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Abstract

Processor architecture verification is the process of uncovering bugs in the design
of the processor.The ultimate goal of architectural verification is to deliver the design
to market as bug free as possible. It is one of the biggest challenge industry is facing
today, as the verification effort is often more than the design effort.

”Random Instruction Sequencer (RIS)” tools are most commonly used across the
processor design industry for verification and validation of processor design. Thus
developing RIS tools would simplify the process of processor design verification which
may prove helpful to considerably reduce time to product.

The work presented here introduces a unified target configuration generation tool,
for auto generation of architecture configuration files used to configure RIS tool. It
achieves significant reduction in resource utilization by automating the process of
configuration file generation which is being hand coded otherwise. It also includes
development of Pre-generation and Post-generation Quality Assurance Tools for the
MP RIS Tool which is used for verification of multi-processor environment. The
Pre-generation QA tool discards the invalid test cases before generation and hence
increases the efficiency of the MP RIS Tool by saving time and resources being
used to generate invalid test cases. Whereas the Post-generation QA tool does the
analysis of the generated test case to subsequently reduce the percentage of overhead
instructions added compared to actually required instructions in a generated test
case.
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Chapter 1

INTRODUCTION

1.1 Motivation

Verification is one of the biggest challenge industry is facing. The verification
effort is often more than the design effort as the design complexity of the processor
architecture is increasing these days [3]. ”Random Instruction Sequencer” (RIS)
tools are most commonly used across the processor design industry for functional
verification and validation of processor design. These tools are used most of the
times to find bugs in design for a stable RTL (Register Transfer Level) design that
is not at a matured level. RIS tools effectively generates test scenarios that are hard
to anticipate. These completely random sequences of instructions prove to be useful
for exploring corner cases in the RTL design. These sequences are more effective
when the bugs are related to a sequence of events that happen in a short time span
[1].

The verification results depends upon the quality of results produced by the
instruction sequence generator, the availability of time and also the number of com-
putational resources available. The time and resources are limited most of the times
so we need to tune the instruction sequence generator i.e. the RIS tool to target
specific areas in the design [1].

1.2 Objective

RIS tools are popularly recognized as an efficient approach for verifying corner
cases for processor architecture verification environment that are hard to anticipate.
To cover most of corner cases RIS tools uses random test libraries.Thus improve-
ments in randomization that the RIS tools take would help us to increases the hit
rate of corner cases which are hard to acknowledge by writing directed tests for
different scenarios.

1



CHAPTER 1. INTRODUCTION 2

The objective of this project ”Developing Arm architecture verification tools
and solutions” can be divided into various phases:

a. Unified Target Configuration generation: With Unified Target Configu-
ration we look forward at developing a common interface which auto-generates
different standard files in RIS tool acceptable format.

b. Pre-generation Recipe QA: With this approach we plan to improve the
coverage of the test sequences generated by RIS tool by adding some directed
aspects to the recipe specific knobs taking random values from a previously
defined range of acceptable values.And also increasing the efficiency of the RIS
tool used for verification of multi processor design by discarding the invalid
test cases before their generation.

c. Post-generation Recipe QA: This approach is used to verify the length
of the generated test cases against the anticipated length to ensure that the
overhead added is at an optimum level to not decrease the efficiency of the
random test generator. Thus the percentage of overhead added is first analyzed
and then the instruction count is given such that we get higher number of useful
instructions then the overhead instructions.

1.3 Outline of Thesis

This Thesis is put together in five chapters, a brief information about each of
them are discussed below:

• Chapter 2 : Arm architecture verification tools
An introduction to the Random Instruction Sequencer Tool and also descrip-
tion of how it is more effective than the Deterministic approach to cover corner
cases.

• Chapter 3 : Unified Target Configuration
Detailed description of the unified approach of generating the architectural
configuration yaml file in RIS tool compatible format. Also includes the flow
of taking specifications from the partner and storing it in a database and
querying it to get appropriate values.
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• Chapter 4 : MP RIS Tool
This chapter includes the detailed description of the MP RIS tool and its
working. It also includes detailed procedure of generating the test cases using
various Arm tools and procedures. It defins various components and plugins
used in the tool like the recipes, knobs, zones, the wrapper script tool and
much more.

• Chapter 5 : Pre-generation QA - Recipe QA
It describes in detail a newly developed plugin for Quality Assurance of the
generated test cases from the MP RIS Tool. Also includes the level of ran-
domization achieved by the architectural parameters and how to improve it to
achieve better coverage. This chapter describes how this Pre-generation Tool
helps to increase the efficiency of the MP RIS Tool.

• Chapter 6 : Post-generation QA - Test Length Analysis
This chapter describes the Post-generation tool made for the MP RIS tool
and its working. It gives a detailed explanation of why we require to analyze
a test case after it is generated. Also includes the study of optimum number
of instruction count to make the generated test case efficient despite of all the
overhead instructions that are added to the test cases that are generated.

• Chapter 7 : Conclusion and Future Work
Describes concluding remarks on how the Arm verification tools i.e. the RIS
Tools are developed in this project to enhance their functionality. It also de-
scribes the proposed work that can be done in future.



Chapter 2

Arm ARCHITECTURE
VERIFICATION TOOLS

2.1 Architectural Verification

Verification here refers to the entire process of uncovering bugs in the archi-
tectural design of the processor.The ultimate goal of architectural verification is to
deliver the design to market as bug free as possible. It is the process of ensuring that
a design of processor meets specified requirements. It reduces the cost of late bugs
in a design by ensuring proper functional coverage of the entire design that is being
tested. Thus it saves us from loss of revenue invested in respin of production samples.

The verification methodology at Arm verifies the RTL or the AEM (Architec-
ture Envelop Model) against its ISA (Instruction Set Architecture). Here the AEM
is a highly configurable fast model of Arm processor. The verification process has
to fill in the gap between the architecture specification given by the ISA and the
detailed processor implementation [4]. Thus there needs to be a mapping between
the architecture level and the micro architecture level of the processor which is use-
ful in the process of verification of the processor design.

