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Abstract

The non-linear mechanical reponse of the carbon nanotube , is said to be as their �buck-

ling � behaviour, It is a major topic in the nanotube research community . Buckling is a

deformation process in which a large strain beyond a threshold causes an abrupt change

in the strain energy vs deformation pro�le . In the present work the single walled carbon

nanotubes with di�erent chirality , diameter and aspect ratio has been compared with

single walled Boron Nitide nanotubes for critical compressive buckling forces analytically

. Which resulted that with increase in nanotube aspect ratio , critical compressive buck-

ling forces were decreasing and with diameter variation critical compressive forces were

increasing . Furthermore , analysis of single walled carbon nanotube and single walled

boron nitride with varying boundary condition , chirality , diameter , length and aspect

ratio has been done for their critical buckling load trend and critical bending buckling

strain, which resulted into decreased buckling load trends and buckling strains with in-

creasing aspect ratios and increasing length . And also cylindrical shell theory FSDST

was examined for buckling strains for armchair and zigzag con�gurations Hence, results

were found to be consistent with simulated ones and suggested that buckling loads were

reduced due to the transformations of NTs from shell buckling behaviour at small aspect

ratios to beam buckling behaviour at larger aspect ratios . And buckling strains are not

only found to be dependent on constrained boundary condition but also on the tube chi-

rality and tube diameter. Therfore, when NTs are chosen as compression memebers their

geometrical , material parameters and boundary conditions greatly a�ects the buckling

forces and buckling strains
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Chapter 1

Introduction

1.1 Nanotubes

Nanotubes are very small in size and are measured in nanoscale . They are found in the

form of Single Walled and Muti Walled Nanotube. Nanotubes belongs to the fullerene

structural family . Both Carbon and Boron Nitride nanotubes are capable of resisting

high strain without breaking.

.

1.1.1 Carbon Nanotubes

Carbon Nanotubes (CNTs) were discovered by lijima[1] . They are allotropes of car-

bon with a cylindrical nanostructure . These cylindrical carbon molecules have di�erent

properties , these �nds applications in electronics, optics and other �elds . They possess

extraordinary material strength and sti�ness, Signi�cantly larger than for any other ma-

terial . Their long and hollow structure with the walls formed by one-atom-thick sheeets

of carbon called graphene .

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: A carbon naotube

1.1.2 Boron Nitride Nanotubes

Boron Nitride Nanotubes (BNNTs) are polymorph of boron nitride . BNNTs were pre-

dicted in way back to 1994[2] and experimentally successful discovered in 1995[3]. On

structural basis they are similar to the carbon nanotube , Here in there takes a substi-

tution of carbon atoms by nitrogen and boron atoms. However, the properties of boron

nitirde nanotubes di�ers .Carbon nanotubes can behave as a metallic or semiconducing

depending on their wrapping direction and radius , A BN nanotube is an electrical insu-

lator with a bandgap of ≈5.5eV . Further, a layered BN structure is very much stable in

their thermal and chemical states than a graphitc carbon tubular structure
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Figure 1.2: A boron nitride nanotube

1.2 Types Of Carbon Nanotubes And Their Related Structures

1. Single Walled Carbon Nanotube

single-walled Nanotubes (SWNTs) have diameter of about 1 nanometer , and upto millions

of times longer . The structure of SWNT can be conceptualized by curling of a one-

atom-thick layer of graphitic sheet called graphene into seamless cylinder . The way the

graphene sheet is curled is represented in the form of indices named (n,m) . Integers n

and m represents the number of unit vectors along the two directions in the Honeycomb

crystal lattice or hexagone graphene . If m=o the nanotubes are called Zigzag Nanotubes

and if n=m, the nanotubes are called Armchair Nanotubes . Otherwise they are called

chiral . The diameter of an ideal nanotube can be calculated from its (n,m) indices as

follows :
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d =
a

π

√
n2 + nm+m2 = 78.3

√
((n+m)2 − nm)pm (1.1)

Where a = 0.246 nm

2. Double-walled Nanotubes(DWNTs) Double walled nanotube forms a special class of

nanotubes because of their morphology . And their properties are similar in comparison

with SWNTs .

3. Multiwalled Nanotubes (MWNTs) Multiwalled nanotubes have multiple layers which

are rolled at spec�c angles and resulting in vaying mechanical properties .

Figure 1.3: Single double and Multi-Walled carbon naotube

1.3 Properties Of Nanotubes

CNNT and BNNT possess extra ordinary mechanical properties with CNT 1TPa And

for BNNT IS 1.24 TPa. Furthermore, the thermal properties of CNT is found to be

around 6000W/mK . The BNNT have good thermal and oxidation stabilites than CNT.

Through experimental investigations it was found that physical property such as conduc-

tance of CNTs are strongly in�uenced by the occurrence of buckling . Thus, the reversible

transformation between the buckled state and normal state of CNTs leads to potential ap-

plications such as nanostrain sensors and actuators , nano�uidic components and carbon

reinforced composites .

1.4 Modeling Approach

The experimental investigations of buckling behaviours of CNTs remains a challenge be-

cause of di�culties encountered at nano-scale and time length scales . The computational

approach is better for CNT by providing simulation results to help the understanding ,

analysis and design of such CNT . There were two theoretical and numerical approaches

to understand the buckling Behavior of CNTs :
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1.4.1 Molecular Dynamics

With the developed accurate force �eld the molecular dynamics nowadyas have been im-

portant and useful for the simulations of CNTs behaviors' at the nano-scale level . In

molecular dynamics approach the atoms are considered as individual particles or points

and the forces acting between each particle and other bonded particle is calculated us-

ing the potential theories . The dynamic equation for each atom is established for the

determination of displacement �elds under given loading conditions . The atomistic in-

teractions in CNT and individual atom is being modeled by employing the force �elds

.

1.4.2 Continuum Mechanics

In this approach the CNTs are primarily modeled as a continuous beams or thin shells

with a �xed e�ective wall thickness , young's modulus and Poisson's ratio . The buckling

behavior of SWCNTs is investigated by using continumm shell model and beam model

. When the aspect ratio between the length , l and diameter d is larger the mechanical

behavior of SWCNTs approaches that of a beam .



Chapter 2

Literature Review

� Helical microtubules of graphitic carbon - Sumio lijima [1]

fabrication of carbon in the molecular form and other structure generated interests for

graphitic carbon sheets . Author inferred here about the carbon structure consists of tubes

which are in the form of needle type . The process arc discharge of evaporation was found

to have similarity with that used for synthesisof fullerenes . The needles were found to

have grown on the cathode terminal . Process employed like electron microsopy resulted

that needle is been made up of graphite shhets which are in coaxial form. Graphite sheets

were found to have range between 2 to 50 . On every needle carbon atom hexagonal helical

pattterns were arranged about the tube axis . In the single needle helical pitch was varying

from one tube to other . This suggested that helical pattern can be very helpful in growth

process . Diameters for needle were ranging from few to few nanometers.

� A review on the application of nonlocal elastic models in modeling of carbon Nan-

otubes and graphenes - B . Arash , Q. Wang[4]

Carbon nanotubes from graphene sheet can be modelled with th employement of nonloca

continuum theory. Non local conyinuum model varies for the materials under the static

and dynamic conditions . For the non local continnum models it is necessary to incorpo-

rate small scale parameter and ut was found to be give better results . Moreover, there

are chances of complicated equations if higher order continuum models are employed . For

CNTs with small aspect ratio elastic shell mdels form the basis of modellin gand static

and dynamic conditions . And for long CNTs non local euler bernoulli beam models were

used.

� Theory of growth and mechanical properties of nanotubes - J.Bernholc , C.Brabec

M. Buongiorno Nardelli, A.Maiti , C.Roland , B I Yakabson [5]

6
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In this pare author reviews about the kinetics behind the dformation of carbon due to

the strain under tensile conditions which are on long time scale for their simulation in

classic molecular dynamiccs on long CNTs. Because of this reason the author carried

out his study on the time scale transitions for long CNTs . Undeer axial strain of 10%

system was found to be evelved at baout 2.5ns , with increased rate of temperature at

5050k/ps after the initial annealing process is done on 2000k . Hence , when there are

large deformations for the mechanical proprties structural changes are rapid and switching

into varied morphological trends.

� Bending and buckling of carbon nanotubes under large strain � M.R.Falvo , G.J

Glary , R.M Taylor , F P Brooks , Jr. S. Washburn & Super�ne [6]

When graphitie sheet is being wrapped results with certain rolling energy and vector

indices results into carbon nanotubes which were found to have excellenet mechanical and

electrical proprties . They were found to have high modulus of elasticity which in�uenced

that they might be sti�er and stronger in comparison with other material. Because

of this they are found to have their wide applications in nanocomposites and sensor

sthata at nanometerd scales . These nanotubes can also have defects which suggest that

individula nanotubes shold be considered with proper measurements so that they results

in nanotubes with good mechanical properties.

� Collapse of Single walled carbon nanotube is diameter dependent � James A . Elliot

Jan K.W Sandler , Alan H Windle , Robert J. Young AND Milo S. P. Sha�er [7]

Author did series of analysis on carbon naotubes under hydrostatic pressure for validating

hypothesis that forms the basi that they undergo variable changes . Here , he reviewd

that analysis which were being carried out and were in accordance with th hypothesis

and was found that chirality was not much signi�cant , diameter was found to be of mucj

importance to get thr pressure values . Diameter was also found to be as limitation if

they were large or depicting the behaviour of SWCNT realated with their stabilities .

