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Abstract

There are so many departments in hospital. Radiology is one of the department. It

mainly works with the medical imaging technology. Radiology machines are used to

perform scans on human body. This scans are performed by technologists. Results

of this scans are stored as a DICOM image in PACS. Radiologist takes this DICOM

images, observe them and then prepare a report which is used by the physicians. Ra-

diology is one of the most revenue generating department of the hospital and resource

utilization is one of the big challenge for this department. PMT is one which helps this

department in resource utilization. PMT provides a UI which displays some default

dashboards and give user privilage to create dashboards based on their roles. Philips is

using many third party tools for PMT. BI tool, which philips is using, performs well

for adhoc queries but the only problem with this tool is, it is very costly. So, our aim

is to find a low cost alternative with the same performance. This BI tool uses in-chip

technology which is new and no other tools are using it. Other BI tools like Tableau,

QlikView uses in-memory technology. But still this tools are also costly. Low cost

big data analytic solution for PMT is given in this report. For the demo purpose we

will use any public dataset, for the data processing we will use spark SQL, for data

caching we will use tachyon.
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Chapter 1

Introduction

Hospitals has many departments like accident emergency, cardiology, critical care,

gynaecology, neurology, oncology, radiology, urology etc. Radiology is the depart-

ment which works with the digital imaging. It contains different modalities like

CT, MR, Ultrasound, X-Ray etc. These modalities are handled by different modal-

ity managers. Scans are performed on the human body through this modalities by

technologists. Technologists are the person who perform the scans and analyzes the

results. Once the scans are done for a particular patient, radiologist examines the re-

sults and prepare a report and send it to a doctor/physician. All this data are stored

and transferred in DICOM and HL7 format. Resource utilization is the challanging

task for this department. Each and every modality cost is really high and better

utilization of them is required to increase the revenue.

Philips Innovation Campus (PIC) is driving a big data analytics product named as

PMT to enable hospital personnel to improve operational efficiency. The PMT is a

new software framework/platform which provides the information, analysis, reporting

and improvement engine which will be sold as a component of a larger imaging ser-

vices solution. The main emphasis of the PMT is to facilitate quality and efficiency

improvements in operational, clinical, and financial performance for the customers.

1



CHAPTER 1. INTRODUCTION 2

PMT includes many third party components. BI tool (RS currently using) is selected

for PMT because of its remarkable speed and end-to-end BI capability. Reason be-

hind the remarkable speed of this tool is the in-chip technology. All most all the BI

tools make use of in-memory technology but this tool is the first one to exploit the

possibilities of Intel x86 CPU. The only problem with this tool is its cost. So, aim is

to find a low cost alternative for PMT.

1.1 Objective of the Project

The objective of this project is to create

• Cost effective data warehousing solution

• Low latency querying on TB scale

• Consistent caching mechanism across entire data warehouse pipeline



Chapter 2

Theoretical Background &

Literature Survey

As mentioned in the chapter 1, Resource utilization is one of the problems faced

by radiology department in hospitals. As radiology department is the most revenue

generating department in the hospital, problems faced by this department need to

be addressed. In US, one rule has been passed according to which government will

pay only for those medical scans which reveals the defects. So, radiology department

of hospitals needs some means by which they can analyze and monitor the activities

of the department. This is needed to make sure that no unwanted scans happens

for any patient and all the medical devices and staff are utilized properly as it will

affect the revenue of the hospital. Philips Innovation Campus (PIC) is driving a big

data analytics product named as PMT to enable hospital personnel to improve op-

erational efficiency. The PMT is a new software framework/platform which provides

the information, analysis, reporting and improvement engine which will be sold as a

component of a larger imaging services solution. The main emphasis of the PMT is

to facilitate quality and efficiency improvements in operational, clinical, and financial

performance for the customers.

3



CHAPTER 2. THEORETICAL BACKGROUND & LITERATURE SURVEY 4

2.1 Radiology Workflow

Patient arrives at hospital and registration happens. All the patient information get

stored into HIS. Reffereing physician orders required radiology procedure. Once the

order is placed, required patient data is stored into the RIS and order is scheduled.

Modality fetch the data from RIS and if there are any relevent prior studies has been

done then it will be fetched from PACS. Before exam starts, prework is done. Once

the modality and patient is ready, acquisition starts. After the completion of the

acquisition, results are stored in the PACS and if required, results (i.e. images) are

printed. Radiologist fetch those result from PACS. Radiologist does the analysis to

find defects and prepare a report which will be stored into report repository. Physician

fetch those results and prescribes medicine or surgery accordingly. Figure 2.1 shows

the pictorial representation for the same.

Figure 2.1: Radiology Workflow
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2.1.1 HL7

Each hospital stores and share information in different ways. Whenever health in-

formation needs to move across organization boundaries, it hits the incompatible

standards roadblock [2]. Someone has convert the format and pass the information.

So we need a system which standardize the process of storing and sharing the health

information. An EHR (electronic health record) was the initial solution. EHRs have

been very successful in eliminating the problem of integrating systems within an orga-

nization and they continue to be one of the cornerstones of the healthcare IT structure

[?]. It solved the problem within the organization but sharing of information outside

the organization still faces a problem. Orgaization need to share patient information

with insurance companies and send patient care information to the government. So,

EHRs were a limited solution and there is a need of better solution. HL7 was that

better solution. HL7 is an ANSI accredited, OSI level 7, application layer protocol

for exchanging clinical and administrative data between healthcare systems [2]. It

defines the rule for sharing the health data between applications.

