
Authentication and Authorization schemes
for Internet of Things

Submitted By

Saurabh Patel

16MCEN14

DEPARTMENT OF INFORMATION TECHNOLOGY

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

MAY 2018

Authentication and Authorization schemes
for Internet of Things

Major Project

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology in Computer Science and Engineering (Networking Technologies)

Submitted By

Saurabh Patel

(16MCEN14)

Guided By

Prof. Gaurang Raval

DEPARTMENT OF INFORMATION TECHNOLOGY

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

MAY 2018

Certificate

This is to certify that the major project entitled ”Authentication and Authorization

schemes for Internet of Things” submitted by Saurabh Patel (16MCEN14), to-

wards the partial fulfillment of the requirements for the award of degree of Master of

Technology in Computer Science and Engineering (Networking Technologies) of Nirma

University, Ahmedabad, is the record of work carried out by him under my supervision

and guidance. In my opinion, the submitted work has reached a level required for being

accepted for examination. The results embodied in this major project part-I, to the best

of my knowledge, haven’t been submitted to any other university or institution for award

of any degree or diploma.

Dr. Gaurang Raval

Guide & Associate Professor,

Coordinator M.Tech - CSE (Networking Technologies)

Institute of Technology,

Nirma University, Ahmedabad

Dr. Madhuri Bhavsar Dr Alka Mahajan

Professor and Head, Director,

IT Department, Institute of Technology,

Institute of Technology, Nirma University, Ahmedabad

Nirma University, Ahmedabad.

iii

Statement of Originality
———————————————————————————————————————

I, Saurabh Patel give undertaking that the Major Project entitled ”Authentication

and Authorization schemes for Internet of Things” submitted by me, towards the

partial fulfillment of the requirements for the degree of Master of Technology in Com-

puter Science & Engineering (Networking Technologies) of Institute of Technol-

ogy, Nirma University, Ahmedabad, contains no material that has been awarded for any

degree or diploma in any university or school in any territory to the best of my knowl-

edge. It is the original work carried out by me and I give assurance that no attempt of

plagiarism has been made.It contains no material that is previously published or written,

except where reference has been made. I understand that in the event of any similarity

found subsequently with any published work or any dissertation work elsewhere; it will

result in severe disciplinary action.

———————–

Signature of Student

Date:

Place:

Endorsed by

Guide Name

(Signature of Guide)

iv

Acknowledgements

It gives me immense pleasure in expressing thanks and profound gratitude to Prof.

Gaurang Raval, Associate Professor, Computer Engineering Department, Institute of

Technology, Nirma University, Ahmedabad for his valuable guidance and continual en-

couragement throughout this work. The appreciation and continual support he has im-

parted has been a great motivation to me in reaching a higher goal. His guidance has

triggered and nourished my intellectual maturity that I will benefit from, for a long time

to come.

It gives me an immense pleasure to thank Dr. Madhuri Bhavsar, Hon’ble Head of

Information Technology Department, Institute of Technology, Nirma University, Ahmed-

abad for his kind support and providing basic infrastructure and healthy research envi-

ronment.

A special thank you is expressed wholeheartedly to Dr. Alka Mahajan, Hon’ble

Director, Institute of Technology, Nirma University, Ahmedabad for the unmentionable

motivation he has extended throughout course of this work.

I would also thank the Institution, all faculty members of Computer Engineering

Department, Nirma University, Ahmedabad for their special attention and suggestions

towards the project work.

- Saurabh Patel

16MCEN14

v

Abstract

Nowadays the Internet of Things is very much in use in the real world which is the net-

work of constrained devices like the sensor. The IoT devices have very limited resources

in terms of computational power, memory, energy etc. The IETF (Internet Engineering

Task Force) has defined several protocols especially for the resource which have con-

strained environment like CoAP, RPL, MQTT etc. at different layers. Authentication

and Authorization are essential to handle secure communication in IoT environment.

OAuth 2.0 Protocol is an open standard protocol which is used to grant access to the

restricted resource via third-party authentication for REST Web architecture. There are

some challenges which are faced when we deploy Oauth 2.0 Protocol in IoT environment

because of constrained resources used in IoT devices. To analyze these challenges we

experimented with various OAuth servers and messaging standards which packs and un-

packs messages by serialization and deserialization. Different messaging approaches for

authorization and authentication for the constrained environment have been analyzed in

the context of latency and energy consumption.

vi

Abbreviations

Acronyms Full forms

IoT Internet of Things

AS Authentication Server

6LowPAN IPv6 over Low-power Wireless Personal Area Networks

DLTS Datagram Transport Layer Security

CoAP Constrained Application Protocol

MQTT Message Queuing Telemetry Transport

IETF Internet Engineering Task Force
——————————————————————————————————————

–

vii

Contents

Certificate iii

Statement of Originality iv

Acknowledgements v

Abstract vi

Abbreviations vii

List of Tables x

List of Figures xii

1 Introduction 1
1.1 Overview of the Internet of Things (IoT) and OAuth Protocol 1
1.2 Objective of Study . 1
1.3 Purpose . 2

2 Literature Survey 3
2.1 OAuth-IoT . 3

2.1.1 OAuth Protocol . 3
2.1.2 IoT-OAS: An OAuth-Based Authorization Service Architecture for

Secure Services in IoT . 5
2.1.3 An Implementation of Open Authentication Protocol for IoT Based

Application . 6
2.1.4 OAuth-IoT: an access control framework for the IoT based on the

open standard . 7
2.1.5 OAuthing: Privacy-enhancing Federation for the IoT 8
2.1.6 An Implementation of AccessControl Protocol for IoT Home Scenario 9

2.2 Message Standard . 10
2.2.1 JavaScript Object Notation (JSON) 10
2.2.2 JWT . 11
2.2.3 Concise Binary Object Representation (CBOR) 13
2.2.4 CBOR Object Signing and Encryption (COSE) 14
2.2.5 CBOR Web Token (CWT) . 16

3 OAuth standard and Internet of Things 18
3.1 Development . 18

3.1.1 Kaa-IoT framework . 18

viii

4 Proposed model 21

5 Experimental Result and Analysis 24

6 Conclusion & Future Scope 41

Bibliography 42

ix

List of Tables

2.1 Description of CBOR Encoder code [1] 14
2.2 Description of CBOR Encoder code [2] 16

5.1 latency for local-host to authentication server 24
5.2 latency for externally hosed server to authentication server 25
5.3 latency for local-host to local authentication server 25
5.4 Execution Time and Number of Bytes for Message Type 1 on Raspberry

PI (IoT) Platform . 28
5.5 Execution Time and Number of Bytes for Message Type 2 on Raspberry

PI (IoT) Platform . 28
5.6 Execution Time and Number of Bytes for Message Type 3 on Raspberry

PI (IoT) Platform . 29
5.7 Execution Time and Number of Bytes for Message Type 4 on Raspberry

