
Prediction of the Patch Release Date

Submitted By

Priya Vasu

16MCEC29

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2018

Prediction of the Patch Release Date

Major Project

Submitted in fulfillment of the requirements

for the degree of

Master of Technology in Computer Science & Engineering

Submitted By

Priya Vasu

(16MCEC29)

Guided By

Prof. Monika Shah

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2018

Certificate

This is to certify that the major project entitled ”Prediction of the Patch Release

Date” submitted by Priya Vasu (16MCEC29), towards the partial fulfillment of the

requirements for the award of degree of Master of Technology in Computer Science and

Engineering of Nirma University, Ahmedabad, is the record of work carried out by her

under my supervision and guidance. In my opinion, the submitted work has reached a

level required for being accepted for examination. The results embodied in this major

project, to the best of my knowledge, haven’t been submitted to any other university or

institution for award of any degree or diploma.

Prof. Monika Shah Dr. Priyanka Sharma

Guide & Asst. Professor, Professor,

CSE Department, Coordinator M.Tech - CSE

Institute of Technology, Institute of Technology,

Nirma University, Ahmedabad. Nirma University, Ahmedabad

Dr. Sanjay Garg Dr Alka Mahajan

Professor and Head, Director,

CSE Department, Institute of Technology,

Institute of Technology, Nirma University, Ahmedabad

Nirma University, Ahmedabad.

iii

Statement of Originality
———————————————————————————————————————

I, Priya Vasu, 16MCEC29, give undertaking that the Major Project entitled ”Prediction

of the Patch Release Date” submitted by me, towards the partial fulfillment of the

requirements for the degree of Master of Technology in Computer Science & Engi-

neering of Institute of Technology, Nirma University, Ahmedabad, contains no material

that has been awarded for any degree or diploma in any university or school in any ter-

ritory to the best of my knowledge. It is the original work carried out by me and I give

assurance that no attempt of plagiarism has been made.It contains no material that is

previously published or written, except where reference has been made. I understand

that in the event of any similarity found subsequently with any published work or any

dissertation work elsewhere; it will result in severe disciplinary action.

———————–

Signature of Student

Date:

Place:Ahmedabad

Endorsed by

Prof. Monika Shah

(Signature of Guide)

iv

Acknowledgements

It gives me immense pleasure in expressing thanks and profound gratitude to Prof.

Monika Shah, Asst. Professor, Computer Science & Engineering Department, Institute

of Technology, Nirma University, Ahmedabad for her valuable guidance and continual

encouragement throughout this work. The appreciation and continual support she has

imparted has been a great motivation to me in reaching a higher goal. Her guidance has

triggered and nourished my intellectual maturity that I will benefit from, for a long time

to come.

It gives me an immense pleasure to thank Dr. Sanjay Garg, Hon’ble Head of Com-

puter Engineering Department, Institute of Technology, Nirma University, Ahmedabad

for his kind support and providing basic infrastructure and healthy research environment.

A special thank you is expressed wholeheartedly to Dr. Alka Mahajan, Hon’ble

Director, Institute of Technology, Nirma University, Ahmedabad for the unmentionable

motivation she has extended throughout course of this work.

I would also thank the Institution, all faculty members of Computer Engineering

Department, Nirma University, Ahmedabad for their special attention and suggestions

towards the project work.

- Priya Vasu

16MCEC29

v

Abstract

For a large and advancing Software System, the project group could get numerous

bug reports over a long stretch of time. It is critical to accomplish a quantitative com-

prehension of bug fixing time. The capacity to predict bug fixing time can enable an

project group better estimate programming support endeavors and better manage soft-

ware programming ventures. In addition this time will be used to predict the release date

of an minor version i.e Patch. In industry when a client raises any bug , the undertaking

supervisor needs to give them a date till which the minor variant will be released. The

procedure for estimating the release date of the version needs to go through numerous

stages like bug fixing time, smoke testing time lastly regression testing time. So we ex-

hibit an effort that consequently predicts the fixing time. Our procedure uses existing

issue following frameworks i.e when a new bug report is generated the title and the de-

scription is extracted from the report that the bug with the similar title and description

is searched from the database and here we have used Lucene framework for finding the

bugs that have text similarity with the new bug report and used their time for prediction.