2.1.2 DICOM

HL7 is generally used for health record which includes patient information while

DICOM is used for storing medical images (i.e. scan results). DICOM incorporates

standards for imaging modalities such as radiography, ultrasonography, computed

tomography (CT), magnetic resonance imaging (MRI), and radiation therapy [3].

Image formats like JPEG have embedded tags from which we can identify the image.

Similarly DICOM also groups the information into data sets. For example, a file

of a x-ray image of a patient also includes the patient id. Data object of DICOM

contains many attributes like patient name, patient id, etc. and a special attribute

which contains image pixel data.
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2.1.3 HIS

A hospital information system ( HIS ) is essentially a computer system that can

manage all the information to allow health care providers to do their jobs effectively

[4]. It mainly focuses on administrational needs. It is designed to manage hospitals

operation like administrative, financial, leagal issues etc.

2.1.4 RIS

A radiology information system (RIS) is a networked software system for managing

medical imagery and associated data [5]. It is useful in tracking information related to

billing and orders. With PACS, it manage record-keeping, billing and image archives.

2.1.5 PACS

In medical imaging, electronic picture archiving and communication systems (PACS)

have been developed in an attempt to provide economical storage, rapid retrieval of

images, access to images acquired with multiple modalities, and simultaneous access

at multiple sites [6].

2.2 Data Complexity In Healthcare

Two things need to be considered while choosing the hardware and software for big

data analysis

â What type of data has to be process and for what purpose?

â What kind of processing has to perform for analysis and how quickly we need

to get the results?

It takes time to prepare data due to data indexing, data modeling tasks, aggrega-

tion of data from various sources before they can be queried for analytical purposes.

Throughout the analytical process, Specified skills and resources needed. Each time
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changes are introduced to the data model, manpower cost is amplified in order to in-

vestigate new analytic paths. Often additional third party tools are required as well

in order to alleviate some of the pains associated with this process [7]. License fees

are required for analytical tools, as well additional data warehouse and data prepara-

tion tools [7]. More costs are added by the skills required to maintain and integrate

different tools from different providers that may or may not work effectively together.

BI tool that RS department is currently using, provides healthcare organizations with

business analytics software that was built specifically to simplify the analytical pro-

cess for complex data, optimizing speed to handle larger data sets and unifying the

process of analyzing data, thereby eliminating many steps in data preparation and

easing the burden of preparing complex data for analysis in healthcare and other

organizations [7].

This is achieved with the help of two core technology: In-Chip technology and Single-

Stack architecture. In-Chip technology, optimized for processing speed by taking

maximum advantage of modern CPU technology. This means the system can process

100s of millions of rows using low cost, commodity hardware [8]. A Single-Stack archi-

tecture joins all the elements of a healthcare analytics solution, from data preparation

to data management, querying and visualization, into a single, efficient software solu-

tion. The combination of these two core technologies solves the bulk of the problems

associated with complex data.

Healthcare organizations use this technology to combine data from the many disparate

systems they work with. Using this technology they can create operational dashboards

which medical and administrative staff can use for immediate answers to questions

that arise in their day-to-day work, and healthcare analysts can dive deeper into the

data to reach new insights and suggest data-driven courses of action.
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2.3 Database technologies

Database technologies have been evolved rapidly in last two decades. OLAP has

gained popularity in 1990s but at the start of 21st century, in-memory databases

have gained that popularity. However, the requirements of modern business intelli-

gence have set a challenge that in-memory databases will have a very difficult time

responding to [8]. To overcome the problems faced by in-memory databases, new

technology i.e. in-chip technology has been introduced.

2.3.1 OLAP Cubes

This technology was first developed in the late 1960s, but it gained widespread com-

mercial use in the 1990s. As computer hardware was not much powerful at that

time compared to today, OLAP was advanced. For analysts, OLAP has introduced

a better way to do multidimensional analysis on large volumes of data. To build an

OLAP cube, table datasets are converted into multi-dimensional arrays to optimize

data retrieval and querying. For analysis, Users can access particular dimensions of

the data after building cubes.

For a simplified example, lets think of a chain of pet stores that tracks sales of various

items across cities and over time. It might track these figures in a series of spreadsheets

such as these:
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Figure 2.2: OLAP cube example

To answer queries, some basic operations like roll-up, drill-down, slice, dice and pivot

are performed on OLAP cubes. These operations contain aggregated data which are

previously calculated when the system is not being used by users (i.e. at rest). So,

once a query is made, the answer is already within the data cube and recovered di-

rectly.
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But OLAP cubes have some disadvantages. Each query requires a new dimension

which is added to the cube. OLAP databases quickly become resource intensive

when it comes to data storage and management [8]. Each new build takes a relatively

long time to produce because every cell of the data is requires aggregating data for

the CPU to process.

For pre-designed queries, OLAP cubes are very fast but data for new query is not

already calculated and requires other dimensions to be added to the cube which is a

long process.

