Implementation and Verification of an
operating system on a Smart Card

Submitted By
Divyank Sheth
15MCEC25

UNIVERSITY

INSTITUTE OF TECHNOLOGY

ij NIRMA

DEPARTMENT OF COMPUTER ENGINEERING
INSTITUTE OF TECHNOLOGY
NIRMA UNIVERSITY

AHMEDABAD-382481
May 2017

Implementation and Verification of an
operating system on a Smart Card

Major Project

Submitted in partial fulfillment of the requirements
for the degree of
Master of Technology in Computer Science and Engineering

Submitted By
Divyank Sheth

(15MCEC25)
External Guide Internal Guide
Mr. Rakesh Kumar Swamy Prof. Kruti Lavingia
Technical Lead Assistant Professor
NXP Semiconductors Nirma University

ij NIRMA

UNIVERSITY

INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER ENGINEERING
INSTITUTE OF TECHNOLOGY
NIRMA UNIVERSITY
AHMEDABAD-382481

May 2017

i NIRMA

UNIVERSITY

INSTITUTE OF TECHNOLOGY

Certificate

This is to certify that the major project entitled ”Implementation and Verifica-
tion of an operating system on a Smart Card” submitted by Divyank Sheth
(15MCEC25), towards the partial fulfillment of the requirements for the award of de-
gree of Master of Technology in Computer Science and Engineering of Nirma University,
Ahmedabad, is the record of work carried out by him under my supervision and guid-
ance. In my opinion, the submitted work has reached a level required for being accepted
for examination. The results embodied in this major project part-I, to the best of my
knowledge, haven’t been submitted to any other university or institution for award of

any degree or diploma.

Prof. Kruti Lavingia Dr. Priyanka Sharma
Internal Guide Program Coordinator
Dr. Sanjay Garg Dr. Alka Mahajan

Head of CE Department Director, IT

il

Certificate

This to certify that Mr. Divyank Sheth (15MCEC25), a student of M.Tech CSE
(Computer Science and Engineering), Institute of Technology, Nirma University, Ahmed-
abad is working at NXP Semiconductors since 13/06/2016 and carried out his thesis
work titled Implementation and Verification of an operating system on a Smart
Card. He is working as intern under guidance of Mr. Rakesh Kumar Swamy (Mentor)
and Mr. Yudhir Kataria (Project Manager). He is working on his assigned work and is
allowed to submit his dissertation report. The results embodied in this project, to the
best of our knowledge, have not been submitted to any other university or institution for

award of any degree or diploma. We wish him all the success in future.

Mr. Yudhir Kataria Mr. Rakesh Kumar Swamy
Senior Project Manager Technical Lead
NXP Semiconductors NXP Semiconductors

v

Statement of Originality

[, Divyank Sheth, Roll. No. 15MCEC25, give undertaking that the Major Project
entitled "Implementation and Verification of an operating system on a Smart
Card” submitted by me, towards the partial fulfillment of the requirements for the degree
of Master of Technology in Computer Science & Engineering of Institute of Technol-
ogy, Nirma University, Ahmedabad, contains no material that has been awarded for any
degree or diploma in any university or school in any territory to the best of my knowl-
edge. It is the original work carried out by me and I give assurance that no attempt of
plagiarism has been made.It contains no material that is previously published or written,
except where reference has been made. I understand that in the event of any similarity
found subsequently with any published work or any dissertation work elsewhere; it will

result in severe disciplinary action.

Signature of Student
Date:

Place:

Endorsed by
Prof. Kruti Lavingia
(Signature of Guide)

Acknowledgements

It gives me immense pleasure in expressing thanks and profound gratitude to Mr. Rakesh
Kumar Swamy and Mr. Yudhir Kataria for his valuable guidance and continual
encouragement throughout this work. The appreciation and continual support has been
a great motivation to me in reaching a higher goal. Their guidance has triggered and

nourished my intellectual maturity that I will benefit from, for a long time to come.

It gives me an immense pleasure to thank Mr. Mahesh DC, Mr. Lokeswara
Bheeman, Miss Sindhu Rajendra Prasad and Mr. Pavan Kumar Kambham-

pati for kind support and providing basic infrastructure and environment.

A special thank you is expressed wholeheartedly to Prof. Kruti Lavingia Institute
of Technology, Nirma University, Ahmedabad for the unmentionable motivation she has

extended throughout course of this work.
I would also thank the Institution, all faculty members of Computer Engineering

Department, Nirma University, Ahmedabad for their special attention and suggestions

towards the project work.

- Divyank Sheth
15MCEC25

vi

Abstract

Now a day, smart card is used at all government and private sectors at all possible
domains. Popularity of smart card has increased because of functionalities provided by
it. But at the same time, it increases responsibility of an operating system of smart card.
Smart card operating system has to deal with file management aspect and communication
standards along with providing support for security mechanism. On top of it multiple
application support need to be provided. So, verification of smart card operating system
becomes very crucial to make sure that above functionalities are supported with highly

secure mechanism for data transfer between smart card and reader.

vil

Abbreviations

AES Advanced Encryption Standard
APDU Application Protocol Data Unit
Card A Proximity Device (PD) in card form factor. so a PICC
CRC Cyclic Redundancy Check

DES Data Encryption Standard

DF Dedicated File

EF Elementary File

MF Master File

PCD Proximity Coupling Device

PICC Proximity Integrated Circuit Card
Terminal PCD

viil

Contents

Certificate

Certificate

Statement of Originality

Acknowledgements

Abstract

Abbreviations

List of Figures

1 Introduction

1.1
1.2
1.3

Smart Card Basics
Smart Card Application
Problem statement

2 Literature Survey

2.1
2.2

2.3

2.4

2.5

Smart card operating systemo
Types of smart card operating system
2.2.1 Global Native Smart Card operating system
2.2.2 Global Non-Native smart card operating system
2.2.3 Global mixed smart card operating system
File management Lo L
2.3.1 Filetypes
2.3.2 Filestructureso Lo
NUnit . . . oo
2.4.1 TestFixture
2.4.2 TestFixtureSetUp
24.3 TestFixtureTearDown
244 SetUp . . . o
245 TearDown
24.6 Testo
Testing oL
2.5.1 White-box testing oo
2.5.2 Black-box testing oo
2.5.3 Characteristics of test cases