Through simulations author predicted critical diameter to bw 4.2 and 6.9nmn at atmo-

spheric pressure.

� E�ects of chirality and boundary conditions on mechanical properties of Single

walled carbon nanotubes- Guoxin Cao and Xi chen [8]

When bending load is applied on CNT it is found to be very sensitive for chirality and

the boundary conditions applied. Deformed pattern was found to be same for nanotube

if it is axially compressed . If the rotating boundary condition is applied the tube gets

easily buckled , but the εcrbending di�erence between armchair ans zizgzag was found to
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be small and it was reported about 15% . But the rotating boundary conditions tends

to reduce the tube due to strain produced in tube . Due to the εcrbending ends of tubes

were stress concentrated and this steadily lleads to the small snap buckling. It was also

rported that εcrcompression was about 20% than the counterparts whhich were not in the

constraned condition But were in bending and with further increase in circular boundary

conditions the snap buckling was shifted in the middle of the nanotube.

� Mechanics of deformation of SWCNT and MWCNT - Antonio pantano , David

M.Parks , Mary C. Boyce [9]

Author reviews about the need of a lattice shifting from a plane hexagon pattern which

is not under any stress condition to form a wrapped carbon tubule which is having some

stress concebtrations due to thir changed curvature of geometry from sheet to tube . For

modelling of nanotubes FE codes were used which accounts fro pre-existing stress stae .

Secondly, the inner wall-wall ineteractions within the nanotube structue . It was found

by analysis & theoretical studies that shear resistance was ver less. So, it can be taken as

zero fro approximating the model.

� Nanomechanics of carbon nanotubes : instabilities byond Linear Response � B.I.Yakobson

, C.J Brabec and B. bernholc [10]

CNTs sustain extreme strain conditions with no brittl fracture and complete deformations

, or any transistions at atomsistic levels. Their non-linear behaviour of continuum means

beyond hook's law can be well approximated by considering the elastic parameters . When

the deformations are very large there is a sudden strain energy release which resulted

into geometry reversibilities and di�erent morpholocial trends . Estimation with e�ective

elastic parameters of the continuum model for buckling can be done by using the equationn

given in paper by author which were in accordanece with simulation results.

� Prediction of Buckling characteristics of Nanotubes � N.Hu , K Nunoya , D.Pan ,

T .Okabe, H.Furukunga [11]

The author briefs about the e�ective approach, i.e. MSMA, for the Buckling analysis of

carbon nanotubes . A beam is employed by the author for modellling C-C covalent bonds

in nanotubules .Furthermore a beam element is used for modeling carbon atoms between

two di�erent walls by vander walls force . When CNT is capped the transitions were

not much to predict buckling behaviours beacuse beam buckling was happening, When

both ends of CNT were pinned the e�ecet was not of much importance . However, when

the CNT was �xed - free and capped it was found that it aided the shell buckling load

about 50%. Capped CNT was found to act as more e�ective way by changing boundary

constraints from freee-�xed to pin-�xed .
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� A structural mechanics approach for the analysis of carbon nanotubes � Chunyu Li

and Tsu -Wei Chou [12]

By employing e�ective MSMA approach for the prediction of buckling of CNT , the C-C

atom acted as load carrying memebers and C atoms as joints for the load carrying meme-

bers . By bridging molecular structural mechanics approach and molecular mechanics

approach CNT can be modelled as a beam or shell . It was gleaned that Young's mod-

ulii is greatly a�ected by doing variations in nantube diameter and heical pattern. With

increase in nanotube diameter it was found that armchair and zizgzag preached young's

modulli to that of graphite.

� Thickness of grapehene and Single Walled Carbon Nanotubes � Y . Huang , J Wu

And K.C Hwang [13]

From the theories of potential which were obtained from interatomic potential can be

used to determine elastic modulus and thickness of CNTs.The thickness of CNT was

found have dependence on the boundary constraints such as (uniaxial tension, equibiaxial

stretching, uniaxial stretching) and the radius of nanotube (R<1nm) . So, from atomistic

simulations thickness can be computed .Hence , the approach used here can be used to

stress free state of CNT and multiwall CNT which were found to be very complex for

the simple constarints such as uniaxial tension due to vander wall's interaction between

multiwalls of CNT .

� Structural �exibility of carbon nanotubes � Sumio lijima , Charles Brabec , Amitesh

maiti and Jerzy Bernholc [14]

Under combined mechanical loading conditions bending and buckling of single and multi

walled carbon nanotubes was reported by author with high resolution images and atom-

istic simulations .With the increase in bending angles single and multiple snap buckles

were found to be reported ,and occuring of kinks explained by atomistic simulations be-

cause they employ real body potenetials . Author results suggests that if bending angle

is increased ,the structures can be fully reversed inspite of the presence of high strains on

the ends of the tube and multiple snap bucklesThis possibilities are due to honeycomb

structure , which was found to be very �exible in nature , and resisted bond stretching

and inversion under the high strained tube regions and vice-versa.

� Buckling of Single-walled carbon nanotubes upon bending: Molecular dynamics

simulation and �nite element method � Guoxin Cao and Xi Chen [15]

Author reports that there is not length dependence for continnum model for their brnding

buckling curvature .Whereas from MD analysis author eports that if aspect ratio is beyond
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or ;ess than the threshold value of aspect rtaio the critical bending buckling curvature was

found to be decreasing . Values of the (l/D) threshold and the critical bending buckling

curvature goes on decreasing with increase in radius for the tubes .After buckling results

from molecular dynamics gave inference that the deformed geometries are directly in

relation with threshold aspect ratio value . If the values of aspect ratio is less tham

threshold the single kink is formed at the middle of the tube if greater than threshold

kink is formed at ends of the nanotubes .

� Continuum shell model for buckling of Single walled carbon nanotube with di�erent

chiral angles - Amar Nath Ray Chowdhury , Chien ming Wang and Soo Jin Adrian

Koh [16]

When the chirality is varied the ritical buckling load/strain value was found to vary from

series of MD simulation was found. . The value for crtitcal buckling load/strain value

fro zigzag was found to be higer than that of armchair with chiral angle of 80 and the

chiral angle θ=200had the lowest value for critical buckling load/strain. . An empirical

relationship for elastic modulii which is dependent on the diameter d and θ is obtained.

By using υ=0.19 and h=0.066nm , the continuum model is able to predict crtitcal buckling

load/strain values for close approximations .

� Bending buckling behavior of Single and multi walled carbon nanotubes � Xiaohu

Yu , Qiang Han , Hao Xin [17]

The di�erent SWCNTs with chirality and length , the critical bending buckling curva-

ture reduces steeply becuase as it is the inverse square of the tubule diameter and here

the chirality of nanotube is found to be insigni�cant . Author gave conclusions that

are in agreement with results of MD and published papers of Cao and Chen , Lijima,

Yakobson.Inter layer vander waals force in MWCNTs greatly a�ects the bending buckling

cuvarure , loads and after buckling results.

� Atomistic simulations of nanotube fracture � T. Belytchko , S.P Xiao , G.C Schatz

And R.S Ruo� [18]

Under molecular mechanaics simulations nanotube fracture was found and it's dependence

was not on seperation energy from body potentials but was dependent on interatomic

potentials When experimentally compared the nanotube fracture of zigzag was found

to be in between 10-15% . Stress fracture range predicted by author was 62-93 GPa

.By computational methods fratcture for armchair and zigzag was found to be higher

. Diiferences in values of smalle scale defecsts for failure stresses are in agreement with

already available esimulation results From atomistic simulations brittle fracture and strain

can be obtained .
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� Modeling of single walled carbon nanotube by molecular structural mechanics ap-

proach - Chunuyu Li , Tsu Wei Chou [19]

This paper gave insight of about the elastic buckling of carbon nanotubes by applying

the Molecular structural mechanics method. The e�ects of nanotube diameter , aspect

ratio and tube chirality on critical force is being found out. Crtical compressive buckling

force is higher than beding bucking force , With successive increase in (L/d) the critical

compressive and bending force decreases . The varitions in trends of critical buckling load

when plotted with nanotube diameter was found to be similsr for SWCNTs and DWCNTs.

� E�ective structural parameters of single walled carbon nanotubes � K.Yazdchi , M.

Salehi and M.M Shokreih [20]

Author reviews that CNT buckling behaviiour can be predicted by continuum model by

employing force potentials , UFF and nolecular mechanics appriach . The CNT can be

thought of it by assumption that it act as a space frame structures when carbon atoms

start acting as a load bearere .On the basis that beams are used and trusseess in the

form of truss. Length , chiraliy and diameter can be found out . With increase of tube

diameter , elastic modulus and shear modulus for armchair CNT and zigzag CNT resulting

in increase of elastic parameters of grahene sheet , hence varying pattern is reversible for

poisson's ratio . and e�ectively wall thickness and Vdw on behavior of SWCNT.

