
Advance Resource Reservation in Cloud
Computing using Checkpoint Mechanism

Submitted By

Parimal Gajre

15MCEC12

DEPARTMENT OF COMPUTER ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2017

Advance Resource Reservation in Cloud
Computing using Checkpoint Mechanism

Major Project

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology in Computer Science and Engineering

Submitted By

Parimal Gajre

(15MCEC12)

Guided By

Asst. Prof. Vivek K. Prasad

DEPARTMENT OF COMPUTER ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2017

Certificate

This is to certify that the major project entitled ”Advance Resource Reservation in

Cloud Computing using Checkpoint Mechanism” submitted by Parimal Gajre

(15MCEC12), towards the partial fulfillment of the requirements for the award of de-

gree of Master of Technology in Computer Science and Engineering of Nirma University,

Ahmedabad, is the record of work carried out by him under my supervision and guidance.

In my opinion, the submitted work has reached a level required for being accepted for

examination. The results embodied in this Major Project, to the best of my knowledge,

haven’t been submitted to any other university or institution for award of any degree or

diploma.

Prof. Vivek Kumar Prasad Dr. Priyanka Sharma

Guide & Asst. Professor, Associate Professor,

Computer Engineering Department, Coordinator M.Tech - CSE

Institute of Technology, Institute of Technology,

Nirma University, Ahmedabad. Nirma University, Ahmedabad

Dr. Sanjay Garg Dr. Alka Mahajan

Professor and Head, Director,

Computer Engineering Department, Institute of Technology,

Institute of Technology, Nirma University, Ahmedabad

Nirma University, Ahmedabad.

iii

Statement of Originality
———————————————————————————————————————

I, Parimal Gajre, Roll. No. 15MCEC12, give undertaking that the Major Project en-

titled ”Advance Resource Reservation in Cloud Computing using Checkpoint

Mechanism” submitted by me, towards the partial fulfillment of the requirements for

the degree of Master of Technology in Computer Science & Engineering of Insti-

tute of Technology, Nirma University, Ahmedabad, contains no material that has been

awarded for any degree or diploma in any university or school in any territory to the

best of my knowledge. It is the original work carried out by me and I give assurance

that no attempt of plagiarism has been made.It contains no material that is previously

published or written, except where reference has been made. I understand that in the

event of any similarity found subsequently with any published work or any dissertation

work elsewhere; it will result in severe disciplinary action.

———————–

Signature of Student

Date:

Place:

Endorsed by

Vivek K. Prasad

(Signature of Guide)

iv

Acknowledgements

It gives me immense pleasure in expressing thanks and profound gratitude to Vivek

Kumar Prasad, Assistant Professor, Computer Engineering Department, Institute of

Technology, Nirma University, Ahmedabad for his valuable guidance and continual en-

couragement throughout this work. The appreciation and continual support he has im-

parted has been a great motivation to me in reaching a higher goal. His guidance has

triggered and nourished my intellectual maturity that I will benefit from, for a long time

to come.

It gives me an immense pleasure to thank Dr. Sanjay Garg, Hon’ble Head of Com-

puter Engineering Department, Institute of Technology, Nirma University, Ahmedabad

for his kind support and providing basic infrastructure and healthy research environment.

A special thank you is expressed wholeheartedly to Dr Alka Mahajan, Hon’ble

Director, Institute of Technology, Nirma University, Ahmedabad for the unmentionable

motivation she has extended throughout course of this work.

I would also thank the Institution, all faculty members of Computer Engineering

Department, Nirma University, Ahmedabad for their special attention and suggestions

towards the project work.

- Parimal Gajre

15MCEC12

v

Abstract

Cloud Computing gives the facility of provisioning resources on rent in pay as-you-go

fashion, due to which resource demand changes dynamically over time. Such type of dy-

namic resource demand leads to mainly two types of problems such as Over-Provisioning

and Under-Provisioning. The former leads to violations of Service Level Agreements

(SLAs) whereas latter leads to wastage of resources, as the system is not being used to

full capacity all the time. Also some cloud having limited number of resources cannot

satisfy all the requests at a time.

To handle such scenario advance reservation techniques are used, so that the resources

available could be used efficiently with minimum possible provisioning cost and at the

same time satisfying service level agreements. In the proposed technique, history of re-

source usage profile of tasks is maintained. For each task submitted to cloud, pattern

finding technique is used to find a task with similar resource usage requirement from

history of resource usage profile. After this check-pointing mechanism is used to monitor

completion of new task based on resource usage profile of task found in historical data.

Such type of monitoring helps in order to estimate the amount resources that will be

released as per profiled time-line and based on that resources can be reserved in advance

as per users request. Hence problem of under as well as over provisioning could be solved

up to a great extent at the same time meeting the Service Level Agreements.

vi

Abbreviations

CSP Cloud Service Provider.

DC Data-Center

GWP Google Wide Profiling.

IaaS Infrastructure as a Service

PaaS Platform as a Service

PFS Parallel File System

QoS Quality of Service.

SLA Service Level Agreement

SaaS Software as a Service

TLC Thread-based Live Checkpointing

VM Virtual Machine
——————————————————————————————————————

vii

Contents

Certificate iii

Statement of Originality iv

Acknowledgements v

Abstract vi

Abbreviations vii

List of Figures x

1 Introduction 1
1.1 Cloud Computing . 1
1.2 Cloud Computing Characterstics . 1
1.3 Types of Cloud . 2
1.4 Cloud Services . 3
1.5 Motivation . 5
1.6 Objectives . 6

2 Existing Scenario 7
2.1 Provisioning of Resources . 7
2.2 Problems in Resource Provisioning . 7
2.3 Resource Provisioning Types . 9
2.4 Parameters for Resource Provisioning . 10
2.5 Resource Provisioning Methods . 11

2.5.1 Demand-Driven Resource Provisioning 11
2.5.2 Event-Driven Resource Provisioning 11
2.5.3 Popularity-Driven Resource Provisioning 12

3 Literature Review 13
3.1 Profiling-Based Task Scheduling for Factory-Worker Applications in Infrastructure-

as-a-Service Cloud . 13
3.2 Google-Wide Profiling: A Continuous Profiling Infrastructure for Data

Centers . 14
3.3 Profiling-as-a-Service in Multi-Tenant Cloud Computing Environments . 15
3.4 Optimization of Cloud Task Processing with Checkpoint Restart Mechanism 17
3.5 Reducing Costs of Spot Instances via Checkpointing in the Amazon Elastic

Compute Cloud . 17

viii

3.6 Coordinated checkpoint versus message log for fault tolerant MPI 18
3.7 DMTCP:Transparent Checkpointing for Cluster Computations and the

Desktop . 19
3.8 Hybrid Checkpointing for MPI Jobs in HPC Environments 20
3.9 Towards Scalable Application Checkpointing with Parallel File System

Delegation . 21
3.10 Thread-Based Live Checkpointing of Virtual Machines 22
3.11 Predicting Job Start Times on Clusters 23
3.12 Problem Statement . 23

4 Proposed Design 25
4.1 Proposed Working Model . 25
4.2 Proposed System Flow . 27
4.3 Steps for Implementation . 28
4.4 Check Pointing Mechanism . 29

5 Proposed Algorithm 30
5.1 Task Mapper . 30
5.2 Advance Reservation . 31
5.3 Methods used in Algorithm . 33
5.4 Flowchart of Algorithm . 34

6 Tools and Techniques 36
6.1 CloudSim . 36
6.2 WEKA . 38
6.3 K-Means Clustering . 38
6.4 Implementation Details . 39

7 Conclusion and Future Work 48
7.1 Conclusion . 48
7.2 Future Work . 48

8 Related Publication 49
8.1 Published Paper . 49
8.2 Submitted Paper . 49

Bibliography 50

ix

List of Figures

1.1 Types of Cloud . 3
1.2 Cloud Service Model . 4

2.1 Over-Provisioning of Resources . 8
2.2 Under-Provisioning of Resources . 9
2.3 Constant-Provisioning of Resources . 10

4.1 Proposed Working Model . 25
4.2 Proposed Flow Model . 27
4.3 Checkpointing Mechanism Model . 29

5.1 Flowchart Diagram based on Algorithm 34

6.1 CloudSim Architecture . 36
6.2 Output of Simulation . 40
6.3 Profile of Resource Usage . 41
6.4 Clustering of Tasks using K-means . 42
6.5 Graphical Representation of Clustering of Tasks using K-means 43
6.6 Output of execution of Tasks when Similar Resource Usage Profile is available 45
6.7 Output of execution of Tasks when Similar Resource Usage Profile is not

available . 46

x

Chapter 1

Introduction

1.1 Cloud Computing

Cloud Computing is a new paradigm in todays world of fastest changing technology,

which delivers computing as a utility through the Internet. Cloud computing follows pay

as you go fashion, in the sense that customers need to pay only for the amount of time

the resources are being used by customers. So such type of system is advantageous to

organisations as they do not need to worry about investing the capital in setting up the

infrastructure and directly use the available services from the Cloud Service Providers.