X

iii

v

vi

vil

viii

xii

B o

9

File selection command

3.1 Imtroduction

Read and update commands

4.1 Introduction

File Operation Commands

5.1 Introduction

File Management Commands

6.1 Introduction

Data Transmission

7.1 Introduction

Conclusion and future scope

81 Conclusion
8.2 Futurescope. L.

Gantt Chart

Bibliography

18
18

22
22

29
29

33
33

38
38

41
41
41

42

43

List of Figures

1.1
1.2

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
29

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3
5.4
5.5

6.1
6.2
6.3
6.4
6.5
6.6

7.1

Classification of cards
PICC architecture

Java Card architecture
Structure of data files (EFs) o000
Attributes hierarchyo Lo
TestFixture attribute
TestFixtureSetUp attribute
TestFixtureTearDown attribute
SetUp attributeo
TearDown attribute
Test attribute

Functionality of file selection command
command sequence for Select File
Result of execution of test cases for file selection command
Result of execution of test cases for file selection command

Functionality of ReadBinary
Functionality of UpdateBinary
Command exchange for ReadBinary, WriteBinary and UpdateBinary

Result of test cases for ReadBinary
Result of test cases for ReadBinary
Result of test cases for UpdateBinary
Result of test cases for UpdateBinary

Functionality of Decrease command
Functionality of Increase command
Command sequence for Decrease and Increase commands
Result for execution of test cases for Decrease command
Result for execution of test cases for Increase command

Functionality of Create File command
Command sequence for Create File command
File life cycle o
Functionality of Delete File command
Result for execution of test cases for Create File command
Result for execution of test cases for Delete File command

Command APDU and response APDU

X1

9.1

Gantt Chart

xii

Chapter 1

Introduction

1.1 Smart Card Basics

Smart card is a card which is having computer chip either memory type (store data)
or microprocessor type (transact data). This data can be value, information or both.
Data can be stored and processed using smart cards chip. Smart card data is read by
card reader. Here mechanism can be interpreted in term of master and slave, where card
reader act as master and card act as slave.

Cards be divided into two categories: card without chip(magnetic strip card) and card
with chip i.e. smart card. Chip is the element that differentiate memory card from pro-

cessor card. It is divided into two categories:processor card without or with coprocessor.

| Card |
| Card without chip | | Chip card (smart card) |
| Memory card | | Processor card |

Processor card Processor card
without coprocessor with coprocessor

Figure 1.1: Classification of cards

Smart card is also known as PICC (Proximity Integrated Circuit Card) which contain
microcontroller. The microcontroller consist of CPU, RAM, ROM and EEPROM mem-
ory. Smart card is successful because of security feature provided by it and various other
application where it can be deployed. Smart card operating system is stored at ROM
which is responsible for maintaining integrity and confidentiality of stored data, provide
communication with PCD (Proximity Coupling Device) and access right management for

data. []

{Rom (Operating |
{ System)

Figure 1.2: PICC architecture

Smart card is having following security feature.

e Conventional address and data busses exist in usual memory devices are not present
in chip. If multiple chips are used and interconnected then it will be easy to spy

but here single chip is used.
e For better security, encryption algorithm and decryption algorithm is used.

e Non-volatile memory is provided security against unauthorized access.

Smart card provide following cryptographic services:

e Pseudo random number generation

e Key generation routine

DES encryption algorithm

RSA and DSS digital signature generation

Hash function

1.2 Smart Card Application

Smart card is used at both government and private domain for various applications.

Broad category where smart card can be used as follows:[2]

e Financial
Smart card can be used for financial transaction. Now a day contactless smart card
is used for financial transaction. So, there is no need for physical contact between
PICC and PCD. For contactless payment, contactless card need to be flash to reader

within proximity of 8-10 centimetres.

e Healthcare
Smart card can be used in healthcare domain. Smart card can be used to store
patient details, medical records and ease of quickly accessible emergency medical

details and use of government funds and benefits.

e Transportation
Smart card can be used for transportation application like to pay parking fee or
to pay transit fee. For these use case, stored value card is used. It has evolved
from magnetic stripe card to contactless smart card. Most metropolitan areas of
USA use contactless smart card for transportation purpose. Name of regions are
Los Angeles, Houston, Boston, San Francisco and San Diego. Parking industry has

also adopted smart card for payment purpose.

e Identity
For security requirement, smart card is most suitable solution for identity. E.g.
identification, privacy protection. Many organizations have adopted smart card

technology for access control and identity purpose.

1.3 Problem statement

Smart card play very crucial role in domain like financial, healthcare, transportation and
identity etc. Objective is to devised operating system that is robust enough to support

above use cases. Which is followed by verification of smart card operating system.

Chapter 2

Literature Survey

2.1 Smart card operating system

Role of an operating system is to provide clear set of resources rather than expecting
user to manage resources. [3] The functionality of card depends on the operating system
rather than on the microcontroller. ROM is the element where operating system of smart

card resides.

In contrast to known operating system, smart card operating system do not have user

interface. This is because it is written to provide different set of functionalities.

Smart card is being used at many private and public sectors for various applications
and it is growing. To maintain uniformity among different sectors standards are spec-
ified. It introduce challenge for smart card operating system development. As smart
card operating system has to support standards for application management, security

and communication.

Smart card operating system should support multiple application and multiple ven-
dor environment. Operating system must support keys and other sensitive data against

attacks and malicious application must be kept isolated from other application.[/]

Smart card operating system should support communication protocol which in turn

enable communication between PICC and PCD regardless of platform dependency. Smart

card operating system should be such that it can be ported to other smart card with

minimal efforts and cost. Operating system should be design in such a way that it can

accommodate maximum number of application with minimum memory.

Operating system used for smart card is also known as mask. As PICC is used exten-

sively, new challenge is introduced for operating system designer i.e. operating system

must be able to load multiple application in one PICC. Data may be received from dif-

ferent sources, for different application and required to be handled in different way for

each application.