PI (IoT) Platform . 29
5.8 Power Consumption for Raspberry PI Model 3 [3] [4] 36
5.9 The average energy cost per bit for Raspberry PI Model 3 [5] [6] 37

x

List of Figures

2.1 Sequence diagram of OAuth Protocol [7] 4
2.2 IoT-OAS Model [8] . 6
2.3 Sequence diagram of OAuth-IoT Model [9] 7
2.4 Example of JSON Object [10] . 11
2.5 Example of JWT Claim [1] . 12
2.6 Structure of the COSE for Single Signer [11] 15
2.7 Signed CWT with a single recipient and a full CWT Claims Set[2] 17

3.1 Kaa-IoT Framework . 19
3.2 Sequence diagram for Authentication System in Kaa framework 20

4.1 OAuth Protocol architecture while message Exchange 22
4.2 Payload space usage for 6LoWPAN and CoAP 23

5.1 Execution Time vs Different Method on Windows Platform for Message
Type 1 . 30

5.2 Execution Time vs Different Method on Windows Platform for Message
Type 2 . 30

5.3 Execution Time vs Different Method on Windows Platform for Message
Type 3 . 31

5.4 Execution Time vs Different Method on Windows Platform for Message
Type 4 . 31

5.5 Execution Time vs Different Method on Raspberry PI 3 (IoT Device) for
Message Type 1 . 32

5.6 Execution Time vs Different Method on Raspberry PI 3 (IoT Device) for
Message Type 2 . 32

5.7 Execution Time vs Different Method on Raspberry PI 3 (IoT Device) for
Message Type 3 . 33

5.8 Execution Time vs Different Method on Raspberry PI 3 (IoT Device) for
Message Type 4 . 33

5.9 Number Bytes vs Different Method for Message Type 1 34
5.10 Number Bytes vs Different Method for Message Type 2 34
5.11 Number Bytes vs Different Method for Message Type 3 35
5.12 Number Bytes vs Different Method for Message Type 4 35
5.13 Power Consumption vs Different Method on Raspberry PI 3 (IoT Device)

platform for Message Type 1 . 38
5.14 Power Consumption vs Different Method on Raspberry PI 3 (IoT Device)

platform for Message Type 2 . 39
5.15 Power Consumption vs Different Method on Raspberry PI 3 (IoT Device)

platform for Message Type 3 . 39

xi

5.16 Power Consumption vs Different Method on Raspberry PI 3 (IoT Device)
platform for Message Type 4 . 40

xii

Chapter 1

Introduction

1.1 Overview of the Internet of Things (IoT) and

OAuth Protocol

OAuth protocol is open standard authorization framework which is allowed to access

services by the user via a third-party authentication server.it provides secure delegate

access to the resource server on behalf of the Resource Owner. Internet of Things is the

network of the smart object and system which is the interconnected real-world sensor

and the actuators to the internet.

1.2 Objective of Study

Our objective for fast processing of authentication and authorization related message

exchanges. We propose a method to reduce the latency involved and thereby reducing

the energy consumption during the message exchange process while user wants to access

the restricted data which is generated by the smart IoT devices. We deploy the OAuth

Protocol on IoT environment so the user can to access the IoT devices via access token

which is generated by the Authentication server.

1

1.3 Purpose

The main purpose of this research is to provide security to the IoT environment by the

authentication framework. There are so many challenges while we deploy the OAuth

protocol on the IoT devices because the IoT device has constrained resources.

Internet of things is providing remote access for the IoT devices. Now a day millions

of IoT devices (sensor) is connected to IoT devices. Different users want to access the

restricted data which is generated by the some of the IoT devices among the whole

IoT network. So we need to develop the lightweight authentication mechanism (OAuth

protocol) for the IoT environment.

2

Chapter 2

Literature Survey

2.1 OAuth-IoT

2.1.1 OAuth Protocol

Traditionally, application stores the authentication and authorization information for all

users. But there is some problem faced in a traditional approach like security issue

regarding multiple credentials with a different application. To solve this problem OAuth

Protocol is introduced. OAuth protocol is scalable delegation protocol. OAuth allows

to client application restricted access to your data at resource server via access token

which is generated by the OAuth server. There are four actor resource owner (user),

an authentication server (OAuth), and resource servers and client (Application) act in

this protocol. Resource server has store the protected resource (services) which is access

by resource owner via access token. Most of the web application use web server flow to

obtain a token on behalf of the end user. Fig 3 show sequence diagram of the OAuth

Protocol [12].

The user wants to access the services which are resided on resource server from the

client application (web browser). Client application wants to access data from the re-

source server. If the user has not authenticated then Resource server delegate the au-

thentication to the authorization server (Facebook, Google, Twitter). Client application

redirects a user to the Authentication server. The user gives the user credential to the

authentication server. After successful authentication, the Authorization server sends an

authentication code to the user. The user sends an authorization code to the client appli-

cation which is also sent to the Authentication server to generating the access token. The

3

Figure 2.1: Sequence diagram of OAuth Protocol [7]

client application sends a request for access the protected services of the resource server

with the access token. Client application stores the access token because whenever a user

wants to access the services form resource server in future it can use these access token di-

rectly so every time user doesnt give the user credential to the Authentication server[12].

The authorization code is a short-lived token which is generated by authentication server

which is sent to the client application via the browser.

The access token is then used by the client application which is generated by the

authentication server. Access token defines that the user is valid to allow the restricted

services which are on resource server. The access token has some limited lifetime after it

automatically expires

The refresh token is the type of access token which has the infinite lifetime. Access

token and refresh token store by the client application. When Refresh token is expired

within a time which depends on the OAuth server, the Authentication server gives another

token to the client application without any authentication [12]. The access token has a

parameter like code, grant type, client id, client secret and redirects URL. There are five

4

different grant types which are different according to the access policy. We set the grant

type value as authentication code. The code parameter defines the value which is return

by the authentication server in the previous step [12].

2.1.2 IoT-OAS: An OAuth-Based Authorization Service Archi-

tecture for Secure Services in IoT

In this paper, Author proposes an architecture which is targeting HTTP/CoAP services

to provide the authentication and authorization for access data which is the send by

constraining IoT devices. There are four ways they represent the IoT-OAS architecture

regarding network coordinator Sink node.

A. Network Broker Communication

Network Broker is just passing the request and response to/from external network to/from

IoT Network through a secure channel based on HTTPS or CoAP. Network Broker could

be implemented using an embedded device or a device with limited computational and

storage capability. In this case, there is extra overhead on IoT devices.

B. Gateway-based Communication

Gateway is introduced in this architecture because of computational overhead of Oauth

Protocol on constraints on devices is not significance way. Gateway is translating the

incoming requests from the external networks to available Smart Objects inside its own

network.

C. End to End CoAP Communication

These architecture proposed with one consideration which is the IoT devices can reachable

at an IPv6 address in a sensor network so it provides directly a remote CoAP service.

There is one protocol which is defined by IETF is 6LowPAN to deploy IPv6address scheme

for IoT devices. The network Gateway acts only as a router without the need to translate

incoming and outgoing messages between the external world and the sensor network.

