
IoT Firmware on Micropyhton
Framework with Environmental Sensors

and Network Functionalities

Major Project Report

Submitted in fulfillment of the requirements

for the degree of

Master of Technology
in

Electronics & Communication Engineering

(Embedded Systems)

By

Devang Sharma

(16MECE22)

Electronics & Communication Engineering Department
Institute of Technology

Nirma University
Ahmedabad-382 481

May 2018

IoT Firmware on Micropyhton
Framework with Environmental Sensors

and Network Functionalities

Major Project Report

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology

in

Electronics & Communication Engineering

By

Devang Sharma

(16MECE22)

Under the guidance of

External Project Guide: Internal Project Guide:

Mr. Sohil Patel Dr. N.P. Gajjar

CTO PG Coordinator, Embedded Systems,

Oizom Instruments Pvt. Ltd., Institute of Technology,

Ahmedabad. Nirma University, Ahmedabad.

Electronics & Communication Engineering Department

Institute of Technology, Nirma University

Ahmedabad-382 481

May 2018

iii

Declaration

This is to certify that

a. The thesis comprises my original work towards the degree of Master of Tech-

nology in Embedded Systems at Nirma University and has not been submitted

elsewhere for a degree.

b. Due acknowledgment has been made in the text to all other material used.

- Devang Sharma

16MECE22

iv

Disclaimer

“The content of this thesis does not represent the technology,opinions,beliefs,

or positions of Oizom Instruments Pvt. Ltd., its employees,vendors, cus-

tomers, or associates.”

v

Certificate

This is to certify that the Major Project entitled “IoT Firmware on Mi-

cropyhton Framework with Environmental Sensors and Network Func-

tionalities” submitted by Devang Sharma (16MECE22), towards the partial

fulfillment of the requirements for the degree of Master of Technology in Embed-

ded Systems, Nirma University, Ahmedabad is the record of work carried out by

him under our supervision and guidance. In our opinion, the submitted work has

reached a level required for being accepted for examination.The results embodied

in this major project, to the best of our knowledge, haven’t been submitted to any

other university or institution for award of any degree or diploma.

Date: Place: Ahmedabad

Dr. N.P.Gajjar

Internal Guide Program Coordinator

Dr. D. K. Kothari Dr. Alka Mahajan

Section Head, EC Director, IT

vi

Certificate

This is to certify that the Major Project entitled “IoT Firmware on Micropyhton

Framework with Environmental Sensors and Network Functionalities”

submitted by Devang Sharma (16MECE22), towards the partial fulfillment of

the requirements for the degree of Master of Technology in Embedded Systems,

Nirma University, Ahmedabad is the record of work carried out by him under our

supervision and guidance. In our opinion, the submitted work has reached a level

required for being accepted for examination.

Mr. Sohil Patel

CTO

Oizom Instruments Pvt. Ltd.

Ahmedabad

vii

Acknowledgements

I would like to express my gratitude and sincere thanks to my internel project

guide Dr.N.P.Gajjar, PG Coordinator of M.Tech Embedded Systems, for his con-

stant support and guidance during the review process.

I would also like to thank Mr. Sohil Patel, external guide of my intern-

ship project from Oizom Instruments Pvt. Ltd., for guidance, monitoring and

encouragement regarding the project.

- Devang Sharma

16MECE22

Contents

Declaration iii

Disclaimer iv

Certificate v

Acknowledgements vii

Abstract xii

Abbreviation Notation and Nomenclature xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Objective . 1