Intervening parties Current PICC Future PICC
Manufacturer -Define PICC mask: HAL + data structures | -Define PICC operating system: HAL + users
(once) and users management commands management commands + execution
support environment
CARD ISSUER -Add application specific function -Create service provider certificate
(once) -Create data structure
-Create user certificates and access rights
SERVICE -Not defined -Are authenticated by the card
PROVIDERS -Create structure and data stored into the
(many times) card
-Create functions performing on those
data and distribute them to card users
with signatures
-Provide keys to the card to control of the
function signature
-Create user certificates and access rights
CARD LUSERS -Are authenticated by the card -Are authenticated by the card
(many times) -Request the execution of commands -Request the execution of a service
according to their access right provider functions according to their
-Get a response access right
-Provide the function code and its
signature to the card
-The card control the signature and
execute the provided function
-Get a response

Smart card operating system should support multiple application. A scenario is like

malicious application gain access over other application or sensitive data. So such scenario

must be avoided. Mechanism to achieve this is no application must be able to add or

remove other application without authentication.

e Card owner must be able to add application that are approved by card issuer.

e One application residing on smart card must not be able to read or remove another

application.
e One application residing on smart card must not be able to add new application.

e One application residing on smart card must not be able to alter access right of

existing application.

e Two application residing on card communicate only after authentication and only

with appropriate access right.

e Above condition is also applicable for communication between application existing

on smart card and application outside smart card.

e Confidentiality and integrity need to be taken care when application communicate

with PCD.

2.2 Types of smart card operating system

Smart card operating system can be divided into following categories:[]
e Global Native
e Global non-Native

e Global Mixed

2.2.1 Global Native Smart Card operating system

This kind of smart card operating system support specification for global platform. It
also support application development which is carried out using C or Assembly i.e. use

of native programming language.

Best example for global native smart card operating system is STARCOS which sup-
port high performance application. At the same time, it requires deep knowledge and

expertise on machine level programming.

High level programming language smart card operating system support framework
that can protect sensitive details. To get same behaviour for native application requires

more expertise and more development time.

2.2.2 Global Non-Native smart card operating system

For quick development and to address security requirements of smart card, high level
programming languages are used. Examples of global non-native smart card operating

systems are Java based OS and MULTOS.

Java based smart card operating system

Java based smart card operating system assist verification as well as execution of Java

bytecode. Java card support inter process communication.

I RHETHE R

~ o il li|lalilalilali o

= = a |i|l al|i|l @i & || & || &
= © © Q| Q || <C || <C |i| <C |i <
© = = < || <L || @ || @ || @ || @
=) o w il @ |} = || = || = |1 =
o a QO > il s || ®m | ® || ® || ©
O @ || @ || 2 || T2 2] T
-) = A R R Y R Y
[t g g e H b H —_ H — H — H [
= = = Q : 5] H O : (=] i (=] H O
S (&) (%] | : = : e : - i o : ©
O QO @ o : o ! = H = ! = ! c
@ N n 22l i@ |i|lo | ©
w - . : = I = T e
— =] [®] H : H ; H
@ o - : : : : :
2 c c
® 2 2 Java APIs
Card Manager Java Virtual Machine

OS Kernel

Figure 2.1: Java Card architecture

MULTOS smart card operating system

Using MULTOS one can develop smart card operating system using programming lan-
guage like Java, C and MEL (MULTOS Executable Language). Separate security aspect
is not supported by MULTOS. It need to be handled at application level.

2.2.3 Global mixed smart card operating system

Native and non-native both have their pros and cons so customers requirement always
cannot be fulfilled by any one. So one new category has evolved which is called global
mixed smart card operating system. Example is Caernarvon operating system.

Smart card operating system need to perform following main tasks:

Transfer of data to and from smart card

e Management of files

Execution of program code

Execution of cryptographic algorithms

2.3 File management

File management is considered as a main responsibility of a smart card operating system.
File management covers creation and deletion of files and provision of read and write
access to particular file. In addition to that file management has to deal with assigning
access rights and observing conflict with access rights if any. Smart card applications

depend on file structure so file management is very crucial.[0]

2.3.1 File types

Smart card operating system support two categories of files. Dedicated File (DF) and
Elementary file (EF).

Smart card file structure is similar to tree structure with root directory. The root
directory is known as MF (Master File). For smart card operating system file structure
onlu one MF exist. MF cannot store data but it can only contain other directories. MF

is identified using FID 3FOO, that file identifier is reserved.

Smart card directories are called DFs (Dedicated Files). Theoretically one can nest it
infinitely. Actually, in application five levels exist. Smart card operating system support
up to eight level. EFs (Elementary file) contains actual application data and operating
system data. EFs are of two types. Internal EF that is used for storage of data required
by card (data is used by smart card for control and management requirement). Working
EF that is used for storage of data not required by smart card (data that is used by

reader for any given transaction).

Transparent file structure Linear file structure
1234567829 n 12345678289 n
HNEEEEEEEEEEE 1
2
Linear variable file structure Cyclic file structure
12345656789 n I;/“*123456?89 n
1 .
2 | 2
|
m | | L om
Y,
TLV file structure
1234568687 n
TIL [[
[T[c[TIL
T(L
T|L |]

Figure 2.2: Structure of data files (EF's)

2.3.2 File structures

For EF files, data can be stored in various ways. Five different ways are available to store

data as shown in figure 2.2.[7]

10

In transparent file structure, the data items are stored as series of bytes. The EF is
seen as sequence of data units. The command READ BINARY and UPDATE BINARY
can be used to read data from or write data to this file structure. Here number of bytes
and an offset from the start of file is required to specify.

In addition to transparent file structure, there are record oriented file structures. Equal
length record can be stored at EFs with linear fixed file structure. For records with
variable file structure one can use EFs with linear variable file structure. If records with
variable length need to be stored then EFs with linear variable file structure will be more
optimize in terms of memory space than EFs with linear fixed file structure.

In case when data stored in past is not required then one can overwrite it. This purpose is
achieved using cyclic file structure. Cyclic file structure maintain pointer which indicate
which record is most recently written.

To deal with records stored at record oriented file can be read and written using READ
RECORD and UPDATE RECORD command.

In TLV data structure, each data object is identified by tag (T) and length (L). It is
followed by value (V) i.e. actual data. The commands GET DATA and PUT DATA are
used to read and store data object.

