
Embedded Controller(EC) Firmware
Development on Upcoming Platform

Major Project Report

Submitted in fulfillment of the requirements

for the degree of

Master of Technology
in

Electronics & Communication Engineering

(Embedded Systems)

By

Falak Mehta

(16MECE10)

Electronics & Communication Engineering Department
Institute of Technology

Nirma University
Ahmedabad-382 481

May 2018

Embedded Controller(EC) Firmware
Development on Upcoming Platform

Major Project Report

Submitted in fulfillment of the requirements

for the degree of

Master of Technology

in

Electronics & Communication Engineering

By

Falak Mehta

(16MECE10)

Under the guidance of

External Project Guide: Internal Project Guide:

Kunal Shah Dr. Dhaval Shah

Firmware Engineer Assistant Professor, EC Department,

Intel Technology Pvt. Ltd., Institute of Technology,

Bangalore. Nirma University, Ahmedabad.

Electronics & Communication Engineering Department

Institute of Technology-Nirma University

Ahmedabad-382 481

May 2018

iii

Declaration

This is to certify that,

a. The thesis comprises my original work towards the degree of Master of Tech-

nology in Embedded Systems at Nirma University and has not been submitted

elsewhere for a degree.

b. Due acknowledgment has been made in the text to all other material used.

- Falak Mehta

16MECE10

iv

Disclaimer

“The content of this paper does not represent the technology, opinions,

beliefs, or positions of Intel Technology Pvt. Ltd., its employees, vendors,

customers, or associates.”

v

Certificate

This is to certify that the Major Project entitled “Embedded Controller(EC)

Firmware Development on Upcoming Platform ” submitted by Falak Mehta

(16MECE10), towards the fulfillment of the requirements for the degree of Master

of Technology in Embedded Systems, Nirma University, Ahmedabad is the record

of work carried out by her under our supervision and guidance. In our opinion, the

submitted work has reached a level required for being accepted for examination.The

results embodied in this major project, to the best of our knowledge, haven’t been

submitted to any other university or institution for the award of any degree or

diploma.

Date: Place: Ahmedabad

Dr. Dhaval Shah Dr. N.P. Gajjar

Internal Guide Program Coordinator

Dr. D. K. Kothari Dr. Alka Mahajan

Section Head, EC Director, IT

vii

Acknowledgements

I would like to articulate my recognition and genuine thanks to Dr. D. K.

Kothari, Head of Electronics and Communication Engineering Department, and

Dr. N. P. Gajjar, PG Coordinator of M.Tech Embedded Systems program for

permitting me to undertake this thesis work and for his guidelines during the review

progress. I take this occasion to express my intense obligation and commendations

to Dr. Dhaval Shah, guide of my major project for his ideal guidance, monitoring

and continuous motivation throughout the course of this thesis.

I would take this moment to deep sense of honor to Chandra Sekhar, Software

Engineering Manager, Intel Technology India Pvt. Ltd. for his constant supervision

as well as for enabling valuable information about the project and advices, which

helped me in completing this task through numerous stages. I would also praise

Kunal Shah, my project mentor for always helping, giving me good suggestions,

solving my confusions and guide me to fulfilling the different task of my project in

a better way.