D. hybrid Gateway based CoAP Communication

In this case, the external client uses an HTTP protocol. On another side, the IoT devices

use CoAP protocol. The Gateway is translating incoming HTTP request to CoAP for

smart devices. The OAuth service is used CoAP channel for the authentication process

[8].

5

Figure 2.2: IoT-OAS Model [8]

2.1.3 An Implementation of Open Authentication Protocol for

IoT Based Application

In this paper, the proposed architecture of Oauth is deploying for fire alarm a system

(Device). Whenever fire is sensing the devices it posts to services provider which store

authenticate data. The authenticating data is accessible by the service consumer through

the access token which is generated by the services provider according to OAuth Proto-

col. The client application sends the request to the service provider for the authentication

code. Service provider gives the valid authentication code after successfully authentica-

tion is done with user’s credential. The token is generated by the service provider when

the authentication code is sent to the service provider. Now the client application ac-

cesses the restricted data which reside on services provider. This whole process will show

the Oauth service where delegate authority to the application through the access token

from the Service Provider. The Author implements these proposed work and measures

the latency with fix hardware configuration. It analyzes that the fire alarm system takes

about 20 to 30 ms for generating the alarm. On the other hand, the proposed Oauth

based notification system takes about 20 to 50 ms time for triggering the alarm [13].

6

2.1.4 OAuth-IoT: an access control framework for the IoT based

on the open standard

In this paper, the author proposed authentication and authorization framework for inter-

net of Things. It modifies the standard OAuth protocol according IoT environment like

access token format and some other protocol. It defines three different token formats, first

Bearer token which is simply define information according users credential. Second is the

JSON Web Token (JWT) which is carrying some other field like time validity, revocation

time, issuer, owner and authentication filed and third is the Proof-of-Possession (POP)

token, it used when addition security protection is required. Therefor the client sends

the token pulse MAC/sing forwarding to Gateway.

Figure 2.3: Sequence diagram of OAuth-IoT Model [9]

There are six actors define which is shown in figure 2.3. The Client wants to access

the data of the IoT devices. There are so many constrained IoT devices (sensor) which

sense the environment. All constraint devices to send the data to the IoT network sink

node which is continuously broadcast the DIO request and forward the data to the gate-

way. Gateway is the unconstrained device which translates the request/response between

7

HTTP protocol and CoAP protocol. The IoT device uses the CoAP protocol to com-

municate with Network Coordinate sink node. Authorization Server which is manages

authorization mechanisms for the grant the permission to a client for accessing the IoT

devices. When the gateway receives a new request from the network coordinate sink node

for the newly connected constraint devices, it updates the resource discovery table and

register constrain IoT device with device ID. The Constrain device sends the data to the

gateway for update data table with a time-stamp. Time-stamp filed is used to check the

data freshness of the IoT device. When the client wants to access the data of the IoT

device, it will send the users credential to the Authentication server. The authentication

checks the users credential and creates the access token send to the Gateway and Client

if the client is valid. The client accesses the protected IoT data with help of access token.

Gateway has three data structure; one is routing table which give the information

about currently active node in IoT environment. Second one is Data table which store the

data value and time-stamp according smart IoT devices. Third one is Resource directory

which contain information of smart device whenever it connect with IoT environment.

When IoT devices wants to connect with IoT environment it will send response to the

broadcast signal of the network coordinate sink node. The network coordinate node send

request to getaway to update resource directory and routing table. The Gateway update

data table by sending request to the IoT devices. On Other side, the client send the

users credential to the Authentication server for access the restricted data of the IoT

device. If the authentication is done successfully then the access token is generated by

the authentication server which is send to the client as well as the Gateway. After this

process the client send request to the gateway for access the data for IoT devices using

the access token. The above model is implemented with some fix configuration hardware.

It measures the response time (latency) to access the IoT device data. The beauty of the

modal is the caching of the data which reduce the 85 percentage latency [9].

2.1.5 OAuthing: Privacy-enhancing Federation for the IoT

This paper proposed modal for IoT that grant the access to the user and smart devices

to be federated. It also introduces some new actor in the model like IGNTE(Intelligent

Gateway for Network IoT Environments), PCM(Personal Cloud Middleware), MQTT

Broker which is mapping the OAuth token API to the MQTT Protocol. It also creates a

8

simple web-based cloud service which is connected to the OAuthing DIdP using standard

OAuth2 HTTP flow to request access to IGNITE. The user logs in with the UIdP which

is register with the devices. After the authentication, third-party authentication grants

the access to the IGNITE that the simple application is loaded. This modal uses MQTT

over Web Sockets which provide a User Interface for the user to interact with the device

[14].

The above model is implemented by the author with some fix configuration hardware.

It measures latency (connection time) for three different scenarios. The Mosquitto broker

connection time is 24.5 ms. The IGNITE connection time is 1.3 second when the user has

not previously connected. In this case, the system needs to introspect the access token.

It also measures the latency when the server is in the loaded condition. It also drew

the number of user at a time send the request to the response time graph. It supports

the Dynamic Client Register API to support each device having unique OAuth client

Identifier which is manually deployed on the smart devices [14].

The OAuth model is connecting the smart devices to the third party without the

users credential. The user can bring the pre-existing identity to the system to the system

rather than being required to the new credential [14].

2.1.6 An Implementation of AccessControl Protocol for IoT

Home Scenario

This paper proposed the access control protocol which is the grant the authentic user

to access the protected data. The Protocol is deployed on the Contiki OS and measure

constrains resource of the smart device by the Power trace tool. The CoAP protocol is

communication protocol for constraint devices which is not handling the authentication

mechanism. So the new option enables in the CoAP protocol for the Authentication via

the third party. It wants to reduce the burden of the authentication on the smart devices.

Therefore the burden of handling the Authentication process has done by the external

authentication server (Gateway). When the device boots it will send its device id to the

gateway and the Owner. It will generate a unique key by HMAC-SHA1 cryptography

which is based on the device ID. The Gateway and OWNER have used these key to

authenticate the user to access the resources. It defines the authenticate information for

the authentication process [15].

9

The above modal is implemented on the Contiki OS and Cooja simulator measures

the energy consumption and the latency for the smart devices. The main advantage of

the modal is that it can support a large amount of validating user at the same time with

the help of counter-based token expire mechanism. [15].

2.2 Message Standard

2.2.1 JavaScript Object Notation (JSON)

JavaScript Object Notation (JSON) is a lightweight data formate. It defines a small set of

formatting rules for the structured data. it can represent four primitive types like strings,

numbers, boolean and null and two structured types like objects and arrays. JSON string

is a sequence of zero or more Unicode characters. An object is consist of zero or more

key/value.[10]

A JSON text is a set of tokens which includes six structural characters, strings, num-

bers, and three literal names. The JSON text is a serialized object or array object

structure which represented as a key-value pair within curly brackets the key and values

separated by the single colon. the key within one object should be unique. In JSON

the array structure is represented as square brackets with zero or more values which are

separated by the commas. A number contains an integer component and fraction part.

the minus sign and fraction part are optional. The octal and hexadecimal format is not

allowed for JSON. The representation of string within quotation marks. The default en-

coding scheme for JSON is UTF-8, where the first two characters of a JSON text will be

ASCII characters.[10] A JSON parser transforms a JSON text into another representation

which accepts all JSON texts according to JSON grammar.