� Deformation Mechanisms of very long Single- walled carbon naotubes subjected to

Compressive loading � Markus J. Buehler , Yong Kong , Huajian Gao [21]

Author describes about that SWNTs when they are compressed axially their resulting

deformations which are di�ferent acoording to the process as the (L/d) ratio is increased

. Outputs, suggest that are three di�erent classes for nanotubes of their resulting de-

formations when they are under compresssed loading condition like nanotubes which are

having small (l/d) ratio . The deformed geometrical patterns is due to their cylindrical

shell tubule .Above the limits for (l/d) for buckling of shell switches into the beam buck-

ling mode . Changing from shell buckling to beam buckling analysis values for critical

(l/d) is (µr≈12.5 ) . And for large (L/d) SWCNTs are found to be deformed into the

helix structures that . when the (l/d) is much more larger then their deformation results

leads them to behave lika a biomolecule. From this it is observed that the behavioral

geometrical mechanical deformations changing from shell -to -beam and beam -to- shell

is due to increasing (l/d) ratios.

� Prediction of sti�ness and strength of single-Walled carbon nanotubes by molecular

Mechanics approach based �nite element approach � Xuekun Sun , Wenming Zhao

[22]
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Author �ndings predict that sti�ened property of CNT is not much depedent on the

dimeter of tube and it's helix structure ,but poisson's ratio is found to be depedent on

nanotube diameter. To model the bondbreaking of C-C modi�ed morse potential function

was used with 7.7eV seperation energy . Fracture strain was found to be around 0.3 with

strength in between the 77-101GPa of CNT . Nanotube helix strucature was observed to

be independent of diameter of nanotube , but was dependent on nanotube diameter.With

successive increement of nanotube diameter cused redution in poisson's ratio which was

in the range of 0.1-0.35.

� Finite element modeling of SWCNT - K.I Tserpes , P. Papanikos [23]

Author proposed . the model developed which was having in�uence on length and chirality

on critical loads .Author assumed that when SWCNTs is loaded they start behaving like

space memebers with carbon atoms bond acted as load bearer . As . FE model of

CNT can be done by nodes placement on the place of carbon atom and c-c bonding by

three-dimensional rod or beam elements . Bridging of molecular mechanics and structural

mechanics was used to obtain young's modulii between beam elements . For evaluation

purpose and performance of CNTs tube wall thickness was found to be of much greater

impotance beacuse it also helped in the determination of the e�ect of nanotube diameter

, wall thickness and chiraliy on young's modulus

� Elastic properties of Boron nitride nanotubes and their comparison with carbon

Nanotubes - Mogurampelly Santosh , Prabal K maiti and A .K Sood [24]

Author summarizes that boron nitride nanotubes (BNNTs) are having boron nitogen atom

in honeycomb strucrure because of larger charges on the boron and the nitrogen atoms .

Therefore, there electrostatic interactions might haelp in determining the e�ective elastic

parameters . In the absence of their unique partial atomic charge informations for the

boron and nitrogen the young's and the shear modulus of BNNT function as of the tube

radius and the number of walls uses molecular mechanics ananlytical calculation. The

strain energy is in direct proportion to 1/R2 for BNNTs and CNTs . calculations shows

that young modulus for BNNT Is 1.04TPa having ±0e and ±0.41e charge on B/N atoms

, 1.14 TPa with ±0.68e on B/N Atoms , 1.22 TPa with ±1.0e charge on B/N atoms and

1.38T Pa with ±1.41e charge On B/N atoms for larger radius of tube and of the CNT is

1.07 TPa. Young's modulus of BNNT is more than that for CNT of ±0.68e , ±1.0e and

±1.41e charge on B/N atom



Chapter 3

Modelling for buckling analysis

On Macrolevel, a nanotube can be prepared by modelling it as a cylinder continuum

having transversely isotropic mechanical proprties . Various , kinds of atomistic �nite

elements such as rods, trusses , beams and springs are used to model C-C covalent bonds

in CNTs [25] . Giannopoulos et.al [26] proposed computaional �nite element model for

simulating the SWCNT for lineared interatomic potential .

On macroscale, a model which considers the continuum modelling approach which in

conjuction takes e�ective young's modulus and e�ective parameters such as poisson's ratio

, wall thickness from a molecular mechanics approach . computationally this approach

is best suited for the modelling of SWCNT with proper outcomes for simulation results

with di�erent chiralities and e�ective parameters .

3.1 Methodology

A nanotube can be modeled by rolling a graphene sheet in two directions . Two chiral

indices (n,m) which de�nes the cylindrical con�guraton as it on a CNT . n is usually greater

than . where (n,n) can be named as armchair and (n,0) as zigzag. The tranlational vector

T , which is paralleled to the main tube axis and is being perpendicular to the chiral

vector Ch. Unit vectors of the grahene sheet are lying along two zig-zag lines , and is

represented as a1and a2. Vector a1and a2have diiferent magitudes and if they are added it

comes out to be equal chiral vector Ch[27]. The formula given below is used to compute

the value of diameter of nanotube dNT for di�erent con�gurations.

dNT =
ac−c

√
3(n2 + nm+m2)

π
(3.1)

13
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Figure 3.1: Figure depicting rolling of Rolling of Hexagone sheet in two translational
directions and di�erent confugurations according to angle variations

[28][29][30]

3.1.1 Euler's beam buckling load

The experimental investigation of buckling behavior remains a challenge because of di�-

culties encountered at the Nano-scale. Therefore, The computational approach is better

by providing simulation results to help the understanding, analysis and design of such

Nanotube. And the theoretical and numerical approaches were molecular dynamics and

continuum mechanics.

From the viewpoint of molecular mechanics, a nanotube can be regarded as a large

molecule consisting of carbon or boron atoms. The atomic nuclei can be regarded as

material points. Their motions are regulated by a force �eld, which is generated by elec-

tron�nucleus interactions and nucleus�nucleus interactions Machida, 1999 [21]. Usually,

the force �eld is expressed in the form of steric potential energy. It depends solely on the

relative positions of the nuclei constituting the molecule.

And by continuum mechanics meaning the Cylindrical shell can be approximated by

considering appropriate wall thickness, elastic modulus and poisson's ratio Dresselhaus et

al., 1995[22], the critical loading is calculated according to the classical Euler formula for

columns Chen and Lui, 1987[23] here, [11]

CriticalCompressiveBucklingForce (nN) (Fcr) =
π2EI

Kl2
(3.2)

For rods/tubes with pinned ends,K =1

For rods/tubes with clamped ends, K=4

For rods/tubes with clamped-free ends,K=2

K = E�ective length of column,

Fcr= Critical compressive force (nN)
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And, moment of inertia is,

MomentOf inertia(I ) =
π(d4o − d4i )

64
(3.3)

Whereas ,do = outer diameter of nanotubes di = inner diameter of nanotubes

Here, Where E is the Young's modulus of the carbon Nanotube in (Tpa), I is the cross-

sectional Inertia about one of .its symmetric axes and l is the nanotube length.

3.2 Nonlocal Timoshenko beam equations and bound-

ary conditions for buckling behavior of tubes

To capture the small scale e�ect in mechanical properties for nanotubes the non local

timoshenko beam thory and equations are used by researchers for the buckling analysis of

nanotubes for their potential applications . For the present work the small scale e�ect us-

ing timoshenko beam load equations for clamped boundary condition for the computation

of critical buckling force has been done numerically .

According to timoshenko beam theory strain-displacement is given by:[31]

εxx = z
dF

dx
, (3.4)

γxz = F +
dw

dx
(3.5)

x is longitudinal , z coordinate from neutral axis of beam ,ω transverse displacment , F

rotation due to bending , εxxnormal strain and γxz transverse shear strain

The virtual strain energy δU is given by

δU =0

ˆ ˆ

A

(τxxδεxx + τxzδγx)dAdx , (3.6)

where, τxx is normal stress ,τxz transverse shear stress , L length of the beam and A area

of cross-section of beam .

on substittution of (3.5) and (3.6) virtual strain energy is expressed as ,

δU =

L̂

(M
dδF

dx
+ Q(δF +

dδw

dx
))dx (3.7)
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M =

ˆ

A

τ xxzdA (3.8)

Q = KS

ˆ

A

τxzdA (3.9)

M and Q are bending moment and shear force where Ksis shear correction factor of the

timoshenko beam theory [11,12] which compensates for the error in asuuming a constant

shear strain (or stress) through the beam thickness.

