
Memory BIST Implementation and
Validation

Major Project Report

Submitted in partial fulfillment of the requirements
For the degree of

Master of Technology
In

Electronics & Communication Engineering
(VLSI Design)

By
Javiya Mitali Harishbhai

(16MECV10)

Electronics & Communication Engineering Department
Institute of Technology

Nirma University
Ahmedabad - 382 481

May, 2018

Memory BIST Implementation and
Validation

Major Project Report

Submitted in partial fulfillment of the requirements
For the degree of

Master of Technology
In

Electronics & Communication Engineering
(VLSI Design)

By
Javiya Mitali Harishbhai

(16MECV10)
Under the Guidance of

Internal Guide External Guide
Prof. Vaishali Dhare Mr. Vasubabu Ravipati

Assistant Professor (EC, ITNU) Engineering Manager

Nirma University Intel Technology India Pvt Ltd.

Electronics & Communication Engineering Department
Institute of Technology

Nirma University
Ahmedabad - 382 481

May, 2018

Declaration

1. I hereby declare that this thesis entitled “Memory BIST Implementation and Valida-

tion” was carried out by me for the degree of Master of Technology in VLSI Design

under the guidance and supervision of Prof. Vaishali Dhare, Institute of Technology,

Nirma University.

2. The interpretations put forth are based on my reading and understanding of the original

texts and they are not published anywhere in the form of books, monographs or articles.

The other books, articles and websites, which I have made use of are acknowledged at the

respective place in the text.

3. For the present thesis, which I am submitting to the University, no degree or diploma or

distinction has been conferred on me before, either in this or in any other University.

Javiya Mitali Harishbhai
(16MECV10)

i

Certificate
This is to certify that the Project entitled “Memory BIST Implementation and Validation”
submitted by Javiya Mitali Harishbhai (16MECV10), towards the submission of the Project
for requirements for the degree of Master of Technology in VLSI Design, Nirma University,
Ahmedabad is the record of work carried out by her under our supervision and guidance. In our
opinion, the submitted work has reached a level required for being accepted for examination.

(External Guide)
Mr. Vasubabu Ravipati
Engineering Manager
Intel Technology India
Bangalore

Company Seal
Intel Technology India Pvt. Ltd.(Bangalore)

Date : Place : Bangalore

iii

Certificate

This is to certify that the Major Project entitled “Memory BIST Implementation and Vali-

dation” submitted by Javiya Mitali Harishbhai (16MECV10), towards the partial fulfillment

of the requirements for the degree of Master of Technology in VLSI Design, Nirma University,

Ahmedabad is the record of work carried out by her under our supervision and guidance. The

submitted work has reached a level required for being accepted for examination.The results em-

bodied in this major project, to the best of our knowledge, haven’t been submitted to any other

university or institution for the award of any degree or diploma.

Prof. Vaishali Dhare Prof. Dr N. M. Devashrayee

Internal Guide PG Coordinator (VLSI Design)

Dr D. K. Kothari Dr Alka Mahajan

Head, EC Dept. Director, IT - NU

Date : Place : Ahmedabad

v

Acknowledgement

First and foremost, sincere gratitude to my manager Mr. Vasubabu Ravipati. Also I want to

thank Intel Technologies India Private Limited, Bangalore for assigning me such a project.

I would like to take this opportunity to thank my mentor Swapna Gundeboyina, at Intel Tech-

nologies India Private Limited, Bangalore who have supported and guided me throughout my

project work.

I would also like to express my gratitude to internal guide, Prof. Vaishali Dhare and PG coordi-

nator Dr N. M. Devashrayee, Professor, VLSI Design, Institute of Technology, Nirma Univer-

sity, Ahmedabad for encouraging, giving valuable advice and support throughout the semester.

I would also like to thank all the faculty members of Nirma University who have encouraged

me during my post-graduate program.

- Javiya Mitali Harishbhai

(16MECV10)

vii

Abstract

Testing is very important aspect of any VLSI product. Compromise in testing directly affects

trust of people on product and company. As SoCs are becoming more complex day by day DFT

has very important role in the design. In fact, DFT is expanding as the technology is shrinking.

As the technology is scaling down (28nm, 22nm, 14nm, 10nm etc.), this introduces manufac-

turing challenges and also higher chances of failure and Crosstalk effects. Chips can fail after

manufacturing due to Contamination causing open circuits, Extra metal causing short circuits,

Insufficient doping, Open interconnect on the die caused by dust particles.