10

Figure 2.4: Example of JSON Object [10]

2.2.2 JWT

JSON Web Token (JWT) is a string which represents a set of claims to be exchanged

between two parties. it encoded as a JSON object that is used as the payload of a JSON

Web Signature (JWS) structure or JSON Web Encryption (JWE) structure which rep-

resents the digitally signed claims with a Message Authentication Code (MAC). JWT

intended for space environments like HTTP Authorization headers and URI query pa-

rameters. JSON web token is an open standard for passing the security information

(claim).we can send the JWT in different forms like part of URL, in body parameter and

HTTP Header (access token). The structure of JWT divide into three different part. A

JWT represente a sequence of URL parts which is separated by (.) characters. Each part

contains a base64url-encoded value.[1]

Header:

There is two parameter in these part one of the fields is ’typ’ which have the default value

is ’JWT’ second is the ’alg’ field which represents the hashing algorithm for creating sig-

nature according to the payload.

Payload:

The payloads represent the information in key/value pair which we need to be transmit-

ted. it is encrypted by base64 encoded format. There is two type of claim we used in

the payload one is custom claim and another is registered claim which describes in JSON

formate.

11

Signature:

This part creates the signature using algorithms which are described in the header part.

the header and payload part is encoded using the base64 algorithm. The signature is

created using the secret key which is not publicly available. At another side, the secret

key available so it verifies the signatures using the secret key.

The members of the JSON object represented by the JOSE Header which describes

the cryptographic operations applied to the JWT but it is optionally and additional

properties of the JWT. it is depending upon whether the JWT is a JWS or JWE.

Example of JWT claim:

Figure 2.5: Example of JWT Claim [1]

Encode Header JWT claim:

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9

Encoded Payload JWT claim:

eyJpc3MiOiJzYXVyYWJoX0lzc3VlciIsInN1YiI6Ik9BdXRoIiwiVXNlcm5hbWUiOiJ0ZXN0IiwiVW5pIjoiIE5pcm1hIn0

Encoded Signature JWT claim:

vXxOM2m1cg7OvFmvKvYSY c3Lyn4SMTCn637PPdOXQA

12

2.2.3 Concise Binary Object Representation (CBOR)

There are so many standardized formats for binary representation of structured data

which is known as binary serialization formats like BSON,ASN.1, CBOR, and Mes-

sagePack. The Concise Binary Object Representation (CBOR) is a standard data format

for encoding or decoding Serialize object. It is able to be compact in order to support sys-

tems with very limited memory, processor power, and instruction sets like Constrain(IoT)

Device. It generates extremely small code after encoding the message. we can decode

serialize object without a schema description of the message because the serialized object

is self-described. CBOR provide extensibility so the extended data must be decodable

by earlier decoders. we can easily convert JSON standard formate into CBOR standard

formate.[1]

An encoder is a process that generates the representation in the hexadecimal or binary

format of a CBOR data item from application information according to some predefined

syntax rules. A Decoder is a process that decodes a CBOR data item. it contains a

parser which breaks the input string using predefined syntax rules which available to an

application.[1]

we take one example which is convert an indefinite-length map key/value pairs)to CBOR

formats.”0x” notation represent the hexadecimal format.

Input String: ”Fun”: true, ”Amt”: -2

Encoded Format: 0xbf6346756ef563416d7421ff

13

CBOR Code Description

BF Start indefinite-length map

63 First key, UTF-8 string length 3

46756e ”Fun”

F5 First value, true

63 Second key, UTF-8 string length 3

416d74 ”Amt”

21 -2

FF ”break”

Table 2.1: Description of CBOR Encoder code [1]

2.2.4 CBOR Object Signing and Encryption (COSE)

As we mentioned above, CBOR is standard data format which is designed for small code

size and small message size. we need to provide message security services for IoT which

is given by CBOR Object Signing and Encryption (COSE). it defines process signature,

authentication codes (MAC), and encryption using CBOR for serializing objects [11].

The serialized objects have only one of the map key is in string format for JSON data

formate but we need to more compact message size after encoding so we use strings as

well as negative integers and unsigned integers as map keys in COSE. The integers are

used for compactness of encoding and easy comparison.The message structure of COSE

object is built on CBOR array type. COSE encrypted messages are consisted using two

layers which separate the different types of cryptographic concepts[11].

1. Content layer

In these layer, the plain-text is encrypted and information about the encrypted message

is placed.

2. Recipient layer

In these layer, the content encryption key (CEK) is encrypted and information about

how it is encrypted for each recipient is placed.

Step to compute the signature:

• Create a Sign-structure according the fields.

14

• Create the value ToBeSigned by encoding the Sign-structure to a byte string ac-

cording encoding rules.

• Call the signature creation algorithm by passing key(K) with the appropriate al-

gorithm which describes in ’alg’ field, the value of sign which is in ’ToBeSigned’

field.

• Put the value of the resulting signature in the ’signature’ field of the array.

Steps to verify the signature

• Create a Sign-structure according the fields.

• Create the value ToBeSigned by encoding the Sign-structure to a byte string ac-

cording encoding rules.

• Call the signature verification algorithm by passing key(K) with the appropriate

algorithm which describes in ’alg’ field, the value of sign which is in ’ToBeSigned’

field and signature values which are described in ’sign’ field for verification.

There is one example for Single Signer which use Single ECDSA signature.The size of a

binary file after encoding the message by ECDSA algorithm is 98 Bytes.

Structure of the COSE data formate:

Figure 2.6: Structure of the COSE for Single Signer [11]

15

2.2.5 CBOR Web Token (CWT)

CBOR Web Token (CWT) is a compact web token which representing claims for message

exchanging between two parties. The CWT claim is a piece of information about the

subject which encoded in the Concise Binary Object Representation (CBOR) and CBOR

Object Signing and Encryption (COSE). it represented as a key/value pair. there are

two type of claim key used in CWT one is registered claim key which has fixed value and

another is the non register claim key. The registered claim Keys are represented using

integers or text strings which is shown in below table.[2]

Claim Name Key Values

iss 1 text string

sub 2 text string

aud 3 text string

exp 4 integer or floating-point number

nbf 5 integer or floating-point number

iat 6 integer or floating-point number

cti 7 byte string

Table 2.2: Description of CBOR Encoder code [2]

The below example shows a signed CWT with a single recipient and a full CWT

Claims Set.

16

Figure 2.7: Signed CWT with a single recipient and a full CWT Claims Set[2]

17

Chapter 3

OAuth standard and Internet of

Things

3.1 Development

3.1.1 Kaa-IoT framework

Kaa is an open IoT framework which provides the platform for the Internet of Things.

It provides many facilities to customize all the functionality of layer in IoT environment.

We can deploy mechanism on the IoT environment so we easily evaluate our performance

according to our mechanism. There are so many good features for the Kaa-IoT framework.