- Falak Mehta

16MECE10

Contents

Declaration iii

Disclaimer iv

Certificate v

Acknowledgements vii

Abstract xii

Abbreviation Notation and Nomenclature xiii

1 Introduction 1

1.1 Introduction . 1

1.2 Current Scenario . 2

1.3 Problem Statement . 2

1.4 Objective . 2

1.5 Timeline . 3

2 Literature Survey 5

2.1 Overview . 5

2.2 Embedded Controller Interface Description 6

2.3 Embedded Controller Register Descriptions 7

2.4 Embedded Controller Command Set 9

viii

CONTENTS ix

3 Hardware Design 11

3.1 System Architecture . 11

3.2 Block Diagram of Embedded Controller 12

3.3 Hard-Wired Functionality . 13

4 Work done & Design flow 15

4.1 GPIO(General Purpose I/O) . 15

4.2 Timer . 19

4.3 Watchdog Timer . 21

4.4 Pulse Width Modulation(PWM) . 23

4.5 Library File Generation . 25

4.6 Analog to Digital Converter(ADC) 26

4.7 Interrupt . 27

4.8 Make File . 30

4.9 Board Support Package(BSP) . 33

4.10 Enhanced Serial Peripheral Interface(eSPI) 33

4.11 SMBus Interface . 39

5 Conclusion 47

5.1 Conclusion . 47

6 Future Scope 49

References 51

List of Figures

1.1 Timeline . 3

2.1 Register detail[1] . 8

2.2 EC Command Set[1] . 9

3.1 System Architecture . 11

3.2 Block Diagram of Embedded Controller 13

4.1 Pull-Up . 16

4.2 Pull-Down . 16

4.3 GPIO ConfigPin Flowchart . 17

4.4 GPIO SetPin Flowchart . 18

4.5 GPIO GetPin Flowchart . 19

4.6 Timer Flowchart . 20

4.7 Watchdog timer[3] . 21

4.8 Watchdog timer flowchart . 22

4.9 Duty Cycle . 24

4.10 PWM Flowchart . 25

4.11 PWM Timing diagram . 26

4.12 ADC Flowchart . 27

4.13 ADC serial logs . 28

4.14 Interrupt Flowchart . 29

4.15 Make File snapshot . 31

x

LIST OF FIGURES xi

4.16 Make File commands . 31

4.17 Code Base snapshot . 32

4.18 Master-Slave Interface . 34

4.19 Peripheral packet format . 35

4.20 OOB packet format . 36

4.21 Virtual wire packet . 37

4.22 Virtual wire command . 37

4.23 Virtual wire Flowchart . 38

4.24 SMBus . 39

4.25 Quick command . 41

4.26 Send Byte command . 41

4.27 Receive Byte command . 42

4.28 Write Byte/Word command . 42

4.29 Read Byte/Word command . 43

4.30 Block Write/Read command . 43

4.31 SMBus Flowchart . 44

Abstract

The embedded controller (EC) is a fundamental segment in ultra-mobile, mod-

ern mobile and implanted PC frameworks. Embedded controllers are frequently

used in I/O systems, low power designs, different management functions. The de-

vices that connected to the platform are USB type c port, serial debug port, CPU

fan, PMIC, scan matrix controller and mouse, thermal sensors etc. EC is directly

interfacing to host through LPC/eSPI bus. Notifications related to these devices

are sent to Operating System (OS) via embedded controller. EC provides ACPI

function that defines hardware and software communication between an embedded

controller and OS driver. EC can control and manage different I/O and internal

features to perform that the Operating System does not handle. Those tasks can be

power management, battery management, thermal management, the host interface,

user input etc.

Development of this chip by writing firmware for different driver modules like PWM

for fan control, GPIO, ADC for hardware monitoring, a timer to get the delay be-

tween two tasks, Watchdog timer, Interrupt to handle the events, eSPI, SMBus for

battery management etc. Then compiling these drivers by Makefile commands and

after that binary file will be generated. This firmware image will be implemented

on board through SPINOR and get desired output for each driver modules.

xii

Abbreviation Notation and Nomenclature

BIOS . Basic Input Output System

eSPI . Enhanced Serial Peripheral Interface

LPC . Low Pin Count

ACPI . Advanced Configuration and Power Interface

OSPM . Operating System Power Management

PMIC . Power Management Integrated Circuit

GPIO .General Purpose Input Output System

ADC . Analog to Digital Converter

PWM .Pulse Width Modulation

WDT . Watchdog Timer

SOC . System on Chip

USB .Universal Serial Bus

UART . Universal Asynchronous Receiver Transmitter

ISR . Interrupt Service Routine

IVCT . Interrupt Vector Table

INTC . Interrupt Controller

IRQ . Interrupt Request

MAF . Master Attached Flash Sharing

OOB . Out Of Band

SMBus . System Management Bus

xiii

Chapter 1

Introduction

1.1 Introduction

The embedded controller (EC) is a fundamental segment in ultra-mobile, modern

mobile and implanted PC frameworks. An efficient EC sub-framework empowers

energy conscious plans to acquire dramatic power savings. EC can control and

manage various features to perform different tasks. Typically the EC performs

following tasks:

• Power Plane Management

• Smart Battery Management

• Thermal Management

• Docking

• Host Interface

• User input (Matrix keyboard scanning, PS/2 pointing device, external PS/2

services)

• Peripheral Management (EEPROM, integrated Serial Port, shortcut keys, Lid

switch etc.)

1

CHAPTER 1. INTRODUCTION 2

1.2 Current Scenario

This new embedded controller (EC) is highly integrated with various system func-

tions. EC is directly connected to host (SOC) through eSPI/LPC. It provides ACPI

embedded controller function, PWM for fan control and ADC for hardware monitor-

ing, keyboard controller and scan matrix, a PS/2 interface for an keyboard or mouse

devices, and system wake up functions for power management. EC also provides

USB type-C and USB PD port control. Reduction in chip size and cost is the main

advantage over older EC chip as older EC chip doesn’t have these many advantages.

1.3 Problem Statement

The older embedded controller has chip size as well as cost related issues. It

doesn’t have features as new EC chip have like USB type-C port and USB PD

control.

1.4 Objective

Embedded controller manages different features like GPIO, Timer, PWM, ADC,

Watchdog timer, SMBus for battery management, Interrupt, eSPI, Chip power man-

agement, UART, scan matrix and keyboard controller, a PS/2 interface for external

keyboard and mouse devices and many more.

The goal is to write firmware for the different modules of embedded controller

and library file generation & verify it on the chip. Port this functionalities to the

new embedded controller chip. This new EC chip is used on the next-generation

platform.