When manufacturing defects occurs, the physical defect has a logical effect on the circuit be-

havior and chip may not work as intended. Detecting faulty chips is more costly in the later

stages of life cycle of the product. So, it is needed that the device which are shipped to the end

customer are not defective one. So, before shipping to the end customers, the manufacturing

defects must be tested, to filter out the bad device with the good one.

Memories are more vulnerable to physical defects than logic circuits because of their higher

density and more complicated processing steps. Memory BIST is a digital logic, which is

inserted in the design, to detect all the defects present in the memories arrays caused during

manufacturing process. Memory BIST hardware incorporates various test algorithms to targets

these defects.

This thesis covers MBIST architecture in brief where description for all the blocks is included,the

flow of Memory BIST insertion at wrapper level and creation of the TAP controller RTL based

on fullchip requirements. It also covers how to generate testbenches/patterns that can be used

for pre and post silicon validation. Memory Rastering process is included which will help to

find the loaction where exactly the memory is failing. This thesis also helps to understand the

post MBIST simulation debug process.

ix

Table of Contents

Declaration . i

Internship Certificate . iii

Certificate v

Acknowledgement . vii

Abstract . ix

1 Introduction 1

1.1 Motivation . 2

1.2 Organization of Thesis . 3

2 Literature Survey 5

2.1 Why Memory Testing? . 5

2.1.1 Memory Faults . 5

2.2 How to test Memories? . 8

2.3 Why Memory BIST? . 8

3 Memory BIST Architecture 11

3.1 MBIST Controller . 13

3.2 Memory Interface (Collar) . 13

3.3 BIST Wrapper . 14

3.4 WTAP . 16

3.5 MBIST-TAP (LVTAP) . 17

4 MBIST Implementation 19

4.1 MBIST Insertion Flow . 19

4.1.1 General Steps Involved in the Flow 19

4.1.2 Dependencies . 20

4.1.3 Inputs . 20

4.1.4 Outputs . 20

4.1.5 Flow Script Descriptions(Tessent Tool) 20

5 MBIST-TAP (LVTAP) Insertion 23

5.1 Flow Prerequisites . 24

5.2 Generating BIST TAP level testbenches and patterns 27

6 Memory Repair 29

7 Post MBIST Simulation Debug 33

7.1 Common Issues Encountered During Simulation 33

8 Conclusion 37

References 39

List of Figures

2.1.1 Stuck-At-0 Fault . 6

2.1.2 Stuck-At-1 Fault . 6

2.1.3 Down Transition Fault . 6

2.1.4 Up Transition Fault . 7

2.1.5 Inversion Coupling Fault . 7

2.1.6 Idempotent Coupling Fault . 8

3.0.1 Block Level . 12

3.0.2 SOC Level . 12

3.2.1 Memory Interface . 14

3.3.1 BIST Wrapper . 15

3.4.1 WTAP . 17

3.5.1 LVTAP . 18

5.0.1 Fullchip model for TAP insertion and pattern generation 24

6.0.1 Bit Mapping . 29

6.0.2 Forces Applied . 30

6.0.3 Fuse Added . 30

6.0.4 Simulation Waveform . 30

6.0.5 Simulation Waveform . 31

6.0.6 Simulation Waveform . 31

6.0.7 Simulation Waveform . 31

7.1.1 Unit Level Simulation . 34

Chapter 1

Introduction

Testing means to screen out defective chips so that only good chips are shipped to customer.

But as the size of chip reduces and design complexity increases, testing of device via external

tester becomes difficult. So to support the testing of chip, extra logic is added in the design

other than functional logic. This makes testing of chip easier and faster. This addition of extra

logic is nothing but DFT (Design for Test).

Testing which is post silicon process checks for manufacturing defects. Functionality is verified

before sending it to fabrication. So after fabrication we need to check for manufacturing defects.

Other reason of doing manufacturing test is it requires less number of patterns to test than

functional test. The purpose of manufacturing test is to screen for manufacturing defects so that

chips can be discarded before they reach to customer.

Defect screening efficiency of manufacturing test depends on how good the tests are in exposing

large proportion of manufacturing defects. This requires a good understanding of various types

of manufacturing defects and way of modeling or abstracting their behavior so that tools can be

developed to generate and grade manufacturing tests. The impact of defects on design behavior

is usually abstracted in terms of fault models.

1

1.1 Motivation

While purchasing any product customer will always look forward for two aspects: Cost and

Quality. Every organization will aim to maintaining its brand name, so they need to ship good

quality of products by which they can gain customers trust also. Components which do not

perform per specification are considered defective by customer and result in customer returns.