The verification of microprocessor architecture design relies majorly on simu-
lation based techniques. These stimuli are then executed on RTL design model of
the processor architecture or on AEM and then the results are analyzed to check
the correctness of the design. The stimulus are the sequence of instructions which
may be generated using automated tools which are commonly known as Instruction
Stream Generators (ISG) [5].

The stimulus for verification of arbitrary architecture design can be determin-
istic, random or constraint-based stimuli [5].

4



CHAPTER 2. ARM ARCHITECTURE VERIFICATION TOOLS 5

• Deterministic simulation
This methodology is the most common way of generating test stimulus.The
two ways for generating test cases for deterministic simulation are:

1 AVS (Architecture Validation Suites) and

2 DVS (Device Validation Suites)

AVS focuses on checks for architectural functionality whereas DVS focuses
on behaviour of a specific core [3]. Thus AVS does the checks on ISA and the
exception model that is implemented. Its working is as shown in figure 2.1.
On the other hand DVS checks:

1 IMPLEMENTATION DEFINED features

2 Scenarios dependent on timings

3 Scenarios related to stress testing and

4 Scenarios which are not covered fully by AVS

These test suits are the Arm ”Architecture Compliance Suites” (ACS). The
limitation that they have is due to the effort that is required to generate the
test cases and the performance that is achieved by the simulation tool [3].

Figure 2.1: Arm compliance framework
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• Random stimulus generation
It is most effective way of verifying corner cases that are hard to anticipate
using the deterministic simulation approach. With the help of templates de-
scribing generation tasks RIS tools generate random stimulus which are noth-
ing but a sequence of random instructions [3].

• Constrain Based simulation
These type of simulation is not truly random but cover certain areas of func-
tionality in a systematic way keeping everything else random [5]. Addition of
semi-directed instruction sequences that are deterministic in nature increases
chances of covering desired corner cases with less investment in time [6].

2.2 RIS and MP-RIS Tool

The functional verification of the microprocessor design or the SOC (System
On Chip) is one of the most critical phase of the entire design life cycle as it takes
two third of the entire design cycle time. So we need to develop efficient tools in
terms of time and completeness.Thus various methodologies proposed for function
verification of the processor are as explained below [8].

An approach to test program generation known as Model Based Test-Generation,
allows the complex knowledge of testing to be incorporated in the logic of model it-
self.Then this knowledge base is used in conjunction with the architectural model to
generate test cases. Another test generation methodology assumes that the netlist
of the processor is available and it requires the library of macros to be developed.
These macros are written manually in such a way that they are able to excite all
functions of the processor [8].

RIS generator tools are used to generate sequences of random instructions
which act as stimuli for verification of processor design. The MP-RIS tool is the
RIS tool that generates instruction sequences for multiprocessor systems. These in-
structions focuses on the data sharing and memory coherency in the multiprocessor
environment.

The instructions can be focused uniquely to one processor or the multiproces-
sor environment where virtual to physical memory map or address and data space
is shared. By defining such constraints we can generate different level of traffic
specifying the interactions between processors and memory subsystem for multipro-
cessing elements. Thus using this approach the data coherency in a multiprocessing
environment is stress tested [6].
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RIS tools are highly configurable tools which provide options to generate test
scenarios stressing some particular functionality of the processor. This can be done
by providing weight to instructions as shown in figure 2.2. Thus the test sequence
generated have some specific subset of the Instruction Set (ISA) that can be used
to stress out some particular functional area of the processor [6].

Figure 2.2: Working of RIS Generator [6]
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RIS tools takes various configuration files as inputs to generate test sequences
targeting one particular area of processor that needs to be stressed. They are de-
scribed as below:

• Memory and System Constraints
This gives information about the memory space that is available for generator,
attributes of cache like how many levels of cache are implemented and their
size, virtual memory organization, system memory map and the configuration
of the knobs i.e. the values of the architecture specific parameters [6].

• Instruction Weights
The user gives weights to instructions or group of instructions based on the
intent of the test and the final instruction sequence that is generated has the
distribution of instruction based on these weights [6].

• Semi-directed Subroutines
These semi directed codes are targeted to test a specific processor functionality
like linecross. This directed chunk of code is called funcs. They target some
specific scenarios in the processor [6].

For multiprocessor systems environment stress testing can be done by a very
common method of cache load store operations or writing to a shared memory
between different processors. Thus the address generation must be such that the
data is shared between multiple processors. Thus for memory coherency testing the
MP-RIS generator have a memory model where each processor from a cluster have
private memory region to which only that specific processor can write during the
test and there is a shared memory region which can be accessed by more then one
processing element [6].
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Figure 2.3: Memory organization for RIS Generator [6]

The figure 2.3 shows two processing elements each with private memory region
and sharing one common memory region. Now different random instructions trigger
processors to access these regions. The number of processing elements PEs accessing
the shared memory are configurable for a RIS generator.

Now the generated instruction sequences are in Executable Linkable Format
(ELF) which can be built using Arm tool chain to get executed. These instruction
sequences are fed to either AEM model i.e. the software model of the processor or
they are run on the processor RTL for verifying them.



Chapter 3

UNIFIED TARGET
CONFIGURATION

3.1 Background

Both AVS and RIS tool require architecture configuration files for different im-
plementations as an input to generate different test cases. Target configuration files
captures this architecture specific configuration parameters and their values. Part-
ners are approached multiple times by Partner Enablement team and tool engineers
for generating these target configuration files. And then these files are hand coded
referring to the engineering specifications. The input structure of the RIS Tool is as
shown in figure 3.1

Figure 3.1: Architecture configuration as input to RIS tool

10
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3.2 Problem Statement

• Partners need to be approached multiple times for same target configuration
data but in different format and for different use cases.