Advantages:

• Centralized data integration

• Fast data retrieval for specific queries

Disadvantages:

• limited support for ad-hoc queries

• Long build times

2.3.2 In-Memory Database

In-memory databases became popular in the start of the 21st century with the cre-

ation of 64-bit PCs which are cheap and widely available and the adoption of columnar

databases as an alternative to the row-based systems which were the basis for OLAP

cubes [2]. More RAM on a PC allow more data to be quickly queried. If preparation

and processing a million rows of data on a machine with only 2GB of RAM was

a tedious job, users could now add more GB of RAM to their PCs and store data

in relational databases which could be queried much faster than before. In-memory

databases have become much more prominent in recent years. However OLAP-based
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solutions can still be found in massive organization-wide implementations [8].

A computer have mainly two types of data storage tools

• Disk and

• RAM (random access memory).

The main differences between Disk and RAM are defined in the following table:

DISK RAM
Abundant Limited
Slow Fast
Cheap Expensive
Long term Short term

Table I: Comparison of Disk and RAM

Modern computers have more disk storage than the RAM. Reading Data from disk

storage is slow than reading data from RAM and cost of RAM is more than cost of

disk. Two things that creates more disk operations in a disk-based relational database

which result in poor performance are:

• Table Scans: Transferring tables from Disk to RAM for calculations

• Complex Data: Query needs data from different tables which requires joins

In-memory technology takes care of both these issues. It first loads the complete

database into RAM and then transfer data to the CPU from RAM for data fetch

and calculation. All In-memory technologies share the same premise: that it is sim-

ply much faster to perform calculations over data that is stored in RAM than it is

when that same data is stored in a table on a disk [8]. As the 64-bit computers are

considered commodity hardware In-memory technology takes advantage of it. Even

it is relatively cheaper now to add more RAM to both commodity and proprietary

hardware. In-memory technology performs well, at small scales. When datasets are

small and simple, it enables faster development compared to a solution which is built
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on top of an RDBMS. However, scalability is the issue which it faces. When the RAM

is used to store the raw data, it be likely to run out quickly that is the major challenge

related to RAM. As storage size increases, RAM is small and many data sets now

a days are too large to fit. Additionally, each query to the database uses RAM for

intermediate calculations. Complex situations still require that data be widely mod-

ified and loaded into a data warehouse, before being loaded into the memory-based

storage. This situation can arise when there are many users who are querying the

database simultaneously or data sets are complex.

The fact is, data sets are getting larger and larger, with companies creating more in-

formation than continuously both from internal sources and from external ones which

business executives look to in order to gain a competitive advantage [8]. Though the

RAM prices came down with the exponential growth in the size of data, its still

comparatively costly storage which cannot be scaled indeterminately. In memory

technology works well for small amount of data but it does not promise reasonable

performance for large amount and difficulty of the data which is currently being ag-

gregated, analyzed and gathered by modern businesses.

Advantages:

• Fast data retrieval

• Support for ad-hoc queries

Disadvantages:

• Expensive to implement and maintain

• Scalability issues
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2.3.3 In chip memory

ElastiCubes In-Chip Technology is growing rapidly as an alternative solution because

of the limitations of traditional OLAP database technologies. ElastiCube is the result

of thoroughly analyzing the strengths and weaknesses of both OLAP and in-memory

technologies. The aim is to provide a true alternative to OLAP technology, without

compromising the speediness of the development cycle and query response times for

which in-memory technologies are praised [8]. In-Chip technology is the new gener-

ation of in-memory technology used for business analytics and it is fast as well as

scalable. The name ElastiCube comes from the databases unique ability to stretch

beyond the hard limitations imposed by older generation technologies [8].

This technology uses a disk-based columnar database for storage. It is to provide fast

disk reads and is able to load data from disk to RAM when it is required. The queries

are managed in-memory without reads from the disk. And most fundamentally, RAM

limitations are not big issue compare to in-memory technology because no need to

keep entire data in RAM on a eternal basis. It is succeeded through innovative com-

pression and credentials of the database which are not used on a constant basis and

can be gone at rest usually the data businesses are collect around 80 percent.

This Technology also has a different way of creating joins from different tables. It

uses columnar algebra to join between fields Instead of joining tables. This approach,

the join process can be handled only in the CPU cache.

The table below compares between Relational DBMS technology, In-Memory tech-

nology and In-Chip Technology by several technical features:
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Feature RDBMS In-Memory Asso-
ciative

In-Chip Technol-
ogy

Columnar Storage Some No Yes
In Memory Query
Processing

No Yes Yes

Performance Upon
Installation

Slow Fast Fast

Data Capacity Unlimited Limited (by size
and RAM)

Unlimited

Scalability Level Large scale Small scale Small / Large scale

Table II: Comparison of RDBMS, In-Memory technology and In-Chip technology

2.4 BI tool that uses In chip

Speed is the most important factor for any application as users do not like to use the

application which takes too much time to respond. Speed of any application depends

on the available resources and how application makes great use of those resources.

Very few BI products are taking advantage of the possibilities of the Intel x86 CPU.