It manages an unlimited number of connected devices at a time. You can set any schema

version for IoT framework. It also Collects and analyze sensor data according to user

behavior and delivers theme by the notifications using REST API. It provides Admin

UI for server-side profile management It also provides the structure of IoT features and

extensions for different types of IoT applications. kaa provide plug-and-play modules for

the IoT application developers. Kaa enables data management for smart objects using

back-end architecture which is provided by Kaa server and endpoint SDK components

which are deployed on the smart object. The SDKs transfer the data in a bi-direction

way to the Kaa server.

The Kaa server provides all the back-end functionality which is very much required

for large and mission-critical IoT environment. It handles the data consistency and

communication across connected the smart object. The Kaa-IoT framework provides the

customize IoT environment with the help of Kaa middleware. We want to deploy the

18

Figure 3.1: Kaa-IoT Framework

OAuth protocol on Kaa-IoT simulator because we can customize all protocol at different

layer so we want to modify the authentication mechanism and deploy on the Kaa-IoT

framework. We also evaluate the performance of the OAuth protocol in terms of response

time after deploying on Kaa-IoT framework.

There are many Kaa-application which created the Kaa-IOT framework that requires

attaching the same user to for service Kaa- SDK (endpoint). the endpoint needs to regis-

ter it’s identity to the server when it attached or detached so the Kaa provides necessary

API for attaching or detach endpoints to/from users in two different way. User access

token flow In these type, the user authenticates himself in an external authentication

system like Facebook, Google, Twitter to obtains the access token. The user performs

this authentication from the endpoint which is due to be registered with him in the Kaa

instance. Then, Kaa SDK transfers this token to the Kaa cluster over a secure channel.

The Kaa cluster verifies the access token and attaches the endpoint to the user.

19

Figure 3.2: Sequence diagram for Authentication System in Kaa framework

There is four actor use for an authentication system which is shown in the figure. the

endpoint sends the access token request to the authentication system with the security

credentials of the endpoint. the authentication system verifies the endpoint’s credentials

and sends the access token to the endpoint. after getting access token the endpoint sends

attach request to the Kaa server with userid, access token, verifier ID parameter. The Kaa

server sends the user id and access token to the user verifier for verification. The role of

user verifier is to test and debug the user id and access token for authenticating the user.

The user verification is done by user verifiers agent which is shown in the figure. There

is default user verifier like facebook, google, and twitter which have already implemented

by Kaa sandbox. we can also create our plugin custom verifier for Kaa application. we

can use multi user-verifier for single Kaa application. we can create our customer user

verifier or default user verifier by Admin UI or REST API. the user verifies send the

acknowledge to the authentication server after verification. the authentication server

registers the endpoint id and access tokens in its log record and sends the registration

response to the endpoint.

20

Chapter 4

Proposed model

We implement OAuth protocol in three different way of evaluating the server response

time (latency) at different network traffic level in the real world. The OAuth architec-

ture is shown in figure 4.1 for three different scenarios. In the first scenario, we install

the XAMPP server and create a WordPress blog. The OAuth protocol is deploying on

WordPress blog as the client application which wants to access the resource server as

a WordPress blog admin on behalf of the Authentication server like Facebook, Google,

Twitter.

In the second scenario, we only change the client application which is the host on

the external server so the request/response sends between the Authentication server and

external server. In the third scenario, we create local authentication server instead of

using a well-known server.

We proposed a model which is shown in the figure 4.1. There is serval method to se-

rialize and deserialize object for a message while authentication is done so we take three

different methods like JWT, CBOR, CWT. When the user wants to access the protected

resource for the first time, the user needs to send a request for getting the access token.

We consider a scenario for IoT environment so sometimes the Application and user both

agents are combined in the IoT device so among the four messages, two messages are the

upload from the IoT device and another two message are download to the IoT device.

when the first IoT device sends the request for the getting the services, the IoT device

serializes the object using the different method like CBOR, CWT, JWT. another side it

deserializes the object and gets the original message.

21

Figure 4.1: OAuth Protocol architecture while message Exchange

An access token is very important for access the IoT data after authentication is done

by the authentication server. We want to modify the access token and the authorization

mechanism so that we can reduce the burden on the IoT device and also reduce the

response time (latency) when the client sends the request to the IoT devices. Authenti-

cation for the end to end Communication for IoT device is done by the DTLS protocol

via Elliptic Curve Cryptography(ECC). Datagram Transport Layer Security (DTLS) is

the communications protocol which is used to security for datagram based applications.

IPv6 address over Low-power Wireless Personal Area Networks (6LoWPAN) is used to

deploy the IPv6 address scheme over the constraint environment to identify the IoT de-

vice. When we deploy the OAuth protocol on IoT device, the authentication code and

access token are exchanged among the IoT device with the help of DTLS, 6LoWPAN,

RPL, CoRE protocol which is constructed for the constrained environment. We want to

modify the size of the access token packet which is the exchange constraint (IoT) envi-

22

ronment. Figure 4.2 shows the packet information while access token and authentication

Figure 4.2: Payload space usage for 6LoWPAN and CoAP

code in the IoT environment. The payload takes as the access token and authentication

code.

There is some implication to reduce the size of access token packet.

• We can reduce the size of DLTS header by some modification do in the information

which passed for the message security.

• Authentication code and access token is unique identification string which used for

the authorization purpose. We can reduce the size of the authentication code and

the access token with modifying some parameter in the unique string.

• We can reduce the header size of 6LowPAN protocol because when the access token

and the authorization code is an exchange in the IoT environment. The header of

the 6LoWPAN is always attached with the payload which resides access token and

the authentication code.

23

Chapter 5

Experimental Result and Analysis

As we mention above, we implement OAuth Protocol in three different scenarios and

measure the server response time (latency). In the first scenario, we establish local server

(XAMPP) on our system. The user can logs in WordPress blog via three different third-

party authentications (OAuth server) like Facebook, Google, and Twitter. We measure

the server response time while authentication is done by the Authentication server. In

these scenario first request send to Authentication server from local-host server which is

installed in my system and response form Authentication server to the local-host server.

Sr.

No.

Authentication

server

3:40

pm

9:40

am

9:40

pm

1 Facebook 0.48 sec 0.9 sec 1.01 sec

2 Google 0.5 sec 0.55 sec 0.57 sec

3 Twitter 0.5 sec 0.50 sec 0.54 sec

Table 5.1: latency for local-host to authentication server

In the second scenario, we use the externally hosted server (byethost) which is a

free hosting server. We create WordPress blog on the externally hosted server. The

OAuth Protocol deploy on the WordPress blog. We measure the response time when

the request/response sends between the external server to Authentication servers like

Facebook, Google, and Twitter.

24

Sr.

No.

Authentication

server

3:40

pm

9:40

am

9:40

pm

1 Facebook 3.5 sec 4.0 sec 4.23 sec

2 Google 1.9 sec 2.0 sec 2.1 sec

3 Twitter 2.01 sec 2.3 sec 2.56 sec

Table 5.2: latency for externally hosed server to authentication server

In the third scenario, we establish local server (XAMPP) on our system. We also

create local authentication server in our system. We deploy the OAuth protocol on the

WordPress blog. So the request/response for the authentication mechanism sends be-

tween the local Authentication server and localhost server which reside on our system.