1.3 Scope of Work . 2

1.4 Outline of Thesis . 2

2 Literature Survey 3

2.1 MicroPython Language Study . 3

2.2 LoRa Technology . 3

2.2.1 Advantages of LPWAN . 4

2.3 LoRaWAN Protocol . 5

2.3.1 End-device Classes . 6

viii

CONTENTS ix

2.3.2 Activation Methods . 7

3 Hardware Design 9

3.1 Block Diagram . 9

3.2 LoPy Specification . 10

3.3 Why LoPy? . 11

3.4 Sensors . 11

3.4.1 BME280 Sensor . 11

3.4.2 Dust Sensor . 12

3.4.3 CO2 Sensor . 12

3.4.4 Light Sensor . 13

3.5 Neopixel WS2812B LEDs . 13

3.6 Dragino LG01 LoRa Gateway . 14

4 Software Design flow 15

4.1 Micropython Features . 15

4.1.1 REPL Prompt . 15

4.1.2 Modules . 16

4.2 Atom IDE features . 16

4.2.1 Why Atom? . 17

4.3 Flow Chart . 17

5 Project Work and Outcomes 20

5.1 Integration of Sensors with LoPy . 20

5.1.1 BME280 Sensor Data Accumulation 20

5.1.2 Dust Sensor Data Accumulation 21

5.1.3 CO2 Sensor Data Accumulation 22

5.1.4 Light Sensor Data Accumulation 22

5.2 Device Status LEDs . 23

5.3 Ubidots Application Server . 24

CONTENTS x

5.4 LoRaWAN Network-Server . 25

5.4.1 Dragino LG01 Registration with TTN 25

5.4.2 LoPy Communication with Gateway and TTN 26

6 Issues faced and Solutions 30

6.1 Data Overflow during Serial Communication 30

6.1.1 Solution: RESET Controller 30

6.2 OSError: Sending Data Failed . 30

6.2.1 Solution: Close Socket . 31

7 Conclusion 32

7.1 Conclusion . 32

References 33

List of Figures

2.1 LoRa Alliance[2] . 4

2.2 LoRaWAN Network Architecture[2] 5

2.3 LoRaWAN Device Classes[2] . 6

3.1 Block Diagram . 9

3.2 LoPy Controller . 10

3.3 WS2812B Circuit[5] . 14

4.1 FlowChart(1) . 18

4.2 FlowChart(2) . 19

5.1 BME280 Sensor Data . 21

5.2 Dust Sensor Data . 21

5.3 CO2 Sensor Data . 22

5.4 Light Sensor Data . 23

5.5 Device Status LEDs . 23

5.6 Dashboard . 25

5.7 LoRaWAN Server and Radio Settings 27

5.8 Gateway Registration . 28

5.9 Device Overview . 29

5.10 Application Data Payload . 29

xi

Abstract

The air pollution is increasing along with the growth of cities and industries

everyday. The quality of the air needs to be known and thus, to be measured.

The device measures the environmental parameters such as Temperature, Humidity,

Pressure, Light, Dust Particulate Matters, Carbon Dioxide and Carbon Monoxide

using accurate, sustainable and reliable digital sensors. This device is designed to

work in constrained embedded system which is achieved by integrating the sensors

with low power micro-controller. Firmware of this device is built on the lightweight

MicroPython framework. The device runs faster with the compact hardware and

less internal memory usage. Moreover, Long Range(LoRa) technology is integrated

to enable communication with low power and wider range between remote sensors

and gateway connected to the network. The sensor data is sent to network server

and is observed using various graphical representations on the web application.

xii

Abbreviation Notation and Nomenclature

IoT . Internet of Things

LoRa . Long Range

LPWAN . Low Power Wide Area Network

LED . Light Emitting Diode

BLE . Bluetooth Low Energy

AES . Advanced Encryption Standard

UART . Universal Asynchronous Receiver Transmitter

I2C . Inter-Integrated Circuit

SPI . Serial Peripheral Interface

REPL . Read-Evaluate-Print Loop

URL . Uniform resource Locator

V (unit) . Voltage

MHz (unit) . MegaHertz

ug (unit) . microgram

ppm (unit) . parts per million

xiii

Chapter 1

Introduction

1.1 Motivation

The industrialism is growing rapidly in India which increases the air pollution.

It has become a necessity to know the quality of the air that we breathe everyday.

The device is designed to measure the air quality data accurately with minimal of

memory and power usage. The device is able to transmit fetched data over long

distances. It can also store the data on the server for future analysis.

1.2 Objective

The objective of the project is to integrate the various sensors to the device

controller using serial communication protocols and to transmit the gathered data

wirelessly to the remotely located gateway or application server using different com-

munication technologies and networking protocol. The project fulfills the device

management requirements for IoT(Internet of Things) such as authentication, con-

figuration, control, monitoring and software maintenance.