Cloud Computing services are provided CSP usually follows XaaS model, which means

X as a Service. Some of the most commonly used services are Infrastructure as service

(IaaS), Platform as a service (PaaS) and Software as Service (SaaS), which is provisioned

by pay as you go model over Internet.

1.2 Cloud Computing Characterstics

• Broad network access: Customer can access their service from broad range of

devices like Mobile, laptop, tablet, pc and workstation. There is no limitation about

geographical area it can be accessible from any device in any area.

• On-demand self-services: Customer can get their services as they required like

server computation time, storage and latest patches without any human efforts.

• Resource pooling: Hardware resources are distributed among different countries,

1

states, datacenters. This all different resources like Memory, storage, network band-

width, processing are pooled to gather to provide better and fast services. Customer

has no particular information about backend resources but they have some abstract

information.

• Measured Services: Different cloud services are measured and paid according to

type of services like Bandwidth, storage, active user accounts, cpu processing and

quantity of services used by customer.

• Rapid elasticity: customer can easily expand or shrink their cloud services pro-

vided by cloud service provider. As Cloud has characteristics of elasticity any

service can be manually or automatically adjust.

1.3 Types of Cloud

Type of Clouds classified based on thier access levels are as represented in figure 1.1 and

discussed as follows,

• Public Cloud: In public cloud pooled of resources are shared with all the public

user. Any type of user like academic organization, small scale company, financial

organization can use this services and can save cost of hardware and software. This

type of services are free for certain amount of use and then it will be paid according

to provider but cheaper than other type of cloud. As all the resources are publicly

shared then security is major concern. But it can be managed using SLA with the

Cloud provider.

• Private Cloud: To overcome the security issue from public cloud Private cloud

are used. In private cloud all the physical infrastructure are available within the

organization and configure and managed by IT technician. As it is in the organi-

zation company can set its security policy and managed it according to their use.

But for this type of cloud services company need more budget for infrastructure

and IT staff.

• Community Cloud: Multiple organization share the same Pooled of resources

like Infrastructure, policies, security requirement. This type of services managed

by those organization itself or by third party CSP. An example of the community

2

Figure 1.1: Types of Cloud
[7]

cloud can be a cloud shared by some legal firms. A community cloud can be thought

of as a targeted public cloud.

• Hybrid Cloud: This is the common type of cloud which is widely used nowadays.

As Different organizations have different requirement so they need to use both public

and private cloud. As common data are shared via public cloud and important data

store and shared in private cloud. In this way you only pay for what you use, when

you use it, while not having to migrate entirely to the cloud if the business is not

yet ready for that step or its not a requirement.

1.4 Cloud Services

Features provided by Cloud Service Provider under cloud service model as shown in figure

1.2 are as follows:

• Infrastructure as a Service (IaaS):

This type of cloud service provides storage and compute capacity over the network.

Varying workload requirement ranging from small application components to High

Performance Applications is being catered by Pool of Servers, storage systems,

switches, routers, and other systems. This is the most flexible and configurable

3

cloud service option, but conversely requires the most effort to manage and support

from a consumer perspective. Some examples of giant enterprise that provides IaaS

commercially include Google compute engine, Amazon EC2, Microsoft Azure, etc.

Figure 1.2: Cloud Service Model
[4]

• Platform as a Service (PaaS):

This type of cloud service provides platform by encapsulating software layer, which

is used to build higher level software services. So it basically provides the platform

or framework for application and other development or customizing an already

available application. PaaS is less configurable than IaaS, but provides a fully man-

aged platform such as the Database engine incase of database used as a service,

so it requires less management and effort to set-up / configure than IaaS. Some

examples of giant enterprise that provides PaaS commercially include Force.com,

Google App Engine, etc.

4

• Software as a Service (SaaS):

This type of cloud service provides complete software application on demand. A

single instance of the software runs on the cloud and services multiple end users

or client organizations. So users need not to worry about the installation of the

software and licensing agreements, it is just needed to start using the software ap-

plication as and when required. Some examples of giant enterprise that provides

SaaS commercially include Salesforce.com, Gmail, Microsoft Office 365, etc.

Out of the types of cloud services discussed here, the proposed work will have its effect

in Infrastructure as a Service layer. As release time of resources currently executing tasks

is estimated and based on this estimation, that particular resources are being reserved

for next task in queue.

1.5 Motivation

In recent years cloud computing has gained an immense growth, especially in the use

of public clouds. Giant companies like Microsoft, Google, Amazon and Rackspace have

released their public cloud infrastructures such as Microsoft Azure, Google App Engine,

Amazon Web Services and Rackspace Cloud Servers. For such huge enterprise software

systems provisioning high assurance in terms of Quality of Service (QoS) metrics such

as service availability, high throughput and response time is necessary. Customers signs

Service Level Agreements (SLA) with Cloud Service Providers (CSP), which specifies the

QoS metrics agreed by CSP to satisfy. In case if it fails in fulfilling the QoS mentioned

in SLA, it will result in a great loss in income as it will tend to lose its customers base.

While at same time maintaining SLA and also keeping costs low is difficult task to achieve

for cloud service providers, because number customers to cloud computing system are not

constant. [10] [13]

Also the applications that customers need to migrate to cloud have varying resource

requirements, so it is necessary to have dynamic mechanism for resource provisioning, in

order to satisfy such varying requirements of the applications. This raises the difficult

challenge to predict behaviour of applications at run-time in order adjust provisioning of

5

resources dynamically.[6] [18] Hence workload that is likely to being offered by applications

on cloud is required to be predicted, so that resources required for provisioning can be

made available in advance so that overhead related to making resources available can be

reduced.

1.6 Objectives

• To monitor the resource(s) usage of context aware task and creating its profile.

• To reserve the resource(s) using Check-pointing Mechanism.

6

Chapter 2

Existing Scenario

2.1 Provisioning of Resources

Provisioning of resources is concerned with allocation of virtual machines with resources

such CPU, memory, bandwidth, storage, etc for execution of tasks. But as the cloud

computing provides an illusion of infinite resources and resource demands of customers

is highly dynamic so provisioning of the available resources is a challenging task.[12]

Resource Provisioning Techniques in Cloud Computing aims to guarantee that the

application requirements are attended correctly. Resource provisioning relies heavily on

the strong algorithms for allocating properly CPU, RAM, hard disk and other computa-

tional resources to the intended applications. To maintain its scalability, the process of

provisioning in Cloud Computing must be dynamic.[16]

Mainly there two types problems in provisioning of cloud resources as:

• Under Provisioning: Leads to the violations of the service level objectives, often

associated with financial penalties.

• Over Provisioning: Leads to wastage of the resources, as the system is not being

used to full capacity all the time.

2.2 Problems in Resource Provisioning

As shown in figure below, there are following possible cases for static resource provision-

ing of cloud resources,

7

Figure 2.1 shows the case of over-provisioning when capacity of resources is planned

to meet peak load condition, so resources will remain idle most of the time. Here, SLA’s

with customers will be satisfied but wastage of resources will increase as resources will

remain in idle condition when the system is not being used to its full capacity.

Figure 2.1: Over-Provisioning of Resources
[11]

8

Figure 2.2 shows the case of under-provisioning when capacity of resources is planned

for average load. So in such case SLAs are broken most of the time leading to customers

dis-satisfaction. So it would lead to loss of customers base thereby adversely affecting

revenue generated by CSP.