BI tool (which RS using) uses Intel x86 CPU and it makes full use of that CPU which

gives it a speed advantage. BI applications are data heavy they need to process a

fairly large amount of data to produce a result [9]. BI applications first collect the

data from a database, then they perform a set of analytical calculations and display

the result for the user, in chart or dashboard form. Data are continuously transferred

from disk to memory and then into the CPU till the analysis has not been completed

and the results are not displayed on screen.

An x86 CPU has three layers of in-chip memory. Data are stored in that layers before

they are processed. This layers are cache named L1, L2 and L3. In multiprocessor

environment, each CPU has individual L1 and L2 cache while L3 cache is shared

between all cores. The caches have different capacities. L1 Cache has a capacity of

32Kb, L2 has 256Kb and L3 has 8Mb to 20Mb [9].
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Consider that core takes x time to process the data which is already available in core.

So if the data is available in L1 cache then fetching the data from L1 cache to core, it

will take 3x time. Further if data is in L2 cache then fetching the data from L2 cache

to core, it will take 3.3x time. If the data is available in L3 cache then it will take

3.5x time. Fetching the data from memory will take nearly 10x time and fetching

data from disk is thousands time slower. So if the data is in L1 cache, latency will be

less and if data is in disk, latency will be more. So, while developing the BI software,

this data flow needs to be handled.

BI tool (which RS using) uses a columnar database. It stores the data in to disk

and not in memory. Whenever data comes, it will first compress all the data and

then save it to the disk. Data will be in compressed form until it comes to L1 cache.

This mechanism will improve the I/O performance because it will reduce the transfer

time. Data will be decompressed in L1 cache. This saves memory bandwidth. This is

called cache aware decompression. Because of the cache aware decompression, more

RAM will be available for other resources. If the CPU is kept as busy as possible and

it is used efficiently, the software runs much faster no matter how much memory is

available [9].
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Figure 2.3: BI Application Data Flow

As mentioned above, different cache has different storage capacity but that is not

more than 20 Mb. Disk can store TB of data. This BI tool will keep track of the

location of data. Because of the ElastiCube technology, large volume of data can be

queried from database.

Basically, this BI tool, decompose the queries into subqueries. Many of this subqueries
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are repetitive. BI tool can take advantage of this pattern. This BI tool has included a

learning algorithm which learns characteristics of the various requests (queries) that

it has to satisfy so that it can optimize for them [9]. Subqueries that are decomposed

from main query are pre-loaded into L1 cache and is in compressed form. Then it

will be decompressed and image of the same are also moved to L2 and L3 caches to

make the read and write operation fast.

Subquery results are pre-loaded into L1 Cache as compressed data, making extremely

economic use of this very fast but limited resource. Later decompressed images of that

same data are moved to the larger, but slower, L2 and L3 Caches. So decompression

operations read from and write to cache, and thus are extremely fast. As more queries

are processed, BI tool can reuse those results which will improve the performance. So

higher workload wont slow down the tool but it will improve the speed. Processing

data in chip is at least 100 times faster than processing it in-memory [9].

2.5 Problem Statement

BI tool which philips is using for PMT is a complete end-to-end BI tool. It also per-

forms well for adhoc queries. But the only problem with this tool is, it is very costly.

So, our aim is to find a low cost alternative with the same performance. In-chip

technology is new, no other tools are using it. Other BI tools like Tableau, QlikView

uses in-memory technology. But still this tools are also costly.

As this is the big data solution, we have started with hadoop and spark. Some basic

concepts about hadoop and spark are covered in section 2.6 and 2.7.
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2.6 Hadoop

Hadoop was designed to handle large dataset. It is an open source framework which

is designed to process and store large amount of data which cant be store in a single

disk space.

2.6.1 HDFS

HDFS is a filesystem designed for storing very large files with streaming data access

patterns, running on clusters of commodity hardware [10].

Very large file:

File size is in GB or TB or more which cant be stored in a single disk.

Streaming data access:

The idea behind Building a HDFS is that the write all the efficient pattern once and

then read them multiple times. Before performing any analysis on the datasets, they

are fetched from different souces first.

Commodity hardware:

Commodity hardware is the one which is commonly available and it can be obtained

from multiple vendors. Haddop is designed in such a way that it can run on clusters

with commodity hardwares i.e. expensive hardwares are not required for hadoop. So,

there will be a high chances of failure of nodes.

Blocks:

In general filesystem block size is in KBs and disk block size is 512 bytes. But default

HDFS block size is 128 MB [10]. Reason behind this large block size is to reduce the

cost of seeks. To make sure that the data will not be lost, replication for each block

is done. Replication factor here is typically three.
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Namenodes and Datanodes:

HDFS cluster has two type of nodes: 1) Namenodes and 2) Datanodes. Namenode is

responsible for maintaining metadata of all the directories and files. This information

is maintained in two forms: namespace image file and edit log file [10]. Namenode

knows on which datanode, blocks for a particular file is located but it does not store

location of block because location information is restored after the system starts from

datanodes. A client accesses the filesystem through namenode and datanodes. Datan-

odes store and retrieve blocks when they are told to (by clients or the namenode),

and they report back to the namenode periodically with lists of blocks that they are

storing [10]. As namenode store the metadata of directories and files, without the

namenode filesystem cant be used. If the machine that is running the namenode is

destroyed, all the files stored on the filesystem would be lost because there will be

know way of reconstructing the files from the blocks. This is the reason why namen-

ode should be resilient to failure. This can be achieved in two ways. The first way

is to back up the files that make up the persistent state of the filesystem metadata.