1

CHAPTER 1. INTRODUCTION 2

1.3 Scope of Work

To build a firmware for the device controller(LoPy) such that the device should

fetch sensor data continuously and send the average of the accumulated sensor data

to the application server periodically. The device should show its current status

using device status LEDs. It should handle all communication and networking

protocols effectively. The data fetched should be monitored and maintained securely

over the internet. Furthermore, the fundamental requirements for the IoT device

management should be included.

1.4 Outline of Thesis

The outline of my thesis consists of seven chapters. Chapter 1 describes motiva-

tion, objective and scope of the project. Chapter 2 describes about the literature

survey carried out during the project. Chapter 3 illustrates the hardware specifi-

cations of the micro controller and sensors. It also describes block diagram of the

system. Chapter 4 gives details of software design flow, programming language and

IDE(Integrated Development Environment) features. Chapter 5 explains about the

detailed project work done at the company. Chapter 6 shows distinct issues faced

during the project and their solution. Chapter 7 gives the conclusion of the project.

Chapter 2

Literature Survey

2.1 MicroPython Language Study

MicroPython is an open source programming language which runs directly on

various bare-metal platforms. It provides interactive prompt to execute instructions

immediately. It has the ability to run and import scripts form built-in file system.

It includes some of the Python’s core standard libraries. Moreover, it allows user to

access low-level hardware by importing modules such as ”machine”. Micropython

also provides advanced features such as an interactive prompt, arbitrary precision

integers, generators, exception handlers and many more. Though it is compact

enough to run within 16k of RAM and 256k of code space.

2.2 LoRa Technology

LoRa(Long Range) is a radio modulation technology used for LPWAN(Low-

Power Wide-Area Network). It is based on CSS(Chirp Spread Spectrum) modulation

for low power and high range communication. LoRa is the first implementation of

CSS for commercial purposes. A single LoRa gateway can cover entire cities. It uses

radio frequency bands(license-free) like 865-867 MHz(India), 868 MHz(Europe)

and 915 MHz(USA).

3

CHAPTER 2. LITERATURE SURVEY 4

Figure 2.1: LoRa Alliance[2]

2.2.1 Advantages of LPWAN

As number of IoT connected devices are increasing at significant pace, a single

technology cannot serve all of the applications of IoT. Technologies such as WiFi

and BLE are used for shorter ranges. Cellular technology is used for higher data

throughput applications. LPWAN, on the other hand, offers very long battery life

for communicating over wider ranges at low power.

List of Advantages

• Long Battery Life

• Low Power Consumption

• Long Range Coverage

• Secure Transmission

• Bi-directional

• Scalable Network

• Low Data Rate

CHAPTER 2. LITERATURE SURVEY 5

2.3 LoRaWAN Protocol

LoRaWAN is a LPWAN specification intended for wireless battery operated things

in a regional, national or global network. It is built on top of LoRa Technology by

LoRa Alliance. It targets key requirements of Internet of Things such as secure

bidirectional communication, mobility and localization services. It enables seamless

interoperability among smart things without complex local installations. It follows

starts-of-stars network topology. Gateways are transparent bridges between server

and end-devices. The gateways and end-devices communicate using different fre-

quency bands. LoRaWAN data rates range from 0.3 to 50kbps.

Figure 2.2: LoRaWAN Network Architecture[2]

LoRaWAN uses star topology which increases network capacity, reduces com-

plexity, increases communication range and preserves battery lifetime. In LoRaWAN,

each node transmits the data to multiple gateways. Each gateway then forwards

data packet to the network server which will perform security checks, redundancy

detection and message scheduling. Moreover, theres no need to handover, unlike

cellular, in case of moving end-device(node)[2].

CHAPTER 2. LITERATURE SURVEY 6

2.3.1 End-device Classes

Class A: In class A, end-device initiates the communication(uplink), while server

communicates via downlink during predetermined response windows. Class A de-

vices consumes lowest power as it only requires downlink communication from server.

Thus, Class A devices have longest battery life[1].

Class B: It provides bidirectional communication with scheduled receive windows.