The card must support at least one of the following methods for EFs:

e Transparent EF
e Linecar EF with fixed size record
e Linear EF with variable size record

e Cyclic EF with fixed size record

2.4 NUnit

NUnit is unit testing framework for Microsoft .NET. It is open source software. It makes
tester job easy. While executing test case it is required to initialize value to variables
and after completion of test it is required to reset value of variables. For large number of

tests it is tedious to do this job manually.

11

Another scenario is in certain iteration, it is required that test of particular category
is only to be run. For large project or for multiple test, it is difficult to find test of re-
quired category. NUnit take out this burden form tester and handle it very nicely. NUnit

support set of attributes via which it can handle these situations.

Primarily two ways to run tests.
e Console runner
e GUI runner

NUnit attribute hierarchy

[TestFixture]
[TestFixtureSetup]

[SetUp]
[Test]
[TearDown]

[SetUp]
[Test]
[TearDown]

[SetUp]
[Test]
[TearDown]

[TestFixtureTearDown]

Figure 2.3: Attributes hierarchy

2.4.1 TestFixture

This attribute is used to indicate class that contain tests and optionally setup and tear-

down.

12

namespace MUnit.Tests

{
using System;
using NUnit.Framework;

[TestFixture]
public class SuccessTests

!
_."..'Il [

Y
J

X

Figure 2.4: TestFixture attribute

2.4.2 TestFixtureSetUp

TestFixtureSetUp is used inside TestFixture. It is used to list set of functions that are

performed prior to execution of any test.

namespace WUnit.Tests
{
using System;
using MUnit.Framework;

[TestFixture]

public class SuccessTests

i
[TestFixtureSetlUp] public void Init()
{/™ ... %}

[TestFixtureTearDown] public void Dispose()
{7/ ... %}

[Test] public woid Add()
{7/ ... %5}

et

Figure 2.5: TestFixtureSetUp attribute

Here Init() is TestFixtureSetUp function. It will get executed before execution of any

test.

2.4.3 TestFixtureTearDown

It is used inside TestFixture. It is used to list set of functions that are performed after

execution of all test.

Here Cleanup() is TestFixtureTearDown function. It will get executed after all tests

13

Egmespace MUnit.Tests

{
using System;
using HUnit.Framework;

[TestFixture]
public class SuccessTests

1
[TestFixturesetUp] public woid Init()

{74 ... % 7}

[TestFixtureTearDown] public void Dispose()
L/ 0 %0}

[Test] public wvoid Add()
{/* ... %}

e

Figure 2.6: TestFixtureTearDown attribute

are completed.

2.4.4 SetUp

It list functions that are performed just before each test method.

namespace Examples.First

Eghespace MUnit.Tests

{
using System;
using MUnit.Framework;

[TestFixture]
public class SuccessTests

{
[5etUp] public woid Init()

1/ e 50}

[TearDown] public void Dispose()
{1/ .0 f)

[Test] public woid Add()
1/ .05 F

e

Figure 2.7: SetUp attribute

Here Init() is SetUp function. It will get executed before execution of Add() test.

14

2.4.5 TearDown

It list functions that are performed just after each test method

namespace HUnit.Tests

{
using System;
using NUnit.Framework;

[TestFixture]
public class SuccessTests

i
[5etUp] public wvoid Init{)

T/ 5%

[TearDown] public void Dispose()
{7/ ... %}

[Test] public wold Add()
{7/ ... %}

e

Figure 2.8: TearDown attribute

Here Cleanup() is TearDown function. It will get executed after execution of Add()

test.

2.4.6 Test

It is used to mark method as a test e.g. public static void methodname()

namespace NUnit.Tests

{
using System;
using HUnit.Framework;

[TestFixture]
public class SuccessTests

{
[Test] public woid Add()

L/ 00 %G

public wvoid TestSubtract()
{ /* backwards compatibility */ }

et

Figure 2.9: Test attribute

15

2.5 Testing

Testing play very crucial role in quality of software. depending on approach adopted for

testing there are mainly two types of testing:

e White-box testing
e Black-box testing

2.5.1 White-box testing

White box testing is also known as glass box testing, clear box testing, structural testing
and transparent box testing. White-box testing tests working of a program. White-box
testing of software focuses on procedural detail. White-box testing can be applied at

following level.

e Unit level
e Integration level

e System level

At unit level, white-box testing checks path within a unit. At integration level, it tests
paths between units. At system level, it tests path between subsystems. Code coverage
is used to indicate amount of code that has been covered during testing. Code coverage

can be represented in following forms:
e Functional coverage: which focuses on coverage of function
e Statement coverage: which focuses on numbers of line covered

e Decision coverage (condition coverage): which focuses on coverage of conditions

2.5.2 Black-box testing

In black-box testing focuses on fundamental aspect of software. Black-box testing does
not focuses on internal logic of software. This methodology consider software as black

box, and examining functionalities without internal implementation details.

16

2.5.3 Characteristics of test cases

e A designed test case must have high probability to find an error.
e Each designed test case must be unique. A test case must not be redundant.

e A designed test case must not be highly complex or simple.

To increase quality of software testing play very important role. In search based soft-
ware testing one can use metaheuristic optimization algorithm for creating test cases.
Many organizations have adopted Search Based Software Testing(SBST). SBST can be
used in another fashion called ISBST (Interactive Search Based Software Testing) tool.

It will use the knowledge and experience of tester to improve search process. [3]

17

Chapter 3

File selection command

3.1 Introduction

A successful execution of file selection command select specified file within a logical chan-
nel. After answer to reset, the MF is implicitly selected. Other files are subsequently
selected via execution of file selection command. To select file 2 byte file identifier (FID)

is used. To select directory file (DF), 1 byte to 16 byte DF name is used.[Y]

File selection command support file selection using path of the file. This path can be
relative where file is selected starting from currently selected DF or absolute, where file

is selected starting from MF.

Previously selected file is deselected only after successful execution of file selection
command. If command cannot be successfully executed then previous selection remain

as it is. This makes sure that file is always selected.

Two ways are supported to select file, explicit file selection which uses FID, DF name
or path specification. In case of implicit file selection it simplifies command execution and
increasing processing speed as it is not required to send File selection command explicitly
to select a file provided that file must be an EF and it must be present within current

select DF.

Different test cases are written and run. Result is shown in 3.4.