Assuming that the rod/tube is subjected to an axial compressive load P the virtual

potential energy δV , of the axial load is given by

δV = −
Lˆ

p
dw

dx

dδw

dx
dx (3.10)

from principle of virtual displacements i.e, total virtual work done should vanish if a body

i in equilibrium

, δW =δU + δV (3.11)

Thus from the equations (3.9) and (3.12) , we have

δW = 0 =

Lˆ
(M

dδ

dx
+ Q(δF +

dδw

dx
)− p

dw

dx

dδw

dx
dx (3.12)

By performing integration by parts, we obtain

0 =

Lˆ
[(−dM

dx
+ Q)δF + (−dQ

dx
+ P

d2w

dx2
)δw]dx+ [M ] + [QδF− pdw

dx
)δw ] (3.13)

Since δF and δw are arbitrary in 0<x<L, therefore the obtained Resultant equilibrium

equations are

dM

dx
= Q (3.14)

dQ

dx
= P

d2x

dx
(3.15)

Boundary Condition for beam theory is given by:

Specify
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worQ− P dw
dx

(3.16)

specify

ForM = 0 (3.17)

The simpli�ed non local constitutive eqauio for the local stress and strain in a one-

dimensional case is given by:

τ xx − (e0a2 )
d2σxx

dx 2
= Eεxx (3.18)

Where τxxis the normal stress, εxxthe normal strain,E the young's modulus and e0a the

scale coe�cient that incorporates small scale e�ect . here, a is internal characteristic

length (e.g. lattice parameter,c-c bond length) .The constitutive relation for the shear

stress and strain remains the same as in local beam theory that is,

τxz = Gγxz− (3.19)

Where σxz is the transverse shear shear stress and γxz the transverse shear strain and G

the shear modulus . No nonlocal e�ect is injected into the shear constitutive relation

Multiplying equation (20) by zdAand integrating result over the area yields

M − (e0a)
d2M

dx 2
= EI

dF

dx
) (3.20)

Where I is the second moment of inertia . Also by integrating equation (3.21) over the

area one obtains,

Q = K sGA(F +
dw

dx
) (3.21)

Where Ksis the shear correction factor

on substitution of equation (18) and (19) into (20) we get,

M = EI
dF

dx
+ P(e0a)

d2w

dx 2
(3.22)

When characteristic length is set to zero the equation (23) reduces to that of a local

timoshenko model

From the view of equations (23) and (24) the governing equations for buckling of nonlocal

timoshenko beams are given by

EI
d2ω

dx2
+(e0a)2P

d3ω

dx 3
−K sGA(F+

dw

dx
) = 0 (3.23)
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KsGA(
dô

dx
+
d2w

dx2
)− P

d2w

dx 2
= 0 (3.24)

Based on equations (18) and (19) , the two boundary conditions associated with nonlocal

timoshenko beam theory , at each end of the beam are given by:

w = 0 .,M = EI
dΦ

dx
+ P(e0a2 )

d2w

dx 2
= 0 (3.25)

for a pinned end ,

w = 0 .,F = 0 (3.26)

M = EI
dF

dx
+ P(e0a2 )

d2w

dx 2
= 0 (3.27)

for a clamped end,

Q − P
dw

dx
= KsF +

dδw

dx
− P

dw

dx
= 0 (3.28)

for a free end
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3.2.1 Load calculation

Displacment and rotation equations for elastic buckling is given by:

d4ẃ

dx4
+K

d2 ẃ

dx 2
= 0 (3.29)

d3F

dx3
+K

dF

dx
= 0 (3.30)

ẃ = w/l , (3.31)

x
′
= x/landK =

Pl2/EI

[1 − p
kSGA

− (e0a)2 P
EI

]
(3.32)

General solution is given by [13]:

ẃ = C1Sin
√
Kx′ + C2Cos

√
Kx′ + C3x

′
+ C4 (3.33)

F=− C1

√
K(1 − P

kSGA)
Cos
√
Kx′+C 2

√
K (1 − P

kSGA)
Sin

√
Kx ′ − C3 (3.34)

HereC1, C2, C3, C4, are unknown constants. Fom eigen value problem we got the equation

for crirtical load

And critical load equations for di�erent loading condition is given as below:

for pinned end ,

PE = π2EI/l2 (3.35)

for clamped end

PE = 4π2EI/l2 (3.36)

for free end

PE = 4π2EI/(4l2) (3.37)
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3.3 Shell theory

The Euler buckling load equations and non-local timoshenko beam equtaions mentioned

above were used for the computation of compressive buckling forces for di�erent con�g-

urations and boundary conditions which could be helpful in computation of mechanical

properties of nanotubes . As like this the First order deformation shell theory(FSDST)

cylindrical shell theory can be used for the predictions of critical buckling strains . FSD-

STs governing equtaions are being mentioned overhere for single-walled carbon nanotube

(CNTs).where,μ is poisson's ratio, h is the shell thickness and R shell radius , E is the

young's modulus i.e5.5Tpa, I is the second moment of inertia ; is the length of CNT ,

Ksis the timoshenko shear correction factor=9/10 for a circular tubr , G is the shear

modulus=450Gpa , A is the cross-sectional area of CNT and buckling factor K is 4π2 for

clamped ends .

Consider a cylindrical shell having cylindrical coordinates as (x, θ, r) as shown in �g.The

equilibrium equations of the cylindrical shell under the action of axial compressive load

is given by :

∂Nxx

∂x
+

1

R

∂Nxθ

∂θ
− s1

2R

∂Mxθ

∂θ
= 0 (3.38)

∂Nxθ

∂x
+

1

R

∂N θθ

∂θ
+

s1
2R

∂Mxθ

∂θ
+ s2

Qθ

R
= 0 (3.39)

∂Qx

∂x
+

1

R

∂Qθ

∂θ
− N θθ

R
−N ∂2c

∂x2
= 0 (3.40)

∂Mxx

∂x
+

1

R

∂M
xθ

∂θ
−Qx = 0 (3.41)

∂Mxx

∂x
+

1

R

∂M θθ

∂θ
−Qθ = 0 (3.42)
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Figure 3.2: Single walled nanotube modeled as a beam or cylindrical shell

Here, Nxx, N θθ, Nxθare in-plane forces:MxxandMxθ are moments: QxandQθare trans-

verse shear forces:w is radial displacement and R is radius of cylindrical shell . And

s1ands2 are tracer coe�cients which are used for implementing the di�erent shell theories

,

� s1 = 1and s2 = 1for FSDST

The assumption of shell material is to be isotropic and obeying Hook's law and to the

assumptions made the stress-resulatants-displacements and strain-displacements relations

are:

For FSDST ,

Nxx = C[
∂u

∂x
+
µ

R
(
∂v

∂θ
+ w)] = 0 (3.43)

N θθ = C[µ
∂u

∂x
+

1

R
(
∂v

∂θ
+ w)] = 0 (3.44)

Nxθ =
C(1− µ)

2
+ (

∂v

∂x
+

1

R

∂u

∂θ
) = 0 (3.45)

Mxx = D(
∂βx

∂x
+
µ

R

∂βθ
∂θ

) = 0 (3.46)

M θθ = D(µ
∂βx

∂x
+

1

R

∂βθ
∂θ

) = 0 (3.47)
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Mxθ =
D(1− µ)

2
[
∂βθ
∂x

+
1

R

∂βx
∂θ

+
1

2R
(
∂v

∂x
− 1

R

∂u

∂θ
)] = 0 (3.48)

Qx = k
S
Gh(

∂w

∂x
+ βx) (3.49)

Qθ = k
S
Gh(

1

R

∂w

∂θ
− ν

R
+ βθ) (3.50)

where Ks is shear correction factor (taken as 5/6):(C=Eh/(1-µ2) and D=Eh3/[12(1-µ2)] :

E is young's modulus and G is shear modulus : μ is poisson's ratio : {µ, ν, w}are
displacements in (x, θ, r) directions,and {βxand βθ}are rotations about x and θ axes.

In case of donnell thin shell theory (DST) and SST , the constitutive shear forces are zero,

because thin shell theories neglect the e�ect of transverse shear deformation. Therefore,

the shear forces in DST and SST are calculated from the equilibrium equations (3.45)

and (3.46) . The stress-resultant-dispalcement are, therefore , only de�ned for following

constitutive stress-resultants:

Nxx = C[
∂u

∂x
+
µ

R
(
∂v

∂θ
+ w)] = 0 (3.51)

N θθ = C[µ
∂u

∂x
+

1

R
(
∂v

∂θ
+ w)] = 0 (3.52)

Nxθ =
C(1− µ)

2
+ (

∂v

∂x
+

1

R

∂u

∂θ
) = 0 (3.53)

Mxx = −D[
∂2w

∂x2
+

µ

R2

∂

∂θ
(
∂w

∂θ
− s2ν)] (3.54)

Mxx = −D[
∂2w

∂x2
+

1

R2

∂

∂θ
(
∂

∂θ
− s2ν)] (3.55)

Mxθ = −D(1− µ)

2R
[
∂2w

∂x∂θ
+ s2(

∂2w

∂x∂θ
− 3

2

∂v

∂x
+

1

2R

∂u

∂θ
)] = 0 (3.56)

On substitution the stress-resultants relation into equilibrium equation (3.42) and (3.46)

the governing equations for buckling of FSDST obtained are :

C
∂

∂x
[
∂u

∂x
+
µ

R
(
∂u

∂θ
+w)]+

C(1− µ)

2R
∂

∂θ
(
∂v

∂x
+

1

R

∂u

∂θ
)−D(1− µ)

4R2

∂

∂θ
[
∂βθ
∂x

+
1

R

∂βx
∂θ

+
1

2R
(
∂v

∂x
− 1

R

∂u

∂θ
)] = 0

(3.57)
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C(1− µ)

2
∂

∂x
(
∂v

∂x
+

1

R

∂u

∂θ
)+
D(1− µ)

4R

∂

∂x
[
∂βθ
∂x

+
1

R

∂βx
∂θ

+
1

2R
(
∂v

∂x
− 1

R

∂u

∂θ
]
C

R

∂

∂θ
[(µ

∂u

∂x
+

1

R
(
∂v

∂θ
+w)]

(3.58)

+
k
S
Gh

R
(

1

R

∂w

∂θ
− ν

R
+ βθ) = 0 (3.59)

k
S
Gh

∂

∂x
(
∂w

∂x
+βx)+

k
S
Gh

R

∂

∂θ
(

1

R

∂w

∂θ
− ν

R
+βθ)

C

R
[(µ

∂u

∂x
+

1

R
(
∂v

∂θ
+ω)]−N ∂2w

∂x2
= 0 (3.60)