In this approach, we have used Support vector Machine technique to query the database

of resolved issues for textually similar reports. We also increase the reliability of our

predictions by extending the SVM approach to explicitly state when there are no similar

issues. Here this approach helps us for the early estimation of the bug fixing time, bet-

ter assignment of the issues and predicting and scheduling the stable releases. Here we

have assessed our approach utilizing the information from the RPAS (Retail Predictive

Application Server) Project of an Oracle. Given an adequate number of issues reports,

our programmed predictions are near the real exertion.

vi

Abbreviations

RPAS Retail Predective Application Server.

ADF Application Development Framework.

CT ConfigTool.

BR BugReport.

BugDB Bug Database

SVM Support Vector Machine.
——————————————————————————————————————

–

vii

Contents

Certificate iii

Statement of Originality iv

Acknowledgements v

Abstract vi

Abbreviations vii

List of Figures x

1 Introduction 1
1.1 Introduction to area of work . 1
1.2 Present Day Scenario and Proposed Approach 2

2 Literature Survey 4
2.1 Retail Predective Application Server (RPAS) 4
2.2 Introduction to BugDB . 4
2.3 Introduction to smoke testing and Regression Testing 8
2.4 Support Vector Machine . 9

3 A Bug’s Life 11
3.1 Overview . 11

4 Prediction of Patch Release Date 14
4.1 Architecture . 14

4.1.1 CASE 1 . 15
4.1.2 CASE 2 . 17

4.2 Evolution Method . 17
4.2.1 Preprocessing . 17
4.2.2 Tokenization . 19
4.2.3 Stop-word-Removal . 19
4.2.4 Stemming . 19

4.3 TF-IDF Weighting Function . 19
4.4 Results of the Prediction of Patch Release Date 21

4.4.1 Login . 21

viii

5 Conclusion And Future Scope 24
5.1 Summary Of the Work . 24
5.2 Conclusion . 24
5.3 Future Work . 25

Bibliography 26

ix

List of Figures

2.1 BugDB Main Page . 6
2.2 Bug Report . 7
2.3 BugDB Database Schema . 7
2.4 Support Vector . 9

3.1 Life Cycle of Bug . 12

4.1 Architecture . 15
4.2 Flowchart of Prediction of Patch Release Date 16
4.3 Work flow of finding Text Similarity . 18
4.4 Login Page . 21
4.5 Tabs in Main Page . 22
4.6 Import Bug Report . 22
4.7 Output . 23

x

Chapter 1

Introduction

Prediction of when a specific programming development task will be finished has depend-

ably been troublesome. The time it takes to fix an defect is especially challenging to

forecast. Why is that so? As contrast to programming, which is a development proce-

dure, debugging is an inquiry procedure a search which can include the greater part of

the program’s code, its runs, its states, or even its history. Debugging is especially ter-

rible on the grounds that the first suspicions of the program’s creators can’t be trusted.

Once the defect is recognized, fixing it is again a programming action, however the prior

push to seek typically far exceeds the effort taken for correcting the same. However in

industry predicting the release date of the minor version is extremely critical task as it

is the date given to the client as an agreement so the supervisor must be twofold sure

before giving the date of releasing the fix (patch) ,in light of the fact that once the date

is given regardless of what happens the fix must be discharged on that date otherwise

the client’s trust would be lost

1.1 Introduction to area of work

Retail industry is highly dependent on consumers, their demands and their choices. Along

with all the different retail outlets at different locations, from remote small towns to major

cities, consumers all over the world have a huge array of options from where they can buy

all their stuffs. With the advent of online shopping, their options have only increased.

This has increasingly made the competition among various retailers all the more fierce,

as they now need to predict the consumers future demands, all the while, being in touch

with current market trends.