Figure 2.2: Under-Provisioning of Resources
[11]

Figure 2.3 shows the case when users resource demand decreases with time as constant

provisioning of resources is not able to satisfy customers resource requirements, thereby

further declination in user demand. Such declination of user demand leads to resource

wastage and loss in revenue generated by resources to CSP.

2.3 Resource Provisioning Types

Based on application type of resource Provisioning is classified as follows,

• Static Provisioning: For applications that have predictable and generally un-

changing demands/workloads, it is possible to use static provisioning” effectively.

9

Figure 2.3: Constant-Provisioning of Resources
[2]

With advance provisioning, the customer contracts with the provider for services

and the provider prepares the appropriate resources in advance of start of service.

The customer is charged a flat fee or is billed on a monthly basis.

• Dynamic Provisioning: In cases where demand by applications may change or

vary, dynamic provisioning” techniques have been suggested whereby VMs may

be migrated on-the-fly to new compute nodes within the cloud. With dynamic

provisioning, the provider allocates more resources as they are needed and removes

them when they are not. The customer is billed on a pay-per-use basis. When

dynamic provisioning is used to create a hybrid cloud, it is sometimes referred to

as cloud bursting.

• User Self-provisioning: With user self- provisioning (also known as cloud self-

service), the customer purchases resources from the cloud provider through a web

form, creating a customer account and paying for resources with a credit card. The

provider’s resources are available for customer use within hours, if not minutes.[15]

2.4 Parameters for Resource Provisioning

Some of important parameters considered for resource provisioning are as follows,

• Response time: The resource provisioning algorithm designed must take minimal

time to respond when executing the task.

10

• Minimize Cost: From the Cloud user point of view cost should be minimized.

• Revenue Maximization: This is to be achieved from the Cloud Service Providers

view.

• Fault tolerant: The algorithm should continue to provide service in spite of failure

of nodes.

• Reduced SLA Violation: The algorithm designed must be able to reduce SLA

violation.

• Reduced Power Consumption: VM placement & migration techniques must

lower power consumption.

2.5 Resource Provisioning Methods

Following are some commonly used methods for resource provisioning,

2.5.1 Demand-Driven Resource Provisioning

In this method of resource provisioning the computing instances are added or removed

based on current utilization level of the resources allocated. When an application usage

of resource surpasses a threshold value for certain amount of time then according to this

scheme resources are increased based on demand. Similarly, if resource usage goes below

threshold value for certain amount time then resources being provided are decreased.

Such type of auto scale scheme is used in Amazons EC2 platform. This scheme will not

perform well in case when workload changes abruptly.

2.5.2 Event-Driven Resource Provisioning

In this scheme of resource provisioning resources are allocated or de-allocated based on a

specific time event. This type of scheme if resource provisioning works better for seasonal

or predicted workload. For example Christmas Eve in west and Lunar New Year in east.

This scheme incurs minimal loss of QoS, if events are correctly predicted. Else, it may

either result in wastage of resource that do not follow a specific pattern or lead to under

provisioning if resource demand is more. One example of event driven resource provi-

sioning is deadline-driven provisioning of resources, it has ablility to efficiently allocate

11

resources from different sources in order to reduce application execution times. But it is

not suitable for HPC-data intensive applications.[21]

2.5.3 Popularity-Driven Resource Provisioning

In the said scheme of resource provisioning resources are allocated or de-allocated based

on popularity index of the application. Here the popularity index of an application is de-

termined which is based on internet searches for the application. So the increased traffic

with increased popularity can be managed. But resources can be wasted if popularity of

the application is not determined correctly. So it is lees useful for workloads that do not

follow specific patterns.

12

Chapter 3

Literature Review

3.1 Profiling-Based Task Scheduling for Factory-Worker

Applications in Infrastructure-as-a-Service Cloud

[26]

• Author: Rostyslav Zabolotnyi, Philipp Leitner, Schahram Dustdar

• Year: 2014

• Transaction: 40th Euromicro Conference on Software Engineering and Advanced

Applications (IEEE)

• Summary:

– Passive Profiling - Using this technique coarse grain profiling is done, which

means profiling happens seamlessly to the application being profiled. In this

technique profiling system is being configured for measurements of resource

usage at some fixed intervals of time and has no consideration for state of task

which being profiled.

– Active Profiling - Using this technique fine grain profiling, in which task being

profiled actively triggers the profiling system in-order to take measurements

of resource usage at crucial points during execution of tasks. Hence it is

possible to create a context-aware resource usage profile that exposes the actual

behavior of tasks, which will be more helpful in making more confident and

reliable scheduling actions.

13

• Pros:

– Passive Profiling - Less impact on application performance as awareness of

task is not required for application execution.

– Active Profiling - More confident and reliable scheduling actions can be taken

as it provides resource usage profile which is context-aware, that exposes ac-

tual task behaviour. Also profiling system is capable of suspending tasks on

profiling points to get more accurate profiles of resource usages of tasks.

• Cons:

– Passive Profiling - It has disadvantage due to its periodic nature as some

resource usage spikes are missed. Also there are chances to misinterpret an

application profile because of periodical measurements.

– Active Profiling - More impact on application performance as application ex-

ecution does require awareness of task profiling and some no. of iteration to

achieve required level of granularity.

• Future Work: In future work, improvements on profile- based task scheduling can

be done in-order to decrease usage complexity and internal knowledge required.

3.2 Google-Wide Profiling: A Continuous Profiling

Infrastructure for Data Centers

[17]

• Author: Gang Ren, Eric Tune, Tipp Moseley, Yixin Shi, Silvius Rus, Robert

Hundt

• Year: 2010

• Transaction: - IEEE Computer Society

• Summary: GWP does profiling by performing event based sampling at machine

level. GWP gets the data of machines in the fleet and remotely activates profiling

on some random machines.

14

• Pros: GWP provides robustness as its collector is implemented as distributed

service, thereby also improving availability. To decrease distortion of machines and

applications running on them, monitoring of erroneous conditions is carried out and

sampling rate of profiling is reduced if failure rate reaches some threshold value.

• Cons: Overhead incurred in continuous profiling of such huge data is significant

and possibly degrades the performance of the application execution.

• Future Work: In future more type of performance events can be collected. Also

more exploraration can be done in direction of how the GWP profiles could be used

in more areas. Also it can more enhanced advanceddata mining techniques could

be used for detecting interesting patterns from profiles.

3.3 Profiling-as-a-Service in Multi-Tenant Cloud Com-

puting Environments

[24]

• Author: Kuai Xu, Feng Wang, Arizona State University Lin Gu, Hong Kong

University of Science and Technology

• Year: 2012

• Transaction: - 32nd International Conference on Distributed Computing Systems

Workshops (IEEE)

• Summary: It provides profiling as a service at different levels such as applica-

tion profiling, instance profiling, hypervisor profiling and network profiling which

is useful for making a comprehensive and correlated traffic profiles.

• Pros: As profiling is done at different layers it provides an indepth understanding

of network traffic in cloud which helps to detect the anomalous patterns leading to

attacks such denial of service i.e security monitoring. Also it is useful in customer

profiling and application profiling where customer’s application’s resource usage

could be monitored.

15

• Cons: As traffic profiling is done at each layer seperately it would add significant

overhead which can degrade the performance of the system. Hence, it is required to

calculate the frequency in whuch profiling should be at each layer so as to minimize

the over head incurred due to profiling.

• Future Work: In future we can examine system utilizations of profiler can be

measured at each layer for resources such as CPU and memory usage and speed

of generation of traffic profiles at each layer. So network operators can use such

information for real-time traffic analysis or attack mitigation.

16

3.4 Optimization of Cloud Task Processing with Check-

point Restart Mechanism

[9]

• Author: Sheng Di, Yves Robert, Frdric Vivien, Derrick Kondo, Cho-Li Wang,

Franck Cappello

• Year: 2013

• Transaction: ACM

• Summary: It checkpoints the transient memory of running tasks instead of entire

VM state to reduce the overhead of checkpointing. It does not make any assump-

tions about the probability distribution of failures like Young’s Work and optimizes

the number of check-points and position of checkpoints.