Hadoop can be configured so that the namenode writes its persistent state to multiple

filesystems [10]. Another option is to maintain a secondary name node. It will not

act as a name node but it will simply merge the namespace image with the edit log

which will prevent edit log from becoming very large.

2.6.2 Map Reduce

Hadoop processing happens in two phase i.e map phase and reduce phase. Input and

output of each phase is key value pair. MaprReduce divides the dataset and this

datasets are being processed parallely. Each outputs of map task become the input

to reduce task.
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Example:

Consider five files, each having two colums i.e. city and temprature. We want to find

a maximum temprature for each city. For this, each file will be given to different map

task. Map task will go throught that file which it is processing and find maximum

temprature for each city. After this result of each map task is given to reduce task

which will combine this result and find the maximum temprature for each city.

2.6.3 YARN

In MapReduce 1, there are two types of daemon that control the job execution process:

a job tracker and one or more task trackers [10]. The job tracker takes care of the

scheduling the tasks for task trackers. The task tracker executes the tasks and sends

the report to job tracker. Whenever task fails, job tracker reschedules it. So basically

job tracker manages both scheduling of a task and monitoring task progress. By

contrast, in YARN these responsibilities are handled by separate entities: the resource

manager and an application master (one for each MapReduce job) [10].

2.7 Spark

Apache Spark is developed to overcome the I/O limitations and an alternative for

Hadoop MapReduce. It has emerged as the de facto standard for big data analytics

after Hadoops MapReduce [11]. It is newest parallel computing engine working with

Hadoop. Spark allows the data to be cached in memory and thus removes disc over-

head and increases the processing speed by 100 times [12].As a framework, it combines

a core engine for distributed computing with an advanced programming model for

in-memory processing [11]. It is emerged using Scala which supports both object-

oriented and functional programming. It has fault tolerance capabilities and linear

scalability same as MapReduce. Hadoop uses disk based programming model while

spark uses multistage in-memory programming model. Having an advanced model,

Apache Spark is easy to use and faster. Apache Spark leverages the memory of a
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computing cluster to reduce the dependency on the underlying distributed file sys-

tem, leading to dramatic performance gains in comparison with Hadoops MapReduce

[13]. It is also called a general-purpose engine because set of applications combine all

the computations like iterative algorithms, job batches and interactive queries which

required separated distributed systems.

2.7.1 Resilient Distributed Datasets

Spark created a unique data structure called Resilient Distributed Datasets (RDD

[14]), which allows Spark application to keep data in memory, while MapReduce re-

lies on HDFS to keep data consistent and provides an efficient data sharing between

computations [15]. An RDD is a partitioned collection of records, read-only. RDDs

provide fault-tolerant, parallel data structures that let users store data explicitly on

disk or in memory, control its partitioning and manipulate it using a rich set of op-

erators [15]. An RDD can be generated either from other RDDs or external data

sources. RDD supports coarse grained transformation and logging them to provide

fault tolerance [16]. RDD avoids replication of data by the graph of operations which

were created it. When data is lost on failure then it can efficiently re-compute. When

the user want to use multiple times then RDDs should be explicitly cached. Spark

provide the RDD abstraction by using a simple programming interface. Every RDD

is a common interface with five sections of information: an iterator, partitions, data

placement, metadata and dependencies about its separating schema. This representa-

tion can efficiently express several cluster computing models that previously required

separate frameworks [17].

2.7.2 Spark SQL

Spark SQL is a component of Apache Spark that supports SQL-like processing of

structured data [18]. Spark SQL is evolved by the Shark [18], and reducing the de-

pendence on the Hive. Spark SQL enables users to combine declarative syntax of
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SQL and the concise with the control of procedural programming languages. Spark

SQL absorbs the memory storage (In-Memory Columnar Storage) of Shark, compati-

bility of Hive; it has a great development in terms of data compatibility, performance

optimization, components extension [memory computing]. Spark SQL involves three

modules as follows:

• Core: It processes I/O data which is getting from multiple sources like JSON,

Parquet, RDD, etc. then the query results are represented as schema RDD

• Catalyst: It executes the queries during the process with including optimization,

parsing, physical plans, binding.

• Hive: Hive provides CLI and JDBC / ODBC interfaces for Hive data processing

[19].

In these modules, Catalyst is the core part of the merits and its performance will

affect the overall performance [19].

Advantages:

• Data compatibility: It is not only compatible to hive but also achieved from

the JSON and RDD files.

• Performance optimization: It presents Cost Model to evaluate dynamic query

and get the best physical plan because spark SQL uses In-Memory storage and

different optimization techniques.

• Component extension: To redefine and expand the parser, analyzer and opti-

mizer of SQL [19].