• There is no automation for both AVS and RIS tool, thus configuration files
are hand coded. This leads to various problems as listed below:

– Human error

– Tedious job

– Requires more resources

– Takes more time

• Future maintainability is a problem.

• Multiple files needs to be changed to reflect changes in architecture specifica-
tions.

3.3 Challenges

• A single automated application.

• Generates the configuration as required by RIS tool and AVS, without chang-
ing present output format.

• Syncing and Maintainability across several teams (DV engineers, Partner En-
ablement team, RIS tool engineers)

• No inter dependency across teams.AVS and RIS teams should be able to make
progress without info specific to the others being filled in.

• Future maintainability must be possible.

• Realistic value based on the existing methodologies and Partners response.

• Would need to meet some key real-world requirements like handling incomplete
information.

• Being extremely quick and easy to hack in new requirements.

• Would need to be updated regularly and kept in sync across all active projects.
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3.4 Proposal

Figure 3.2: Unified Target Configuration

The architecture configuration yaml file that is fed to RIS tool consists of 2
parts 1) Tool specific parameters 2) Architecture specific parameters. After study-
ing the target configuration file it is established that the architecture specific part of
the architecture configuration yaml file that is fed to RIS tool can be derived from
the target configuration file. This can be realized using a venn diagram as shown in
figure 3.2

The parameters in the architecture specific of the yaml file parts can be ob-
tained from target config file in two ways:

• Some parameters of the yaml file have a direct mapping to the parameters of
target config file just with both the parameters having different names.

• Some parameters of the yaml file can be derived from the existing parameters
in the target config file with the help of some equations.
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3.5 Implementation

The target configuration file is parsed to a resource configuration user interface
software tool which pushes the values of the parameters in a database. So to imple-
ment unified target configuration we need to auto-generate the yaml file containing
architectural configuration in RIS tool acceptable format. Thus we need to follow
certain steps as listed below:

• Parse the Target Configuration file to the resource configuration user interface
software tool so that it gets the value of the parameters.

• Add equations in the tool for the derived parameters. This is one time config-
uration in the tool.

• Now query the database of the tool to get the value of the desired parameter.

• Now map the name of the parameter with the name that is accepted by RIS
tool.

• Assign the value of the parameter fetched to the RIS tool parameter.

• Print the List of architecture configuration parameters in yaml format and in
order acceptable by the tool.

3.5.1 Resource configuration user interface software tool

This software is used to collect the architectural configurations from the partner
and the working of this tool is explained by figure 3.3. It is in development stage, but
once it is developed then partners can directly provide architectural configurations
through a GUI which would in turn flood the database with values to the specific
architectural parameter. So now instead of Parsing values through GUI we parse
target configuration file to the software which would later on generate this target
configuration file.

Now we use this software to integrate equations of the derived parameters and
to calculate their values and also query the values of directly mapped parameters.
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Figure 3.3: Resource configuration user interface software tool flow

3.5.2 Directly mapped parameters

Some of the architecture configuration parameters that are to be included in the
RIS tool yaml file can be directly mapped to the parameters in target configuration
file with just the names of both parameters being different. Some examples of such
directly mapped parameters are shown in figure 3.4.

For these parameters we need to query the database of the tool for the val-
ues of target config parameter and to generate the yaml file we need to map that
value fetched by querying with the corresponding RIS tool parameter. Example:
We query the database of the tool to find value for cpu.has el3 which comes out to
be TRUE. Then we need to assign this value that is TRUE to
cpu[0].exceptLevel.MonitorPrivLevel.present that is the name of RIS tool parameter.
And print cpu[0].exceptLevel.MonitorPrivLevel.present = TRUE in tool acceptable
format and order. This mappings file is in CSV (Comma Separated Value) format.
The tool uses CSV parser to read this mappings file given as command line input.
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Figure 3.4: Directly mapped parameters example

3.5.3 Derived parameters

Figure 3.5: Example Equations

Some of the architecture configuration parameters that are to be included
in the RIS tool yaml file can be derived from parameters in target configuration file
with the help of some equations as shown in figure 3.5. These equations needs to be
integrated in the Resource configuration user interface software tool. The example
of some equations is as above. In this example icache sets, ways ,line length and
cache size is derived from the value of the CCSIDR Register (Current Cache Size
ID Register).
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Figure 3.6: CCSIDR Register [7]

Different bit fields of the CCSIDR Register give us information about different
features of cache. The detailed description of bit fields is as shown in figure 3.7. This
description is available in Architectural Reference Manual [7]. And by studying it
various equations can be derived for derived parameters as stated above.

Here the bit field [2:0] of the CCSIDR Register gives us information of the
cache linesize. So if we have the information of the CCSIDR register and if we want
to calculate linesize we need to follow reverse process. For example if the value of
CCSIDR [2:0] is 1 then we need to write and equation that would add 4 to the value
of bit field from bit 2 to 0 and then take an antilog with binary as base that is 2
thus the result obtained is nothing but the number of bytes in a cache line that is
the linesize of a cache.

Similarly number of sets is given by bitfield [27:13] and associativity that is
bitfields [12:3] is the number of ways cache lines can be arranged into. From all
these parameters we can also find the cache size as it is the multiplication of cache
linesize, cache sets and also cache ways.

3.5.4 Structure of Unified Target Configuration Tool

This Unified Target Configuration generation tool is a python based tool for the
auto generation of architecture configuration yaml file in RIS tool acceptable format.
This tool takes the mappings file, target configuration file and the an optional name
of output yaml file. Then it parses these three command line arguments provided
while executing the python script using argparser module. Now these command line
arguments are processed. The mappings file which describes the directly mapped
parameter is given in CSV format so it is parsed using CSV parser module.