• Pros: As Distributively Managed Network File System (DM-NFS) is used to store

the checkpoints, so it provides reliability as well as flexibility as shared memory

storage and also it does not has single bottleneck failure. Hence checkpointing

costs can be reduced significantly

• Future Work: In future method can be improved to better suit applications with

high performance computing like MPI programs having extremely large scales.

3.5 Reducing Costs of Spot Instances via Checkpoint-

ing in the Amazon Elastic Compute Cloud

[25]

• Author: Sangho Yi and Derrick Kondo, Artur Andrzejak

• Year: 2010

• Transaction: IEEE 3rd International Conference on Cloud Computing

17

• Summary: Amazon Elastic Cloud Compute (EC2) uses checkpointing mechanism

to offer high reliability at low cost and volatility of reource provisioning. Various

dynamic checkpointing strategies uses real price trace of amazon’s spot instance to

adapt price of current instance.

• Pros: There are various dynamic checkpointing strategies available such as,

– Hour-boundary Checkpointing

– Rising edge-driven Checkpointing

– Checkpointing with Adaptive Decision

– Checkpointing Combinations

Selecting an appropriate method of Checkpointing significantly reduce the price as

well as the task completion time.

• Future Work: Future work includes identification of correlations between current

and past prices, between types of instance, and between rising edges. A robust pre-

diction method can also be developed to decrease costs of monetary and completion

times.

3.6 Coordinated checkpoint versus message log for

fault tolerant MPI

[5]

• Author: AurelienBouteiller, PierreLemarinier, Geraud Krawezik, Franck Cappello

• Year: 2003

• Transaction: IEEE International Conference on Cluster Computing (IEEE)

• Summary: Comparision is made between two checkpointing method namely,

– Coordinated Checkpoint - It is mechanism of fault tolerance in which check-

points for all processes executing are coordinated and stored, so that in case of

failure the task can be restarted from the latest checkpoint. Its performance

highly depends on the location where check-pointing images are stored locally

or remotely on independent server.

18

– Message Logging associated with Uncoordinated Checkpoint - In this method

of fault tolerance all processes executing can make a checkpoint without being

coordinated. Execution of process is supposed to be piece-wise deterministic,

that means it is governed by its message receptions. So all these communi-

cations are stored in stable media so that it is possible to rollback only the

crashed processes to a precedent local snapshot and execute the same compu-

tation as in initial execution.

Based on evaluation results of both method it is discovered that message logging

has higher performance over coordinated checkpointing even with a frequency of

one fault per hour.

• Pros:

– Coordinated Checkpoint- It offers a low overhead on fault free execution.

– Message Logging- It allows to checkpoint individual processes in an uncoordi-

nated manner w.r.t other processes, so snapshot processes are taken and on

failure only that particular process is being restarted from the latest checkpoint

not all the processes are being restarted from a global checkpoint.

• Cons:

– Coordinated Checkpoint- It offers comparatively high synchronization cost

before checkpoint, cost of synchronized checkpoint and cost of restart after

fault.

– Message Logging- It has significant message transfer overhead even if no fault

occurs.

3.7 DMTCP:Transparent Checkpointing for Cluster

Computations and the Desktop

[1]

• Author: Jason Ansel, Kapil Arya, Gene Cooperman

• Year: 2009

19

• Transaction: IEEE

• Summary: DMTCP is a Distributed Multi-Threaded CheckPointing system, that

provides checkpointing facility for distributed applications running on clusters as

well as for desktop applications. It provides support for critical feature of trans-

parency as there is no requirement of re-compilation and re-linking of user bina-

ries. Also binaries uses no root privileges and can efficiently add the capability of

save/restore to an application.

• Pros: It uses forked checkpointing in which a child process is forked and does

the checkpointing task while execution of applications continues by parent process,

leveraging UNIX copy-on-write-semantics. Hence the time required for writing

checkpoint to disk is totally eliminated as the process of checkpointing is executed

in parallel.

• Cons: It has a demerit that as it uses forked checkpointing, using which the com-

pression runs in parallel with the executing user application this may slow down

the user process, which may require longer thwn usual.

• Future Work: In future, support can be provided for new models of communi-

cation such as Remote Direct Memory Access (RDMA) and multicast, as used in

networks such as InniBand. Also in future, extended support can be provided to

checkpoint X-Windows applications, as it is currently demonstrated by the simple

checkpointing of TightVNC.

3.8 Hybrid Checkpointing for MPI Jobs in HPC En-

vironments

[22]

• Author: Chao Wang, Frank Mueller, Christian Engelmann, Stephen L. Scott

• Year: 2010

• Transaction: 16th International Conference on Parallel and Distributed Systems

(IEEE)

20

• Summary: In high performance computing number of cores used much high. Also

frequency is high, which requires checkpointing for fault tolerance. Although a sub-

set of the process image changes between the subsequent checkpoints whole process

image is taken. In the proposed hybrid checkpointing technique, alternatively in-

cremental and full checkpointing is carried out.

• Pros: It uses an incremental checkpointing technique alternatively with full check-

pointing, which requires to capture only the data that changed since last checkpoint

captured. Hence it results in reduced checkpoint sizes, which in turn reduces the

cost and overhead associated with checkpointing.

• Cons: It has demerit that as it uses incremental checkpointing so the number of

checkpoints required to restart the process/jobs incase of a failure is total num-

ber of incremental checkpoints after the last full checkpoint and also the last full

checkpoint, which may increase the restart time of process/job incase of a faillure.

3.9 Towards Scalable Application Checkpointing with

Parallel File System Delegation

[3]

• Author: Dulcardo Arteaga, Ming Zhao

• Year: 2011

• Transaction: Sixth IEEE International Conference on Networking, Architecture,

and Storage(IEEE)

• Summary: A new technique named Parallel File System (PFS) is proposed, which

delegates the PFS storage space management, used to checkpoint applications. So

PFS system is relieved from the load of metadata operations during their check-

pointing.

• Pros: Parallel File System (PFS) based checkpointing gradually reduces number of

metadata operations handled by metadata servers during process of checkpointing,

as it provides a view of single logical file to the metadata server.

21

• Future Work: : As in experiments, resources used are only up to 128 clients

and 4 servers simultaneously, but the same type of advantage can be obtained by

delegation used in PFS, when the count of clients and servers scale up proportionally

in larger HPC system. So in future evaluation can be done on real production HPC

system which has much larger scale testbed used.

3.10 Thread-Based Live Checkpointing of Virtual Ma-

chines

[19]

• Author: Vasinee Siripoonya, Kasidit Chanchio

• Year: 2011

• Transaction: IEEE International Symposium on Network Computing and Appli-

cations (IEEE)

• Summary: Proposed technique of Thread-based Live Checkpointing (TLC) mech-

anism takes advantage of pre-copy live migration mechanism which introduces a

checkpoint thread, that is responsible for the most of the checkpointing activities.

In this mechanism the checkpoint thread continues saving the virtual machine state

to some persistent storage, while the virtual machine thread is allowed to simulta-

neously progress with normal execution.

• Pros: It is similar to concurrent checkpointing but it has advantage over concurrent

checkpointing that it uses incremental checkpointing which periodically copies only

the changed pages to a hash table rather than copying an entire page to the buffer

on each memory write operation, so the over head of checpointing is reduced.

• Cons: For higher memory updates in locality the incremental checkpointing

incurrs higher cost of checkpointing.

• Future Work: In future support can be provided to implement Thread based

Live Checkpointing for multiprocessor VMs, that would automatically switch TLC

operation to T-onesave when high memory update locality is detected based on

some set of rules.

22

3.11 Predicting Job Start Times on Clusters

[19]

• Author: Hui Li, David Groep, Jeff Templon, Lex Wolters

• Year: 2004

• Transaction: IEEE International Symposium on Cluster Computing and the Grid

• Summary: Start time of job is predicted based on statistical analysis of historical

job traces and simulation of schedulers at different sites.

• Pros:

– Using such prediction of job start time middleware component such as resource

broker can balance workload distributions.

– Also it can be used to compute price of resources in a grid accounting system.

• Cons: It runs slower than the EDG solution because of the statistical predictions

and simulations involved. Although we have made the simula- tion event-driven,

the simulation time grows linearly as the number of queued jobs increases. Also,

the system assumes that the site does not employ dynamic scheduling policies.