Spark SQL is the main project of the Spark. The optimization is most important

for Spark SQL which is utilized maximum performance of distributed parallel system

and hardware resources.
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2.8 Tachyon

Alluxio, also known as Tachyon. It is the first memory speed virtual distributed

storage system in the world. It combine bridges computation framework and data

access with primary storage system. Applications only need to connect with Alluxio

to access data stored in any underlying storage systems [20]. In addition, Alluxio has

memory-centric architecture which permits data access orders much faster than exist-

ing solutions. In the big data system, Alluxio is between computation jobs or frame-

works, such as Apache Flink, Apache MapReduce, or Apache Spark, and different

storage systems, such as GlusterFS, Amazon S3, HDFS, Google Cloud Storage, Al-

ibaba OSS, or OpenStack Swift. Tachyon brings significant performance improvement

to the ecosystem; for example, Baidu uses Alluxio to improve speedup the through-

put of their data analytics pipeline 30 times [20]. Apart from performance, Tachyon

associations new workloads with data stored in old storage systems. Users can use

Tachyon by using standalone cluster mode, such as on Google Cloud, Amazon EC2

using its standalone cluster mode, for example on, Google Cloud, or launch Tachyon

with Apache Yarn or Apache Mesos. Alluxio is compatible to Hadoop. MapReduce

and Spark programs can run on top of tachyon without change in code. It is one of

the fastest developing open source projects under Apache License 2.0 which is set up

at many companies.

2.8.1 Features

• Tiered Storage – Tachyon can achieve HDDs and SSDs apart from memory it

allows to store large datasets in Tachyon. Data will automatically be managed

between the different tiers, keeping hot data in faster tiers. Custom policies are

easily pluggable, and a pin concept allows for direct user control.

• Lineage – Using lineage, all the applications write output into memory, it check

checkpoints periodically in an asynchronous way. If it is fails, it can recom-
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putation restore the lost files. Tachyon can generate high throughput without

compromise fault-tolerance using lineage.

• Flexible File API – By providing InputStream and OutputStream interfaces

than get the best performance and support for memory I/O because Tachyon

API is similar to one of the java file class. Instead of HDFS, we can use tachyon

with Spark and Hadoop MapReduce because Tachyon is Hadoop compatible.

• Unified Namespace – Tachyon has transparent naming which make sure that

directory hierarchy and file names for object generated in Tachyon when these

objects to the primary storage system.

• Web UI & Command Line – Using the web UI, user can use the file systems eas-

ily. Administrators can access all the information (checkpoint path, locations,

etc.) of every file in debug mode and user can also access /bin file to interrelate

to Tachyon.

Alluxio has a unique place in the big data system because it has central point of access

and also memory centric design. For computation frameworks and user applications,

It manages fast storage and data access, enabling locality and data sharing between

jobs, apart from whether they run on same computation machine or not. For big data

applications, As a output, Alluxio can get an order of magnitude speed up because

it provides a common interface for data access. Since Alluxio hides the integration of

under storage systems to applications, any under storage can back all the applications

and frameworks running on top of Alluxio [21]. Alluxio can work as a combining layer

for all various data sources.
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Figure 2.4: Alluxio Layer

2.8.2 Architecture

Alluxio has a standard master-slave architecture similar to HDFS and GFS (see Fig-

ure 2.4) except that: (1) Alluxio uses the RAM instead of local hard drive for storing

data; (2) For achieve data fault-tolerance, Alluxio uses linage-based recovery instead

of data replication which is used by HDFS, to improve the write throughput. Alluxio

has a single master with multiple workers. At high level, Alluxio is divided into three

components, the master, workers, and clients. Alluxio servers make up by using mas-

ter and workers and it is manage and maintain by system admin. The applications

are clients, for example Alluxio command-line users or MapReduce or Spark. Users

will required to connect with client component of Alluxio.

Master

The master is responsible for managing the global metadata of the system, for ex-

ample, the file system tree [21]. If clients want to modify or read this metadata then
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need to interact with master. Additionally, all workers are also connect to master to

maintain participation in the system. If any components want to communicate with

the master then they can through requests.

Figure 2.5: Alluxio Architecture

Worker

The workers are responsible for managing local resources allocated to Alluxio [21].

These resources could be hard disk, local memory and user configurable. Workers are

storing data as block and also respond the requests which are created by clients for

read and write data. However, the worker is only responsible for the data in these

blocks; the actual mapping from file to blocks is only stored in the master [21].

Client

The Alluxio client is responsible for user access to interact with the servers. Client

communicate with the master for metadata operations and also with workers for read

and write operations on data which is present in Alluxio. If data is present in the

under storage but not in Alluxio, accessed by using client who are under storage.
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Proposed Approach

Currently in Philips propriety technology is used to achieve low latency querying at

TB scale, which is expensive. The implementation of proposed architecture will pro-

vide alternate means at lower cost. Proposed approach is shown in the figure.

Figure 3.1: Proposed Approach

27
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3.1 Plan for theoretical analysis

For the data processing either to use spark sql or apache drill, some research needs to

be done. Also the visulization tool is not final yet. According to the requirement we

can use one of the already available tools or can build one by our own. This decision

is still pending.

3.2 Metrics to be used

For the testing purpose we are planning to use any public health dataset.

3.3 Proposed Tools to be used

Data Input: csv files

Data Processing: Spark SQL

Data caching: Tachyon (Alluxio)

Data retrieval: Apache Drill/Spark

Data visulization: Not yet decided
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Implementation & Results

4.1 Hadoop Installation

Step 1:

Create a dedicated system user and then login with root. Then create hadoop group

and add user to that group.