D
∂

∂x
(
∂βx
∂x

+
µ

R

∂βθ
∂θ

)+
D(1− µ)

2R

∂

∂θ
[
∂βθ
∂x

+
1

R

∂βx
∂θ

+
1

2R
(
∂v

∂x
− 1

R

∂u

∂θ
)]−k

S
Gh(

∂w

∂x
+βx) = 0

(3.61)

D(1− µ)

2

∂

∂x
[
∂βθ
∂x

+
1

R

∂βx
∂θ

+
1

2R
(
∂v

∂x
− 1

R

∂u

∂θ
)]+

D

R

∂

∂θ
(µ
∂βx
∂x

+
1

R

∂βθ
∂θ

)−kSGh
R

(
1

R

w

∂θ
− ν
R

+βθ) = 0

(3.62)

The equations mentioned above when solved with appropriate boundary condition give

buckling solution ( lowest positive eigen value).However , it is very di�cult to obtain the

exact buckling solution



Chapter 4

Results And Discussion

4.1 Analytical Results

� The continuum model for Carbon nanotube was approximated by considering thick-

ness of 0.066nm [19][19]

� And, for boron nitride nanotube was approximated by considering thickness of

0.065nm [25]

� And, Elastic modulus for BNNT was found to be as 1.24TPa [32],[33]. and for

CNT 1TPa. The analytical results were being explained over here for the nanotube

under compression and critical compressive force were evaluated from equation as

mentioned. The e�ective length of the nanotube was taken as 4 when ends are

clamped.

� Tha nanotube diameters of zigzag CNT and BNNT con�guration were found to be

0.392nm and 0.405nm and for armchair CNT and BNNT were 0.4071nm BNNT

0.4211nm.

� And, from atomistic point of view Bond lengths were reported to be 0.1421nm for

CNT and 0.147nm of BNNT.

In present work analytical results for the comparison of armchair and zigzag CNTs with

that of armchair and zigzag BNNTs for the di�erent parameter such as aspect ratio ,

nanotube diameter with critical compressive buckling force has been done for nanotube

under axial compression .

24
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4.1.1 Nanotube under compression

Classical Euler formula of cantilever column for critical load :[19]

Critical CompressiveBucklingForce (nN) Fcr =
π2EI

4L2
(4.1)

Moment of inertia :[11]

Moment Of inertia =
π(d4o − d4i )

64
(4.2)

The calculated critical compressive forces from euler formula as mentioned above from

equation 3.64 for increasing aspect ratio and di�erent length are summarised as below in

Table 4.1 for armchair (3,3) CNT and in Table4.2 for armchair BNNT

Srno. A.R l(nm) F cr(nN )

1 2 0.8142 3.965778379
2 4 1.6284 0.991444595
3 6 2.4426 0.440642042
4 8 3.2568 0.247861149
5 10 4.071 0.158631135

Table 4.1: Aspect ratios and critical buckling forces for Armchair (3,3) CNT

Srno. A.R l(nm) F cr(nN )

1 2 0.8422 5.129718971
2 4 1.6844 1.282429743
3 6 2.5266 0.569968775
4 8 3.3688 0.320607436
5 10 4.211 0.205188759

Table 4.2: Aspect ratios and critical buckling forces for Armchair(3,3) BNNT
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Figure 4.1: Comparison of armchair (3, 3) CNT and BNNT for the e�ect of nanotube
aspect ratio on critical compressive buckling force

It was observed from �gure 4.1 that with increase of nanotube aspect ratio buckling force

decreases. The buckling force for Armchair CNT decreases more steeply than Armchair

of BNNT.

Also for zigzag (5,0) CNT andrzigzag(5,0) BNNT calculated critical compressive forces

from euler formula as mentioned above from equation 3.64 for increasing aspect ratio and

di�erent length are summarised as below in Table 4.3 and for latter in Table4.4 .

Srno. A.R l(nm) F cr(nN )

1 2 0.7834 3.7423648
2 4 1.5668 0.9355912
3 6 2.3502 0.4158183
4 8 3.1336 0.2338978
5 10 3.917 0.1496946

Table 4.3: Aspect ratios and critical buckling forces for Zigzag(5,0) CNT

Srno. A.R l(nm) F cr(nN )

1 2 0.8104 4.845624
2 4 1.6208 1.211406
3 6 2.4312 0.538403
4 8 3.2416 0.302851
5 10 4.052 0.193825

Table 4.4: Aspect ratios and critical buckling forces for Zigzag(5,0) BNNT
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Figure 4.2: Comparison of zigzag (5, 0) CNT and BNNT for the e�ect of nanotube aspect
ratio on critical compressive buckling force

From �gure4.2 the comparison for very small length of aspect ratio1-2 has been done and

it was observed that critical buckling force decreases more steeply for zigzag CNT than

BNNT.

do(nm) MOI A.R F cr(nN )

0.268 1.00E-39 4 0.966
0.46 4.00E-39 4 1.714
0.668 1.03E-38 4 2.486
0.868 2.12E-38 4 3.268
0.107 3.79E-38 4 4.055

Table 4.5: E�ect of variation in diameter on critical compressive force for armchair CNT

do(nm) MOI A.R F cr(nN )

0.270 9.95E-40 4 1.188279
0.470 3.96E-39 4 2.10366
0.670 1.02E-38 4 3.047329
0.870 2.10E-38 4 4.002973
0.107 3.74E-38 4 4.964793

Table 4.6: E�ect of variation in diameter on critical compressive force for armchair BNNT
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The nanotube diameters for armchair BNNT and armchair CNT are mentioned above in

the table 4.5 and table 4.6 for their increasing e�ects on nanotubes critical compressive

forces.

Figure 4.3: Comparison of armchair (3, 3) CNT and BNNT for the e�ect of nanotube
diameter on critical compressive buckling force

Figure 4.3 represents the buckling force results of nanotubes when nanotube diameter is

varying. Starting From the small range of 0.4-0.6, the critical buckling force was found

to have increasing trend. CNTs were found to have higher values than BNNTs.

As From the above lower critical buckling foces it is infered that nanotubes undergo two

buckling modes . The �rst one is shell buckling mode in which the critical buckling force

are found to be higher for smaller length-to-diameter ratio of nanotubes . Further as we go

on increasing nanotube aspect ratio the compressive buckling force are found to have lower

values and infers that they start exhibiting euler beam buckling mode. And increasing

nanotube diameter shows it's linear dependency on critical compressive buckling force.
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4.2 Non-local timoshenko beam equations

The small scale e�ect for the mentioned boundary condition results (analytically) have

been computed for the present work . For the e�ect of small scale

Buckling load relationship between the nonlocal timoshenko tubes and local euler tubes:

P

EI(1− P
KsGA

)− (e0a)2P
=

P

EI
(4.3)

P =
PE

1 + P
KsGA

+ (e0a)2 P
EI

(4.4)

Here, PEis buckling of local euler rod/tube,i.e PE = π2EI/L2for pinned ended rod/tube ,

PE = 4π2EI/L2for a clamped ended tube and PE = 4π2EI/(4L2)for a clamped-free tube.

The buckling load can be dteremined from solving the equation (76) for lowest posistive

root The expression (23) for the clamped pinned ended rod may be approximated as:

P =
PE

1 + 1.1 P
KsGA

+ (e0a)2 P
EI

(4.5)

where ,

e0a =

√
EI

KsGA‘
(4.6)

From the mentioned parameters reults are generated i.e, E=1TPa , G=E/[2(1+μ)], μ=0.19

, rod diameter d = 1nm and I = πd4/64

Local buckling eular load(Pe) Non-local timoshenko(4.67) Local timoshenko(4.68) ( l
d
)

0.2411 9.5152 9.5434 10
1.6626 6.7221 6.7543 12
0.1223 4.9621 4.9648 14
0.0936 3.8143 3.8176 16
0.0739 3.0243 3.0267 18
0.0599 2.4221 2.4511 20

Table 4.7: Local buckling eular load(Pe) , Non-local timoshenko and Local timo-
shenkobuckling force Pcr(nN) for the clamped-pinned rod for e0a = 0
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Local buckling eular load(Pe) Non-local timoshenko(4.67) Local timoshenko(4.68) ( l
d
)

0.2411 9.1442 9.1432 10
1.6626 6.4714 6.4933 12
0.1223 4.8416 4.8521 14
0.0936 3.7714 3.7817 16
0.0739 2.9502 2.9415 18
0.0599 2.4752 2.4813 20

Table 4.8: Local buckling eular load(Pe) , Non-local timoshenko and Local timo-
shenkobuckling forces Pcr(nN) for the clamped-pinned rod for e0a = 0.5

Local buckling eular load(Pe) Non-local timoshenko(4.67) Local timoshenko(4.68) ( l
d
)

0.2411 5.2143 5.2332 10
1.6626 4.4201 4.4551 12
0.1223 3.5234 3.5321 14
0.0936 3.2212 3.6721 16
0.0739 2.4201 2.4854 18
0.0599 2.0741 2.0984 20

Table 4.9: Local buckling eular load(Pe) , Non-local timoshenko and Local timoshenko
buckling forces Pcr(nN) for the clamped-pinned rod for e0a = 2

Figure 4.4: E�ect of increasing nanotube aspect ratio on critical buckling forces Pcr(nN)
for the clamped-pinned rod based on nonlocal Timoshenko beam model
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Figure 4.5: E�ect of increasing nanotube aspect ratio on critical buckling forces Pcr(nN)
for the clamped-pinned rod based on on local Timoshenko beam model

It was observed from the �gure4.4 and �gure4.5, and also by comparing Non-local timo-

shenko(4.67 ) and Local timoshenko(4.68) equations that as the scale coe�cient increases

critical buckling forces were found to be decreasing .
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4.3 Nanaotubes with di�erent boundary conditions

The e�ects of naotube diameter ,chirality and boundary condition on buckling force are

investigated of nanotubes to study their buckling behaviour in this section. The in�uence

of nanotube aspect ratio and nanotube length are also included to check their dependency

on critical buckling strain which are found to be crucial for nanotubes at small or large

deformations during compression. However, the continuum model for the simulations were

developed in modelling software and eigen buckling analysis was done in ANSYS17.1 for

the presented work . The continuum model for the nanotube was developed using e�ective

shell thicknesses , elastic modulus for repective con�gurations mentioned and poisson's

ratio.