The target configuration file is used to initialize resource configuration user
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Figure 3.7: CCSIDR Register field description [7]

interface tool. While initialization the tool is built and the values of target configu-
ration parameters is stored into the tool database and also the derived parameters
are calculated with the help of equation integrated into the software. Now this
database is being queried to get the values of the required parameters and finally
an output yaml file is generated in RIS tool acceptable format. The block diagram
of tool structure for the unified configuration generation tool is shown in figure 3.8.
Some debug messages are also printed depending on the verbosity level that we have
given to the resource configuration user interface tool.

An extra added feature is that we can include the equations for the derived
parameters in a file and pass these equations to the tool. Thus this feature enables
to directly calculate the derived parameters from the equations without the need for
explicitly re-building the resource configuration user interface tool. Thus this tool
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provides a functionality to directly add the equations to the reference database of
the resource configuration user interface tool.

Figure 3.8: Flow of tool for RIS tool input architecture config YAML file generation

Thus with the help of this tool we get a single automated application which
generates RIS tool acceptable input configuration file and that too without changing
present format. But since we know that the RIS tool specific YAML file and the
target configuration file cannot be mapped fully with each other thus this tool can
auto generate the RIS tool specific YAML file only upto 90 to 95 percentage and
the remaining RIS tool specific details such as its memory map parameter info is
required to be added explicitly.



Chapter 4

MP RIS TOOL

4.1 Introduction

An SOC (System On Chip) can contain multiple clusters of processors and ver-
ification of such multi core environments is a big challenge, as the bugs are difficult
to find and are often found late in the design cycle.There are different approaches
to multicore verification and one of them is a Random Instruction Stream (RIS)
generator tool. Here we would be talking about Arms own MP RIS tool developed
by engineers of Architecture & Technology Group which uses a testing approach
to target memory subsystem components critical to multicore functionality, such
as Cache and Memory Hierarchy, cross-core coherency transactions, and the Load
Store pipeline [10].

The verification of a processor having multiple core design is becoming more
and more challenging due to the increasing complexity in the design of processor,
weakly ordered memory, bus protocols, and presence of multiple levels i.e. multi-
ple hierarchies of caches in memory subsystem. Arm architecture also defines some
attributes and characteristics which are required to support devices and memory
in system memory map which would further increase the complexity. Making the
memory consistent and coherent is a key issue which needs to be addressed as dif-
ferent processors access same shared memory locations. As an example a unified or
shared cache and update a single shared address space.The possibility of incoherence
arises if there are multiple actors with access to caches and memory. Thus there are
chances that they might access same address location. In modern systems, these
actors are DMA engines, processor cores, and external devices which are able to
read and/or write to caches and memory [11]. Thus we need to maintain a system
that is coherent by observing same value for any particular address.

The MP RIS tool generates the output in the form of native Arm executa-
bles. The source file obtained from the generator is compiled using Arm assembly
tool-chain. Then these test sequences generated are intended to run in a top-level
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simulation based environment. The MP RIS generator provides the functionality to
the user to control many aspects of the test which includes: Deciding upon the num-
ber, location and also the size of address spaces. It also allows the mix of instructions
that will operate on the defined memory regions. Now these memory regions are
also configurable so that the same regions can be shared between the Processing
Elements (PEs). To allow such sharing we need to define address constraints to
trigger various sharing scenarios and invoke snoops and cache-line migrations. The
sharing scenarios are predefined in the form of assembly sequences and they are
divided into various zones [9].

4.2 Features of MP RIS Tool

MP RIS tool focuses on memory sub-system operations and cross-PE coherency
transactions in Multi-Processor/Cluster systems. It is a static RIS generator and
known for achieving higher generation rate i.e. greater than 1000 Instructions Per
Second (IPS).It offers full support of ARM v8-A AArch64 execution state. The
AArch32 A32 (ARM) ISA is partially supported, and no support is available for
AArch32 T32 (Thumb) ISA. Instruction recipes i.e. the test cases targeting to test
some particular intent or some particular feature of the processor design are pre-
defined and the logic is embedded into the tool. Thus we can functionally verify
specific operations and micro-architectural features [10].

The features targeted by the MP RIS Tool are:

• Multi-processor memory coherency.

• Barriers.

• Cache and TLB maintenance operations.

• Message passing (Exclusive operations, Load Acquire or Store Release, Atom-
ics).

• Load-store dependencies and hazards.

• Generate traffic to maximize use of load-store pipeline and evictions.

4.3 Test Topology

The threads executed by PEs are partitioned into equal number of zones. The
transition between two zones is called global synchronization point as shown in
figure 4.1. A zone or iteration specifies the number of ’independent’ test sections
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within the test case. Within each test section there is register initialization, pointer
register setup, data tables and comparison tables [9]. In each such test section i.e.
inside each zones there are scenarios. Scenarios are nothing but threads associated
with memory dependencies. So inside each scenarios there is memory dependencies
between different PEs.

Figure 4.1: RIS tool test topology

. The MP RIS tool provides functionality to configure memory share per-
centage between PEs in different scenarios. All PEs are synchronized in time both
at the beginning and also at the end of each zone. The initialization sequence is
used to set up the test environment, and the finalization sequence simply does the
clean up task.The intent of MP RIS Tool is mainly to generate stimulus that creates
interesting bus traffic between PEs within a memory subsystem. The sequence of
events for test generation is:

• Initialization sets up the test environment.

• Threads execute in each PE.

• All threads synchronize globally.
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• Partition the test flow into Zones.

• Zone order defines the initial test sequence.

• Scenarios include one or more PEs. Scenarios define memory dependencies
between PEs.

• Re-execution of Zones in a random order.

• Finalization sequence performs clean up.

There is an optional (configurable) re-execution of the zone, or even the
entire testcase. This re-execution helps in stressing the timing relations between the
cores and caches that are cold in the first pass, and warm in the second pass.