1

This means that retailers all over the world need to gauge the market trends and

plan accordingly. They need to plan for the profits they may generate in the future, by

analyzing the current demands of the consumers, to predict their future demands.This

allows to the retailers to maintain their stock inventory, by changing supplies of different

products, depending upon market trends, season and consumer interest.Optimizing their

supply according to consumer demands further adds to their bottom line. Planning and

optimizing helps the retailers to make profitable decisions based on future insight and al-

lows effective collaboration among their different departments and their suppliers.Having

the right localized products by planning ahead, at different local stores across the world,

helps to sell more of certain products.In order to provide superior customer experience,

they have to utilize all their data and plan accordingly to make price, inventory and

assortment decisions.

1.2 Present Day Scenario and Proposed Approach

The quantity of bug reports in complex programming increments drastically. Since bugs

are still triaged physically, bug triage or task is a work concentrated and tedious un-

dertaking. Without learning about the structure of the product, analyzers frequently

indicate the part of another bug erroneously. In the mean time, it is troublesome for

triage’s to decide the part of the bug just by its portrayal. For example, we uncover

the parts of bugs from the RPAS bug venture, which have been determined erroneously

and adjusted at any rate once, and demonstrated that these bugs must be reassigned

what’s more, the procedure of bug settling must be deferred. The normal time of fixing

erroneously indicated bugs is longer than that of effectively indicated ones. So we have

used the Below approach that works effectively.

Here, we have taken in to consideration the issue of evaluating the time it will take

to solve the bug and fix the issue from a novel point of view. Our approach depends on

utilizing the experience from prior issuesor, more mundane, to extract bugs reports from

databases and to utilize their property to make forecasts for new, comparable issues.

We have used this approach to deal with predicting the fixing effortthat is, the effort

(in person-hours) it takes to settle a specific issue. These assessments are key to extend

directors, since they permit to design the cost and time of future releases.

Whenever the new bug is raised ,the new issue report r is entered into the bug database

2

, and the following approach is used to predict the release date of the patch.

• We look for the existing issue reports which have a same title and depiction that is

most like r.

• We than compute the aggregate time taken in days to fix that comparative de-

fect.(The time can be figured from the reported date and the updated date)

• Finally we include some steady days for smoke testing and regression testing and

an overhead day(in case there happens some unforeseen circumstance) and the final

output will be the release date of the fix (I.e the minor version)..

3

Chapter 2

Literature Survey

2.1 Retail Predective Application Server (RPAS)

The RPAS is a basement for multiple optimization and planning applications. The dif-

ferent solutions which RPAS provides support are Advanced Inventory Planning (AIP),

Merchandise Financial Planning (MFP) and Retail Demand Forecasting (RDF). RPAS

is used to forecast the current market trends with the data already present. In retail

industry, RPAS is utilized to gauge the present market trends and to bring in light the

information definitely known. It is a stage which gives the framework expected to handle

and create data in light of the info given by the retailer. It helps in arranging the stock

by breaking down the client needs and conduct and limit the stock wastage because of

ill-advised arranging.

With a tested adaptability for advancement of arrangements which depend on multidi-

mensional forecasting and planning, RPAS is a configurable platform. Multidimensional

structure of database, on web and batch processing, slice-and-dice UI and calculation en-

gine which are configurable, client’s protection and application capacities like uploading

and exporting, are the capacities given by using RPAS platform, every certainly one of

them on an environment that is fairly adaptable and specialized, that may be conveyed

on range of hardware.

2.2 Introduction to BugDB

A BugDB is the tool used for tracking the bug , issue tracking and management of the

project.In Oracle all the bugs are raised in the BugDB. The report created while raising

4

the bug is called the bug report. BugDB I.e bug database isn’t an open asset - not

even for clients with a help contract. Oracle Support (formally known as Meta link)

gives data on bugs that are related with help tickets opened by contract holders. These

bugs are found in different records all through Oracle Support, however there is no open

database as exists for Open Source ventures like Apache. Just Oracle workers approach

their inner bug database, and I am sure that the database is exclusive and not something

like Bugzilla.

Figure 2.1 shows the main page of BugDB tool.Here on the left side we have all the

functionality like Create an request for the bug i.e raise the bug, Escalate the bugs etc.