18

SELECT FILE

Command e FID (if EF, DF or MF)
or
DF name (if DF)
or
path to file from currently selected DF
or
path to file from MF
or
switch: select next higher-level DF
or

first, last, next, or previous DF (if a partial AID is transferred)

e swifch: return information about the selected file

Response ¢ information about the selected file (if selected via the switch)
e return code

Figure 3.1: Functionality of file selection command
In figure 3.1 functionalities of file selection command is shown.

Smart card Terminal

SELECT FILE
<« Command [FID="'3F 00';
no additional file information necessary|

Search for the file with FID ='3F 00'

IF (file found)

THEN return code = OK

ELSE return code = file not found

Response [return code] - IF (return code = OK)
THEN file selection successful
ELSE file could not be selected

Figure 3.2: command sequence for Select File
In figure 3.2, command exchange between smart card and card reader is shown.

19

@7 SelectFile_Positive_01 Success

|37 SelectFile_Positive 02 Success
@7 SelectFile_Positive_03 Success
|37 SelectFile_Positive 04 Success
@7 SelectFile_Positive_05 Success
|37 SelectFile_Positive 06 Success
@7 SelectFile_Positive_07 Success
|37 SelectFile_Positive_08 Success
@7 SelectFile_Positive_09 Success
|37 SelectFile_Positive_10 Success
@7 SelectFile_Positive_11 Success
|37 SelectFile_Positive_12 Success
@7 SelectFile_Positive_13 Success
|37 SelectFile_Positive_14 Success
@7 SelectFile_Positive_15 Success
|37 SelectFile_Positive_16 Success
@7 SelectFile_Positive_17 Success
|37 SelectFile_Positive_18 Success
@7 SelectFile_Positive_19 Success
|37 SelectFile_Positive 20 Success
@7 SelectFile_Positive_21 Success
|37 SelectFile_Positive 22 Success
@7 SelectFile_Positive_23 Success
|37 SelectFile_Positive 24 Success
@7 SelectFile_Positive_25 Success
|37 SelectFile_Positive 26 Success
@7 SelectFile_Positive_27 Success
|37 SelectFile_Positive_28 Success
@7 SelectFile_Positive_29 Success

Figure 3.3: Result of execution of test cases for file selection command

20

-(5’7 SelectFile_Negative_01 Success

-;57 SelectFile_Negative_02 Success
-(5’7 SelectFile_Negative_03 Success
-;57 SelectFile_Negative_04 Success
-(5’7 SelectFile_Negative_05 Success
-;57 SelectFile_Negative_06 Success
-(5’7 SelectFile_Negative_07 Success
-;57 SelectFile_Negative_08 Success
-(5’7 SelectFile_Negative_09 Success
-;57 SelectFile_Negative_10 Success
-(5’7 SelectFile_Negative_11 Success
-;57 SelectFile_Negative_12 Success
-(5’7 SelectFile_Negative_13 Success
-;57 SelectFile_Negative_14 Success
-(5’7 SelectFile_Negative_15 Success
-;57 SelectFile_MNegative_16 Success
-(5’7 SelectFile_Negative_17 Success
-;57 SelectFile_MNegative_18 Success
-(5’7 SelectFile_Negative_19 Success
-;57 SelectFile_Negative_20 Success
-(5’7 SelectFile_Negative_21 Success
-;57 SelectFile_Negative_22 Success
-(5’7 SelectFile_Negative_23 Success

Figure 3.4: Result of execution of test cases for file selection command

21

Chapter 4

Read and update commands

4.1 Introduction

Read and update command are used to write data to EF and read data from EF. Access
to these EF is limited by access condition, as unauthorized person will not be allowed to

read and/or update.

Depending upon various types of data structure exist for EFs, various commands are
exist for read and/or write. E.g. ReadBinary, UpdateBinary, ReadRecord, UpdateRe-

cord.

ReadBinary is used to read file such as EF with transparent logical structure i.e.

which does not have any internal structure. UpdateBinary is used for writing.
UpdateBinary is equivalent to EraseBinary and WiteBinary. As command name sug-

gest ReadBinary is read command and Update Binary is write command, it is required

to pass an offset to first byte to be addressed and length parameter.

22

READ BINARY

Command e number of bytes to be read
e offset to the first byte to be read
e optional: short FID for implicit selection

Response e data read from the file
e return code

Figure 4.1: Functionality of ReadBinary

UPDATE BINARY

Command e number of bytes to be overwritten
e offset to the first byte to be overwritten
e optional: short FID for implicit selection

Response e return code

Figure 4.2: Functionality of UpdateBinary

23

Smart card

requested data :='03" || "FF"' || '00'
|| IFFI || Iml
Response[requested data || return code]

Response [return code]

Response [return code]

T

NG

T

¥

Terminal

READ BINARY
Command [offset = 2 bytes,
number of bytes to be read = 5]

IF (return code = OK)
THEN READ BINARY successful
ELSE abort

WRITE BINARY

Command [offset = 3 bytes, number of bytes
to be written = 2, data = 'FO F0']

IF (return code = OK)

THEN WRITE BINARY successful

ELSE abort

UPDATE BINARY

Command [offset = 5 bytes, number of bytes
to be written = 2, data = "FO F0']

IF (return code = OK)

THEN UPDATE BINARY successful

ELSE abort

Figure 4.3: Command exchange for ReadBinary, WriteBinary and UpdateBinary

24

|37 ReadBinary_Positive_01 Success

@7 ReadBinary_Positive_02 Success
|37 ReadBinary_Pasitive_03 Success
@7 ReadBinary_Positive_04 Success
|37 ReadBinary_Positive_05 Success
@7 ReadBinary_Positive_06 Success
|37 ReadBinary_Positive_07 Success
@7 ReadBinary_Positive_08 Success
|37 ReadBinary_Positive_09 Success
@7 ReadBinary_Positive_10 Success
|37 ReadBinary_Positive_11 Success
@7 ReadBinary_Positive_12 Success
|37 ReadBinary_Paositive_13 Success
@7 ReadBinary_Positive_14 Success
|37 ReadBinary_Positive_15 Success
@7 ReadBinary_Positive_16 Success
|37 ReadBinary_Positive_17 Success
@7 ReadBinary_Positive_18 Success
|37 ReadBinary_Positive_19 Success
@7 ReadBinary_Positive_20 Success
|37 ReadBinary_Positive_21 Success

