of Cache hi-

erarchy and interpretation from virtual address to physical address and page table

replacement policy.

• Understanding of micro-architecture and various components of it.

• Develop a framework that will analyse the quality of tests written by verification

enginners.
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7.3 Machine learning work conclusion

• This work is in early stages, and there are many ideas and trials to go through!

• Try other projects and designs

• Use meta-learning to learn the best GA parameters

• Continue to experiment with other ML algortihms
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