To raise an new bug in bugdb we need to select create an new option from the inbuilt

functionality of the bugdb.To create a new bug report the reporter has to fill Following

details in the report which is mandatory as this details stored in the database and can

be used in for future purpose.The details that need to be entered are as follows:

• Bug No : Each bug in the database has an unique bug number.If the user try to

enter duplicate number than the tool will give an error saying ” This bug number

already exists please enter some other unique identifier”.

• BUG Title and Description: The title and Description of the Bug.

• Filed by and Updated By: Name of the bug filer and the one who has updated the

bug.

• Reported Date and the Updated date of the bug.

• Other information like Status,Fixed version,Fix by Tag, steps to reproduce etc.

Figure 2.2 shows the RPAS bug’s issue report in BugDB.At the Top we see the BUG

No and the Title of the Bug. i.e BUG 27569879: Text Access keys do not wok for menus

on chrome and IE11.At the bottom we have the detailed description i.e when the user

press Alt+F the file menu is not selected similarly ctrl+T is not opening the new tab.

Here we also have the filed and the updated date of the bug.This date will later be used to

estimate the time it has taken to fix the bug.Here in this report we also have othet details

like the the type of bug is internal, the status of the bug is 40 , filed by is MONISHR ,

fix by tag is 16.0.3.10 etc.BUGDB also allow us to query the database and to only use

the details that is relevent to us.

5

Figure 2.1: BugDB Main Page

Figure 2.3 shows the database that we have used in the this project.Here we have

fire the detailed query in the bug database.We have not taken all the fields form the bug

report because it is not needed in the project.

The Output of the query is the the following fields :

• Bug No : Unique identifier of the bug

• Subject:The title of the Bug

6

Figure 2.2: Bug Report

Figure 2.3: BugDB Database Schema

• Description:The Detailed description of the bug

• Status: The status of the bug

7

• Sev:Severity of the Bug

• Assignee:The person whom the bug is assigned

• Reported:The Date on which the Bug is Reported

• Closed:The Date on which the Bug is Fixed i.e Closed

2.3 Introduction to smoke testing and Regression

Testing

Smoke testing covers a large portion of the significant elements of the product yet none of

them top to bottom. The after effect of this test is utilized to choose whether to continue

with additionally testing. On the off chance that the smoke test passes, proceed with

additionally testing. On the off chance that it comes up short, stop additionally tests and

request another form with the required fixes. In the event that an application is gravely

broken, definite testing may be an exercise in futility and exertion.

Smoke test helps in uncovering combination and significant issues ahead of schedule

in the cycle. It can be directed on both recently made programming and upgraded

programming. Smoke test is performed physically or with the assistance of mechanization

apparatuses/contents. In the event that manufactures are arranged every now and again,

it is best to mechanize smoke testing.[1]

As and when an application ends up develop, with expansion of more functionality

and so forth, the smoke test should be made more broad. In some cases, all that’s needed

is one inaccurate character in the code to render a whole application futile.

Regression testing is the mode toward testing modification to PC projects to guarantee

that the more constituted computer programming still works with the new alteration.

Regression testing is an ordinary portion of the program betterment procedure and, in

larger administration, is processed by code investigation masters. Test office coders makes

code test ascertain and activities that will test new units of code after they have been

constitute. These scientific research frame what turns into the test pail. Earlier another

adjustment of a product item is discharged, the old scientific research are keep running

against the brand-new form to ensure that all the old power still work. The explanation

they won’t not work is on the evidence that ever-changing or adding new code to a

8

program can without much of a expanse bring blunders into code that isn’t anticipated

to be varied.[2]

2.4 Support Vector Machine

”Support Vector Machine” (SVM) is a regulated machine learning computing which can

be utilized for both command or reverting challenges. In whatsoever suit, it is for the

most portion utilized as a part of characterization issues. In this calculation, we plot

every datum thing as a factor in n-dimensional space (where n is number of highlights

you have) with the approximation of each component being the estimation of a particular

form. At that constituent, we perform arrangement by uncovering the hyper-plane that

detached the two classes exceedingly well as shown in the figure 2.4.[3]

Source:Understanding Support Vector Machine algorithm from examples (along
with code) [4]

Figure 2.4: Support Vector

SVM models have functional form to neural systems and outspread premise capac-

ities, both prominent information mining methods. Be that as it may, neither of these

calculations has the all around established hypothetical way to deal with regularization

that structures the premise of SVM. The nature of speculation and simplicity of preparing

of SVM is a long ways past the limits of these more customary strategies.