• Future Work: In future further statistical properties of EDG workloads can be

studied and evaluation of more estimators for run time predictions can be done.

3.12 Problem Statement

Provisioning of resources in cloud is crucial task as demand of resources varies continu-

ously. Preparing for peak load capacity would lead to wastage of resources as the resources

will remain idle when system is not used to its full capacity, whereas preparing for average

load would lead to violations of SLAs with customers. In-order to provision resources with

low cost for CSP and at the same time maintaining the SLAs with customers, resources

provisioning should be done judiciously. To solve this problem of resource provisioning,

advance reservation of resources can be used effectively.

23

In this technique resources are provisioned in such a manner that it benefits customer

by providing guaranty of resource availability and at the same time benefits CSP by

providing control to service all customers with the available resources efficiently.

24

Chapter 4

Proposed Design

4.1 Proposed Working Model

In the given figure 4.1 it describes proposed working model, which include the concept

profiling and check-pointing for reservation of resources in the cloud environment. As

figure 4.1 shows assuming that, number of virtual machines listed on one host and such

multiple hosts in one data center, this altogether forms one cloud. It includes modules

such as Profiling resource usage and monitoring task completion, Resource allocator, Task

Scheduler, Task Analyzer and Task scheduling algorithm library description of them is

provided below.

Figure 4.1: Proposed Working Model

25

Description of modules represented in Proposed Working Model are as follows:

• Profiling and Resource Monitoring: Functionality of this module is to compare new

task submitted to cloud with tasks in historical data set of resource usage profile

and to find appropriate resource usage pattern. Then monitor the completion of

tasks based on checkpoints met according to the matched resource usage profile.

• Task Analyzer and Scheduler: Task Analyzer’s functionality is to gather information

of new tasks submitted to cloud. It checks the requirements of the task like arrival

time of the task, deadline of the task and execution time of the task and so on.

Then it passes this information to the scheduler, which schedules the tasks on VM’s

based on availability of resources.

• Scheduling Algorithm Library: Scheduling Algorithm Library consists of multiple

scheduling algorithm from which a scheduling algorithm is chosen according to

resource availability.

• Resource allocator: Functionality of Resource Allocator is to allocate VM’s to the

task based on resource usage requirement of tasks and availability of tasks. If some

task is unable to complete its execution within expected amount of time, then new

VM will be created as per the tasks requirement by resource allocator. Also if

resource allocator find some of the VM’s are lightly loaded or may be idle then it

consolidates tasks of such VM’s thereby efficiently utilizing the available resources.

26

4.2 Proposed System Flow

Figure 4.2: Proposed Flow Model

27

4.3 Steps for Implementation

• Take input from user interface for newly arriving tasks.

• Compare resource usage requirement of task submitted to cloud with historical

data of resource usage profile to find tasks with similar resource usage require-

ment(Profiling).

• Determine estimated time required by task submitted to cloud from the tasks in

history having similar resource usage profile.

• Divide the new task submitted to cloud based on time and place checkpoints at

time when a smallest unit of divided tasks is completed.

• Profile the execution of the newly arrived tasks and also simultaneously monitor

the tasks for its partial completion and meeting checkpoints.

• Reserve the resources for next arriving task after the currently executing tasks

reaches certain threshold of its execution.

28

4.4 Check Pointing Mechanism

Start

End

End

Start

End

C1 C2 C3

C1 C2 C3

Profiled Data
without

Checkpoint

Newly
Arrived

Task
without

Delay

End

End

End

End

Start

Profiled Data
with

Checkpoint

Start

Newly
Arrived

Task
with

Delay

C1 C2 C3

CASE 1

CASE 2

Figure 4.3: Checkpointing Mechanism Model

As shown in Figure 4.2 there are two cases represented which are as follows,

• Case 1: Initially checkpoints are placed in profiled data, so that it can be used

to compare the completion of new task submitted to the cloud which have similar

resource usage requirement.

• Case 2: Comparison is being done between profiled task and newly arrived task

to get status of completion of newly arrived task, based on the checkpoints met

by gradual completion of the task. Hence if a delay is measured in meeting the

checkpoints than it can be predicted in advance that completion of task will suffer

a delay. Also if checkpoints are met in time then accuracy of prediction about the

completion of task gets higher gradually.

29

Chapter 5

Proposed Algorithm

5.1 Task Mapper

Algorithm 1 Task Mapper

1: Initialization
2: for each (Task[i] in NewlyArrivedTasks[])
3: if (There is a VM[j] available in AvailableVMCapacity[] then) then
4: Assign Task[i] to VM[j] for execution and update status of VM[j]
5: Delete Task[i] from NewlyArrivedTasks[]
6: else if (No VM available in AvailableVMCapacity[]) then
7: Append NewlyArrivedTasks[] to TaskQueue[]
8: AdvanceReservation(TaskQueue[])
9: end if

As described in algorithm 1 Task Mapper, which maps the newly submitted cloudlets

to a particular virtual machine. For each newly submitted tasks it checks if there any

virtual machine available according to the resource requirement of tasks. If it finds an

virtual machine available then it assigns the task to that virtual machine, else if no virtual

machine is available then it invokes the Advance Reservation algorithm.

30

5.2 Advance Reservation

Algorithm 2 Advance Reservation

1: Initialization
2: for each (Task[i] in RunningTaskList[]) do
3: if (! look for task to similar Task[i] found in Resource Usage Profile) then
4: do profiling of Task[i] and append to Resource Usage Profile
5: insert Checkpoints in Task[i] using Logs
6: else
7: RemainingTime=updateCompletion(Task[i])
8: if (RemainingTime < (estimatedTaskTime(Task[i])*0.20)) then
9: Checkpoint 4 Met
10: notify broker
11: for each (Task[j] in TaskQueue[])
12: if (Resource Requirement of next Task[j] in TaskQueue[] <= CheckResourceU-

tilization(Task[i])) then
13: //Reserve Resources for Task[j] in TaskQueue[]
14: Assign Task[j] to VM on which Task[i] is executing
15: Delete Task[j] from TaskQueue[]
16: Append Task[j] to ReservedTask[]
17: break;
18: else
19: wait() //wait for some more resources to be
20: end if
21: else if (RemainingTime < (EstimatedTaskTime(Task[i])*0.40)) then
22: Checkpoint 3 Met
23: notify broker
24: else if (RemainingTime < (EstimatedTaskTime(Task[i])*0.60)) then
25: Checkpoint 2 Met
26: notify broker
27: else if (RemainingTime < (EstimatedTaskTime(Task[i])*0.80)) then
28: Checkpoint 1 Met
29: notify broker
30: end if
31: end if

As described in algorithm 2 Advance Reservation, which reserves resources for the task

according to its resource requirements. For each task that is in execution it monitors the

completion of task using the checkpoints available in resource usage profile of similar task

in history. Based on checkpoints met by tasks in execution, completion time of task when

resource will be released can be predicted. So predicting the release time of resource, next

task in queue whose resource requirement can be satisfied by the resource that is likely

to be released in short duration, is assigned to that particular virtual machine. In this

31

manner resources can reserved for tasks in queue.

32

5.3 Methods used in Algorithm

Algorithm 3 updateCompletion

1: updateCompletion(Task[i])
2: return reamainingTime=estimatedTaskTime(Task[i])-(currentTime-startTime)

Algorithm 4 checkResourceUtilization

1: checkResourceUtilization(Task[i])
2: return resource specifications of VM on which Task[i] is executed

Algorithm 5 makeCheckpoint

1: makeCheckpoint()
2: resCheckpoint[cpu,ram,bw,exe time]
3: resCheckpoint[0]=cpu Utilization for Task[i]
4: resCheckpoint[1]=ram Utilization for Task[i]
5: resCheckpoint[2]=remaining Cloudlet Length for Task[i]
6: resCheckpoint[3]=execution Time for Task[i]
7: add resCheckpoint to list of checkpoints for Task[i]

In algorithm 3 is described Update Completion a method used in Advance Reservation

algorithm, which provides status of executing task in terms of the estimated remaining

time for the completion of tasks.

In algorithm 4 is described Check Resource Utilization method used in Advance Reser-

vation algorithm, that check gives details about the resource specifications of the virtual

machine on the current task is executing.