CHAPTER 1. INTRODUCTION 3

1.5 Timeline

Figure 1.1: Timeline

Chapter 2

Literature Survey

2.1 Overview

ACPI (Advanced Configuration and Power Interface) is widely used for the

productive treatment of power utilization in laptops and desktops. Computer’s I/O

devices, BIOS and operating system communicate with each other about power

usage using ACPI. ACPI builds up industry-standard interfaces enabling power

management, OS-directed configuration and thermal management of mobile, server

platforms and desktop. ACPI is an essential component of INTEL’s ”INSTANTLY

AVAILABLE” technology. OSPM handles device configuration events, thermal sta-

tus, performance and power of the system. OSPM performs different functions like

device management, system power management, processor management, system

events, battery management, thermal management, SMBus, EC etc. Thus standard

software and hardware communication done by ACPI. Embedded controller and OS

driver communicate with each other using ACPI. The standard driver provided by

OS can directly communicate with EC in the system.[1]

Multiple embedded controllers are supported by ACPI standard. There is an task

query system that allow hardware implemented by EC to take attention of OS driver.

Two interfaces are specified:

5

CHAPTER 2. LITERATURE SURVEY 6

• Private Interface:- Interface that exclusively owned by the EC driver.

• Shared Interface:-Interface used by the EC driver and some other driver.

2.2 Embedded Controller Interface Description

Embedded controllers are used to support OEM-specific implementations. Em-

bedded Controllers are supported by ACPI in any platform design. It is a unique

feature and it can do different functions through connection to the microprocessor(s).

The most commonly used EC among the variety of microcontrollers consisits a host

interface that interface the EC to the host data bus and will allow bi-directional

communication. This mechanism will reduce the latency of host processor in com-

municating with the EC.

In a shared interface, the EC is shared between system management code and OSMP.

In private interface, there is a particular EC decode range for OSPM driver. And

in private interface, EC and OSPM communicate without any additional software

overhead with using Global Lock.

There are some additional embedded controller interfaces provided by such common

system.[1]

a. Non shared embedded controller. This is very much common and system

management handler is not required to communicate with the EC when system

will be in ACPI mode.

b. Integrated keyboard controller and embedded controller. There are three in-

terface like standard keyboard controller in default component (input-output

component and chipset) and EC with two interfaces for different system man-

agement activities.

c. Standard keyboard controller and embedded controller. There are three inter-

face which includes keyboard controller and EC with two interfaces for different

management activities.

CHAPTER 2. LITERATURE SURVEY 7

d. Two embedded controllers. There is four host interface with using two em-

bedded controllers. One for keyboard controller functions giving two host

interfaces and one controller for managing system activities giving up to two

host interfaces.

e. Embedded controller and no keyboard controller. The keyboard functionality

with completely different mechanism provided by future platforms that will

provide two host interface in the EC for system related activities.

It requires some changes to handle the general embedded controller interface model

which is shared between number of tasks processing under the OS control and the

SMI handler like. Changes are like

• Firmware changes in EC

• Additional external hardware

• SMI handler firmware changes

• Operating software(OS) changes

2.3 Embedded Controller Register Descriptions

EC has three registers at two address locations: EC DATA and EC SC. EC SC

means EC Status-Command register perform like 2 registers in which status register

for reading purpose and command register for writing to this port. EC DATA is

used for transferring the data between the embedded controller and host CPU.

EC SC read-only register indicates only the current status of the embedded con-

troller interface. Register details are shown in below figure.

OBF is set when the EC writes a data byte into the command but the host has

not read it. When status bytes have been read by host, it sees that OBF flag is set,

then it reads the data port to get data that EC has written. OBF flag is cleared

CHAPTER 2. LITERATURE SURVEY 8

Figure 2.1: Register detail[1]

automatically when the host reads the data byte. So it tells EC that data has been

read by the host and so embedded controller can write more data to host.

IBF flag is there when the host writes a data byte to the command or data port but

EC has not yet read it. IBF flag is cleared automatically when the EC reads the

data byte.

The SCI event flag is raise when the internal event has detected by an embedded

controller that required operating systems attention. In a status register, EC sets

bit and make SCI event to OSPM.

The SMI event flag is raise when the internal event has detected by embedded

controller and it requires the SMI handler’s attention.

The Burst flag tells that EC has received that burst enable command is received

to embedded controller from host. So this allows OSPM to immediately read and

write the data bytes without any overwritten between SCI commands.

CHAPTER 2. LITERATURE SURVEY 9

2.4 Embedded Controller Command Set

Figure 2.2: EC Command Set[1]

These are several command set that allows communication between OSPM

and the embedded controller.[1]

Chapter 3

Hardware Design

3.1 System Architecture

The system architecture of embedded controller is shown as below:

Figure 3.1: System Architecture

11

CHAPTER 3. HARDWARE DESIGN 12

The embedded controller is basically a microcontroller with different internal

features and I/O components. Figure 3.1 shows the architecture of the embed-

ded controller. Embedded controller can manage control all the devices which are

connected to onboard thermal sensors and platform, serial debug ports, USB port,

display ports, CPU Fan, PMIC module. The EC firmware on reference platform is

organized as a set of tasks that are managed by a multitasking dispatcher kernel.

In a round robin fashion the dispatcher calls each task and allows it to run for a

specified time slice. If the task has nothing to do it returns control to the dispatcher.