SVM can show mind boggling, true issues, for example, content and picture charac-

terization, hand-composing acknowledgment, and bioinformatics and biosequence exam-

ination.

SVM performs well on informational collections that have numerous traits, regardless

9

of whether there are not very many cases on which to prepare the model. There is no

maximum point of confinement on the quantity of characteristics; the main limitations

are those forced by equipment. Conventional neural nets don’t perform well under these

conditions.

10

Chapter 3

A Bug’s Life

3.1 Overview

Most development groups sort out their work around a bug database. Basically, a bug

database goes about as a major list of issuesmonitoring I.e maintaining track of almost

every bugs, highlight demands, furthermore, assignments that must be tended to amid

the undertaking. Bug databases scale up to big number of developers , clients and issues.

An individual single record in a bug database is known as an issue report; it is other-

wise called problem report or ticket. An Bug report gives has an fields such as description

(what causes the issue, and the steps to reproduce the defect), a title (a one-line abstract

of the description), and additionally a priority (what is the priority of the bug form point

of view of the developer), The severity (I.e how severe the bug is.Basically more the sever-

ity , higher the priority and less time to fix the bug).The seriousness can extend from

”upgrade” (i.e. a component request) over ”typical” and ”basic” to ”blocker” (an issue

that stops promote development). These fields are ordinarily given by the first submitter.

At the instant an bug report is submitted, it gets a unique identifier by that it will

be brought up in additional communication.Consider an scenario that someone has just

entered the bug report in to the bug database. Along with handling the issue , the report

goes through an life cycle of an bug 3.1.The situation in the life cycle is dictated by

the condition of the issue report. At first, each and every issue report has a province of

UNCONFIRMED. It is then checked for legitimacy and uniqueness; in the event that it

passes these checks, it turns out to be NEW. Now, the issue report is likewise relegated a

needthe higher the need, the sooner it will be tended to.Commonly, the need mirrors the

11

hazard or potentially harm of the issue/bug. In Bugs report need and state are appeared

in the subtle elements section on the left.[5]

Source: Predicting Bugs Components via Mining Bug Reports [6]

Figure 3.1: Life Cycle of Bug

Priority and evaluation I.e estimation are urgent in planning fixesand in assessing

at the point when a steady state will be come to.In the long run, the issue report is

doled out to a person designerits state is then changed to ASSIGNED. The designer now

chips away at the issue, in some cases coming about in extra remarks, inquiries, and

re-assignments, all put away in the bug database. In the end, the designer comes up

with a determination. This determination can be FIXED, which means that the issue

is comprehended, yet additionally WONTFIX (which means the issue isn’t considered

accordingly) or WORKSFORME (implying that the issue couldn’t be recreated). With

this determination, the state winds up RESOLVED.

As the issue is presently settled, two more advances remain: the analyzers must

affirm the achievement of the fix (bringing about Confirmed state), lastly, the fix must be

conveyed as a fix or another discharge, shutting the issue report (CLOSED) what’s more,

in this manner finishing the issue’s life, unless one day, it gets Revived. The bug database

consequently is at the focal point of the improvement process. Engineers question bug

databases to discover their errands, and also to find out about the undertaking history.

Supervisors utilize bug databases to question, plan, and appoint the venture’s errands.

In the event that the bug database is freely open, clients check it to see the improvement

on the bugs they submitted.

12

As the bug database develops, it turns into an undertaking memory of the gathering-

posting every one of the issues as they happened previously, and how they were tended

to. As we appear in this paper, this memory can be a significant asset when it comes to

survey the undertaking’s future.