End-device receives periodic Beacon from the gateway at scheduled time slots. The

server can know whenever the end-device is listening. Class B also provide extra

receive window called ping slot [1].

Class C: It continuously provides bidirectional communication as receive windows

are nearly open every time[2]. Server can initiate transmission at any time. So,

Class C devices have no latency. But they consumes the most amount of power due

to persistent transmission.

Figure 2.3: LoRaWAN Device Classes[2]

CHAPTER 2. LITERATURE SURVEY 7

2.3.2 Activation Methods

The end-device needs to be activated in order to communicate on the LoRaWAN

network. For activation, end-device should provide the Device Address(DevAddr),

Network Session Key(NwkSKey) and Application Session Key(AppSKey). DevAddr

is a 32-bit unique identifier which is shared among end-device, network server and

application server. It distinguishes network nodes and allows network to use and

interpret data properly with the correct encryption keys[1]. NwkSKey is 128-bit

AES encryption key is unique for each end-device which is shared between end-device

and network server. It ensures message integrity and security for communication.

AppSKey is also an AES encryption key which is unique per end-device. It is shared

between device and application server to encrypt or decrypt data and for payload

security. There are two activation methods to exchange these keys:

1. OTAA(Over-The-Air Authentication)

In OTAA, end-device sends Join Request to the application server. The re-

quest contains globally unique end-device identifier(DevEUI), application identi-

fier(AppEUI) and authentication with application key(AppKey). Application server

accepts the join request which is authenticated by device. It decrypts, extracts and

stores DevAddr. It then obtains both NwkSKey and AppSKey.

2. ABP(Activation By Personalization)

In ABP activation method, the keys are locked to a specific network. The De-

vAddr, NwkSKey and AppSKey is configured at production time. It does not re-

quire any handshaking like OTAA method. Device can communicate on the network

without any further process.

List of Applications

• IoT and M2M(Machine-to-Machine)

CHAPTER 2. LITERATURE SURVEY 8

• Low Power Applications

• Industrial Automation

• Air Quality Monitoring

• Asset Tracking

• Smart Lighting, Metering, Agriculture

• Health Monitoring Devices

• Battery Powered Sensors and Actuators

• Infrastructure Management

Chapter 3

Hardware Design

3.1 Block Diagram

Figure 3.1: Block Diagram

9

CHAPTER 3. HARDWARE DESIGN 10

3.2 LoPy Specification

LoPy is a MicroPython enabled micro-controller with LoRa(Semtech SX1272),

WiFi and BLE technology. It has Espressif ESP32 chipset which achieves ultra-

low power usage with greater flexibility. It has 512KB RAM, 32MB flash memory

and 4MB external flash. It is programmable with Pymakr plugin for faster IoT

application development. LoPy can either be used as LoRa node or as LoRa Nano-

Gateway. The LoRa node can have range up to 40km, while LoRa Nano-gateway

has range up to 22km. Nano-gateway has capacity to connect up to 100 nodes. LoPy

has 24 GPIO interfaces which includes 2x SPI, 2x UART, I2C, I2S, micro SD card,

8*12 bit ADCs and 4*16 bit PWM timers. It supports SSL/TLS(Secure Socket

Layer/Transport Layer Security) security. The LoPy normally runs boot.py and

main.py on booting. It can be put into Safe mode to upgrade or degrade firmware.

Figure 3.2: LoPy Controller

CHAPTER 3. HARDWARE DESIGN 11

3.3 Why LoPy?

The LoPy micro-controller works on MicroPython programming language, which

is developed from Python3. MicroPython is optimized to run in constrained envi-

ronments. The code transfer from desktop to any controller or to any embedded

system is done with ease. It also provides REPL(Read-Evaluate-Print Loop) envi-

ronment to users for executing their code piece-wise.

Furthermore, We can use LoPy in either Station(STA) mode or Access-Point(AP)

mode. LoPy can be connected via telnet using AP mode, while we can connect it to

our wireless network router using STA mode. Moreover, LoPy has a small internal

local file system called /flash. It is accessible via an FTP(File Transfer Protocol)

server using FTP client such as FileZilla. The FTP server runs on ftp://192.168.4.1.