The outgoing quality is usually measured in Defects per Million (DPM) parts shipped and the

quality is considered satisfactory as long as the outgoing DPM meets customer requirements.

DPM means defective product out of 1 million product which are shipped. To achieve low DPM,

product needs to be tested thoroughly before shipping and if the product is found defective, then

it could not be used further. Testing for todays modern SoC is very difficult as size is becoming

small and complexity is increasing. So to make testing possible, some extra design is added.

This is where DFT (Design for Test) comes into picture. DFT includes many concepts like scan

chain, JTAG, MBIST, LBIST etc.

Memories are the most universal component today. Almost all system chips contain some type

of embedded memory, such as ROM, SRAM, DRAM, and flash memory. The ever increasing

size and number of memories in the Systems on Chip has presented the designers and test

engineers with a challenge for huge number of functional or ATPG patterns for verification of

memory functionality. So, to test the memory functionality either functionally or through ATPG

requires huge test time, and hence, huge test cost. It is almost impossible in such scenario to

verify memory functionality fully. Thus, the designers are left with only one way; i.e. to verify

memory functionality through BIST (Built-In Self Test) functionality.

BIST is an inbuilt testing hardware inside a product/equipment module. It just needs to trigger

the hardware from outside. This hardware, at that point, runs the inbuilt patterns/algorithms and

returns if the module is working appropriately. This, being inbuilt does not should be provided

with designs from outside. Likewise, since, this is inside a module, consequently, the measured

strategy for testing can be adopted which diminishes run time essentially.

2

The inherent individual test utilized for recollections is known as MBIST (Memory Built-In

Self Test). Like other BIST rationale, MBIST rationale is inbuilt inside memory as it were. The

MBIST rationale might be fit for running a few algorithms to check memory usefulness and test

for memory faults particularly outlined and advanced for these.

So MBIST for memories is one of the structural test methods. MBIST architecture provide

adequate test coverage to meet the DPM goals for SoC products with a large number of Register

Files and at the same time provide a scalable and modular solution that could be readily be re-

used by various IPs in a SOC.

1.2 Organization of Thesis

In the thesis

• Chapter 2 introduces the need of testing memories, the methodology to test memories and

how Memory BIST logic is helpful to test memories

• Chapter 3 describes the whole architecture of Memory BIST and also gives brief descrip-

tion of all its blocks

• Chapter 4 explains how Memory BIST logic is inserted at unit (wrapper) level in any de-

sign, what are the pre-requirements for inserting that logic and what all steps are followed

for insertion

• Chapter 5 explains MBIST-TAP insertion which will be done once the MBIST is inserted

at unit level. It also explains the flow of generating patterns which are required for simu-

lation purpose

• Chapter 6 explains the process of MBIST Rastering which means if any memory or con-

troller is failing then how to find the failing location of memory and what steps are in-

volved to repair those memories

3

• Chapter 7 covers the post simulation debug process which should be done if any test is

failing and the root cause of failure can be found out through this process

• Chapter 8 includes conclusion of the entire thesis

4

Chapter 2

Literature Survey

2.1 Why Memory Testing?

• Memories are the most dense components with-in the SoC

• Contributes to most of the area as well

• As the technology node decreases they become more sensitive to process defects

• To overcome the Testability compromise

• To reduce DPM and get a good yield

2.1.1 Memory Faults

Can be categorized as follows:-

• Stuck-At Faults

• Transition Faults

• Coupling Faults

• Neighborhood Pattern Sensitive Faults

• Retention Faults

5

Stuck-At Fault:-

Memory Cell stuck to one particular value (either 0 or 1). Stuck-At-0:

Figure 2.1.1: Stuck-At-0 Fault

Suck-At-1:

Figure 2.1.2: Stuck-At-1 Fault

Transition Faults:-

Differs from Regular ATPG Transition Fault. It occurs when one cell:-

• Can transition from 0 to 1 but not from 1 to 0(Down Transition Fault)

Figure 2.1.3: Down Transition Fault

6

• Can transition from 1 to 0 but not from 0 to 1 (Up Transition Fault)

Figure 2.1.4: Up Transition Fault

Coupling Faults:- These faults occur when one cell affects the data on the other cell. This

can be further divided as follows:-

• Inversion Coupling Faults (CFin):- When Transition on one cell’s data inverts the other

cell’s data.