Figure 4.4: Result of test cases for ReadBinary

25

-(vf ReadBinary_Megative_01 Success

-.;37 ReadBinary_Megative_02 Success
-(vf ReadBinary_Megative_03 Success
-.;37 ReadBinary_Negative_04 Success
-(vf ReadBinary_Megative_05 Success
-.;37 ReadBinary_Megative_06 Success
-(vf ReadBinary_Megative_07 Success
-.;37 ReadBinary_Megative_08 Success
-(vf ReadBinary_Megative_09 Success
-.;37 ReadBinary_Megative_10 Success
-(vf ReadBinary_Megative_11 Success
-.;37 ReadBinary_Megative_12 Success
-(vf ReadBinary_Megative_13 Success
-.;37 ReadBinary_Negative_14 Success
-(vf ReadBinary_Megative_15 Success
-.;37 ReadBinary_Megative_16 Success
-(vf ReadBinary_Megative_17 Success
-.;37 ReadBinary_Megative_18 Success
-(vf ReadBinary_Megative_19 Success
-.;37 ReadBinary_MNegative_20 Success
-(vf ReadBinary_Megative_21 Success
-.;37 ReadBinary_Megative_22 Success
-(vf ReadBinary_Megative_23 Success
-.;37 ReadBinary_Negative_24 Success
-(vf ReadBinary_Megative_25 Success
-.;37 ReadBinary_Megative_26 Success
-(vf ReadBinary_Megative_27 Success
-.;37 ReadBinary_Megative_28 Success
-(vf ReadBinary_Megative_29 Success
-.;37 ReadBinary_Megative_30 Success
-(vf ReadBinary_Megative_31 Success

Figure 4.5: Result of test cases for ReadBinary

26

|;'_f,7 UpdateBinary_Positive_01 Success

.;_1,? UpdateBinary_Positive_02 Success
|;'_f,7 UpdateBinary_Positive_03 Success
.;_1,? UpdateBinary_Positive_04 Success
|;'_f,7 UpdateBinary_Positive_05 Success
.;_1,? UpdateBinary_Positive_06 Success
|;'_f,7 UpdateBinary_Positive_07 Success
.;_1,? UpdateBinary_Positive_08 Success
|;'_f,7 UpdateBinary_Positive_09 Success
.;_1,? UpdateBinary_Positive_10 Success
|;'_f,7 UpdateBinary_Positive_11 Success
.;_1,? UpdateBinary_Positive_12 Success
|;'_f,7 UpdateBinary_Positive_13 Success
.;_1,? UpdateBinary_Positive_14 Success
|;'_f,7 UpdateBinary_Positive_15 Success
.;_1,? UpdateBinary_Positive_16 Success
|;'_f,7 UpdateBinary_Positive_17 Success
.;_1,? UpdateBinary_Positive_18 Success
|;'_f,7 UpdateBinary_Positive_19 Success
.;_1,? UpdateBinary_Positive_20 Success
|;'_f,7 UpdateBinary_Positive_21 Success
.;_1,? UpdateBinary_Positive_22 Success
|;'_f,7 UpdateBinary_Positive_23 Success

Figure 4.6: Result of test cases for UpdateBinary

27

'-2‘5? UpdateBinary_Negative_01 Success

'(5'7 UpdateBinary_Negative_02 Success
'-2‘5? UpdateBinary_Negative_03 Success
'(5'7 UpdateBinary_Negative_04 Success
'-2‘5? UpdateBinary_Negative_05 Success
'(5'7 UpdateBinary_Negative_06 Success
'-2‘5? UpdateBinary_Negative_07 Success
'(5'7 UpdateBinary_Negative_08 Success
'-2‘5? UpdateBinary_Negative_09 Success
'(5'7 UpdateBinary_Negative_10 Success
'-2‘5? UpdateBinary_Negative_11 Success
'(5'7 UpdateBinary_Negative_12 Success
'-2‘5? UpdateBinary_Negative_13 Success
'(5'7 UpdateBinary_Negative_14 Success
'-2‘5? UpdateBinary_Negative_15 Success
'(5'7 UpdateBinary_Negative_16 Success
'-2‘5? UpdateBinary_Negative_17 Success
'(5'7 UpdateBinary_Negative_18 Success
'-2‘5? UpdateBinary_Negative_19 Success
'(5'7 UpdateBinary_Negative_20 Success
'-2‘5? UpdateBinary_Negative_21 Success
'(5'7 UpdateBinary_Negative_22 Success
'-2‘5? UpdateBinary_Negative_23 Success
'(5'7 UpdateBinary_Negative_24 Success
'-2‘5? UpdateBinary_Negative_25 Success
'(5'7 UpdateBinary_Negative_26 Success
(5’7 UpdateBinary_Negative_27 Success
-.;37 UpdateBinary_Negative_28 Success
(5’7 UpdateBinary_Negative_29 Success

Figure 4.7: Result of test cases for UpdateBinary

28

Chapter 5

File Operation Commands

5.1 Introduction

Data is stored at Elementary File. Data can be modified in two ways: a) Using Update
data command, b) Using Increase/Decrease command. If application is required to have

implementation of counter then use of Increase and Decrease is essential.

Decrease command will subtract mentioned value and Increase command will increase

mentioned value. Functionalities of Decrease and Increase command is shown in below

figure.
DECREASE
Command ¢ value to be subtracted
Response e subtracted value

new value of the record
return code

Figure 5.1: Functionality of Decrease command

Result for execution of test cases are shown at Figure 5.4 and 5.5 respectively.