Also, LoRa nodes have long range which is very much beneficial for IoT devices with

low power and low memory requirements. LoPy can be connected to a LoRaWAN

network using TTN(The Things Network) or loriot as a Nano-gateway.

3.4 Sensors

3.4.1 BME280 Sensor

The BME280 is a combined digital sensor which measures humidity, pressure and

temperature. The module is extremely compact and consumes low power. Due to

this, it can be implemented in a battery driven devices. It measures data with high

accuracy over a wider temperature range(-40 to +85 C), which makes it useful in

applications such as Health Monitoring, Home Automation and Control and Internet

of Things. The sensor can be interfaced using both I2C and SPI with VDD between

1.71 to 3.6 V.

CHAPTER 3. HARDWARE DESIGN 12

3.4.2 Dust Sensor

The dust sensor uses laser scattering principle to get the particle concentration

between 0.3 to 10um in the air. Light scattering is induced when dust particles go

through detection area. The scattered light is transformed into electrical signals

and will be processed further. The diameter and the amount of dust particles can

be analyzed. It gives the digital PWM output and has a built-in fan. It can ac-

curately measure PM2.5(Particulate Matter) and PM10. It uses UART(Universal

Asynchronous Receive Transmit) communication interface to continuously send the

data to the micro-controller. It works at 5V supply. The UART works at 9600

baudrate with 8 data bits, 1 start bit and 1 stop bit. The whole PWM output cycle

is of 1004ms with 2ms of High level of output, 1000ms of corresponding time and

2ms of Low level output.

3.4.3 CO2 Sensor

The CO2 gas sensor works on non-dispersive Infrared (NDIR) principle to de-

tect the amount of CO2 present in the air. The sensor has good sensitivity, high

resolution, low power consumption and lifespan more than 5 years. The sensor

has built-in temperature compensation and has UART as well as PWM output. It

works at 5V power supply and measures the CO2 in the range of 0 2000 ppm. It is

best used for indoor air quality monitoring systems such as smart home and schools.

CHAPTER 3. HARDWARE DESIGN 13

3.4.4 Light Sensor

The light sensor converts light intensity into digital output with very high sensi-

tivity. The device uses two ADCs to convert the photo-diode currents into digital

signal output. The controller derives the illuminance in lux using formula to ap-

proximate the human eye response. It is operated just at 3.3V power supply. It can

be directly interfaced with I2C protocol with data rates up to 400 kbps.

3.5 Neopixel WS2812B LEDs

WS2812B is the RGB LED with intelligent control circuit integrated inside single

package. It operates at 5V power supply. The data transfer time is fast with reset

time approximately around 50us. Each pixel of RGB colors can have 256 bright-

ness with full color display[5]. The colors are consistent. The LEDs have reverse

current protection, high brightness, low power consumption, small volume, better

consistency and long lifetime. It uses NZR communication mode for transmitting

data. The DIN pin receives data bits from LoPy which is fed to internal reshaping

and amplification circuit[5]. Then, the processed data is displayed.

CHAPTER 3. HARDWARE DESIGN 14

Figure 3.3: WS2812B Circuit[5]

3.6 Dragino LG01 LoRa Gateway

The Dragino LG01 is an open source single channel LoRa Gateway. It acts an a

bridge between LoRa wireless network and IP network based on WiFi, Ethernet or

Cellular[6]. It has open source Linux inside which allows users to modify firmware

with their own requirement. It has built-in web server and is managed using Web

GUI. Also, it supports both higher and lower frequency bands with high sensitivity

down to -148dBm.

Chapter 4

Software Design flow

4.1 Micropython Features

Micropython programming language is implementation of Python3 which is op-

timized to run on micro-controllers with low power and low memory requirements.

It provides set of the Pythons standard libraries, micropython specific libraries and

system specific libraries. According to the system youre working on, the source

code is available on the GitHub repositories. The code transfer is fast as it is done

directly on the device controller without any compilation. Besides that, it has an

interactive REPL prompt and modules for underlying hardware support.