The generator itself is written in C++, accompanied by a host of libraries in
Python, Arm Assembly, and XML utils. The ouput of the tool is a testcase in Arm
assembly format. It also produces associated files required to assemble and link the
testcase into an Executable and Linkable Format (ELF) file. Modern RTL simulators
can consume these ELF files as a memory-resident image during simulation.

4.4 Design Configuration

The target designs configuration is the first input to the tool, in the form of
files in a user-defined configuration directory (config-dir). They have the files as in
figure 4.2 and figure 4.3:
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Figure 4.2: Design configuration files

• Customer Map:
The target designs physical memory map, with regions dedicated for I/O, pe-
ripherals, ROM, Interrupt Controller etc. The available regions excluding the
above regions are where the MP RIS Tool places its test data pages.

• pe.conf:
Specifies the system configuration of the target design. It has inputs for num-
ber of clusters, number of PEs in each cluster, L1/L2/L3 cache parameters,
feature enables, architecture etc.

• Overrides:
Override files for recipe knobs.

4.5 RIS Tool Recipes

The tools inputs are configuration files, and the Armv8 ISA specified in XML
format. The configuration files are organized as recipes that define the intent of the
test. A recipe specifies the design space that the test targets, and provides maximum
possible coverage in that space through knob randomization. Different generation
runs of the recipe yield test cases that take in different combinations of the same
knobs, that provide uniqueness in their own ways, and stress the same piece of logic
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Figure 4.3: Recipe design configuration

from ever-so-slightly different angles. A recipe includes instruction configuration
files and memory configurations for every core and global memory configuration file
that can be used to tune the instruction stream. The memory configuration files
specify bias for different Armv8 memory attributes, cache indexing, page crossing,
cacheline crossing etc.

The tool also provides an override capability for these files, so users can specify
an overriding value for specific or a set of knobs, to be fixed for the entire regression
while other knobs are randomized. Users can generate tests using recipe categories
in accordance with the maturity of their RTL design. The MP RIS Tool offers sev-
eral regression script options for a convenient test-generation process.

Recipes are organized into three categories bring-up, functional, and microarch-
stress. A block level view is as shown in figure 4.4

4.5.1 Bring-up Recipes

These recipes focus on the initial bring-up of load and store instructions, the
memory subsystem and basic data-side MP features. These are the first set of MP
RIS Tool recipes the user will focus on with the generated tests ranging between
5,000 and 50,000 instructions depending on design maturity and available resources.
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Figure 4.4: Recipe Types

4.5.2 Micro-architecture Recipes

These recipes are focused on distinct features in the architecture with the ex-
pectation that all available instructions and memory features are implemented and
verified at unit level. Architectural features that are addressed include EL switching,
exercising different features in the MMU, and interleaving various types of instruc-
tions so as to create hazards and address dependencies. These are the second set of
recipes the user will focus on with the generated tests ranging between 20,000 and
100,000 instructions depending on design maturity and available resources.

4.5.3 Functional Recipes

Functional recipes are the final set of MP RIS Tool tests for the user to concen-
trate on since they are intended for mature designs. These recipes are expected to
be used with tests ranging from around 50K to 1M plus instructions in length and
focus on maximally randomizing the instructions and memory parameters.

4.6 Test Generation Process

The output from the generator is an assembly test file, and a scatter file that
specifies addresses in the physical memory for ELF loading by the linker. The final
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Figure 4.5: Test generation process

ELF is created after assembling and linking these files. The components involved
are as shown in figure 4.5

The installation of the MP RIS Tool provides a tool binary (.exe) and a tool
wrapper script. The binary generates the assembly and scatter files associated with
a test. However, to generate an ELF file that can be run in simulation, an additional
step is required to assemble and link the files output by the tool binary file. Thus,
generating a test ELF file involves 2 steps:

1 Invoke MP RIS Tool binary to generate the tests assembly and scatter file.

2 Invoke the ARM assembler and linker to build an ELF test file.

Moreover, the resulting ELF test can be disassembled which becomes useful
for debugging purposes. The wrapper script provided with the installation combines
the steps above into a single operation. The detailed explanation of working of the
wrapper script is provided in next section.

4.7 RIS Tool Wrapper

The MP RIS Tool wrapper is a shell script for the RIS/Verification tool. Its
intent is to orchestrate the steps needed to configure, run and analyze a MP RIS
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Figure 4.6: MP RIS tool Block Diagram

Tool regression from test generation to results validation.The wrapper allows a user
to configure knobs that pertain to recipe values that influence test generation. A
user can specify one set of knob values to one or more recipes or allow the MP
RIS Tool wrapper to randomize knob values for them.The wrapper script provides
a command-line interface that allows the user to control test generation by selecting
recipes and parameters that define the intent, topology and size of the test.

The wrapper script manages the following:

• Environment setup

• Memory / Configuration setup

• Test Generation

• Assembly

• Linking



CHAPTER 4. MP RIS TOOL 28

Figure 4.7: MP RIS tool Block Diagram

• AEM Verification

• Post test Validation - MP RIS Tool QA

The MP RIS Tool wrapper can override a design configuration. For that we
need to specify a path to configuration directory that contains required files. The
wrapper will use the values specified in these files in the place of the default values.
The configuration override directories are required to have the following files:

• customer map

• glob override.conf

• memGlob override.conf

• pe.conf

Thus this wrapper script is used to invoke all the procedures in a proper prede-
fined sequence for generating the test case. Ablock level view of all the components
involved is shown in figure 4.6. It reads the recipe directory for basic configura-
tion of knobs. These knobs are overwritten if the same knobs are present in the
override.conf file. Now the final list of knobs and their values is overwritten by the
config files. Then by using these knobs and assigning some particular value to these
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knobs the MP RIS Tool generates a test case containing sequence of instructions.
These generated test cases are in the form of a source file i.e. .s file which needs
to be assembled and linked further to generate an ELF file and this is done using
Arm assembly and linking tools. Now this generated ELF file is used to verify the
AEM model and also the RTL design of the processor as also explained by figure
4.7. Thus this MP RIS Tool proves to be efficient to cover the corner cases for a
multicore environment. This tool also requires some Quality Assurance mechanism
to keep a check on the quality of the generated test cases. The already available QA
tool and the newly developed plugins for QA are discussed in upcomming chapters.