Add user to the sudo group.

Now give permissions to hsuer for which add below lines in sudoers file.

huser ALL=(ALL)ALL

Step 2 :

Update the source list and Check if java is installed in your ubuntu (inside VM).

29
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Step 3 :

Configure SSH

All the communication in HDFS happens over TCP/IP and for the data movement

HTTP is used.

To launch the processes on slave nodes, Shell (SSH) is used by Hadoop core. SSH

connection needs to be password-less.

Install SSH server using below command.

Step 4 :

Generate SSH public/private key for communication. Share this public/private key

pair with different hadoop users to authenticate them.

As it is required to unlock the key without any interaction, we will create a RSA key

with empty password. In real scenario, empty password is not recommended but here

you do not want to type password every time i.e whenever Hadoop node interaction

happens.

Step 5 :

Copy public key to authorized key file & edit permissions. Enable SSH access to your

local machine with this newly created key.

Step 6 :

Change permission of file authorized key to have all permissions.
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Step 7 :

Start SSH.

Step 8 :

Use below command to test the SSH setup.

Press Enter key. Here it should not ask for any password. If it asks for any password

use below command.

Step 9 :

Disable IPV6 as Apache Hadoop has only been tested and developed on IPv4 stacks

and it is not supported on IPv6 networks. So, Hadoop needs IPv4 to work, and only

IPv4 clients can talk to the cluster. Because of this limitation of hadoop, if your

organisation moves to IPv6 only, you will encounter problems.

To disable IPv6 add below lines in sysctl.conf file at the end.

It should display 1 (It means ipv6 has been successfully disabled). Reboot the system

if it is not 1.
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Step 10 :

Download hadoop from http://redrockdigimark.com/apachemirror/hadoop/common/hadoop-

2.7.3 /hadoop-2.7.3.tar.gz

Step 11 :

Move this downloaded file to /usr/local/ directory.

Step 12 :

Unzip this file and give permissions to user.

Step 13 :

Set java path in hadoop-env.sh

Step 14 :

Update the bashrc file with below information

Set PATH variable.
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Open a new terminal to make all the changes in affect.

Step 15 :

Create a temp directory used as base location for HDFS.

Step 16 :

Update yarn-site.xml

Step 17 :

Update core-site.xml
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Step 18 :

Update mapred-site.xml

Now create the dirs required for hadoop
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Step 19 :

Update hdfs-site.xml

Step 20 :

Format the HDFS filesystem via Namenode

Step 21 :
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To start single node cluster follow below steps.

All the nodes are started as below.

4.2 Spark Installation

Step 1 : Check the Java version.

Step 2 : Download the Scala using wget.

Step 3 : Extract the downloaded file.
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Step 4 : Update bashrc file.

Step 5 : Restart bashrc.

Step 6 : Verify if scala is installed successfully or not.

Step 7 : Install git. Spark build depends on git.

Step 8 : Download Spark and extract downloaded file.

Step 9 : Update bashrc file.

Make sure below lines are there in bashrc file.

Step 10 : Start all the services of Hadoop

Step 11 : Start spark shell
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Spark is installed successfully

4.3 Tachyon Installation

Alluxio can be configured in a variety of modes. The simplest setup for new users is

to run Alluxio locally. Below are the steps to install locally. Before installing Alluxio,

make sure you have installed Java in your system (JDK 7 or above versions).

Step 1 : Download the Alluxio 1.0.0

Step 2 : Create alluxio-env.sh file in conf folder using alluxio-env.sh.template file.

To run Alluxion in standalone mode, update ALLUXIO UNDERFS ADDRESS in

alluxio-env.sh file. Set ALLUXIO UNDERFS ADDRESS to a tmp directory in the

local filesystem (e.g., export ALLUXIO UNDERFS ADDRESS=/tmp).

Step 3 : Format Alluxio first and then start it locally.

Note: When we start alluxio locally, user will need to enter root password mul-

tiple times because Alluxio needs to setup RAMFS. To avoid the need to repeat-

edly input the root password, you can add the public ssh key for the host into
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/.ssh/authorized keys.

Verify that Alluxio is running by visiting http://localhost:19999.

4.3.1 Alluxio Master Web Interface

The Alluxio master serves a web interface to help manage the system. The default

port for the Alluxio master web interface is 19999, so the web interface can be viewed

by visiting http://MASTER IP:19999. For instance, if you started Alluxio locally,

the master web interface can be viewed by visiting localhost:19999.

The Alluxio master web interface contains several different pages, described below.

4.3.1.1 Home Page

The Alluxio master home page looks something like below:

Home Page includes below sections:

Alluxio Summary: Alluxio system level information.

Cluster Usage Summary : Alluxio storage information as well as under storage

information. Alluxio storage utilization can be near 100%, but under storage utiliza-

tion should not approach 100%.
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Storage Usage Summary: Alluxio tiered storage information which gives a break

down of amount of space used per tier across the Alluxio cluster.

4.3.1.2 Configuration Page

Syatem Confuguration page will give information about current system configuration.

The configuration page has two sections:

Alluxio Configuration: A map of all the Alluxio configuration properties and their

set values.