4.1.1 REPL Prompt

The Micropython prompt is an REPL prompt which is useful for testing the code

and executing commands easily. It allows user to run their code line-by-line. In

addition to writing main.py, user can write the code in REPL. The REPL features

which makes it interactive are as following:

• Halt any executing code with Ctrl-C

• Scroll through input history using up and down arrow keys

15

CHAPTER 4. SOFTWARE DESIGN FLOW 16

• Auto-indent while using python statements that end with a colon.

• Auto-completion of variables and module names with Tab Key

• Soft-reset with Ctrl-D

• Ctrl-E to enter the paste mode to to copy-paste chunks of code, Ctrl-D to exit.

• Assigning an underscore to a variable stores previous result in it.

4.1.2 Modules

The Micropython modules are the functions and class libraries. Micropython

implements a subset of Python functionality to each of its module. To avoid contra-

dictions, the Micropython modules derived from python uses u(micro) prefix. There

modules are categorized as following:

a. Modules derived from standard Python libraries which cannot be expanded

or modified by the user. Modules like uos, ussl, utime and usocket are not

intended to be extended.

b. Modules which are functionally specific to the Micropython implementations.

Modules such as micropython, machine, network are only used for Micropy-

thon.

c. Modules specific to a particular port or system and thus not portable. Modules

like pycom and pyb are not portable to any other system.

4.2 Atom IDE features

Atom IDE(Integrated Development Environment) is an open source text editor

made by GitHub. It allows users to create their own packages or to extend the

existing packages. It has a smart and extensive auto-completion feature for every

CHAPTER 4. SOFTWARE DESIGN FLOW 17

language. Atom workspace can be split into multiple panes to easily compare and

edit code across files.The fuzzy finder feature helps to search any file in the current

project. It has a package installer to install over 7000 packages in total. As it is

made by GitHub, it is very easy to install and include the required libraries.

4.2.1 Why Atom?

Apart from above features, Atom provides the number of plugins that increases the

work productivity as plugins enables the customization. By installing the drag-and-

drop plugin, we can simply highlight the text and drag and drop it somewhere else.

The Pymakr plug-in enables communication with the Pycom board with REPL con-

sole. Pymakr plugin allows to run the code on the board, to synchronize the project

files to the board or to type and execute commands directly using REPL console.

4.3 Flow Chart

The software flow charts illustrates about the programming flow.

CHAPTER 4. SOFTWARE DESIGN FLOW 18

Figure 4.1: FlowChart(1)

CHAPTER 4. SOFTWARE DESIGN FLOW 19

Figure 4.2: FlowChart(2)

Chapter 5

Project Work and Outcomes

5.1 Integration of Sensors with LoPy

The BME280(Temperature, Humidity and Pressure), Dust sensor, CO2 gas sen-

sor, CO sensor and Light sensor are integrated with LoPy micro-controller. The

programming is done in Micropython language. The Atom IDE is used with Py-

makr Plugin to sync project files and to view output on serial monitor continuously.

The accumulated sensor data is sent either on the Ubidots Application Server over

WiFi or on the TTN(The Things Network) Application Server over LoRa.

5.1.1 BME280 Sensor Data Accumulation

The BME280 sensor works at 3.3 V. It is interfaced with controller using I2C com-

munication protocol. The default I2C address is 0x77. The library class BME280

has functions to read values of temperature, humidity and pressure. The floating

point sensor data is added to the summing registers for 2 minutes. After that, the

average of the gathered data is calculated. This data is then sent securely to the

server using HTTP request. The response object and the sent data can be shown

in serial monitor or on the server. Temperature, humidity and barometric pressure

are measured in degree Celsius, hPa(hecto Pascals) and percent respectively.

20

CHAPTER 5. PROJECT WORK AND OUTCOMES 21

Figure 5.1: BME280 Sensor Data

5.1.2 Dust Sensor Data Accumulation

The Dust sensor works at 5V. It uses UART1 of the LoPy to read the sensor

values. The values of dust particulate matters(PM2.5 and PM10) are measured in

ug/m3. At booting, UART1 is initialized with 9600 baudrate. Then, the data is

read using uart.read() function. The start and stop bytes are verified and data is

added to summing registers. After 2 minutes, the average of accumulated data is

taken which is sent securely on the server. The response object from server and sent

data are displayed on serial monitor as well as on the server.