In algorithm 5 description is provided about the Make Checkpoint method being used

in advance Reservation algorithm. This stores resource usage at particular tme instances

as checkpoints. Resources considered for making checkpoints at different instances of time

are CPU and RAM, also the remaining cloudlet length at that particular time instance

is recorded as part of the checkpoint.

33

5.4 Flowchart of Algorithm

Start

Client
Interface

Cloud Broker

Resources
available

Allocate Task to Vm
Available

Advance
Reservation

For each task in execution list , find Task
with similar resource usage, from historical

data of resource usage profile and
compare them based on checkpoints to

find percentage completion task.

Checkpoint 4
Met

Checkpoint 3
Met

Checkpoint 2
Met

Task Terminated
Or killed

END

Make Check
Point & Notify

Broker

Yes

No

No

Yes
Yes

Yes

Yes
No

Checkpoint 1
Met

No

No

No

Figure 5.1: Flowchart Diagram based on Algorithm

34

As shown in figure 5.1 flowchart diagram of algorithm is represented, which describes

working flow of the proposed system which is as follows,

• New task to be executed are submitted to the cloud environment using the client

interface.

• Tasks submitted through client interface are received by broker, which has infor-

mation of both the number of tasks submitted and the number of virtual machines

that are available in cloud environment.

• Using the information available broker assigns new tasks submitted to cloud if

enough resources are available, else new tasks are queued and the advance reserva-

tion algorithm is invoked.

• Advance Reservation algorithm checks for each task in execution list , find Task

with similar resource usage from historical data of resource usage profile.

• Then based on checkpoints available in resource usage profile of the similar tasks in

history the task in execution is being monitored to find the number of checkpoints

met.

• Based on the checkpoints met prediction can be made regarding the remaining time

for task completion and time at which resources executing the current task will be

released.

• Suppose all previous checkpoints for a task are met on time then it can be predicted

that regular execution of task will be completed by the time it meets the last

checkpoint. And if there is a delay in meeting any intermediate checkpoint then it

is clear that final completion of task will also be delayed by the same amount of

time.

• As each checkpoint broker is notified for meeting the checkpoint, so broker has

an estimate about completion time of task when resource executing task will be

released. Using such an estimate it assigns the new tasks to virtual machine that

can satisfy its resource requirements and that are likely to start executing task as

soon as possible.

35

Chapter 6

Tools and Techniques

6.1 CloudSim

CloudSim simulator is simulates the cloud environment and provide the faciltiy to get

the results similar to applications executing in real cloud. So for implementation of the

proposed model CloudSim provides a better option. Architecture of CloudSim simulator

is as shown in figure 6.1,

[8]

Figure 6.1: CloudSim Architecture

36

Some of the important entities of CloudSim architecture are as follows,

• Data Center: It is used to model the system level core services of cloud infrastruc-

ture. At least one data-center must be created for starting the simulation process.

Data-Center consists of set of hosts which represents the physical machines and

each host can manage multiple virtual machines based on resources available. Its

the functionality of virtual machines to handle the low-level processing.

• Host: It is component that actually represents the physical machines in the data-

centers. It is used to allocate processing capabilities which is defined in unit of

millions of instructions per second, memory and the scheduling policy used in allo-

cating different processing cores to multilple virtual machines which are managed

by the particular host.

• Virtual Machine: Virtual Machines are responsible execution of the tasks sub-

mitted to clouds. Different number of virtual machines are allocated to different

hosts, so that the processing cores can be scheduled to virtual machines, which is

managed by this component. The configuration depends on particular application,

but by default allocation of virtual machines is based on ”first-come first-serve”

policy.

• Datacenter broker: It act as mediator between clients and the Cloud Service

Providers (CSP) to map the tasks submitted to the cloud to appropriate virtual

machine based on its resource requirements.

• Cloudlet: It is responsible for modelling the application service based on compu-

tational requirements in CloudSim.

• CloudCoordinator: Responsibility of this component is to manage the communi-

cation with brokers and other Cloud Coordinators. Also it monitors internal state

of data center periodically in terms of simulation time.

The CloudSim library is used for the following operations:Extensive scale distributed

computing at server farms ,Virtualised server has with customisable arrangements .Sup-

port for demonstrating and reenactment of substantial scale distributed computing server

farms. Support for displaying and reenactment of virtualised server has, with customis-

able approaches for provisioning host assets to VMs .Support for demonstrating and

37

recreation of vitality mindful computational assets . Bolster for displaying and recreation

of server farm organize topologies and message-passing applications. Bolster for display-

ing and reproduction of combined mists. Bolster for element addition of reproduction

components, and ceasing and continuing recreation. Bolster for client defned strategies to

apportion hosts to VMs, and approaches for dispensing host assets to VMs. User-defned

arrangements for portion of hosts to virtual machines.The real restriction of CloudSim is

the absence of a graphical UI (GUI).

6.2 WEKA

WEKA is an acronym for Waikato Environment for Knowledge Analysis. It consists of a

bundle of machine learning algorithms which are implemented in Java, developed at the

University of Waikato, New Zealand. Its library contains a collection of algorithms for

data analysis and predictive modelling. It also provides visualization tools which provides

graphical user interfaces for easy access to these functions.

WEKA provides support for several data mining tasks like data pre-processing, classi-

fication, clustering, regression, attribute/feature selection, and visualization. For dataset

WEKA supports file of type .arff, .csv, which describes data-points by a fixed number of

attributes. It also provides SQL database by using Java DataBase Connectivity (JDBC),

and is able to process the results returned by database query.[23]

6.3 K-Means Clustering

For clustering of tasks into groups k-means clustering algorithm which is available in

WEKA library under the name ”SimpleKmeans” is used. Originally derived from area of

signal processing, which popular for analysis of clusters in data mining, k-means cluster-

ing is a technique for vector quantization. The technique used in k-means clustering aims

to divide n number of observations into k clusters(groups), where k¡n. Here each obser-

vation belongs to the cluster with nearest mean value. Mean value of clusteris known as

centroid of the cluster which serve as prototype of the cluster.[14]

Initially k random seeds are choosen as centroids for the k clusters and then at each

38

iteration distance between cluster centroids and observation is measured and based on

that observations are assigned to the clusters with nearest mean. Also at each iteration

the centroid value is computed based on the values of observation in the particular clus-

ter. Such an iterative process is repeated until either a fixed threshold value for number

of iterations is reached or no observation in the clusters formed change the cluster based

on new computed value of cluster centroid for at least two iterations.

Distance function used in calculating the distance between the cluster centroid and

observations in the dataset is either Euclidean distance or Manhattan distance.

6.4 Implementation Details

As discussed above CloudSim is the tool used, which provides simulation of cloud envi-

ronment and WEKA is the library of machine learning and dat mining algorithms which

is used for the purpose clustering of tasks in groups. Details of exactly how and where

the use of the above mentioned tools is made is provided in the specifications which are

discussed below.

Firstly, specifications of the components like data-centers, hosts and virtual machines

which are created in CloudSim simulator which provides cloud environment are discussed.

Specifications of Data-Centers (DC) and Virtual Machines created in simulated cloud en-

vironment provided by CloudSim are as follows:

Three Data-Centers are created in the simulation environment with four hosts in each

Data-Center. Specification of hosts are as follows:

• RAM - 16384 MB

• Storage - 1000000 MB

• Bandwidth - 10000 Kbps

• MIPS - 1000

• cores/processing elements - octa, quad, dual, dual (one octa, one quad core and

two dual core machines)

Specification of Virtual Machines created are as follows:

• size - 10000 MB

39

• RAM - 512 MB

• MIPS - 1000

• Bandwidth - 1000 Kbps

For experimentation purpose data set used is San Diego Supercomputer Center (SDSC)

SP2 log, available at URL: ”http://www.cs.huji.ac.il/labs/parallel/workload/logs.html”.

[20] Using the specified data set simulation is done in CloudSim simulator, which pro-

vides cloud based environment for execution of tasks. Output of simulation is as shown

in figure 6.2.

Figure 6.2: Output of Simulation

40

Initially as new incoming tasks are executed, a profile of resource usage of tasks is

generated by monitoring resource utilization at different instances in time. Hence history

of resource usage profile is created, which is then used to monitor newly submitted task

to the cloud for its completion of execution, based on the checkpoints met while executing

newly submitted tasks.