Once all tasks are performed, the EC enters an idle low power state. Device notifica-

tions related to the temperature reading, battery management, power management

are sent to OS via an embedded controller (EC). So for that, an embedded con-

troller has some specific command set which has been described above and those

commands are operated in ACPI region which of 256 bytes.

3.2 Block Diagram of Embedded Controller

Figure 3.2 is a typical block diagram of generic EC. We can see there are two main

groups:- Programmable and Hard-wired. From the above figure, clock, interrupt

controller, Timers, I/O and ADC converter comes from the hard-wired group. And

Central Processing Unit, Random Acess Memory and memory blocks are from the

programmable group. Functions of these blocks are expressed by the firmware that

will be stored in memory. Below are some words used many times instead of the

embedded controller.

• KSC: Keyboard and System Controller

• KBC: Keyboard Controller

• SMC: System Management Controller

• H8: H8 embedded controller frequently use in reference design.

CHAPTER 3. HARDWARE DESIGN 13

Figure 3.2: Block Diagram of Embedded Controller

3.3 Hard-Wired Functionality

The hard-wired functionality is further bifurcated into 2 parts:-

Keyboard Controller (KBC) and System Management Controller (SMC)

Functionalities for Keyboard Controller (KBC),

1. Keyboard Matrix Scan Support:- Keyboard keys are sorted into a matrix

of rows and columns. These row and columns are represented by the number

of signals. And due to this on board controller will translate those addresses to

the simple protocol like PS/2, AT or USB.The embedded controller(EC) sends

different codes on key press and key release.

2. PS/2 keyboard and Mouse Interface:- The embedded controller is connected

to both keyboard and mouse. EC has a PS/2 controller inside so whenever we

pressed any key on the keyboard, some message will come to EC. Then EC will

CHAPTER 3. HARDWARE DESIGN 14

take that data and convert it into signaling and send different codes to HOST

through eSPI/LPC.

Functionalities for System Management Controller (SMC),

1. Thermal Management:- Embedded Controller have pulse width modulation

(PWM) interface and PWM is used for controlling CPU fan. EC reads a tem-

perature of a fan and gives that data to host through Espi/LPC.

2. Power Monitoring:- Analog to digital converter(ADC) signal is used for con-

trolling voltage in an embedded controller. This information used for monitoring

battery charging or inform the administrator and user about power supply con-

ditions.

3. Battery Management:- Embedded controller provides ACPI compliant oper-

ating system (OS) with notifications and status related to power management

activities. It also generates wakeup events to take out the system from the low

power states.

4. ACPI host Interface:- The embedded controller is used for controlling charging

of the battery and also switching between AC adapter and the battery that used

for monitoring various battry level like charging , discharging etc.

Chapter 4

Work done & Design flow

This section describes programming flow for the design of the different modules

of the embedded controller. it basically gives the information about design flow

and uses of each module like GPIO, Timer, Watchdog timer, PWM(Pulse Width

Modulation) etc. The information collected about each feature is helpful to develop

the modules.

4.1 GPIO(General Purpose I/O)

GPIO is known as General Purpose Input Output. GPIO is an independent input-

output pins that are managed by registers. These input-output pins can be taken as

input, output or alternate function. A GPIO port is a group of GPIO pins arranged

in a group and controlled as a group. GPIO pins used as inputs to detect button

press, to receive an interrupt from external devices. And also used as outputs to

toggle the LED, sound in a buzzer and for controling power in devices. Both input

and output modes have some states. Input modes have Pull-up, Pull-down and high

impedance(z) state and output modes have Push-pull and open drain state.

a. Pull-up: Pull up circuit is shown in figure 4.1. Pull up consist a register

which is placed between the input signal and supply voltage. So when the

15

CHAPTER 4. WORK DONE & DESIGN FLOW 16

Figure 4.1: Pull-Up Figure 4.2: Pull-Down

switch is open, the status of the input pin will be high.

b. Pull-down: Pull-down circuit is shown in figure 4.2. Pull down consist a

register which is connected to input signal and ground (GND). So when the

switch is open, the status of the input pin will be low.

CHAPTER 4. WORK DONE & DESIGN FLOW 17

Figure 4.3: GPIO ConfigPin Flowchart

Figure 4.3, 4.4. and 4.5 is my program flow for GPIO driver.

GPIO API consists three functions like, IO config, IO get and IO set pin state.

• Configured different GPIO pin as pull up, pull down, I/O and alternate func-

tion using a particular register set.

• Checked input, output, push-pull, open-drain on GPIO pins when EC changes

different states like sleep, hibernate etc

• Set any GPIO pin as either high(1) or low(0).

• Get state GPIO to get the output data on the pin.

CHAPTER 4. WORK DONE & DESIGN FLOW 18

Figure 4.4: GPIO SetPin Flowchart

CHAPTER 4. WORK DONE & DESIGN FLOW 19

Figure 4.5: GPIO GetPin Flowchart

4.2 Timer

A clock that manage the order of a task while counting the fixed interval of time.