Chapter 5

PREGENERATION QA -
RECIPE QA

5.1 Introduction

It is a tool that performs trace-based QA checks on MP tests from the MP RIS
generator and measures test intent to help to tune generation. It also points to test
issues that could potentially cause the Device Validation teams to pursue debug of a
false failure. Thus as a result it increases quality of MP RIS tests used for validation
and in turn decreases the probability of post-silicon bugs.

Figure 5.1: MP RIS Tool temp directory structure

The Pre-generation tool script is integrated with the wrapper script and is

30



CHAPTER 5. PREGENERATION QA - RECIPE QA 31

called by the wrapper script after it generates the final set of knobs and correspond-
ing values after applying all the overrides. Figure 5.1 shows where the pre-generation
as well as the post generation tools are included in the execution cycle of the MP-
RIS Tool. The pre-generation QA i.e. the recipe QA is divided into 3 phases as
explained by figure 5.2:

• Checks for configs

• Checks for crosses

• Knob randomization report

Figure 5.2: MP RIS Tool temp directory structure

Now the MP RIS tool takes various parameters from the users like the name
of recipe, the config which is to be applied i.e. the path to config directory, test
count etc. And then the MP RIS Tool applies all these overrides and generates a
final list of knobs and their corresponding value to generate tests. Thus for each
test it creates a temporary directory and this test can belong to any recipe thus the
MP RIS Tool put this test directory inside a recipe directory to which it belongs.

Inside every test directory we have the basic recipe config directory which gives
the basic set of knobs for that particular recipe. Now this knobs are overwritten by
the override.conf files to give a final list of knobs and values. If the config directory
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is specified by the user then the knobs and values present in the config directory
are also considered for overwriting the final list of knobs. The final list of knob
and values taken by the MP RIS tool is not dumped anywhere and it just does the
overrides on the fly during run time.

Figure 5.3: MP RIS Tool temp directory structure

The recipeQA tool first of all takes as an input the path of the temp direc-
tory that is created by the MP RIS Tool and it parses through all the files inside a
directory to store all the recipes, their corresponding tests, config files and override
files in a data structure. The directory structure is as shown in figure 5.3 and 5.4.
Thus the tool after reading the temp directory have a data structure of multilevel
list having dictionary as its last level. Thus value for knobs for each test of each
recipes are stored. Then another data structure stores the override knob and values.
now a final list of knob and values is created by updating the values of the original
conf files with the values in override files. If the knob is present in both the conf file
and override file then the final list will have the knob with the value equal to that
of the override file.

Thus the recipe QA Tool have various modules for different task:

• Process command line arguments:
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Figure 5.4: MP RIS tool temp directory structure block diagram

It processes the input temporary directory and the name of the config if checks
for configs is on and also the levels for which we want to do the recipe QA. We
can simultaneously do the QA for all three levels. The was this pre-generation
recipeQA script can be executed is shown on figure 5.5.

• Fetch recipe directory:
This function takes as an input the path to temporary directory generated by
the MP RIS Tool and then stores the path to every recipe directory inside the
temp directory and discared all other files and folders in temp directory.

• Fetch test directory:
It goes to path of every recipe directory and then stores the path for test inside
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every recipe directory.

• Fetch config files:
This function takes the path to every test directory for every recipe and
then stores path to the required config files that are useful like the mem conf
files, memGlob conf and glob conf files and this function ignores all the other
files present in the test directory. This function also stores the override file
paths, just we need to change the input path from test directory path to
test dit path+recipe-conf as the override files are inside the recipe-conf direc-
tory.

• Write data-structure:
The knobs and values inside the config files or the override files are populated
inside a data structure using this function.

Figure 5.5: Recipe QA help

• Apply overrides:
The data structure storing recipe config knobs and values are overwritten using
the override data-structure to get the final list of knobs and their corresponding
values.

• Make knob Randomization out file:
This function makes a file to show the level of knob randomization achieved
or every recipe. This file is placed inside every recipe directory of the temp
directory i.e. parallel to the test directories.

• Parse config details input file:
This function is used to read the config details input file and make list of valid
configs.

• Perform checks for config:
This function check the final data structure with the knobs and values inside
the config directory to check if the final list of knobs is overwritten with the
values of knobs in config directory or not. If the knob is not overwritten then
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it flags a fail. This function also checks if the config specified as comand line
input is from the list of valid configs or not. If it is not valid then the recipe
QA Tool prints the list of valid configs.

• Make checks for config out file:
This function prints the output file with all configs checks flagged as pass or
fail and places the output config checks file inside every test directory since
the checks for configs are performed for every tests.

• Process crosses details file:
This function is used to parse the crosses details input file to make the list of
valid crosses and also the list of required crosses.

• Perform checks for crosses:
This function reads the values of knobs from the data structure and compares
if any invalid combination of knobs are occurring in same test simultaneously.
It also checks if the required crosses are not occurring and flags the fails and
the pass.

• Generate checks for crosses out file:
This function prints the output file with all checks for crosses flagged as pass
or fail and places the output crosses checks file inside every test directory since
the checks for invalid and required crosses are performed for every tests.

• Main function calling all functions. And after the output files are generated
and placed in their respective locations a print message appears on the screen
as shown in figure 5.6.

Figure 5.6: Recipe QA execution

5.2 Recipe QA Execution

For the execution of the RecipeQA Tool we need to compulsorily provide a
path to the temp directory and provide the levels for which we need to perform the
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checks. If we are enabling checks for configs i.e. level1 then we also need to specify
the name of config for which the checks for configs is to be done. If the config is
invalid then it is flagged and the RecipeQA Tool prints the list of all valid configs
as shown in figure 5.7.