13

Chapter 4

Prediction of Patch Release Date

4.1 Architecture

The architecture of the Prediction of Patch Release date is shown in the Fig.??.When an

new issue is raised The Bug Report of the issue is also generated.Now from that newly

generated Report various details like the title, description is extracted.After that the text

mining is done on the title and the database is searched.If the similar title is found in

the database than the description is extracted and now the text mining is done on the

description and now if the description is found to be similar to the report which is there

in the database.Than the Reported date and Closed date is extracted and the total no

of days is calculated from the difference between the above two dates.Now some days is

added and the Final Date is the output that is the date for the release of Patch. Here we

have done the following contribution.

• We use existing bug databases to consequently gauge exertion for new issues.

• We utilize content similitude systems to recognize those issue reports which are

most firmly related.

• Given an adequate number of issue reports to learn from, our expectations are near

the genuine exertion, particularly for issues that are bugs.

14

Figure 4.1: Architecture

Let us understand the flow in more detail with the help of flow diagram shown in

figure 4.2

Whenever a new bug is raised in the BugDB a bug report is created with a unique

id. This bug report has the following details. Bug Number, Bug Title, Severity, Priority,

Description , steps to reproduce the bug, Assignee, Status, Reported Date and Updated

Date.

4.1.1 CASE 1

Now First the title of the bug is extracted from the bug report. Now using SVN algorithm

, it is checked whether the database has the similar type of bug Title. If the similarity

in the title is up to 0.80 score than the description is extracted from the report and the

similarity of the newly raised description is calculated form the one whose title is similar

to the newly raised bug. Now if the similarity of the Description is also matched to the

0.65 percent than the new bug will be consider as similar to the old one. And now the

time taken by the bug which is in database is calculated from the Reported Date and the

Closed Date by using following formula. Total time (in days) = Updated Date Reported

Date. Than extra days for smoke testing,regression testing an overhead is added and the

15

final output is the release date of the patch.

Figure 4.2: Flowchart of Prediction of
Patch Release Date

16

4.1.2 CASE 2

The title from the newly raised bug report is extracted and its similarity is checked from

the database. If no similarity (i.e no same functionality is found in the database) than

the bud will be entered as an new data in the database. If the title is matched to up to

0.80 score but the description is not matched upto 0.65 score than also the bug will not

be consider as an separate new entry.

4.2 Evolution Method

Our approach builds a managed classifier prepared on recorded BRs I.e the historical

record of bug report to predict the segment of bug that has newly came. It comprises of

two process training process and predicting process, as appeared in Fig.3. In the prepa-

ration procedure, we extract the title, description and remarks of a bug as its content.

At that point we change over the content into bag of words also, ascertain their TF-IDF

(Term Frequency-Inverse Document Frequency) weighting esteems, including stop words

separating, word stemming and feature choice (x2 statistics).Last we apply SVM clas-

sifier. In the predicting procedure, we simply separate the synopsis and description of

another bug and shows to it as a feature vector, and afterward we foresee the time take

to settle the comparative bug by the direction Total No of Days=Closed Date Reported

Date.

Figure 4.3 shows the work flow of finding the text similarity of the title and the

description of the new bug with the one that was already there in the database.Once the

text similarity is found than we need to just calculate the time taken to fix the similar

bug and add few days for other testing process and the final output will be the Release

Date of the Patch.Here the output will be in number of days and we have provided the

field of the starting date i.e when we want to start the process of the fixing the bugs.Than

the number of days will be added to the starting date and the final output is the release

date of the patch.[7]

4.2.1 Preprocessing

Despite the fact that a bug report contains a considerable measure of data, just piece of

the report is valuable for the development of classifiers. We extract Bug number, title

, severity,priority and description from each bug report. Keeping in mind the end goal

17

Figure 4.3: Work flow of finding Text Similarity

to describe a bug report, each bug report is changed over into an feature vector. Filter-

ing of stop words, word stemming are likewise acquainted with idealize the component

vector. Stop words are exceptionally regular words that are futile in content order. For

instance, typically articles,conjunction and relational words are stop words. Stop words

are exceptionally normal words that are pointless in classification of text. For instance,

typically articles,conjunction and relational words are stop words.[8]

An example of the effects of Preprocessing is shown in Table 4.1 .

Table 4.1: Effecte of Preprocessing

Preprocessing Actions Result

Original Description Evolution crashes trying to open Calendar

After stop-words removal Evolution crashes open calendar

After stemming Evolut crash open calendar

18

Preprocessing consists of Three steps. Tokenization,Stop-word-removal and Stem-

ming.