A timer is basically used for generating time delay between particular events. A

timer can also be used as counters to count an event or action. Counter value in-

creases by one every time when a particular event occurs. We can also repeat an

action or task after a known period of time using timers. Setting up an alarm clock

that triggers for a certain period of time is the best example of timer clock.

CHAPTER 4. WORK DONE & DESIGN FLOW 20

Figure 4.6: Timer Flowchart

Timers are the inbuilt chip in a controller and that is controlled by some special

function registers (SFRs). Timers operations are assigned to that SFRs. Timers

are configured in different modes of operations using these registers. Two different

way to generate a time delay. First is by using infinite loops in c program, but the

delays generated by the program are not that much accurate. So the option is to

use Timers. And there is much more accuracy in time delay generated by timers.

For new EC chip, Timer driver consists timer initialization and delay timer

functions.

CHAPTER 4. WORK DONE & DESIGN FLOW 21

• Initialized a timer to blink a particular LED.

• Setting a delay function to get the delays like 1 msec, 10 msec on LED and

verified it on CRO.

4.3 Watchdog Timer

A watchdog timer is used for those embedded systems that cant be watched

constantly by a human. Some embedded system designs have problems that are not

accessible to human. Systems are permanently disabled if system software hangs.

Speed would be too slow if human operator reset the system so it is not always

possible to wait for someone to reboot the system.[3]

Figure 4.7: Watchdog timer[3]

A watchdog timer is nothing but a hardware that detects software anomalies

automatically and reset the processor. A counter is defined and software selects

the counters initial values. Counter numbers are defined in registers. The counter

counts down to zero from that initial value. When a counter reaches zero watchdog

timer will reset the EC domain.

Watchdog timer API consists Timer and watchdog timer initialization. WDT

starts only when the timer is started which has been used.

• Timer initialization defines clock and counter number in a particular register.

CHAPTER 4. WORK DONE & DESIGN FLOW 22

• WDT initialization defines the same clock used for timer and a counter number

that continuously toggles the LED on board.

Below is the program flow for Watchdog timer API.

Figure 4.8: Watchdog timer flowchart

CHAPTER 4. WORK DONE & DESIGN FLOW 23

4.4 Pulse Width Modulation(PWM)

PWM stands for Pulse Width Modulation and is the strategy to deliver analog

voltages in a digital manner. Basically, different value of voltages originate from

analog circuits, and digital circuits create two level like ground(0v) and maximum

voltage(5V, 3V). So if a user wants a voltage level between high and low then PWM

is used for generating different pulse width.

PWM signals are generated by different built-in timers in an embedded con-

troller. PWM signal is at a particular frequency on a device which receives that

signal from the embedded controller. Duration of time, when the signal is high

known as ON time and duration of time when the signal is low known as OFF time.

As shown in below figure 4.5, pulses have different duration of ON time as well

OFF time. A period is the sum of ON time signal and OFF time signal. This period

is inversely proportional to frequency. Within that period how many times a signal

is high, known as Duty Cycle. The duty cycle is measured in percentage.[4]

Duty Cycle = ON time signal/ total period of time

figure 4.9 shows different duty cycle pulses and their ON time as well OFF time.

The embedded controller uses clock source and different built-in timers to generate

PWM. Using these timers you can initialize the timer and counter. You can set a

counter number so that at a specific count, a pulse can go high (ON) and when a

counter reaches to zero, a pulse goes low (OFF). Thats how a user can control the

pulses.

For this new EC chip, PWM driver consists PWM initialization and PWM duty

cycle functions.

• Developed PWM and see different duty cycle on CRO.

• Set a condition like if the duty cycle is more than 200 then pulses will stop.

CHAPTER 4. WORK DONE & DESIGN FLOW 24

Figure 4.9: Duty Cycle

• Set duty cycle on for some time, then off for some time and then set it with

different value and checked on CRO.

PWM flowchart is shown in below figure 4.10. It describes the process for register

settings and steps to develop PWM pulses.

PWM Applications:-

• To control fan speed

• Switching regulators

• In LED dimming light

• To control DC motor speed varying from zero to any maximum speed

CHAPTER 4. WORK DONE & DESIGN FLOW 25

Figure 4.10: PWM Flowchart

PWM voltage regulation:- Averaging the value of PWM signal will give volt-

age regulation. You can see the relationship between DC output voltage and Duty

cycle in figure 4.7.

Average DC voltage output = Voltage to represent High State x Duty Cycle, for

example, the input voltage is 5 volt with 70% of duty cycle will give DC output =

3.75 volt.

4.5 Library File Generation

Two library files have been generated,

• One is for all the registers of all programmed modules.

• And another header file with a structure of different registers of programmed

modules.

CHAPTER 4. WORK DONE & DESIGN FLOW 26

Figure 4.11: PWM Timing diagram

4.6 Analog to Digital Converter(ADC)

ADC is analog to digital converter used to convert the analog signal in to digi-

tal manner. Analog voltage values are not constant values. There are ground and

maximum voltage value. For ex, we consider voltage range is from 0 to 3V so 0 V

means it is binary 0 and maximum value 3 V means it is binary 1. Now, what is

the value for 1.5 V. So, ADC will give all the variable voltage values in digital form.