Figure 5.2: Dust Sensor Data

CHAPTER 5. PROJECT WORK AND OUTCOMES 22

5.1.3 CO2 Sensor Data Accumulation

The CO2 sensor works at 5V and gives PWM output. The measured output

range is between 0 2000ppm. The data is measured using PulseIN function. Pul-

seIN function calls the handler when the PWM pin is held HIGH(or LOW). The

handler function measures the length of the pulse in microseconds and calculate the

time period for which the pin is HIGH. The result is stored and displayed on the

application server.

Figure 5.3: CO2 Sensor Data

5.1.4 Light Sensor Data Accumulation

The light sensor operates at 3.3V using I2C communication interface. The default

I2C address is 0x29. The output obtained is digital and the measured value is in

lux. The average accumulated data is sent to the application server after every 2

minutes and is also displayed using line graph.

CHAPTER 5. PROJECT WORK AND OUTCOMES 23

Figure 5.4: Light Sensor Data

5.2 Device Status LEDs

The Neopixel WS2812B LEDs are used as device status LEDs. The LEDs are

integrated in a chain and are illuminated repeatedly. There are three LEDs which

shows status of Data, Network and Battery. The network LED breaths Cyan con-

tinuously while reading data and is interrupted only while sending data on server.

The battery status LED always displays Yellow color. The data status LED display

stable Green color while reading the data. It changes to Magenta color when the

data is being sent to the server.

(a) Reading Data (b) Sending Data

Figure 5.5: Device Status LEDs

CHAPTER 5. PROJECT WORK AND OUTCOMES 24

5.3 Ubidots Application Server

The data points are stored using the application server via HTTP protocol. The

server used to store and plot data is Ubidots Application server. Every user is

provided a unique Access Token. Firstly, the new device (lopy-device) is added

in the dashboard. In lopy-device, the sensor variables are created. Each variable

has a unique variable ID. The device uses urequest library to send the sensor data

on server. The request() function uses arguments such as POST, URL, data and

headers. The Access token is provided with the URL or in the headers for the

authentication. The data contains variable IDs and their respective values. The

Ubidots allows to see the hourly, daily, weekly and monthly data.

CHAPTER 5. PROJECT WORK AND OUTCOMES 25

Figure 5.6: Dashboard

5.4 LoRaWAN Network-Server

5.4.1 Dragino LG01 Registration with TTN

The LG01 gateway is configured as WiFi AP(Access Point) by default. It can be

accessed and configured using its default IP address after connecting to its WiFi AP.

Dragino is then connected to the internet by setting up either WiFi or WAN con-

figuration. The Server Address, Server Port, Gateway ID, Bandwidth, Frequency,

Spread Factor, etc are set as shown in Figure 5.7.

Now, the Gateway is registered on the TTN console by providing information

such as Gateway ID, router and frequency plan. As in India, 865-867MHz frequency

band is unlicensed to use, Europe 868MHz frequency plan is selected.

Once, the gateway is registered to the TTN console, we can see parameters such

as gateway status, last seen and received/transmitted messages as shown in Figure

5.8.

CHAPTER 5. PROJECT WORK AND OUTCOMES 26

5.4.2 LoPy Communication with Gateway and TTN

The LoPy micro-controller acts as LoRa node. In order to connect the node with

Gateway and TTN LoRaWAN server, the node is configured. The configuration pa-

rameters to be set are frequency, region, Device Address(DevAddr), Network Session

Key(NwkSkey), App Session Key(AppSkey), Activation Method and Data Rate.

The Activation Method used is ABP(Activation By Personalization). To join Lo-

RaWAN network server using ABP method, the DevAddr, NwkSkey and AppSkey

are required. These activation keys are provided by the application server(TTN)

once the device is registered with unique Device Identifier(DevEUI).

Every LoRa node has their unique DevEUI. LoPy’s DevEUI can be fetched by

running the command binascii.hexlify(network.LoRa().mac())Once DevEUI is pro-

vided to TTN, it will generate DevAddr, NwkSkey and AppSkey. After the node

firmware is configured using these keys, the node will be successfully connected to

the TTN Server. The device status is visible on Device Overview Panel (Figure 5.9).