29

INCREASE

Command ¢ value to be added

Response e added value
new value of the record
return code

Figure 5.2: Functionality of Increase command

Terminal (IFD) Smart card (ICC)
DECREASE
Command [value to be subtracted = 3] —_— command processing
— Response [subtracted value = 3 | new

value = 7 || return code]
IF (return code = OK)
THEN DECREASE successful
ELSE DECREASE could not be executed

DECREASE
Command [value to be subtracted = 2] — command processing
— Response [subtracted value = 2 || new
value =5 || return code]
IF (return code = OK)
THEN DECREASE successful
ELSE DECREASE could not be executed

INCREASE
Command [value to be added = 5] _ command processing
— Response [added value = 5 || new
value = 10 || return code]
IF (return code = OK)
THEN INCREASE successful
ELSE INCREASE could not be executed

Figure 5.3: Command sequence for Decrease and Increase commands

30

-of Decrease 01 Success
-of Decrease_02 Success
-of Decrease_03 Success
-of Decrease 04 Success
-of Decrease_03 Success
-of Decrease 06 Success
-of Decrease 07 Success
-of Decrease_08 Success
-of Decrease_09 Success
-of Decrease 10 Success
-of Decrease 11 Success
-of Decrease 12 Success
-of Decrease_13 Success
~of Decrease 14 Success
-of Decrease_15 Success
-of Decrease_16 Success
-of Decrease 17 Success
-of Decrease_18 Success
-of Decrease_19 Success
-of Decrease_20 Success
-of Decrease_21 Success
-of Decrease_22 Success
-of Decrease_23 Success
-of Decrease 24 Success
-of Decrease_25 Success
-of Decrease 26 Success
-of Decrease 27 Success
-of Decrease_28 Success
-of Decrease_29 Success
-of Decrease_30 Success
-of Decrease_31 Success

Figure 5.4: Result for execution of test cases for Decrease command

31

-9/ Increase_01 Success
-9/ Increase_02 Success
-9/ Increase_03 Success
-9/ Increase_04 Success
-9/ Increase_05 Success
-9/ Increase_06 Success
-9/ Increase_07 Success
-9/ Increase_08 Success
-9/ Increase_09 Success
-9/ Increase_10 Success
-9/ Increase_11 Success
-9/ Increase_12 Success
-9/ Increase_13 Success
-9/ Increase_l14 Success
-9/ Increase_15 Success
-9/ Increase_16 Success
-9/ Increase_17 Success
-9/ Increase_18 Success
-9/ Increase_19 Success
-9/ Increase_20 Success
-9/ Increase_21 Success
-9/ Increase_22 Success
-9/ Increase_23 Success
-9/ Increase_24 Success
-9/ Increase_25 Success
-9/ Increase_26 Success
-9/ Increase_27 Success
-9/ Increase_28 Success
-9/ Increase_29 Success

Figure 5.5: Result for execution of test cases for Increase command

32

Chapter 6

File Management Commands

6.1 Introduction

Considering security aspect, several file management commands are supported by smart
card operating system. Example of such commands are file creation, file deletion and file
disable. If operating system support only single application then these commands often
not supported. Because providing support for such commands will increase large amount
of code which will increase requirement of memory size which in turn increase price of

smart card.

Smart card that support multiple applications are required to have fair partition of
memory and provide authorization key to create file. Since available memory will be
used by all application providers. So this approach prevent one application provider from

capturing entire memory.

Successful execution of authentication command followed by CREATE FILE com-
mand will lead to creation of DFs or EFs at PICC or application level at smart card.
After successful creation of file, file can be selected by SELECT FILE.

Using DELETE FILE command, selected file can be removed from memory of smart
card. Memory that is released by deletion of file can be used for creation of other file.

Functionlity of DELETE FILE command is shown at figure 6.4.

33

CREATE FILE

Command

file type of the new file
IF (file type = DF) THEN [DF name of the new file]
IF (file type = EF) THEN [
FID of the new file
SFI of the new file
access conditions
structure of the new file]
IF (file structure = transparent) THEN [file size]
IF (file structure = linear fixed) OR (file structure = cyclic) THEN
[number of records
record length]
IF (file structure = linear variable) THEN [
number of records

length of each record]

Response e return code

Figure 6.1: Functionality of Create File command

Terminal (IFD)

Smart card (ICC)

CREATE FILE

Command |. ..] _ command processing
IF (return code = OK) - Response [return code]
THEN command successfully executed

ELSE command failed

UPDATE BINARY/RECORD

Command [. . .] _ command processing
IF (return code = OK) - Response [return code]

THEN command successfully executed
ELSE command failed

Figure 6.2: Command sequence for Create File command

34

File does Create file Create file Create file
not exist (variant 1) (variant 2) (variant 3)
[File created] [File inilialized}
Activate Activate
file file
[®
\ 4 Terminat d .
File in use ermingte car D[Card termlnated]
(activated)
Terminate file
Deaciiva_te Activate Delete file
file file
ilei Terminate fil . . Delete fil
‘ (dlzlaecm:i;ed) | erminate e {Fllelermlnated eele e
File does
not exist

Figure 6.3: File life cycle

DELETE FILE
Command « FID

or

DF name
Response s return code

Figure 6.4: Functionality of Delete File command

35

-9 CreateFile_01 Success
~of CreateFile_02 Success
~of CreateFile_03 Success
~of CreateFile_04 Success
~of CreateFile_03 Success
~of CreateFile_06 Success
~of CreateFile_07 Success
~of CreateFile_08 Success
~of CreateFile_09 Success
-9 CreateFile_10 Success
-9 CreateFile_11 Success
~of CreateFile_12 Success
-9 CreateFile_13 Success
-9 CreateFile_14 Success
-9 CreateFile_15 Success
~of CreateFile_16 Success
~of CreateFile_17 Success
~of/ CreateFile_18 Success
-9 CreateFile_19 Success
~of CreateFile_20 Success
-9 CreateFile_21 Success
~of CreateFile_22 Success
-9 CreateFile_23 Success
~of CreateFile_24 Success
~of CreateFile_25 Success
~of/ CreateFile_26 Success
~of CreateFile_27 Success
~of CreateFile_28 Success
~of/ CreateFile_29 Success
-9 CreateFile_30 Success
-9 CreateFile_31 Success
-9 CreateFile_32 Success

Figure 6.5: Result for execution of test cases for Create File command

36

-9/ DeleteFile01 Success
-9/ DeleteFile02 Success
-9 DeleteFile03 Success
-9 DeleteFile04 Success
-9 DeleteFile03 Success
-9 DeleteFile06 Success
-9 DeleteFile07 Success
-9/ DeleteFile08 Success
-9/ DeleteFile09 Success
-9 DeleteFile1l0 Success
-9/ DeleteFilell Success
-9/ DeleteFilel2 Success
-9 DeleteFilel3 Success
-9 DeleteFilel4 Success
-9 DeleteFilel5 Success
-9 DeleteFilel6 Success
-9 DeleteFilel7 Success
-9 DeleteFilel8 Success
-9/ DeleteFilel9 Success
-9 DeleteFile20 Success
-9 DeleteFile21 Success
-9 DeleteFile22 Success
-9/ DeleteFile23 Success
-9 DeleteFile24 Success
-9 DeleteFile25 Success
-9 DeleteFile26 Success
-9 DeleteFile27 Success
-9 DeleteFile28 Success
-9/ DeleteFile29 Success

Figure 6.6: Result for execution of test cases for Delete File command

37

Chapter 7

Data Transmission

7.1 Introduction

There must be agreement between two communicating party to avoid possible collision
while data transmission, which specify which of the two parties will initiate transmission.
For smart card and reader, reader will start communication since it works as master.