For slow changing voltage , ADC is the accurate method.[5]

AS per this embedded controller chip, ADC has 15 inputs and some of them

are external voltages for DC voltage sources and others are internal supply voltage

like VCC, VSTBY etc. There are 12 voltage buffers. ADC converts 0 to 3 v signal

voltage channel first into 10 bit unsigned int and this 10 bit is then stored in data

buffer registers.

ADC flowchart is shown in below figure 4.12.

• Got different raw data on serial log based on its ADC channel. There is 6

ADC channel and each of them has different raw data. Based on this data

user can see its temperature value in the table.

CHAPTER 4. WORK DONE & DESIGN FLOW 27

Figure 4.12: ADC Flowchart

Here is a snapshot of this serial logs in below figure. It shows channel numbers

and different raw data in hex value.

4.7 Interrupt

The interrupt is a signal from a device that has some input for the processor. So

it is an event of a particular device that requires the attention of microcontroller.

The microcontroller will pause its current task whenever any interrupt occurs, and

then it will execute the interrupt event. The code that gets executed on raising

interrupt is called ISR of the corresponding interrupt. Then at the end of the ISR,

CHAPTER 4. WORK DONE & DESIGN FLOW 28

Figure 4.13: ADC serial logs

the microcontroller will return to its task that had pause and continue with its

normal operation.[6]

There are two types of interrupt which are called software and hardware inter-

rupt. If the microcontroller is interrupted by external device or hardware , then it is

called hardware interrupt and if an interrupt is raised by any software instructions

then it is called software interrupt. [6] If multiple devices need the attention of

microcontroller, then interrupt controller is there to decide which device will raise

interrupt and it sets the priority between them.[6]

A device or interrupt controller asserts the interrupt pin of the microprocessor

and waits for the interrupt acknowledgement. On receiving this , the device place

8 or 16 bit data in the data bus of the processor. Each device has a unique num-

ber. This array/vector of the interrupt handler is known as the interrupt vector

table(IVCT).[6]

Interrupt controller flowchart is shown in below figure.

EC chip has Interrupt controller(INTC) which collects several interrupts from

modules.

CHAPTER 4. WORK DONE & DESIGN FLOW 29

Figure 4.14: Interrupt Flowchart

INTC features:-

• Edge triggered and edge triggered mode

• Interrupt polarity or triggered mode

• Each interrupts source able to enabled/masked individually

• It has individual vector index number from IVCT0-IVCT15 for each interrupt

output from INT0-INT15

CHAPTER 4. WORK DONE & DESIGN FLOW 30

Each interrupt groups have total 20 registers. Interrupt groups are for interrupt

enable register, interrupt edge/level triggered registers, polarity register, status reg-

ister etc. A user can see group number based on which interrupt is going to use

from interrupt vector table. For example, a timer interrupt is from group 3 and on

INT30 signal. So the user will see group 3 for each register and set particular bits.

• So on first button press LED will glow and the user will receive interrupt. And

on second press LED should glow off. Likewise LED is toggling on each press.

4.8 Make File

A special file which has different shell commands and different paths for all the

source file. While user type ”make”, all the commands in the make file will be

executed. There is a list of shell commands and these commands are written for the

shell which will process the makefile.

By this ”make” command, a user can compile all the source file and from .c files, a

user will have object(.o) files as an output.

• Made a ”Make File” for code base generation.

• Defined own code base which has different folders for each type of files. for

example, object folder will have all .o files. Driver folder has all my driver

module’s source file. Different paths for all the source file and code base is

shown as below figures.

CHAPTER 4. WORK DONE & DESIGN FLOW 31

Figure 4.15: Make File snapshot

Figure 4.16: Make File commands

CHAPTER 4. WORK DONE & DESIGN FLOW 32

Figure 4.17: Code Base snapshot

CHAPTER 4. WORK DONE & DESIGN FLOW 33

4.9 Board Support Package(BSP)

When the user executes a programm or source file, there is some startup code

that gets executed before the execution reaches to the main function. Compiler

vendors usually provide appropriate startup code with their compiler toolset for the

particular platform. This startup code gets executed before the main function is

reached. I have initialized all the GPIO signals from the schematic based on their

direction(I/O), types like pull up-pull down-open drain and made a table for that.

4.10 Enhanced Serial Peripheral Interface(eSPI)

Enhanced Serial Peripheral Interface(espi) is used by the system host to config-

ure the chip and communicates with the logical devices implemented in the design

through the series of read/write registers. Espi is a serial bus and it is based on

SPI. ESPI is basically LPC(low pin count) replacement as it has more benefits such

as low voltage, low power, higher bandwidth, pin count saving etc. ESPI is having

20MHz to 66MHz clock speed.

There are only one master and one or more eSPI slaves. For EC, it is most of

the time slave and all other devices are master. Espi master and slaves are commu-

nicated through various signals like ”Clock” that provides timing for all the serial

input and output operations, ”Chip select” to select a particular espi slave for the

transaction, ”I/O” used to transfer data between master and slaves , ”Alert” used

by eSPI slave to request services from eSPI master and ”Reset” pin to reset the espi

interface for both master and slave. [7]

ESPI operates in master/slave mode where commands and data flow between

espi master and slave by controlling Chip select pins for each of espi slave.