4.2.2 Tokenization

The procedure of tokenization comprises of separating a vast textual string into an ar-

rangement of tokens where a solitary token compares to a solitary term. This progression

likewise incorporates sifting through every trivial image like accentuations and commas,

on the grounds that these images don’t add to the grouping assignment. Likewise, all

promoted characters are supplanted by their lower-cased ones.

4.2.3 Stop-word-Removal

Human dialects regularly make utilization of useful terms like conjunctions, verb mod-

ifiers, relational words and other dialect structures to develop sentences. Terms like

”the”, ”in” and ”that” otherwise called stop-words don’t convey much particular data

with regards to a bug report. Furthermore, these footing show up much of the time in

the portrayals of the bug reports and subsequently increment the magnitude of the in-

formation which in twist could diminish the precision of arrangement calculations. This

is some of the time likewise alluded as the scourge of dimensionality. Subsequently, all

prevent words are expelled from the arrangement of tokens in light of a rundown of known

stop-words. [9]

4.2.4 Stemming

The stemming step goes for lessening each term showing up in the depictions into its es-

sential shape. Each single term can be communicated in various structures yet at the same

time convey a similar particular data. For instance, the expressions ”mechanized”, ”mod-

ernize” and ”calculation” all offer the same morphological base:”computer”. A stemming

calculation like the watchman stemmer [11] changes each term to its fundamental frame.

4.3 TF-IDF Weighting Function

Once the preprocessing of Bug Report is completed, each bug report is changed over into

an arrangement of catchphrases. We connected CHI to choose highlights from our BRs

19

corpus. The CHI estimation of between a term t and a class c is characterized to be

x2(t, c) =
N ∗ (AD − CB)2

(A + C) ∗ (B + D) ∗ (A + B) ∗ (C + D)
(4.1)

In the above equation A is the circumstances (the total times of) t c co-happen,

B is the circumstances t happens without c, C is the quantity times c happens without

t, D is the circumstances neither c nor t happens, and N is the aggregate number of

archives. We figure for every classification the x2 measurement between every interesting

term in the preparation corpus and that classification, and after that entirety the class

exceptional scores of each term into one grade.

x2
avg(t) =

m∑
i=1

P (ci)x
2(ti, ci) (4.2)

In the above Equation P (ci) parallels the quantity of reports in class ciisolated by

the aggregate number of reports, m is the aggregate number of classifications. Arranging

terms by the estimation of x2
avg in opposite to the forward sorting order,we select the first

K terms feature.

The capacity of term weight is utilized to assess the weight of term t in report d

after element determination. A number of term weighting capacities and their variations

have been proposed in content characterization. TF-IDF weighting capacity is a factual

measure for assessing how vital a word is to an archive in a corpus. In our approach, we

utilize the best term weighting equation to calculate the weight of one term. The formula

is defined to be

wij =
tfidf(ti, dj)√∑v
k=1[tfidf(tk, dj]2)

(4.3)

In the above Equation wij is the value of the weight of the i term in the database.The

weight of all the data is calculated and the title whose weight is more similar to the one

is consider as the base of the new bug and the details of that bug is used to calculate the

fixing time of the new one.

20

4.4 Results of the Prediction of Patch Release Date

4.4.1 Login

Figure 4.4 shows the Login Page of the Prediction Of Patch Release Date.

Figure 4.4: Login Page

21

The Prediction of an Patch Release Date has an Differennt Tabs in the Main Page as

Shown in Figure 4.5

Figure 4.5: Tabs in Main Page

As the New Bug is entered in to the database the Bug Report is Generated now this

bug report works as the base of the prediction.Figure 4.6 shows that when the import

Dataset Tab is clicked the following page opens up and which allows user to enter the

Bug Report.

Figure 4.6: Import Bug Report

After the Bug Report is Uploaded than the Title is fetched from the bug report and

the similar title is searched in to the database and if it is found than it is checked that

whether the bug has the similarity score upto the threshold for description if same is

found than the Total days to fix the similar bug is calculated and than additional days

is added and the final Output is the No of days required to release the patch.