We measure the server response time (latency) while authentication is done by the local

authentication server which is 0.3 second.

Sr.

No.

Authentication

server

3:40

pm

9:40

am

9:40

pm

1 Local Authentication

Server

0.3 sec 0.3 sec 0.3 sec

Table 5.3: latency for local-host to local authentication server

There are different methods exist to create Access Token for authentication process

but we want to implement OAuth Protocol for IoT constrained Environment so we de-

ploy the different method like CBOR, JWT, CWT in IoT and Windows environments

and analysis the results according to Power consumption, the Execution time to encode

and decode the Access token and number of Bytes to create Access token. To imple-

ment above method we take Raspberry PI 3 Processor as IoT device. we deploy three

different methods CBOR, JWT, CWT on Raspberry PI 3 processor. We modified the

code of CBOR [16], JWT[17], and CWT[18] for the Raspberry PI 3 processor which is

already present on GitHub. On implementing the CBOR, JWT and CWT we measured

the power consumption, the execution time and a number of bytes.

There are four types of message exchange in standard OAuth protocol while authentica-

25

tion is done. The parameters for the message exchange are taken from the OAuth RFC

standard.

Type 1. Request Service form USER to Application (UP-LINK)

When the first time user wants to take Access Token for accessing the restricted

resources (temperature, humidity, light), three parameters are passed to the Application

which is shown below. Authorization Grant has five types which represent that how the

Owner’s authorization give to access to IoT resources. we take authorization code type as

an Authorization Grant so by default set the value of code as a response type parameter.

At the time of registration of the application, the Authorization server creates client id

and send to the Application. the authentication server redirects the user to the redirect

URL which is one of the parameters used in this type of message exchange.

• response type=code

• client id=188617085284773 (Facebook)

• redirect URL=https://www.applicationdemo.com

Type 2. Send Authentication Code (DOWN-LINK)

After validating user credentials the Authentication Server creates Auth Code which

is the temporary Access token send to Application. In these message type only one

parameter exchange.

• code=SplxlOBeZQQYbYS6WxSbIA (RFC)

Type 3. Request for Access Token by Application (UP-LINK)

After getting Authentication Code the Application sends the request for getting access

token. In these message type five parameter sent by the application to the Authoriza-

tion server for generating the Access token which is shown in below. we take values of

client-id and client-secret parameters by the Facebook authorization server for experiment

purpose.

• code=SplxlOBeZQQYbYS6WxSbIA (RFC)

• grant type=authorization code

• client id=188617085284773 (Facebook)

26

• client secret=8581722fdf457b53790a7cc621258cdf (Facebook)

• redirect URI=https://www.applicationdemo.com

Type 4.Response Token by Authorization Server (DOWN-LINK)

After verifying the Authentication code which is sent in the request message, the Au-

thorization server generates the Access token. In these message type, the Authorization

server sends seven parameters in the response message to the Application which is shown

in below. There are different types of token used in OAuth protocol. we take Bearer

token values as a token type parameter. Authorization server also generates the signa-

ture for the access token. The life of access token describe by the expires parameter in

Millisecond. we take the 3600 values for the expire parameter.

• id=https://www.applicationdemo.com

• expires in=3600

• scope=full API permission

• token type= Bearer

• Signature=rQGz10jkGpNLAzMOGZiSw4xggHSdYVtIAUIsPaY1iO0 (JOSE)

• Access token=”2YotnFZFEjr1zCsicMWpAA” (RFC)

for implementation, we deploy the different method which generates the Access token

on the raspberry PI 3 (IoT devices) and Windows platform. we measured time to encode

and decode the object for different message types. There are four different graph which

is shown in figure 5.1, 5.2, 5.3, 5.4. It represents the execution time for the different

method on Windows Platform.

Table 5.4, 5.5, 5.6, 5.7 shows the execution time (ms) and the number of bytes to the

different method for different types. When we compare only CBOR and JWT method, the

CBOR methods takes low execution time for the different method and it also generates

the low number of Bytes. CBOR generate encoded String in a hexadecimal format which

is predefined by the CBOR Grammar. There is no any signature algorithm used in CBOR

method but in the JWT method, the execution time and the number of bytes is highest

because it used the complex signature algorithm to generate the signature.

27

Method Execution

Time(ms)

Number of

Bytes

CBOR 120 93

JWT 811 212

Encrypted single recipient (CWT) 176 103

MACed multiple recipients (CWT) 155 122

MACed single recepaint (CWT) 144 89

Signed multiple recipients (CWT) 260 154

Signed single recipient (CWT) 230 146

Encrypted multiple recipients (CWT) 47.89 111

Table 5.4: Execution Time and Number of Bytes for Message Type 1 on Raspberry PI
(IoT) Platform

Method Execution

Time(ms)

Number of

Bytes

CBOR 120 29

JWT 812 128

Encrypted single recipient (CWT) 174 57

MACed multiple recipients (CWT) 156 76

MACed single recepaint (CWT) 143 43

Signed multiple recipients (CWT) 258 108

Signed single recipient (CWT) 238 100

Encrypted multiple recipients (CWT) 47.87 65

Table 5.5: Execution Time and Number of Bytes for Message Type 2 on Raspberry PI
(IoT) Platform

28

Method Execution

Time(ms)

Number of

Bytes

CBOR 120 180

JWT 810 327

Encrypted single recipient (CWT) 279 158

MACed multiple recipients (CWT) 158 177

MACed single recepaint (CWT) 147 144

Signed multiple recipients (CWT) 265 209

Signed single recipient (CWT) 241 201

Encrypted multiple recipients (CWT) 49.9 166

Table 5.6: Execution Time and Number of Bytes for Message Type 3 on Raspberry PI
(IoT) Platform

Method Execution

Time(ms)

Number of

Bytes

CBOR 120 188

JWT 809 338

Encrypted single recipient (CWT) 176 200

MACed multiple recipients (CWT) 156 219

MACed single recepaint (CWT) 146 186

Signed multiple recipients (CWT) 262 251

Signed single recipient (CWT) 239 243

Encrypted multiple recipients (CWT) 49.9 208

Table 5.7: Execution Time and Number of Bytes for Message Type 4 on Raspberry PI
(IoT) Platform

29

Figure 5.1: Execution Time vs Different Method on Windows Platform for Message Type
1

Figure 5.2: Execution Time vs Different Method on Windows Platform for Message Type
2

30

Figure 5.3: Execution Time vs Different Method on Windows Platform for Message Type
3

Figure 5.4: Execution Time vs Different Method on Windows Platform for Message Type
4

There are four different graph which is shown in figure 5.5 5.6 5.7 5.8. It represents

the execution time for the different method on Raspberry PI Platform.