CHAPTER 4. WORK DONE & DESIGN FLOW 34

Figure 4.18: Master-Slave Interface

ESPI features:-

• Flash access channel/Master attached Flash sharing(MAF)

• Peripheral channel

• OOB meassage channel

• Virtual wires channel

a. Flash Access Channel:-

Flash components are shared run time between a chipset and the eSPI slaves

that requires flash access such as EC using flash access channel. The flash ac-

cess channel is enabled on the eSPI slave side, once the flash controller in the

chipset has completed the flash initialization. For the MAF, flash components

are attached to the eSPI master such as chip set. EC is allowed to access the

CHAPTER 4. WORK DONE & DESIGN FLOW 35

shared flash components through the flash access channel.[7]

b. Peripheral channel:-

ESPI channel is used for communication between eSPI endpoints located on

the slave side and eSPI host bridge located on the master side. Example

for this espi host bridge and endpoints are LPC Host and LPC peripherals.

Another example is ACPI devices connected to the Espi bus which talk to a

host controller residing on espi master side. Peripheral memory or I/O packet

format consisits information about cycle type, Tag, length, address and data

bytes. The packet format is shown in below figure.

Figure 4.19: Peripheral packet format

c. Out-Of-Band channel:-

The OOB channel is used to handle transaction between the OOB proces-

sor and EC. EC is able to initiate an upstream OOB message transaction for

CHAPTER 4. WORK DONE & DESIGN FLOW 36

reading hardware information, including temperature and time/date, using

messages with predefined slave address and command codes. EC is able to

initiate and receive OOB message transaction over eSPI bus. OOB packet for-

mat also consisits cycle type, length, Tag and data bytes to send and receive

using several commands like PUT OOB and GET OOB.

Figure 4.20: OOB packet format

d. Virtual Wire channel:-

Virtual wires are used to communicate between Embedded Controller and

Platform Control Hub. Serial IRQ interrupts are communicated through this

channel as in band message.In band message pass the control data on the same

connection of the main data like FTP, HTTP. It is different from out of band

message protocol. Virtual wire packet format is shown as given below.

CHAPTER 4. WORK DONE & DESIGN FLOW 37

Figure 4.21: Virtual wire packet

Figure 4.22: Virtual wire command

CHAPTER 4. WORK DONE & DESIGN FLOW 38

The Command phase consists of a command opcode ,virtual wire packet and

CRC. The packet format for command and response is as shown as above fig-

ure 4.21. It has commands to send the data like PUT VWIRE followed by

virtual wire count and groups and ended with CRC bit. This is command

phase for master initiated virtual wire transfer for slave it is vise versa.

Virtual wire packet consists ”Header” and ”Data” block whereas header has

virtual wire count and data block has both index and data. [7]

Figure 4.23: Virtual wire Flowchart

CHAPTER 4. WORK DONE & DESIGN FLOW 39

Virtual wire consists maximum 7 count numbers. It supports interrupt events

with 16 IRQ interrupt and also system event. System event has index from

index 2 to index 7.

The index gives information about the direction of transfer whether it is mas-

ter to slave or slave to master, index number and different signal’s bit position.

Each index has their own signal’s bit set like sleep s3 for suspend state, sleep S4

for hibernate state, sleep S5 for shutdown state, wake up events, platform reset

signal, power button, keyboard controller bit, system management, system

controller interrupt etc. Based on tht requirement user can set a particular

signal’s bit set.

4.11 SMBus Interface

SMBus stands for System Management Bus. SMBus is a bi-directional commu-

nication protocol which requires communication between master and multiple slave

devices or also with more than one master devices. It is based on the principle

operation of I2C. [8]

Figure 4.24: SMBus

CHAPTER 4. WORK DONE & DESIGN FLOW 40

Each slave device is having unique IDs so the master can select a device to com-

municate.

The two signals are called SCL(serial clock) and SDA(serial data) . SCL line is

generated by the master and it transfers data between multiple devices on the I2C

bus and SDA line brings the data.

Control bus provided by SMbus for system and power management task. In-

stead of using individual control lines a system may use SMBus to pass to and from

devices. Removing control lines will reduce the pin count.

A device can give information to the system about device number, save its sta-

tus for suspend event, send errors and return the status by using SMBus interface.[8]

This EC chip has total four SMBus channel and it can also perform SMBus

messages with PEC either enabled or disabled. SMBus master supports two 32 bit

FIFO read/write mode. Embedded Controller(EC) is most of the time master in

SMBUS protocol and all other devices are slave.

a. Quick Command:-

In this command, slave address register with R/W bit is sent. It is used to

enable/ disable a device function. No data is sent or received.[8]

CHAPTER 4. WORK DONE & DESIGN FLOW 41

Figure 4.25: Quick command

b. Send Byte/Receive byte:-

Figure 4.26: Send Byte command

Here, slave address and encoded commands are sent. Both send and receive

byte commands are same as shown in figure 4.26 and 4.27, the difference is the

direction of the data transfer. A host needs a device information like if it is a

battery, then master(EC) needs to know about its battery percentage, capacity

etc. In both the figures, a user can see send and receive byte command bit set

position.

c. Write byte/word:-

Here, slave address is sent by master followed by write bit. Then A is for

acknowledgment and master then send command code. The slave again ac-

CHAPTER 4. WORK DONE & DESIGN FLOW 42

Figure 4.27: Receive Byte command

Figure 4.28: Write Byte/Word command

knowledges before master sends data byte or word as shown in below figure.