Smart card works as slave.

Transmission of data starts with reset signal sent by reader to smart card. In response
to this reset signal, smart card replies with ’answer to reset’(ATR). In response to ATR,
PPS(protocol parameter selection) is optionally sent. PPS is used for setting parameter

for following data transmission.

e Answer to Reset(ATR)
After receiving reset signal, smart card sent out ATR(answer to reset). ATR contain
information regarding data transmission rates and transmission protocol supported

by the smart card.

e Protocol Parameter Selection(PPS)
Protocol Parameter Selection is used to change value of parameter from defined in

ATR. Transmission of PPS is optional.

38

e Transmission Protocol
For contactless smart card, ISO/IEC 14443 standards are used. It specifies charac-

teristics of contactless smart card with maximum distance of 10 cm from reader.

At application level, data record is known as APDU(Application protocol data unit).
Command header and command body makes command APDU. Here header is manda-
tory and body part is optional. A response body and response trailer makes response

APDU. For response APDU, only response trailer is mandatory.

Case4 command APDU Response APDU, variant 2

CLA|INS| P1 | P2 | L, Data L, Data [SW1|SW2

Case3 command APDU Response APDU, variant 1

CLA|INS| P1| P2 | L, Data SWi|Sw2

Case2 command APDU L ~ A ~ J

ctalIns[Pi [P2 L, Response Fiesp_onse
body trailer

Case1 command APDU
CLA|INS| P1 | P2

L A J
Y A4
Command Command

header body

Figure 7.1: Command APDU and response APDU

Four different variants are shown at figure 7.1. Command APDU consist of four
bytes: Class (CLA), Instruction (INS), Parameter 1 (P1) and Parameter 2 (P2). Class
(CLA) indicate standard used to send command. Instruction(INS) indicate command
code. Parameter P1 and P2 is used to provide information that is required for execution

of command.

The command body at max contain three data elements. Lc indicate data length in

command. Le indicate length of expected data in response.

39

For command APDU, four combination are allowed, out of which each combination is
denoted as case. For response APDU, two combination are allowed. Variant 1 as shown
at figure 7.1, is used when expected data length from smart card is zero. It menas no data
is expected in response and only status word is returned, which show status of execution
of command. Variant 2 is used when data is expected from smart card in response of

execution of command.

40

Chapter 8

Conclusion and future scope

8.1 Conclusion

Implementation of commands for smart card is carried out. Implementation is followed
by verification. Here commands covered are File Selection, Read Binary, Update Binary,
Decrease, Increase, Create File and Delete File. It is complying partially with ISO 7816
and fully with ISO 14443. Verification is done on various platform like CSIM, FPGA and

engineering sample.

8.2 Future scope

e This product can be further optimize with an intention to develop low cost smart

card which required optimization at both aspect software and hardware.

41

Chapter 9

Gantt Chart

Gantt Chart for the project is shown in figure 9.1.

2-lan

Implementation for ReadBinary [

Verification of ReadBinary
Implementation for UpdateBinary
Verification of UpdateBinary
Implementation for Decrease
Verification of Decrease
Implementation for Increase
Verification of Increase
Implementation for Create File
Verification of Create File
Implementation for Delete File
Verification of Delete File
Code coverage improvement
Execution on FPGA

Execution on Engineering sample

22-Jan 11-Feb 3-Mar
[
I
[
|
|

Figure 9.1: Gantt Chart

42

23-Mar

12-Apr

2-May

Bibliography

1]

[9]

P. Paradinas and J.-J. Vandewalle, “New directions for integrated circuit cards oper-

ating system,”
“http:/ /www.smartcardalliance.org/smart-cards-applications,”
A. Tanenbaum, Modern operating system.

W. R. Bevier, “A study in operating system verification,” IEEE TRANSACTIONS
ON SOFTWARE ENGINEERING, vol. 15, no. 11, pp. 1382-1396, 1989.

A. M. B.-E. Mohammad R. Eletrib, Mohamed Sobh and H. M. Fahmy, “High perfor-
mance java card operating system,” 2014 Fighth International Conference on Software

Security and Reliability, 2014.

J. A. Keane, “A method of verification in design: an operating system case study,”

Hawaiv International Conference on System Sciences.
W. Rankl, “Smart card application,” 1997.

R. F. K. P-R. T. Bogdan Marculescu, Simon Poulding, “Tester interactivity makes
a difference in search-based software testing: A controlled experiment,” Information

and Software Technology, vol. 78, pp. 66-82, 2016.

W. Rankl and W. Effing, “Smart card handbook,” 2015.

43

	Certificate
	Certificate
	Statement of Originality
	Acknowledgements
	Abstract
	Abbreviations
	List of Figures
	Introduction
	Smart Card Basics
	Smart Card Application
	Problem statement

	Literature Survey
	Smart card operating system
	Types of smart card operating system
	Global Native Smart Card operating system
	Global Non-Native smart card operating system
	Global mixed smart card operating system

	File management
	File types
	File structures

	NUnit
	TestFixture
	TestFixtureSetUp
	TestFixtureTearDown
	SetUp
	TearDown
	Test

	Testing
	White-box testing
	Black-box testing
	Characteristics of test cases

	File selection command
	Introduction

	Read and update commands
	Introduction

	File Operation Commands
	Introduction

	File Management Commands
	Introduction

	Data Transmission
	Introduction

	Conclusion and future scope
	Conclusion
	Future scope

	Gantt Chart
	Bibliography