As shown in figure 6.3, graph of resource usage profile is presented, which shows re-

source utilization of tasks at different instances of time, namely Time Instance 1 to Time

Instance 5.

Figure 6.3: Profile of Resource Usage

41

Here resources considered for resource usage profile are CPU and RAM, which are

represented by CPU Instance 1 to CPU Instance 5 and RAM Instance 1 to Ram Instance

5 respectively, corresponding to measures of CPU and RAM at different instances of time

from Time Instance 1 to Time Instance 5. Remaining Length Instance 1 to Remaining

Length Instance 5 corresponds to amount of tasks completed at different instances of

time from time Time Instance 1 to Time Instance 5.

Hence, when a new tasks is submitted to the cloud, a search is made for category of

tasks with similar resource requirement. For finding category of newly submitted tasks,

K-means clustering algorithm is used. Clusters are formed using historical data of re-

source usage profile and when a new tasks arrives the model is used to find appropriate

cluster to which the tasks belong. As shown in figure 6.4, details about clusters formed

using SimpleKmeans algorithm is represented.

Figure 6.4: Clustering of Tasks using K-means

As it can seen from figure 6.4 number of iterations performed is 5 and within clus-

ter sum of squared errors is approximately 14.2758. Parameters used for the purpose of

42

clustering are requested processors and requested time, as this two parameters are avail-

able in a cloudlet request before execution of cloudlet begins. Hence when new tasks are

submitted to the cloud mapping of the task to cluster can be done and then pattern of

resource usage is matched with tasks in that particular cluster to find a similar task.

As shown in figure 6.5, graphical user interface of weka tool represents clusters formed

using SimpleKmeans algorithm available in weka library. X-axis represents required num-

ber of processors and Y-axis represents required time. It can be seen from figure 6.5 that

four tasks are being divided into four clusters(groups) based on based onn the selected

parameters i.e. requested number of processors and requested time, as this two parame-

ters are available in resource requirement specifications. Hence when new tasks arrives it

with its resource requirements specification, it can be associated with one of the cluster

based on the parameters of requested number of processors and requested time.

Figure 6.5: Graphical Representation of Clustering of Tasks using K-means

43

Once clusters are formed using resource usage profile of tasks in training data-set,

then as new tasks are submitted to cloud for execution they are being associated to one

of the clusters based on parameters used in the cluster formation. After associating the

new task with a particular cluster, pattern of their usage is compared with resource usage

profiles of the tasks available in the historical data-set. Resource usage at different time

instances is compared between the tasks newly arrived and tasks in historical data-set

belonging to same clusters. Based on such comparison it is determined that checkpoints

placed in resource usage profile of which task in historical data-set is met by the new task

in execution.

Hence, such task is determined whose checkpoints coincides or is range of one stan-

dard deviation from the checkpoint with new task in execution then it can be further

checked if next checkpoint also coincides with this task in execution. So based on such

comparison it can estimated that the completion time of similar task in the historical

data-set will also match with task in execution. So in this manner completion time of

the task in execution can be estimated and which will provide the time for release of

resources being used by the task and this can estimated time can be used to reserve the

resources for the next task in the queue.

For implementation resource usage profiles of about 400 tasks is used and they are

divided into clusters by using k-means clustering. Algorithm for k-means is used from

WEKA library of machine learning and data-mining algorithms, which is named as ”Sim-

pleKMeans”.

For testing purpose about 50 tasks requesting resources are submitted to the CloudSim

simulator, which provides cloud environment to the tasks. The output of the execution of

these tasks also known as cloudlets in the CloudSim environment are as shown in figure

6.6 and figure 6.7.

As shown in figure 6.6 the output of the execution of the 50 cloudlets in CloudSim

environment is shown, when resource usage profiles of similar tasks were available in the

historical data-set.

44

Estimated Time

Actual Time

Figure 6.6: Output of execution of Tasks when Similar Resource Usage Profile is available

As it can seen from figure 6.6 that when tasks with similar resource usage profiles are

available in the historical data-set then the estimation of the task completion time has

good accuracy which is clear from the figure. Also if estimated time is not exactly the

same then it is slightly higher than the actual time which ensures that the resources will be

released by the estimated time, which can seen for cloudlet with id 4 in figure. For cloudlet

1 the estimated and actual time are almost same which is 1 0.21000000000000002s. While

for cloudlet 4 the estimated time is 8.1525s while actual time is 8.1505s, hence estimated

45

time is slightly more then actual time.

Similarly figure 6.7 shows the output of the execution of the 50 cloudlets in CloudSim

environment, but in case when no similar resource usage profiles ofvtasks were available

in the historical data-set.

Estimated Time

Actual Time

Figure 6.7: Output of execution of Tasks when Similar Resource Usage Profile is not
available

As it can seen from figure 6.7 that when tasks with similar resource usage profiles

are not available in the historical data-set then the estimation of the task completion

46

time does not have that good accuracy which is clear from the figure. Also in this case

it is possible that estimated time may be less than the actual time which fails to ensure

that the resources will be released by the estimated time, which can seen for cloudlet

with id 5 in figure. For cloudlet 5 the estimated time is 8.4005s while actual time is

14.199499999999999s, hence estimated time is less than actual time which fails to ensure

that resources will be released by the estimated time.

47

Chapter 7

Conclusion and Future Work

7.1 Conclusion

Provisioning of resources is a difficult task, as planning for peak load leads to overprovi-

sioning and planning for average load leads to under provisioning. Advance Reservation

discussed here mitigates these problems of under-provisioning and over-provisioning by

reserving resources for tasks. In technique discussed here advance reservation is used by

estimating time required for release of resources that are currently executing the ongo-

ing tasks and based on this, reserve the resources for new incoming tasks. Hence using

such a reservation technique for resource provisioning, latency of tasks execution will be

reduced.

7.2 Future Work

In future, focus will be on developing a system that is capable of incorporating tasks of

new type which are currently not present in resource usage profile. Hence, when similar

type of tasks arrives in future, resource usage profile of this task will be fetched from

history and can be used to monitor completion of new tasks submitted to cloud as per

the method discussed here. As well as testing can be done using different synthetic

workload generators and its comparison with real time workload can be done.

48

Chapter 8

Related Publication

8.1 Published Paper

Title ”Advance Resource Reservation based on Context Aware
Workload”

Author(s) Parimal Gajre, Vivek K. Prasad, Dr. Madhuri Bhavsar
Journal Name International Journal of Advanced Research in Computer Sci-

ence
Publisher Name IJARCS
ISSN 0976-5697
Date 26th April, 2017
SJIF 5.845

8.2 Submitted Paper

Title ”Capacity planning through monitoring the resources at IaaS
in Cloud Computing”

Author(s) Harshil Mehta, Parimal Gajre, Vidhi Sutaria, Vivek K
Prasad, Dr. Madhuri Bhavsar

Conference
Name

International Conference on Future Internet Technologies and
Trends

Publisher Name Springer
Status Acceptence Awaited
Date 10th June, 2017
Venue SVNIT University, Surat

49

Bibliography

[1] Jason Ansel, Kapil Arya, and Gene Cooperman. “DMTCP: Transparent checkpoint-

ing for cluster computations and the desktop”. In: Parallel & Distributed Processing,

2009. IPDPS 2009. IEEE International Symposium on. IEEE. 2009, pp. 1–12.

[2] Michael Armbrust et al. “A view of cloud computing”. In: Communications of the

ACM 53.4 (2010), pp. 50–58.

[3] Dulcardo Arteaga and Ming Zhao. “Towards Scalable Application Checkpointing

with Parallel File System Delegation”. In: Networking, Architecture and Storage

(NAS), 2011 6th IEEE International Conference on. IEEE. 2011, pp. 130–139.

[4] Basics of cloud. url: https://www.google.co.in/search?q=basics+of+

cloud & safe = strict & source = lnms & tbm = isch & sa = X & ved = 0ahUKEwi576P -

05PPAhUO52MKHdgnA2wQ_AUICSgC&biw=1366&bih=643#imgrc=3TMPX5OrYwcjwM.