The LoPy sends the LoRa Payload data(sensor data) which can be seen in the

Application data on TTN. The payload is in the Hex Format which is decoded

at the Server side using Payload Decoder Function to observe the received data

properly(Figure 5.10).

CHAPTER 5. PROJECT WORK AND OUTCOMES 27

Figure 5.7: LoRaWAN Server and Radio Settings

CHAPTER 5. PROJECT WORK AND OUTCOMES 28

Figure 5.8: Gateway Registration

CHAPTER 5. PROJECT WORK AND OUTCOMES 29

Figure 5.9: Device Overview

Figure 5.10: Application Data Payload

Chapter 6

Issues faced and Solutions

6.1 Data Overflow during Serial Communication

While reading the Dust sensor data serially form UART, the data bytes were

getting overflowed and displaying undesirable output. In serial communication, it

is necessary to flush the registers at particular intervals. But, the Micropython

modules for LoPy does not provide any such function. Also, the internal registers

which stores the data cannot be known.

6.1.1 Solution: RESET Controller

To solve this issue, a condition is put in the code. It checks the start and stop

bytes every time after reading data from UART. If the condition is not met, then it

resets the controller and start reading data again.

6.2 OSError: Sending Data Failed

While sending the data on the server using HTTPS, the device was facing an error

at the time of wrapping the socket with SSL(Secure Socket Layer). There was no

issue related to the urequest library or the server.

30

CHAPTER 6. ISSUES FACED AND SOLUTIONS 31

6.2.1 Solution: Close Socket

The MicroPython platforms such as LoPy does not have a full-fledged OS. Thus,

it causes the malfunctioning and resource leaks if response objects are not handled

manually. Closing the socket manually after sending the data solved this issue.

Chapter 7

Conclusion

7.1 Conclusion

By building the IoT firmware using lightweight MicroPython framework, the de-

vice measures environmental sensor data with high accuracy and resolution. Net-

working technology such as LoRa sends digital sensor output at ultra-low power

easily to wider communication ranges over the internet.

32

References

[1] Technical Marketing Workgroup, “LoRaWAN 101, A Technical Introduction”,
LoRa Alliance.

[2] “A technical overview of LoRa and LoRaWAN”, LoRa Alliance.

[3] BME280 Environmental Sensor Datasheet, Bosch Sensortec.

[4] Laser PM2.5 Sensor Datasheet, Nova Fitness Co., Ltd.

[5] WS2812B Intelligent control LED Datasheet, Worldsemi.

[6] LG01 LoRa Gateway User Manual, Dragino.

33

	Declaration
	Disclaimer
	Certificate
	Acknowledgements
	Abstract
	Abbreviation Notation and Nomenclature
	Introduction
	Motivation
	Objective
	Scope of Work
	Outline of Thesis

	Literature Survey
	MicroPython Language Study
	LoRa Technology
	Advantages of LPWAN

	LoRaWAN Protocol
	End-device Classes
	Activation Methods

	Hardware Design
	Block Diagram
	LoPy Specification
	Why LoPy?
	Sensors
	BME280 Sensor
	Dust Sensor
	CO2 Sensor
	Light Sensor

	Neopixel WS2812B LEDs
	Dragino LG01 LoRa Gateway

	Software Design flow
	Micropython Features
	REPL Prompt
	Modules

	Atom IDE features
	Why Atom?

	Flow Chart

	Project Work and Outcomes
	Integration of Sensors with LoPy
	BME280 Sensor Data Accumulation
	Dust Sensor Data Accumulation
	CO2 Sensor Data Accumulation
	Light Sensor Data Accumulation

	Device Status LEDs
	Ubidots Application Server
	LoRaWAN Network-Server
	Dragino LG01 Registration with TTN
	LoPy Communication with Gateway and TTN

	Issues faced and Solutions
	Data Overflow during Serial Communication
	Solution: RESET Controller

	OSError: Sending Data Failed
	Solution: Close Socket

	Conclusion
	Conclusion

	References