31

Figure 5.5: Execution Time vs Different Method on Raspberry PI 3 (IoT Device) for
Message Type 1

Figure 5.6: Execution Time vs Different Method on Raspberry PI 3 (IoT Device) for
Message Type 2

32

Figure 5.7: Execution Time vs Different Method on Raspberry PI 3 (IoT Device) for
Message Type 3

Figure 5.8: Execution Time vs Different Method on Raspberry PI 3 (IoT Device) for
Message Type 4

we also find the number of Bytes generates when the different message type is encoded.

There are four different graphs which are shown in figure 5.9, 5.10, 5.11, 5.12. It represents

33

the Number of Bytes for the different methods. the least number of Bytes generate for

CBOR methods.

Figure 5.9: Number Bytes vs Different Method for Message Type 1

Figure 5.10: Number Bytes vs Different Method for Message Type 2

34

Figure 5.11: Number Bytes vs Different Method for Message Type 3

Figure 5.12: Number Bytes vs Different Method for Message Type 4

we also find the power consumption while uploading and downloading for the different

massage type. There is standard power consumption model which is described in below

equation in 5.1 [3] [4].

35

PPi = Pidle + PCPU(u) +
∑
if

(Pif,idle + Pif,UP (r) + Pif,DW (r)) (5.1)

PPi = Total Power Consumption for Raspberry PI 3

Pidle = Power Consumption for Raspberry PI 3 in IDLE Mode

PCPU(u) = Power Consumption of Raspberry PI 3 platform which depending on the CPU

utilization.

u = The CPU utilization in the range 0 to 1 which is depend on message size

Pif,idle = Power Consumption during while Interface is IDLE

Pif,UP = Power Consumption during while Uploading Data on the Interface

Pif,DW = Power Consumption during while Downloading Data on the Interface

r = The transferred data rate in Mb/s (for WI-FI Interface value of r is 3 Mb/s and for

Ethernet Interface value of r is 40 Mb/s)

We implement different method likes CBOR, JWT, CWT on Raspberry PI 3. we find

total power consumption from above equation. for that, we take some values for specific

Raspberry PI (IoT Device)model 3 which is shown below in table 5.8.

Function values Range[Mb/s]

Pidle 1.488 -

PEthernet,idle -0.1176 -

PWI−FI,idle 0.7645 -

PCPU(u) 0.6191(u) [0,1]

PEthernet,UP−Link(r) (26.2)10−06(r)2 + (0.357)10−03r + 0.007 [0, 80]

PEthernet,Down−Link(r) (−4.33)10−06(r)2 + (0.485)10−03(r) − 0.007 [0, 80]

PWI−FI,UP−Link(r) (−0.25)10−06(r)2 + (1.99)10−03r − 0.072 [0, 6]

PWI−FI,Down−Link(r) (1.85)10−03(r)2 + (−13.5)10−03(r) + 0.072 [0, 6]

Table 5.8: Power Consumption for Raspberry PI Model 3 [3] [4]

36

we compute the power consumption from the equation by using table 5.4. now we

have only the power consumption of Raspberry PI processor so we need to add the power

consumption while the bit is up-link and down-link. we take value for receiving and

transaction bit from Raspberry PI form the below table 5.9.

Modulation values(Watt)

Eb(Tx) 0.00000013

Eb(Rx) 0.000000049

Table 5.9: The average energy cost per bit for Raspberry PI Model 3 [5] [6]

Eb = The average energy cost per bit

Tx = for Transmitting the bit

Rx = for Receiving the bit

Finally, we get the total power consumption equation for transmitting and receiving

bit for Raspberry PI 3 with the different interfaces like Ethernet and WI-FI which is

shown in equation 5.2.

P = PPi + Eb (5.2)

P = Total power consumption equation for transmitting and receiving bit for Raspberry

PI 3 with the different interfaces like Ethernet and WI-FI

PPi = Total Power Consumption for Raspberry PI 3 Processor only

Eb = The average energy cost per bit for Transmitter(Tx) or Receiver(Rx)

Method
Power Consumption (%)

Type1 Type2 Type3 Type4

CBOR 18.22 0.0 47.28 49.23

JWT 57.96 29.90 96.36 100

Encrypted single recipient (CWT) 21.56 6.20 39.93 53.93

MACed multiple recipients (CWT) 27.91 12.54 46.27 60.28

MACed single recepaint (CWT) 16.89 1.52 35.25 49.26

37

Signed multiple recipients (CWT) 38.59 23.22 56.96 70.96

Signed single recipient (CWT) 35.92 20.55 54.29 68.29

Encrypted multiple recipients

(CWT)

24.23 8.87 42.60 56.60

There are four different graphs which are shown in figure 5.13, 5.14, 5.15, 5.16. It

represents the Total Power Consumption(P) for the different method on Raspberry plat-

form.

Figure 5.13: Power Consumption vs Different Method on Raspberry PI 3 (IoT Device)
platform for Message Type 1

38

Figure 5.14: Power Consumption vs Different Method on Raspberry PI 3 (IoT Device)
platform for Message Type 2

Figure 5.15: Power Consumption vs Different Method on Raspberry PI 3 (IoT Device)
platform for Message Type 3

39

Figure 5.16: Power Consumption vs Different Method on Raspberry PI 3 (IoT Device)
platform for Message Type 4

40

Chapter 6

Conclusion & Future Scope

Various messaging standards like CBOR, CWT, JWT have been experimented with for

sending and receiving OAuth related messages on the Raspberry PI 3 (IoT Device) as

well as Laptop category device. These methods have been analyzed according to Power

consumption and Execution time taken during serialization and deserialization of the

exchange object for authorization process for IoT environment. The CBOR and CWT

based approach consumes less power and execution time as compared to JWT method. In

CWT, we create CBOR based web token(CWT) using CBOR data format with hashing

and signing as well as encrypting the message. The power consumption and execution

time is minimum in MACed CWT as compared to Signed CWT and Encrypted CWT. It

also uses less time in single recipient approach as compared to multiple recipients approach

while generating the signature. The CBOR standard data format are suitable among the

all methods because it takes less energy while message exchange in IoT environments

because the IoT device has very limited resource according to power consumption and

memory.

In future, the messaging methods can be integrated with Kaa-IoT framework. Kaa-

IoT frame-work generates the different IoT applications as Kaa-SDK. Raspberry PI 3

support only C, C++ Kaa SDK for IoT Application so these messaging standards can

be extended to the SDKs of open source IoT framework like Kaa and others. Kaa-

IoT application may then perform faster processing of authentication and authorization

related message exchanges.

41

Bibliography

[1] M. Jones, J. Bradley, and N. Sakimura, “Json web token (jwt),” tech. rep., 2015.

[2] M. Jones, E. Wahlstroem, S. Erdtman, and H. Tschofenig, “Cbor web token (cwt),”

tech. rep., 2018.

[3] F. Kaup, P. Gottschling, and D. Hausheer, “Powerpi: Measuring and modeling the

power consumption of the raspberry pi,” in Local Computer Networks (LCN), 2014

IEEE 39th Conference on, pp. 236–243, IEEE, 2014.