22

Figure 4.7: Output

23

Chapter 5

Conclusion And Future Scope

5.1 Summary Of the Work

In Prediction of the Patch release date we have utilized the verifiable date i.e the current

bug reports to discover the comparability with the recently raised bug report and if the

likeness is found than the date i.e the time required to complete that comparable bug is

figured and this will function as a base for the forecast of an opportunity to fix this bug.

Than few days is included and the last yield is the Date on which the patch(i.e the minor

version) will be available to release.

5.2 Conclusion

Given an adequate amount of prior issue reports, our programmed exertion predictor

beats the nave approach; specifically, our expectations are very close to bug reports.

As an outcome, it is conceivable to predict the effort and the time at the exact minute

another bug is accounted for. This gives a big relief to the project manager who have a

long line of bug reports holding up to be assessed as well as estimated, and this will be

a great help to the managers to decide the allocation of the resources as well as planning

the upcoming releases. The Performance of this approach is far more better considering

the fact that the effort and time predictor is only relied on the two data points I.e the

title of the bug report and the description of the bug report.

24

5.3 Future Work

The Bug Report contains numerous Field like version data i.e Fix by tag and Fixed

version,Steps to reproduce,Assignee,attachments and numerous more.This will require

some other feature model form text integrating and will help to predict the time and

effort more accurately.In Future we will use this data to track the performance of each of

the employee on the premise add up to number of the bugs fixed by them and the time

taken for the same.By doing this every single level administrator can track the execution

of every worker.

25

Bibliography

[1] “Smoke testing (url: http://softwaretestingfundamentals.com/

smoke-testing/).”

[2] “Regression testing (url: https://smartbear.com/learn/automated-testing/

what-is-regression-testing/).”

[3] “Regression testing (url: https://www.analyticsvidhya.com/blog/2017/09/

understaing-support-vector-machine-example-code/).”

[4] “Oracle retail predictive application server guide (url: http://docs.oracle.com/).”

[5] “J. anvik, l. hiew, and g. c. murphy. coping with an open bug repository. in proc. of

the oopsla workshop on eclipse technology exchange, pages 3539, 2005..”

[6] D. Wang, H. Zhang, R. Liu, M. Lin, and W. Wu, “Predicting bugs’ components via

mining bug reports.,” JSW, vol. 7, no. 5, pp. 1149–1154, 2012.

[7] “G. salton, c. buckley, term-weighting approaches in automatic text retrieval, infor-

mation processing management, 24 (5), pp. 513523..”

[8] “Meera sharma , and madhu kumari,the way ahead for bug-fix time prediction.”

[9] “S. kim and j. e. whitehead, how long did it take to fix bugs?, int. workshop mining

software repositories. new york, ny, usa, acm, pp. 173174, 2006.”

26

http://softwaretestingfundamentals.com/smoke-testing/
http://softwaretestingfundamentals.com/smoke-testing/
https://smartbear.com/learn/automated-testing/what-is-regression-testing/
https://smartbear.com/learn/automated-testing/what-is-regression-testing/
https://www.analyticsvidhya.com/blog/2017/09/understaing-support-vector-machine-example-code/
https://www.analyticsvidhya.com/blog/2017/09/understaing-support-vector-machine-example-code/
http://docs.oracle.com/

	Certificate
	Statement of Originality
	Acknowledgements
	Abstract
	Abbreviations
	List of Figures
	Introduction
	Introduction to area of work
	Present Day Scenario and Proposed Approach

	Literature Survey
	Retail Predective Application Server (RPAS)
	Introduction to BugDB
	Introduction to smoke testing and Regression Testing
	Support Vector Machine

	A Bug's Life
	Overview

	Prediction of Patch Release Date
	Architecture
	CASE 1
	CASE 2

	Evolution Method
	Preprocessing
	Tokenization
	Stop-word-Removal
	Stemming

	TF-IDF Weighting Function
	Results of the Prediction of Patch Release Date
	Login

	Conclusion And Future Scope
	Summary Of the Work
	Conclusion
	Future Work

	Bibliography