Firstly the carbon nanotube has been chosen with e�ective shell thickness value as,(h)of

0.066nm , young's modulus,(E) taken as 1.06Tpa and poisson's ratio as 0.19.[11][19]

[11][19]And the diameters computed from the equation (1) which accounts for their chi-

rality.

4.3.1 CNT

The critical buckling forces and simulated values of stresses and strains for con�gurations

(8,8),(10,10),(12,12),(15,15) with respective CNT diameters 1.086nm , 1.36nm 1.63 and

2.04nm for di�erent lengths 15nm,20nm ,25nm, 30nm of clamped ends are summarised in

table 4.10

Chirality d(nm) length(l) nm Critical force(nN) Stress (σv) Strain (ε)

(8,8) 1.086 15 0.321 57.141 0.054
20 0.115 28.485 0.026
25 0.180 179.593 0.017
30 0.080 12.953 0.012

(10,10) 1.36 15 0.649 403.184 0.381
20 0.365 377.345 0.002
25 0.234 23.535 0.023
30 0.162 20.394 0.019

(12,12) 1.63 15 1.150 404.523 0.382
20 0.646 278.541 0.263
25 0.413 265.05 0.251
30 0.287 18.875 0.017

(15,15) 2.04 15 2.300 264.66 0.250
20 1.291 190.423 0.180
25 0.828 179.15 0.169
30 0.575 164.85 0.156

Table 4.10: Geometrical parameters and buckling forces for clamped CNTs



CHAPTER 4. RESULTS AND DISCUSSION 33

Figure 4.6: E�ect of nanotube aspect ratio on critical compressive buckling force and
critical buckling strain for clamped ends (armchair CNTs)

Figure 4.7: Deformed con�gurations of (8,8) CNT with deformations 1.23nm, 1.06nm ,
1.02nm , 1.0nm after eigen buckling of lengths l = 15, 20, 25, 30nm of clamped-ends

Here, critical buckling forces and simulated values of stresses and strains for con�gurations

(8,8),(10,10),(12,12),(15,15) with respective CNT diameters 1.086nm , 1.36nm 1.63 and

2.04nm for di�erent lengths 15nm,20nm ,25nm, 30nm of pinned ends are summarised in

table 4.11
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Chirality d(nm) length(l) nm Critical force(nN) Stress (σv) Strain (ε)

(8,8) 1.086 15 1.28 150.00 0.164
20 0.0721 981.04 0.103
25 0.462 841.04 0.926
30 0.321 371.01 0.406

(10,10) 1.36 15 2.60 329.58 0.343
20 1.16 174.96 0.187
25 0.935 115.22 0.123
30 0.649 71.065 0.078

(12,12) 1.63 15 4.59 845.00 0.815
20 2.58 229.00 0.242
25 1.65 135.00 0.143
30 1.15 94.181 0.100

(15,15) 2.04 15 9.20 686.00 0.678
20 5.17 592.00 0.567
25 3.31 501.00 0.481
30 2.30 113.00 0.121

Table 4.11: Geometrical parameters and buckling forces for Pinned CNTs

Figure 4.8: E�ect of nanotube aspect ratio on critical compressive buckling force and
critical buckling strain for pinned ends (armchair CNTs)
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Figure 4.9: Deformed con�gurations of (8,8) CNT with deformations 1.00nm, 1.01nm ,
1.00nm , 1.00nm after eigen buckling of lengths l = 15, 20, 25, 30nm of pinned-ends

Critical buckling forces and simulated values of stresses and strains for con�gurations

(8,8),(10,10),(12,12),(15,15) with respective CNT diameters 1.086nm , 1.36nm 1.63 and

2.04nm for di�erent lengths 15nm,20nm ,25nm, 30nm of clamped-free ends are sum-

marised in table 4.12

Chirality d(nm) length(l) nm Critical buckling force(nN) Stress (σv) Strain (ε)

(8,8) 1.086 15 5.13 6.410 0.006
20 2.89 3.570 0.003
25 1.85 2.310 0.002
30 1.28 1.830 0.001

(10,10) 1.36 15 1.04 108.7 0.010
20 5.84 4.433 0.004
25 3.74 2.848 0.002
30 2.60 2.006 0.001

(12,12) 1.63 15 1.84 56.990 0.010
20 1.03 32.149 0.005
25 6.62 3.574 0.003
30 4.59 3.480 0.003

(15,15) 2.04 15 3.68 12.363 0.011
20 2.07 730.6 0.006
25 1.32 5.400 0.005
30 9.20 2.9654 0.00280

Table 4.12: Geometrical parameters and buckling forces for clamped-free CNTs
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Figure 4.10: E�ect of nanotube aspect ratio on critical compressive buckling force and
critical buckling strain for clamped-free ends (armchair CNTs)

Figure 4.11: Deformed con�gurations of (8,8) CNT with deformations 1.00nm, 1.01nm ,
1.00nm , 1.13nm after eigen buckling of lengths l = 15, 20, 25, 30nm of clamed-free ends

� From the tables and �gures above it was observed that the critical buckling forces

decreases with the mentioned boundary conditions for the same aspect ratios but

for clamped ends compressive buckling forces decreases more rapidly .

� And critical buckling strains were found to be decreasing for clamped ends , whereas

for pinned ends and some con�gurations of clamped-free were having di�erent trend

of strains. Therfeore, the parameter nanotube length is found to be sensitive to

tube chirality's and chosen di�erent boundary conditions for CNTs.
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4.3.2 BNNT

Secondly, the boron nitride nanotube has been chosen with e�ective shell thickness value

as,(h)of 0.065nm , young's modulus,(E) taken as 1.24Tpa and poisson's ratio as 0.35.

The Critical buckling forces and simulated values of stresses and strains for con�gurations

(8,8),(10,10),(12,12),(15,15) with respective BNNT diameters 1.1236nm , 1.40nm 1.68 and

2.11nm for di�erent lengths 15nm,20nm ,25nm, 30nm of clamped ends are summarised in

table 4.13

Chirality d(nm) length(l) nm Critical force(nN) Stress (σv) Strain (ε)

(8,8) 1.123 15 4.12 707.15 0.571
20 2.32 4.7758 0.003
25 1.48 2.8070 0.002
30 1.03 3.7374 0.003

(10,10) 1.40 15 8.33 470.65 0.380
20 4.69 2526.7 0.002
25 3.00 2309.3 0.001
30 2.08 2017.6 0.001

(12,12) 1.68 15 1.47 343.19 0.277
20 8.29 449.42 0.363
25 5.31 371.96 0.300
30 3.69 303.66 0.330

(15,15) 2.11 15 2.95 219.49 0.177
20 1.66 286.28 0.231
25 1.06 198.35 0.160
30 7.37 182.05 0.148

Table 4.13: Geometrical parameters and buckling forces for clamped end BNNTs

Figure 4.12: E�ect of nanotube aspect ratio on critical compressive buckling force and
critical buckling strain for clamped ends (armchair BNNTs)

Critical buckling forces and simulated values of stresses and strains for con�gurations

(8,8),(10,10),(12,12),(15,15) with respective BNNT diameters 1.1236nm , 1.40nm 1.68
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and 2.11nm for di�erent lengths 15nm,20nm ,25nm, 30nm of pinned ends are summarised

in table 4.14

Chirality d(nm) length(l) nm Critical force(nN) Stress (σv) Strain (ε)

(8,8) 1.123 15 1.65 48.139 0.0388
20 9.27 27.006 0.021
25 5.93 16.459 0.013
30 4.12 12.523 0.010

(10,10) 1.40 15 3.33 75.827 0.051
20 1.88 32.995 0.026
25 1.20 20.924 0.016
30 8.33 15.137 0.012

(12,12) 1.68 15 5.90 83.552 0.067
20 3.32 39.787 0.032
25 2.12 17.222 0.024
30 1.47 17.221 0.013

(15,15) 2.11 15 1.18 166.56 0.114
20 6.63 49823 0.040
25 4.24 29.334 0.023
30 2.95 20.759 0.016

Table 4.14: Geometrical parameters and buckling forces for pinned end BNNTs

Figure 4.13: E�ect of nanotube aspect ratio on critical compressive buckling force and
critical buckling strain for pinned ends (armchair BNNTs)

Critical buckling forces and simulated values of stresses and strains for con�gurations

(8,8),(10,10),(12,12),(15,15) with respective BNNT diameters 1.1236nm , 1.40nm 1.68

and 2.11nm for di�erent lengths 15nm,20nm ,25nm, 30nm of clamped-free ends are sum-

marised in table 4.15
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Chirality d(nm) length(l) nm Critical force(nN) Stress (σv) Strain (ε)

(8,8) 1.123 15 6.59 7.860 0.063
20 3.71 4.808 0.003
25 2.37 2.807 0.002
30 1.65 2.968 0.002

(10,10) 1.40 15 1.33 9.884 0.007
20 7.50 5.852 0.004
25 4.80 4.003 0.003
30 3.33 4.135 0.002

(12,12) 1.68 15 2.36 12.858 0.001
20 1.33 6.151 0.004
25 8.49 4.204 0.003
30 5.90 3.075 0.002

(15,15) 2.11 15 4.72 15.231 0.012
20 2.65 8.686 0.007
25 1.70 7.197 0.005
30 1.18 4.445 0.003

Table 4.15: Geometrical parameters and buckling forces for clamped-free BNNTs

Figure 4.14: E�ect of nanotube aspect ratio on critical compressive buckling force and
critical buckling strain for clamped-free ends (armchair BNNTs)

� From �gures 4.12, 4.13 and 4.14 above it was observed that the critical buckling

forces decreases rapidly wiith the mentioned boundary conditions for the same as-

pect ratios but for clamped ends compressive buckling forces decreases more rapidly

.