White List: Contains all the Alluxio path prefixes eligible to be stored in Alluxio.

A request may still be made to a file not prefixed by a path in the white list. Only

whitelisted files will be stored in Alluxio.

4.3.1.3 Log File System Page

You can see the logs for Alluxio file system through the UI. When selecting the ”Logs

File System” tab in the navigation bar, you will see something like this:
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4.3.1.4 Browse In-Memory Files Page

This section lists all the in-memory files with details like name of the file, its size, size

for each block, its creation time and modification time.

4.3.1.5 Workers Page

The master also shows all known Alluxio workers in the system and shows them in

the ”Workers” tab.

The workers page gives an overview of all Alluxio worker nodes divided into two

sections:
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Live Nodes: A list of all the workers currently serving Alluxio requests. Clicking

on the worker name will redirect to the workers web UI.

Dead Nodes: A list of all workers proclaimed as dead by the master, usually due

to a long timeout waiting for the worker heartbeat. Possible causes include system

restart or network failures.

4.3.1.6 Master Metrics

To Access master metrics section, click on the Metrics tab in the navigation bar.

This section shows all master metrics. It includes the following sections:

Master Gauges: Overall measures of the master.

Logical Operation: Number of operations performed.

RPC Invocation: Number of RPC invocations per operation.

4.3.2 Alluxio Workers Web Interface

Each Alluxio worker also serves a web interface to show worker information. The

default port for the worker web interface is 30000 so the web interface can be viewed

by visiting http://WORKER IP :30000. For instance, if you started Alluxio locally,

the worker web interface can be viewed by visiting localhost:30000
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4.3.2.1 Home Page

The home page for the Alluxio worker web interface is similar to the home page for

the Alluxio master, but shows information specific to a single worker. Therefore,

it has similar sections: Worker Summary, Storage Usage Summary, Tiered Storage

Details.

4.3.2.2 BlockInfo Page

In the ”BlockInfo” page, you can see the files on the worker, and other information

such as the file size and which tiers the files is stored on. Also, if you click on a file,

you can view all the blocks of that file.

4.3.2.3 Worker Metrics

To Access worker metrics section, click on the Metrics tab in the navigation bar.

This section shows all worker metrics. It includes the following sections:

Worker Gauges: Overall measures of the worker.

Logical Operation: Number of operations performed.
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4.4 Tachyon(Alluxio) + Spark

4.4.1 General setup

Alluxio cluster has been set up previously.

For tachyon with spark configuration, modify spark-defaults.conf file by adding below

lines.

If Tachyon is running on Hadoop cluster, create core-site.xml in conf folder of spark

and add below lines to it.

If Tachyon is running in fault tolerant mode with zookeeper, add the following lines

to previously created core-site.xml file.

Modify spark-defaults.conf by ading below lines to it.
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4.4.2 Alluxio as Input and Output

This section explain how to use Alluxio as input and output sources for Spark appli-

cations.

4.4.2.1 Use Data Already in Alluxio

First, copy local data to the Alluxio file system. Put the file LICENSE into Alluxio,

assuming Alluxio is up:

Open spark-shell and Run the following commands, assuming Alluxio Master is run-

ning on localhost:

Go to http://localhost:19999/browse. You will find a file named LICENSE2 contain-

ing double lines of file LICENSE.

4.4.2.2 Use Browse Data in Alluxio

Download any CSV file and put that file in Alluxio using below command, assuming

that Alluxio and spark is running up:

4.5 Results

In the first experiment we calculated time required to count number of lines of a file.

We did this for different size of text files. As we can see that the spark alone perform

better when the file size is small but for larger file size alluxio with spark is better.
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Figure 4.1: Performance Matrix for Text Files

We did the same experiment for the csv files. As we can see that spark and aluuxio

combination perfom far better than spark and combination of spark and HDFS.

Figure 4.2: Performance Matrix for CSV Files

Results of experiment carried out to decide the alternative are shown in figure
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4.1 and 4.2. Even the subsequent file operations will take less time than the first one.

This is the big advantage of alluxio. Files that it will load in to the RAM are MRU

based i.e most recently used file will be dynamically loaded into RAM.



Chapter 5

Conclusion & Future Work

5.1 Conclusion

PMT will help hospital personnel in improving their performance and user satisfation.

BI tool which is currently used for PMT is using in chip technology which gives it

a speed advantage. This is the new techology and no other tools are using it. The

problem with this BI tool is, it is expensive. As an alternative we can use other tools

like Tableau or Qlikview but they are also expensive. So If we are targeting for the

multinational hospitals we can use those tools but small hospitals won’t be able to

afford PMT. So, there was a need to identify an architecture for PMT which is cost

effective.

Apache Spark can be used in the PMT architecture as it provides in memory pro-

cessing but it has some performance limitation. After analysis, we cam to conclusion

that Alluxio which is a memory file system can be used as an alternative for PMT

and we don’t require any costly BI tools for our application.

5.2 Future Work

Currently Alluxio doesn’t give any security features. As PMT deals with the hospital

data, there is a need of secure environment. So, now we will work towards making

48
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this architecture secure. Including Apache Mesosphere in the architecture is also part

of future work as it will be helpful in managing PMT.
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