And the transaction is terminated by the stop bit.

d. Read byte/word:-

Here, the host writes command to the slave address and then there is a re-

peated start condition that reads from device. Then two bytes of data will

be returned by slave device. Before repeated START condition, there is no

STOP condition.

CHAPTER 4. WORK DONE & DESIGN FLOW 43

Figure 4.29: Read Byte/Word command

e. Process call:-

Here command code sends a data bytes and it will wait for that value which

is dependent on that data and return by the slave. There is write word block

and after that Read word block.

f. Block write/read:-

Figure 4.30: Block Write/Read command

Here, host sends byte count that tells number of bytes to be followed by the

message. For example, If the slave has 25 bytes to send, then byte count will

have 25 value(19h).

CHAPTER 4. WORK DONE & DESIGN FLOW 44

Figure 4.31: SMBus Flowchart

This is the software sequence of SMBus protocol. SMbus is used in he Smart

Battery System (SBS).

SBS system consists a Host, a Smart Charger, and a Smart Battery. The Smart

Battery and Smart Charger can communicate with each other and with the rest of

the system.

Fuel guage is the internal chip inside the battery pack. It will read the analog

CHAPTER 4. WORK DONE & DESIGN FLOW 45

data from the battery and convert it into digital form. Fuel gauge can read the

information from battery pack like charging, discharging, capacity etc. When Em-

bedded Controller(EC) wants to communicate to the fuel gauge, it will read through

SMBus and gets the digital data.

Chapter 5

Conclusion

5.1 Conclusion

The new embedded controller (EC) chip is developed by writing firmware of all

the modules and verify it on a chip. And then porting these functionalities to new

EC chip. So the following application driver has been developed.

• GPIO:- Configure different GPIO pin and checked GPIO status with LED

high or low.

• Timer:- Blink LED on board and checked different delay timer on LED and

verify it with CRO.

• Watchdog timer:- Set Watchdog timer on the LED.

• PWM:- Check different PWM duty cycles of PWM on CRO.

• ADC:-Develop Analog to digital converter and get serial logs of temperature

values and raw data.

• Interrupt:-Develop Interrupt for LED blinking events on board.

• Make File:-Make file for code base

47

CHAPTER 5. CONCLUSION 48

• ESPI :- Develop ESPI bus protocol, one for communication between EC and

SOC.

• SMBUS:- Develop SMBus interface for battery management.

So I have developed this new Embedded Controller(EC) by writing firmware for

these many modules to port it on next generation platform.

Chapter 6

Future Scope

Future Scope includes the development of the power management feature, CPU

thermal management, Keyboard scan matrix and PS/2 mouse. These features can

be developed and implemented on board. And moreover, all other functionalities

will be ported on to the next generation board.

49

References

[1] http://www.uefi.org/sites/default/files/resources/ACPI 6 1.pdf

[2] https://www.thailand.intel.com/content/dam/www/public/us/en/documents/white-
papers/controller-usage-low-power-designs-paper.pdf

[3] https://www.embedded.com/electronics-blogs/beginner-s-
corner/4023849/Introduction-to-Watchdog-Timers

[4] https://www.newbiehack.com/MicrocontrollerIntroToPWM.aspx

[5] https://learn.sparkfun.com/tutorials/analog-to-digital-conversion

[6] Embedded Realtime System Programming by Sriram V Iyer and Pankaj Gupta

[7] https://www.intel.com/content/dam/support/us/en/documents/software/chipset-
software/327432-004 espi base specification rev1.0 cb.pdf

[8] https://www.nxp.com/docs/en/application-note/AN4471.pdf

51

	Declaration
	Disclaimer
	Certificate
	Acknowledgements
	Abstract
	Abbreviation Notation and Nomenclature
	Introduction
	Introduction
	Current Scenario
	Problem Statement
	Objective
	Timeline

	Literature Survey
	Overview
	Embedded Controller Interface Description
	Embedded Controller Register Descriptions
	Embedded Controller Command Set

	Hardware Design
	System Architecture
	Block Diagram of Embedded Controller
	Hard-Wired Functionality

	Work done & Design flow
	GPIO(General Purpose I/O)
	Timer
	Watchdog Timer
	Pulse Width Modulation(PWM)
	Library File Generation
	Analog to Digital Converter(ADC)
	Interrupt
	Make File
	Board Support Package(BSP)
	Enhanced Serial Peripheral Interface(eSPI)
	SMBus Interface

	Conclusion
	Conclusion

	Future Scope
	References