� And critical buckling strains were found to be consistently decreasing for pinned

ends and clamped-free ends. Therfeore, the parameter nanotube length is found to

be sensitive to tube chirality's and chosen di�erent boundary conditions for BNNTs

also.
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4.4 critical bending buckling strain

In order to further explore the diameter-dependence for the constrained boundary e�ect

critical bending buckling strain are investigated for varied armchair and zigzag con�gu-

rations. Here,the length for the said con�guration of nanotubes was chosen to be 8nm.

And The critical compressive buckling strain of axially compressed shell is given by:

[15],[17][34]

The critical beding buckling strain was computed analytically by given formula and sim-

ulated by eigen value bucling analysis .

εshellcr−comp= 2√
3(1−ν2)

t
d

(4.7)

Simulated critical strain values and calculated critical strain values for con�gurations (8,8)

, (10,10) , (12,12) and (15,15) of CNTs and BNNTs are mentioned in table 4.16 and table

4.17

Chirality d(nm) εcr(Analytial) εcr(Simulated)

(8,8) 1.09 0.0714 0.0718
(10,10) 1.36 0.0572 0.0605
(12,12) 1.63 0.0477 0.0480
(15,15) 2.04 0.0381 0.0395
(17,17) 2.31 0.0336 0.0360
(20,20) 2.71 0.0286 0.0305
(23,23) 3.12 0.0249 0.0260

Table 4.16: Geometrical parameters and crititcal strain value for armchair CNT

Figure 4.15: Comparison of simulated and analytical buckling strains of armchair con�g-
urations CNT for the e�ect of nanotube diameter
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Chirality d(nm) εcr(Analytical) εcr(Simulated)

(8,8) 1.12 0.0713 0.0713
(10,10) 1.40 0.0571 0.0601
(12,12) 1.68 0.0476 0.0476
(15,15) 2.11 0.0381 0.0391
(17,17) 2.39 0.0336 0.0356
(20,20) 2.81 0.0285 0.0301
(23,23) 3.23 0.0248 0.0256

Table 4.17: Geometrical parameters and crititcal strain value for armchair BNNT

Figure 4.16: Comparison of simulated and analytical buckling strains of armchair con�g-
urations BNNT for the e�ect of nanotube diameter

From the �gure 4.15 and 4.16 it was observed that the simulations were found to be

consistent with calculated strains and increasing nanotube diameter results in decrease

of bending buckling strain for carbon and boron nitride nanotubes . But on comparison

part for both nanotubes BNNT decreases more rapidly than CNT.

4.5 Examination of shell theory

� The �rst shear deformation shell theory has been examined overhere on the basis

of critical buckling strains and buckling modes of carbon nanotubes from small-to-

intermediate to large aspect ratio for various armchair and zigzag con�gurations

used for Clamped ends conditions for capturing the length dependence for varied

aspect ratios .

� The foregoing equations mentioned for FSDST are to be solved together for the

buckling load (i.e the lowest positive eigen value ).
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� Generally, it is di�cult to obtain the exact buckling solution for cylindrical shells

and hence the numerical �nite element method is for the solutions .

� Therfore, for the FSDST , the eight node quadrilateral thick shell element with

reduced integration S8R , in software ABAQUS, has been used for the present work

for the prediction of critical buckling strains.

� For the clamped boundary condition used , the displacments and end rotations are

constrained from moving of the cylindrical shell model used .

� The elastic properties such as elastic modulus , poisson's ratio and shell thickness

for FSDST model for the computation were 5.5Tpa , 0.19 and 0.066nm.

Figure 4.17: Clamped-ends boundary condition for (12,0)

� The mesh of the cylindrical shell comprises of 30 elements along the circumferential

length.
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Figure 4.18: mesh design for cylindrical shell (at least 30 elements along circumferential
length)

Chirality l(nm) d(nm) l
d

FSDST Published data

(8,8) 3.3 1.08 3.06 0.925 0.0639
(10,10) 4.1 1.35 3.04 0.740 0.0429
(12,12) 4.8 1.62 2.96 0.617 0.0373
(14,14) 5.7 1.89 3.02 0.529 0.0321
(16,16) 6.4 2.17 2.95 0.460 0.0285
(17,17) 17.8 2.31 7.7 0.409 0.006
(18,18) 7.3 2.44 2.99 0.369 0.025
(20,20) 8.0 2.71 2.95 0.432 0.022
(12,12) 11.2 1.62 6.91 0.617 0.041
(21,0) 11.2 1.65 6.79 0.606 0.047
(8,8) 6.3 1.09 5.78 0.173 0.056
(7,7) 6.0 0.95 6.32 0.158 0.049
(8,0) 4.3 0.63 6.83 1.587 0.120
(20,20) 13.6 2.71 5.02 0.369 0.020
(20,20) 135.7 2.71 50.07 0.369 0.003
(12,0) 2.63 0.94 2.80 1.063 0.064

2.48 3.70 1.063 0.059
7.75 8.24 1.063 0.047
16.27 17.31 1.063 0.016
31.20 33.19 1.063 0.005

Table 4.18: Critical buckling strains for armchair and zigzag con�gurations
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Figure 4.19: Comparison of critical buckling srains for various aspect ratios

� For a better visualisations of the variations of critical buckling strains with respect

to aspect ratios l/d , the results are plotted in �g.4.19 and �g 4.20 .

� From �gure 4.19 it is inferred that critical buckling strain decreases as the aspect

ratios of carbon nanotube get larger .

� For CNTs with lower aspect ratios , the critical buckling strains given by MD results

are lower than FSDST model .
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Figure 4.20: Buckling modes of zigzag CNT (12,0) with di�erent aspect ratios l/d = 2.63,
3.48, 7.75, 16.27, 31.20 using FSDST
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4.6 Nanaotubes with di�erent boundary conditions us-

ing FSDST

Clamped-clamped Simply supported Clamped-free l
d

0.08405 0.0726 0.03472 2.4
0.07956 0.06915 0.02621 3.14
0.07637 0.05108 0.01567 4.24
0.073 0.02862 0.00804 6.08
0.05641 0.01797 0.00481 7.93
0.031 0.00899 0.00229 11.62
0.1915 0.00518 0.00131 15.31
0.01577 0.00416 0.00108 17.15
0.00691 0.00178 0.00175 26.37
0.00386 0.000981 0.00091 35.59
0.00169 0.000434 0.00044 54.03

Table 4.19: Crititcal buckling strains for di�erent boundary condition for armchair (5,5)
con�guration

Figure 4.21: E�ect of nanotube aspect ratio on critical buckling strain of (5,5) for di�erent
boundary conditions



CHAPTER 4. RESULTS AND DISCUSSION 47

Clamped-clamped Simply supported clamped-free l
d

0.06373 0.05202 0.02387 3.01
0.05716 0.04977 0.01506 4.32
0.05456 0.02353 0.00927 5.63
0.0529 0.02272 0.06623 6.93
0.05183 0.01646 0.00449 8.24
0.04242 0.01269 0.00337 9.55
0.02852 0.00807 0.00208 12.17
0.01319 0.00346 0.00089 18.71
0.00748 0.00194 0.00045 25.25
0.00479 0.00121 0.00032 31.79
0.00186 0.00047 0.00011 51.41

Table 4.20: Crititcal buckling strains for di�erent boundary condition for armchair (7,7)
con�guration

Figure 4.22: Buckling modes of (7,7) CNT for aspect ratios 3.01, 4.32 , 5.63 , 6.93 , 8.24
, 9.55 of clamped boundary condition



CHAPTER 4. RESULTS AND DISCUSSION 48

Figure 4.23: Buckling modes of (7,7) CNT for aspect ratios 3.01, 4.32 , 5.63 , 6.93 , 8.24
of clamped-free boundary condition

Figure 4.24: E�ect of nanotube aspect ratio on critical buckling strain of (7,7) for di�erent
boundary conditions