[4] D.-I. F. Kaup et al., “Energy-efficiency and performance in communication net-

works,”

[5] K. M. Gomez Chavez, Energy Efficiency in Wireless Access Networks: Measure-

ments, Models and Algorithms. PhD thesis, University of Trento, 2013.

[6] K. Gomez, R. Riggio, T. Rasheed, D. Miorandi, and F. Granelli, “Energino: A

hardware and software solution for energy consumption monitoring,” in Modeling

and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), 2012 10th

International Symposium on, pp. 311–317, IEEE, 2012.

[7] “OAuth 2.0 Protocol.” https://www.google.com/search?q=sequence+

diagram+oauth+2.0+authentication&source=lnms&tbm=isch&sa=X&ved=

2ahUKEwiBmfeWwYXbAhUH6Y8KHWM9CS0Q_AUoAXoECAAQAw&biw=1094&bih=486#

imgrc=L_t7LycrUp0gYM:, 2016.

[8] P. G. L. V. Simone Cirani, Marco Picone and G. Ferrari, “Iot-oas: An oauth-based

authorization service architecture for secure services in iot scenarios,” 2015.

42

https://www.google.com/search?q=sequence+diagram+oauth+2.0+authentication&source=lnms&tbm=isch&sa=X&ved=2ahUKEwiBmfeWwYXbAhUH6Y8KHWM9CS0Q_AUoAXoECAAQAw&biw=1094&bih=486#imgrc=L_t7LycrUp0gYM:
https://www.google.com/search?q=sequence+diagram+oauth+2.0+authentication&source=lnms&tbm=isch&sa=X&ved=2ahUKEwiBmfeWwYXbAhUH6Y8KHWM9CS0Q_AUoAXoECAAQAw&biw=1094&bih=486#imgrc=L_t7LycrUp0gYM:
https://www.google.com/search?q=sequence+diagram+oauth+2.0+authentication&source=lnms&tbm=isch&sa=X&ved=2ahUKEwiBmfeWwYXbAhUH6Y8KHWM9CS0Q_AUoAXoECAAQAw&biw=1094&bih=486#imgrc=L_t7LycrUp0gYM:
https://www.google.com/search?q=sequence+diagram+oauth+2.0+authentication&source=lnms&tbm=isch&sa=X&ved=2ahUKEwiBmfeWwYXbAhUH6Y8KHWM9CS0Q_AUoAXoECAAQAw&biw=1094&bih=486#imgrc=L_t7LycrUp0gYM:

[9] D. C. G. B. Savio Sciancalepore, Giuseppe Piro and G. Bianchi, “Oauth-iot: an

access control framework for the internet of things based on open standards,” Sym-

posium on Computers and Communications (ISCC), 2017.

[10] D. Crockford, “The application/json media type for javascript object notation

(json),” 2006.

[11] J. Schaad, “Cbor object signing and encryption (cose),” tech. rep., 2017.

[12] D. Hardt, “The oauth 2.0 authorization framework,” 2012.

[13] D. S. T. Swati Kinikar, “Implementation of open authentication protocol for iot

based application,” 2017.

[14] B. A. Paul Fremantle, “Oauthing: Privacy-enhancing federation for the internet of

things,” 2016.

[15] J. L. C. R. Xiaoyang Wu, Ron Steinfeld, “An implementation of access-control pro-

tocol for iot home scenario,” 2017.

[16] P. Occil, “A Java implementation of Concise Binary Object Representation (RFC

7049).” https://github.com/peteroupc/CBOR-Java, 2017.

[17] T. Gesellchen, “Nimbus-JOSE-JWT.” https://github.com/gesellix/

Nimbus-JOSE-JWT, 2012.

[18] LudwigSeitz, “A java library for handling CBOR Web Tokens.” https://github.

com/LudwigSeitz/CWT-Java, 2017.

[19] J. K. y. Paul Fremantley, Benjamin Aziz and P. Scott, “Federated identity and access

management for the internet of things,” International Workshop on Secure Internet

of Things, 2014.

[20] A. J. J. A. F. S. Jos L. Hernndez-Ramos, Marcin Piotr Pawlowski and L. Ladid, “To-

ward a lightweight authentication and authorization framework for smart objects,”

SELECTED AREAS IN COMMUNICATIONS, 2015.

[21] L. T. K. V. Renzo E. Navas, Manuel Lagos, “Nonce-based authenticated key estab-

lishment over oauth 2.0 iot proof-of-possession architecture,” 2016.

43

https://github.com/peteroupc/CBOR-Java
https://github.com/gesellix/Nimbus-JOSE-JWT
https://github.com/gesellix/Nimbus-JOSE-JWT
https://github.com/LudwigSeitz/CWT-Java
https://github.com/LudwigSeitz/CWT-Java

[22] L. M. J. S. Federico Fernandez, A lvaro Alonso, “A model to enable application-

scoped access control as a service for iot using oauth 2.0,” 2017.

[23] D.-Y. H. K.-S. K. Shamini Emerson, Young-Kyu Choi and K.-H. Kim, “An oauth

based authentication mechanism for iot networks,” 2016.

[24] J. S. S. Jorge Granjal, Edmundo Monteiro, “End-to-end transport-layer security for

internet-integrated sensing applications with mutual and delegated ecc public-key

authentication,” 2013.

[25] P. P. K. M. P. A. A. P. Aimaschana Niruntasukrat, Chavee Issariyapat, “Authoriza-

tion mechanism for mqtt-based internet of things,” W07-Workshop on Convergent

Internet of Things, 2016.

[26] V. L. A. O. A. S. M. R. Riccardo Bonetto, Nicola Bui, “Secure communication for

smart iot objects: Protocol stacks, use cases and practical examples,” 2012.

[27] S. S. K. Sye Loong Keoh and H. Tschofenig, “Securing the internet of things: A

standardization perspective,” INTERNET OF THINGS, 2014.

[28] P. Solapurkar, “Building secure healthcare services using oauth2.0 and json web

token in iot cloud scenario,” 2016.

[29] C. Bormann and P. Hoffman, “Concise binary object representation (cbor),” 2013.

44

	Certificate
	Statement of Originality
	Acknowledgements
	Abstract
	Abbreviations
	List of Tables
	List of Figures
	Introduction
	Overview of the Internet of Things (IoT) and OAuth Protocol
	Objective of Study
	Purpose

	Literature Survey
	OAuth-IoT
	OAuth Protocol
	IoT-OAS: An OAuth-Based Authorization Service Architecture for Secure Services in IoT
	An Implementation of Open Authentication Protocol for IoT Based Application
	OAuth-IoT: an access control framework for the IoT based on the open standard
	OAuthing: Privacy-enhancing Federation for the IoT
	An Implementation of Accessâ•ﬁControl Protocol for IoT Home Scenario

	Message Standard
	JavaScript Object Notation (JSON)
	JWT
	Concise Binary Object Representation (CBOR)
	CBOR Object Signing and Encryption (COSE)
	CBOR Web Token (CWT)

	OAuth standard and Internet of Things
	Development
	Kaa-IoT framework

	Proposed model
	Experimental Result and Analysis
	Conclusion & Future Scope
	Bibliography