[5] Aurélien Bouteiller et al. “Coordinated checkpoint versus message log for fault

tolerant MPI”. In: Cluster Computing, 2003. Proceedings. 2003 IEEE International

Conference on. IEEE. 2003, pp. 242–250.

[6] Eddy Caron, Frederic Desprez, and Adrian Muresan. “Forecasting for grid and cloud

computing on-demand resources based on pattern matching”. In: Cloud Computing

Technology and Science (CloudCom), 2010 IEEE Second International Conference

on. IEEE. 2010, pp. 456–463.

[7] Cloud Computing Ohio Electronics Record Committee. url: http://ohioerc.org/

?page_id=187.

[8] cloud-simulation-frameworks - home. url: http://cloud-simulation-frameworks.

wikispaces.asu.edu/.

50

https://www.google.co.in/search?q=basics+of+cloud&safe=strict&source=lnms&tbm=isch&sa=X&ved=0ahUKEwi576P-05PPAhUO52MKHdgnA2wQ_AUICSgC&biw=1366&bih=643#imgrc=3TMPX5OrYwcjwM
https://www.google.co.in/search?q=basics+of+cloud&safe=strict&source=lnms&tbm=isch&sa=X&ved=0ahUKEwi576P-05PPAhUO52MKHdgnA2wQ_AUICSgC&biw=1366&bih=643#imgrc=3TMPX5OrYwcjwM
https://www.google.co.in/search?q=basics+of+cloud&safe=strict&source=lnms&tbm=isch&sa=X&ved=0ahUKEwi576P-05PPAhUO52MKHdgnA2wQ_AUICSgC&biw=1366&bih=643#imgrc=3TMPX5OrYwcjwM
http://ohioerc.org/?page_id=187
http://ohioerc.org/?page_id=187
http://cloud-simulation-frameworks.wikispaces.asu.edu/
http://cloud-simulation-frameworks.wikispaces.asu.edu/

[9] Sheng Di et al. “Optimization of cloud task processing with checkpoint-restart

mechanism”. In: 2013 SC-International Conference for High Performance Comput-

ing, Networking, Storage and Analysis (SC). IEEE. 2013, pp. 1–12.

[10] Zhenhuan Gong, Xiaohui Gu, and John Wilkes. “Press: Predictive elastic resource

scaling for cloud systems”. In: Network and Service Management (CNSM), 2010

International Conference on. Ieee. 2010, pp. 9–16.

[11] K. Hwang, J. Dongarra, and G.C. Fox. Distributed and Cloud Computing: From

Parallel Processing to the Internet of Things. Elsevier Science, 2013. isbn: 9780128002049.

url: https://books.google.co.in/books?id=IjgVAgAAQBAJ.

[12] Evangelia Kalyvianaki, Themistoklis Charalambous, and Steven Hand. “Self-adaptive

and self-configured cpu resource provisioning for virtualized servers using kalman

filters”. In: Proceedings of the 6th international conference on Autonomic comput-

ing. ACM. 2009, pp. 117–126.

[13] Arijit Khan et al. “Workload characterization and prediction in the cloud: A mul-

tiple time series approach”. In: Network Operations and Management Symposium

(NOMS), 2012 IEEE. IEEE. 2012, pp. 1287–1294.

[14] K-means clustering. url: https://en.wikipedia.org/wiki/K-means_clustering.

[15] Bhavani B Nagesh et al. “Resource Provisioning Techniques in Cloud Computing

Environment-A Survey”. In: IJRCCT 3.3 (2014), pp. 395–401.

[16] Shivangi Nigam and Abhishek Bajpai. “An Optimal Resource Provisioning Algo-

rithm for Cloud Computing Environment”. In: ().

[17] Gang Ren et al. “Google-wide profiling: A continuous profiling infrastructure for

data centers”. In: (2010).

[18] Nilabja Roy, Abhishek Dubey, and Aniruddha Gokhale. “Efficient autoscaling in

the cloud using predictive models for workload forecasting”. In: Cloud Computing

(CLOUD), 2011 IEEE International Conference on. IEEE. 2011, pp. 500–507.

[19] Vasinee Siripoonya and Kasidit Chanchio. “Thread-based live checkpointing of vir-

tual machines”. In: Network Computing and Applications (NCA), 2011 10th IEEE

International Symposium on. IEEE. 2011, pp. 155–162.

51

https://books.google.co.in/books?id=IjgVAgAAQBAJ
https://en.wikipedia.org/wiki/K-means_clustering

[20] D. Tsafrir. Parallel Workloads Archive: Logs. url: http://www.cs.huji.ac.il/

labs/parallel/workload/logs.html.

[21] Christian Vecchiola et al. “Deadline-driven provisioning of resources for scientific

applications in hybrid clouds with Aneka”. In: Future Generation Computer Sys-

tems 28.1 (2012), pp. 58–65.

[22] Chao Wang et al. “Hybrid checkpointing for MPI jobs in HPC environments”. In:

Parallel and Distributed Systems (ICPADS), 2010 IEEE 16th International Con-

ference on. IEEE. 2010, pp. 524–533.

[23] Weka (machine learning). url: https : / / en . wikipedia . org / wiki / Weka _

(machine_learning).

[24] Kuai Xu, Feng Wang, and Lin Gu. “Profiling-as-a-service in multi-tenant cloud

computing environments”. In: 2012 32nd International Conference on Distributed

Computing Systems Workshops. IEEE. 2012, pp. 461–465.

[25] Sangho Yi, Derrick Kondo, and Artur Andrzejak. “Reducing costs of spot instances

via checkpointing in the amazon elastic compute cloud”. In: 2010 IEEE 3rd Inter-

national Conference on Cloud Computing. IEEE. 2010, pp. 236–243.

[26] Rostyslav Zabolotnyi, Philipp Leitner, and Schahram Dustdar. “Profiling-Based

Task Scheduling for Factory-Worker Applications in Infrastructure-as-a-Service Clouds”.

In: 2014 40th EUROMICRO Conference on Software Engineering and Advanced

Applications. IEEE. 2014, pp. 119–126.

52

http://www.cs.huji.ac.il/labs/parallel/workload/logs.html
http://www.cs.huji.ac.il/labs/parallel/workload/logs.html
https://en.wikipedia.org/wiki/Weka_(machine_learning)
https://en.wikipedia.org/wiki/Weka_(machine_learning)

	Certificate
	Statement of Originality
	Acknowledgements
	Abstract
	Abbreviations
	List of Figures
	Introduction
	Cloud Computing
	Cloud Computing Characterstics
	Types of Cloud
	Cloud Services
	Motivation
	Objectives

	Existing Scenario
	Provisioning of Resources
	Problems in Resource Provisioning
	Resource Provisioning Types
	Parameters for Resource Provisioning
	Resource Provisioning Methods
	Demand-Driven Resource Provisioning
	Event-Driven Resource Provisioning
	Popularity-Driven Resource Provisioning

	Literature Review
	Profiling-Based Task Scheduling for Factory-Worker Applications in Infrastructure-as-a-Service Cloud
	Google-Wide Profiling: A Continuous Profiling Infrastructure for Data Centers
	Profiling-as-a-Service in Multi-Tenant Cloud Computing Environments
	Optimization of Cloud Task Processing with Checkpoint Restart Mechanism
	Reducing Costs of Spot Instances via Checkpointing in the Amazon Elastic Compute Cloud
	Coordinated checkpoint versus message log for fault tolerant MPI
	DMTCP:Transparent Checkpointing for Cluster Computations and the Desktop
	Hybrid Checkpointing for MPI Jobs in HPC Environments
	Towards Scalable Application Checkpointing with Parallel File System Delegation
	Thread-Based Live Checkpointing of Virtual Machines
	Predicting Job Start Times on Clusters
	Problem Statement

	Proposed Design
	Proposed Working Model
	Proposed System Flow
	Steps for Implementation
	Check Pointing Mechanism

	Proposed Algorithm
	Task Mapper
	Advance Reservation
	Methods used in Algorithm
	Flowchart of Algorithm

	Tools and Techniques
	CloudSim
	WEKA
	K-Means Clustering
	Implementation Details

	Conclusion and Future Work
	Conclusion
	Future Work

	Related Publication
	Published Paper
	Submitted Paper

	Bibliography