After generating the knob randomization reports and placing them inside every
recipe directory the RecipeQA Tool prints a status on command line saying: ” Each
recipe dir contains: Knob Randomization report.” And then similarly it prints status
as shown in figure 5.6 after generating the config checks and crosses checks report
and placing them inside every test directory.

Figure 5.7: Recipe QA list of configs

5.3 Knob Randomization Report

The MP RIS Tool does not dump a final list of knobs and values taken after ap-
plying all the override files. Thus with this dump of knob randomization report we
get the final values of knobs taken by the MP RIS Tool. This report is generated
for every recipe. Thus suppose we have 5 test corresponding to one recipe then the
knob can have maximum 5 different values. Thus in knob randomization report the
knob is printed once and that knob has 5 values separated by comma as shown in
figure 5.8 for two test belonging to one recipe. Thus by analyzing this file we can
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Figure 5.8: Output knob randomization report

see if the value the knob is taking is being randomized or not. Thus we can get an
estimate of the level of randomization that is achieved.

The functions specific to generating knob randomization report in the Recipe
QA Tool are:
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• Write data-structure:
The knobs and values inside the config files or the override files are populated
inside a data structure using this function.

• Apply overrides:
The data structure storing recipe config knobs and values are overwritten using
the override data-structure to get the final list of knobs and their corresponding
values.

• Make knob Randomization out file:
This function makes a file to show the level of knob randomization achieved
or every recipe. This file is placed inside every recipe directory of the temp
directory i.e. parallel to the test directories.

5.4 Checks for crosses

Figure 5.9: Crosses details file snapshot
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Figure 5.10: Output checks for crosses file

The checks for crosses is done to ensure that no such cross appears that
would hamper the intent of the test. It also makes sure that in randomization sce-
nario no invalid combination occurs simultaneously in a test case. Thus there is
check for invalid crosses. Also there is a check for required crosses. In the check
for required crosses if one knob has some particular value then there should be a
required cross knob present in the same test with a fixed value. Thus this checks for
crosses plays an important role by checking the combination of knob that the test
case that is going to be generated from a list of knob and values would be a valid test
case or not. If the test is invalid i.e. it contain an invalid cross or does not contain a
require cross then the test case is discarded and not generated. Thus this saves the
MP RIS Tool time and resources that would have been wasted in generating invalid
test case that would be flagged after running this test case on either AEM or on the
RTL simulation model.

The RecipeQA Tool take the crosses details file as shown in figure 5.9 as an
input file to lay the rules of invalid crosses and required crosses and then with the
help of these rules generate the checks for crosses output file as in figure 5.10.

The functions specific to checks for crosses in the Recipe QA Tool are:

• Write data-structure:
The knobs and values inside the config files or the override files are populated
inside a data structure using this function.

• Apply overrides:
The data structure storing recipe config knobs and values are overwritten using
the override data-structure to get the final list of knobs and their corresponding
values.

• Process crosses details file:
This function is used to parse the crosses details input file to make the list of
valid crosses and also the list of required crosses.

• Perform checks for crosses:
This function reads the values of knobs from the data structure and compares
if any invalid combination of knobs are occurring in same test simultaneously.
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It also checks if the required crosses are not occurring and flags the fails and
the pass.

• Generate checks for crosses out file:
This function prints the output file with all checks for crosses flagged as pass
or fail and places the output crosses checks file inside every test directory since
the checks for invalid and required crosses are performed for every tests.

5.5 Checks for configs

Figure 5.11: Config details file snapshot
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The checks for configs are required to make it double sure that the configs
are being overwritten properly in the final list of knob:values or not. Thus if the
values of knobs is changed in the config directory or some new knob is added in
the config directory file then the same would not be reflected in the config details
file as the config details file would have the old details unless it is modified. Thus
this new changes would be flagged. Thus for a test to pass the checks for configs
we need to include the new knob or change the value of knob in the config details
file as well. This prevents the user from accidentally modifying the values of the
config file. This tool is also used to flag a fail when the user is running the MP RIS
Tool with some other config. For example when the user is trying to generate MP
RIS Tests with configs specific to device validation suites then it would flag a fail
specifying the required cinfig settings for the MP RIS Tool.

The functions specific to checks for crosses in the Recipe QA Tool are:

• Write data-structure:
The knobs and values inside the config files or the override files are populated
inside a data structure using this function.

• Apply overrides:
The data structure storing recipe config knobs and values are overwritten using
the override data-structure to get the final list of knobs and their corresponding
values.

• Parse config details input file:
This function is used to read the config details input file and make list of valid
configs.

• Perform checks for config:
This function check the final data structure with the knobs and values inside
the config directory to check if the final list of knobs is overwritten with the
values of knobs in config directory or not. If the knob is not overwritten then
it flags a fail. This function also checks if the config specified as comand line
input is from the list of valid configs or not. If it is not valid then the recipe
QA Tool prints the list of valid configs.

• Make checks for config out file:
This function prints the output file with all configs checks flagged as pass or
fail and places the output config checks file inside every test directory since
the checks for configs are performed for every tests.

The RecipeQA Tool take the config details file as shown in figure 5.11 as an
input file to lay the rules for the list of knobs that must be present and if present
then to lay the rules on their values. And then with the help of these rules file i.e.
the config details file the RecipeQA Tool generates the checks for configs output file
simillar to the one shown in figure 5.12.
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Figure 5.12: Output checks for configs file



Chapter 6

POSTGENERATION QA - TEST
LENGTH ANALYSIS

6.1 Introduction

Post-generation QA is a test length analysis tool that performs trace based QA
checks on generated tests from the MP-RIS generator. It measures test length by
reading tarmac trace to help debug generated test cases. It calculates the number
of instructions anticipated and compares with actually generated instructions. And
based on the results of comparison gives a fail if not equal as shown in figure 6.1. This
tool makes it very easy to debug tarmac which was being done manually otherwise.