CHAPTER 4. RESULTS AND DISCUSSION 49

Clamped-clamped Simply supported Clamped-free l
d

0.04812 0.03665 0.01684 3.04
0.04410 0.03747 0.01622 4.44
0.04019 0.02973 0.00838 5.93
0.03723 0.01446 0.00381 8.89
0.02425 0.00672 0.00171 13.33
0.01247 0.00329 0.00082 19.26
0.00701 0.00182 0.00044 25.93
0.0042 0.00102 0.00026 34.81
0.00295 0.00075 0.00020 40.74
0.00236 0.0007 0.00014 45.19
0.00278 0.00047 0.00012 50.37

Table 4.21: Crititcal buckling strains for di�erent boundary condition for armchair (10,10)
con�guration

Figure 4.25: E�ect of nanotube aspect ratio on critical buckling strain of (10,10) for
di�erent boundary conditions

Clamped-clamped Simply supported Clamped-free l
d

0.04026 0.02932 0.01420 3.03
0.03784 0.02982 0.01361 4.85
0.03237 0.02013 0.00525 7.27
0.02328 0.00981 0.00237 10.91
0.01722 0.00467 0.00149 15.76
0.00952 0.00245 0.00068 21.82
0.00547 0.00151 0.00037 29.09
0.00343 0.0001 0.00032 36.36
0.00278 0.0006 0.00019 41.21
0.00210 0.00055 0.00015 46.06
0.00184 0.00047 0.00018 50.91

Table 4.22: Critical buckling strains for di�erent boundary condition for armchair (12,12)
con�guration
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Figure 4.26: E�ect of nanotube aspect ratio on critical buckling strain of (12,12) for
di�erent boundary conditions

4.7 CNT and BNNT Non-linear response

� The non-linear mechanical response of the nanotube , is said to be as their �buckling

� behavior, And , Buckling is a deformation process in which a large strain energy

causes an abrupt change in the deformation pro�le .

� For the non-linear response of SWCNT and SWBNNT the armchair (8,8) chiral-

ity was chosen with appropriate parameters such as young's modulus E=1.06Tpa

,[17] and for the latter E=1.24Tpa [34] in consideration with e�ective thickness as

0.066nm and 0.065nm with the poisson's ratio as μ= 0.19 for CNT and μ=0.35 for

BNNT.

� Also, the zigzag (13,0) SWCNT was chosen for the non-linear response .

� For the computation of stresses , strain , strain energy and deformations of nan-

otubes the FEM analysis of the model developed was carried out under axial com-

pression . The end rotations and displacements were constrained . The deformations

of CNT and BNNT are shown below in Fig4.28 and Fig4.29

� Tables 4.23 and table 4.24 summarizes the values of stresses , strains , deformations

and length for (8,8) CNT and (8,8) BNNT.

Chirality d(nm) length(l) nm Deformations(nm) Stress (σv) Strain (ε)

(8,8) 1.086 15 1.23 57.14 0.0543
20 1.06 28.485 0.0269
25 1.02 179..59 0.0170
30 1.01 12.953 0.0122

Table 4.23: Stresses and strains for di�erent lengths of (8,8) for clamped CNT
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Figure 4.27: Stresses and strains for (8,8) CNT for clamped-ends

When the simulated stresses and strain for con�gurations (8,8) , (10,10) , (12,12) and

(15,15) CNT for the constrained boundary condtion were plotted , they were found to

have follow non-linear e�ect. Therefore, the work was done on the non-linear response of

CNT and BNNT.

Figure 4.28: Buckled geometrical con�guration of (8,8) CNT

The maximum deformation for (8,8) CNT computed by simulations was found to be

1.0024nm approaching the beam buckling behavior .
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Figure 4.29: Strain energy v/s deformation pro�le for (8,8) CNT

linearlity was found when strain energy and deformations were plotted against each other

and it resulted that buckling has said to have occured for (8,8) CNT.

Chirality d(nm) length(l) nm Deformations(nm) Stress (σv) Strain (ε)

(8,8) 1.123 15 1.06 707.15 0.57
20 1.10 4.7758 0.00386
25 1.01 2.807 0.00227
30 1.00 3.7374 0.00302

Table 4.24: Stresses and strains for di�erent lengths of (8,8) for clamped BNNT

Figure 4.30: Stresses and strains for (8,8) CNT for clamped-ends

Even when the simulated stresses and strain for con�gurations (8,8) , (10,10) , (12,12)

and (15,15) BNNT for the constrained boundary condtion were plotted , they were also

found to have follow non-linear e�ect.
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Figure 4.31: Buckled geometrical con�guration of (8,8) BNNT

The maximum deformation for (8,8) BNNT computed by simulations was found to be

3.7016 nm approaching the beam buckling behavior as like it is for slender CNTs .

Figure 4.32: Strain energy v/s deformation pro�le for (8,8) BNNT

linearlity was found when strain energy and deformations were plotted against each other

and it results that buckling has said to have occured for (8,8) BNNT.
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(13,0) zigzag CNT

Buckling is de�ned to have occurred when there is a sudden drop in axial load in the axial

load . This sudden drop in compressive axial load is observed for all CNTs considered.

The load corresponding to buckling is termed the critical load (Pcr), The critical buckling

strain (εcr) is related to by ∆l, ∆l, /l, where is l the original length of the CNT . At

the onset of buckling , localized regions of depression develop as a result of membrane

buckling. Almost immediately after that, the localized depressions coalesce to an allround

constriction, producing a �attened attened neck on the CNT. This is known as the shell

buckling mode, reminiscent to the bifurcation buckling of cylindrical shells under axial

load, This continuum approach can be valid for buckling of slender CNTs where the CNT

buckles in a global beam buckling mode instead of undergoing local shell buckling. ,[17]

Figure 4.33: A (13,0) CNT model

CNT (13,0) was modeled in modelling software with parameters such as E=1.06TPa ,

μ=0.19 and cylinder radius as 0.066nm with ends clamped and remote displacement load

was applied axially .

Figure 4.34: Eigen buckled deformation of (13,0) CNT
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Table 4.25 repersesnts the values of euler buckling force and critical force computed and

stresses and strains before and after FEM , which di�erentiates the buckling behaviour

of nanotube . For FEM ultimate strengths and bilinear isotropic hardening factors were

used for the non-linear buckling .

Chirality diameter(nm) l
d

FEuler (nN) Stress (σv) Strain (ε) Deformation(nm)

(13,0) 1.09 7.8508 13.88288 3890.6 0.0406 1.4142
Fcr (nN) Stress (σvcr) Strain (εcr) Deformation(nm)
0.86768009 899.9 0.0971 70.396

Table 4.25: Geometrical parameters and deformations after non-linear response

Figure 4.35: Buckled mode shape of CNT under compressive axial load

Two equilibrium structural con�gurations are possible from state of deformation.

After FEM and loads computed with the load multipliers the di�erent morphological

pattern of (13,0) CNT was reprsented in �g4.34
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Figure 4.36: Buckled geometrical deformations after FEM eigen buckling analysis of (13,0)
CNT



Chapter 5

Conclusions and future scope of work

5.1 conclusion

� The e�ects of tube chirality, elastic parameter and boundary condition on the crit-

ical compressive force of SWCNT and SWBNNT investigated because the buckling

forces are sensitive to the tube chirality and end condition chosen for the analytical

and simulated work.

� Overall results indicated that when aspect ratio is increasing the critical buckling

forces of SWCNT and SWBNNT was found to be decreasing but on comparison

part the Zigzag turns out to have higher values than that of armchair CNT and

BNNT.

� And For constant aspect ratio and increasing nanotube diameter the critical buckling

force was found to have increasing trend. Therefore armchair CNT type of the Single

Walled Nanotubes turns out to be sti�er than the armchair BNNT type, and can

be preferable for the load compression memebers.

� The buckling load gets reduced as one transits from the local beam theories to the

nonlocal beam theories. This reduction in the buckling strain (or load) is most

pronounced when the rod is short and stocky and when the ends of the rod are

clamped.

� when the length of nanotube is very small , the buckling load is comparatively high

and with the further increase of nanotube length, the buckling mode is changed into

the Euler buckling mode of beam which leads to the lower buckling loads.

� Critical buckling strains were computed analytically and simulated with results that

they are also not only sensitive to the constrained boundary condition but also to

the tube chirality.

57
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� Armchair CNT have higher critical buckling strain than BNNT . Therefore armchair

boron nitride nanotubes can be preferable over CNTs as a compression memebers.

� The results indicates that the reduction of compressive strain due to the clamped

boundary condition is relatively found to be dependent on tube diameter.

� And, It can also be predicted that the tube diameters mentioned have relatively

small lo/r and nanotubes can exhibit shell-like buckling behavior .

� An important observation of SWNTs with small aspect ratio is that they do not

bend with respect to the tube axis and maintain their axis of symmetry .

� Using FSDST for di�erent con�gurations armchair and zigzag and boundary con-

ditions it was obseved that for smaller aspect ratios - short CNTs buckle in a shell

mode .

� For, intermediated aspect ratios Nanotubes buckles in a �exural mode .

� And for large aspect raios - Slender Carbon nanotubes buckles globally in a �exural

mode.

� Through non-linear responses it was observed that critical buckling force and strain

of SWCNT ans SWBNNT varies with respect to the chirality of the tube .

� The critical buckling strains and forces for zigzag SWCNT was found to be higher

than armchair CNT.

5.2 Future Scope

� Exploration of application based on buckling .

� Simulation for piezoelectric property estimation especially for BNNT.
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