Figure 6.1: Post-generation QA Tool block diagram
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Figure 6.2: Help option of tool to verify test length

6.2 Working

This tool takes as an input the path to the test directory as shown in figure 6.2.
Then it would parse the files present in the test directory to read the aem tarmac
file and qa.logs file. The main intent of the development of this tool is to analyze the
tarmac file to calculate the overhead instructions that are added. Thus based on the
analysis the instruction count should be such that the useful number of instructions
generated are more than the overhead instructions added. Thus this would increase
the generation efficiency of the MP RIS tool.

Figure 6.3: Output of tool to verify test length

The output of this tool gives as shown in figure 6.3 us the number of instruc-
tions that are used for initialization, finalization, the local synchronization between
processing elements and the global synchronization between zones. Thus all these
instructions are overhead added to generate some useful instructions. Thus for 50%
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generation efficiency the number of instructions must be atleast double than the
overhead instructions added. The AEM Tarmac shown in figure 6.4 is the out-
put file obtained after running the test which is analyzed to calculate the overhead
added. This tarmac file gives the information about the cpu cycles and the instruc-
tions that are executed in every cycle. Thus the post generation QA tool counts the
overhead instructions by reading this file.

Figure 6.4: AEM Tarmac file

6.3 Execution of the tool

The of RE EXECUTES defines the number of times a test is re-executed: the
PEs execute through all zones in the original test order (e.g. zone 0, followed by
zone 1, and others.) and after the global synchronization following the last zone,
the test will execute all zones in the test again.The ability to re-execute the zones
in a test to be run multiple times allows the execution to be affected by a warm
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cache and the consequent differences in timing for the same scenarios in different
zones. Typical values of RE EXECUTES for RTL simulation are between 1 and 3.
Higher values can also be used to take advantage of timing variances at the cost of
increasing simulation times.

The total number of instructions generated by an MP RIS Tool generated test
is a function of the number of PEs (–pe), the number of zones (–nz), and the number
of instructions in a zone (–ni). A lower limit on the total number of instructions
generated is estimated as:

TOTAL GENERATED INSTRUCTIONS = (NUMBER OF ZONES x NUM-
BER OF PE x NUMBER OF INSTRUCTIONS)

The total number of instructions that are executed on the target system will
in addition depend on the number of times a test is re-executed (–re):

TOTAL EXECUTED INSTRUCTIONS = (TOTAL GENERATED INSTRUCTIONSx
NUMBER OF RE-EXECUTIONS)

Figure 6.5: Analysis of output of tool to verify test length
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In addition to the generated instructions, there is overhead from instructions
required for setting up tests and zones, address generation, and others. In addition,
since every zone requires global synchronization between all PEs in the system, there
is a cost associated with defining a larger number of zones since more overhead is
added to the test for synchronization cycles. Thus, it is worth considering on using
a lower number of zones with more instructions defined in each zone.

6.4 Reading MP RIS QA Logs

Figure 6.6: QA Logs file
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This tool also reads the tool QA logs file to read the instruction of interest
given by the QA tool that is inbuilt with the MP RIS Tool. This file is as shown
in figure 6.6. Then it compares the anticipated number of instructions and the
instruction of interest given by the QA logs file to check if the QA Logs file are
giving correct results.

Thus this post generation QA tool is efficiently used to calculate the overhead
for a particular scenario of no. of zones, no. of PEs and no. of re-executes as shown
in figure 6.5. So when executing the test case with same scenario the next time the
no. of instructions can be pre-decided to give an efficiency of 50% or more. This
would prevent the tool from generating the test cases with more no. of overhead
instructions than the actual usesfull instructions.



Chapter 7

CONCLUSION AND FUTURE
WORK

7.1 Conclusion

As we know that the verification effort is often more than the design effort
with increasing design complexity of the processor design now a days.Thus constant
efforts are being made to reduce the time to verify the design.”Random Instruction
Sequencer” (RIS) tools being the most commonly used solution across the processor
design industry for verification and validation of processor design, plays an important
role in verification cycle. Thus developing RIS tools would simplify the process
of processor design verification which may help us to considerably reduce time to
product.

The work presented here introduces the RIS Tool for single core verification
and MP RIS Tool for the multi-core processing environments. It explains how
both the tools are efficient in targeting the corner cases for uncovering the bugs
which might not have been possible using the directed stimulus for verification of
the designs. This project focuses on the development of Arm verification tools by
developing plugins for RIS Tools that would in turn increase the efficiency of the
tools either by increasing the accuracy or by reducing the time and efforts required
for the configuration of the tools.

In this project the development of unified target configuration tool is discussed
in detail which proves the tool helpful in subsequent reduction of time to configure
the RIS Tool by automating the generation of the configuration file. Thus a result of
unified target configuration tool, 85 to 90% of the configuration file is auto generated
and only remaining 10 to 15% of the information require to be hand-coaded. This
project also introduces us to the pre-generation as well as the post generation QA
tools for MP RIS Tool which proves helpful in increasing the efficiency of the MP RIS
Tool by discarding invalid test cases and also by increasing the usability of generated
test case by calculating and remarkably reducing the percentage of added overhead.
Here we have considered an example where 50% is the generation efficiency for each
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test case.

7.2 Future Work

The Post-generation tool can be further enhanced to automatically calculate
the no. of useful instructions for making the test generation efficiency to be 50%
or some configurable value. Then a database can be maintained for every scenario
of number of zones, number of PEs and number of re-executes. The pre-generation
tool can be further tuned to read this database to automatically take the number
of instructions as specified in the database. But since this would not allow the
flexibility for user to choose the number of instructions to be generated. Another
proposed solution can be to flag a warning if the number of instructions specified
by the user is less for a particular scenario than that specified in the database.
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