Figure 2.1.5: Inversion Coupling Fault

• Idempotent Coupling Faults (CFid):- Occurs when the transition on one cell constrains

the other cell to a particular value (0 or 1).

• State Coupling Faults (CFst):- A coupled cell or line is forced to a certain value only if

the coupling cell or line is in a given state.

7

Figure 2.1.6: Idempotent Coupling Fault

2.2 How to test Memories?

The goal of array tests is to ensure each portion of the array logic is free of the modeled array

defects and typically consist of tests which perform read and write operations through the entire

address space of any array. This can be achieved by:-

• Direct access to the memory:- Memory will be accessed from the tester channels and

Patterns will be applied through external ATE.

• Access from CPU through code

• MBIST (Memory Built-In Self-Test):- Some digital logic will be added in the design itself

to test the Array structure.

2.3 Why Memory BIST?

With the increasing complexity, size and number of embedded memories:-

• It is difficult to get access to all the memories through external tester. Extra cost is in-

volved to design such ATE. Also the speed from external ATE and available Pins are

limited.

• With a little area overhead (equivalent to some flops and combinational logic), it pro-

vides an efficient method to access all the memories at any speed requiring only TAP

connection.

• The area overhead becomes negligible if the memories are bigger and in huge number.

8

• Helps in Process debug by using different set of algorithms and diagnostic capabilities.

• Functional Debug capabilities (Array Freeze and Dump).

Features of Memory BIST:

• Controllable through IEEE 1149.1 TAP interface, and the BIST ”status” and ”result” are

accessible via the TAP Interface.

• Simultaneous testing of multiple memories within the design, which may require sequen-

tial testing otherwise. A structured method which provides consistently high-quality test

patterns as well as substantial test time saving, but with some cost such as area and routing

resources.

• One controller can test multiple memories in parallel.

• Supports very comprehensive debug and diagnostic features.

• Isolate failing memory locations (”raster” capability).

• Requires very simple initialization and control to operate.

Advantages of Memory BIST:

• Reduces routing signals needed at chip level.

• Reduces the amount of test data that needs to be stored as the on chip circuity generates

the test stimulus.

• Shortest test-time due to in-built test circuit [Test Cost Reduction].

• Can be programmed to test new scenario during Root Cause Analysis of a failing chip or

on customer returns part [Diagnosis].

• Reparability [Reusability].

Disadvantages of Memory BIST:

• Extra Area Overhead.

• Extra PD effort for timing closer on MBIST area.

9

Chapter 3

Memory BIST Architecture

The built-in self test employed for memories is known as MBIST (Memory Built-In Self Test).

Like other BIST logic, MBIST logic is inbuilt within memory only. Memory BIST is an extra

logic, which is inserted in the design, to detect all the defects present in the memories arrays

caused during manufacturing process. MBIST logic may be capable of running several al-

gorithms to verify memory functionality and test for memory faults specifically designed and

optimized for these. No extra pins are required at top level to execute the patterns. Since mem-

ories have very regular structure in a dense manner, not much change is required in MBIST

logic. All the changes in MBIST are mainly based on the memory size and type. Other factors

that affect the MBIST logic are the built-in redundancy and the number of algorithms to be hard

coded.

Memories can be tested in serial or parallel manner. Multiple memories can be tested simulta-

neously through one single MBIST Controller provided the memories belong to the same clock

domain. Multiple algorithms can be hard coded in the design. Debug on memory failure is easy

as the failure data can be dumped out at the specific time. Default algorithm can be hard coded

as per the test program.

11

At Block Level:

Figure 3.0.1: Block Level

At SOC Level:

Figure 3.0.2: SOC Level

BUILDING BLOCKS OF MBIST HARDWARE:

• MBIST CONTROLLER

• MEMORY INTERFACE (COLLAR)

• WTAP

• MBIST-TAP (LVTAP)

12

3.1 MBIST Controller

The FSM is used to control the overall sequence of events. The MBIST Controller typically

requires very simple initialization and control to operate. The initialization could be to the

order of which memory test algorithm to apply. All the read comparison happens in the MBIST

Collar logic, so no compare logic is included in the MBIST Controller. The MBIST controller

RTL is an IP (blackbox) generated by the Mentor Graphics tool.

MBIST Controller are of 3 types:

Non-Programmable Controller: A memory BIST controller that utilizes a subset of the Men-

tor Graphics library algorithms. Such a controller does not support user-defined algorithms.

Hard Programmable Controller: A memory BIST controller that supports user defined al-

gorithms. The selected algorithms are hard-coded and cannot be changed the controller is gen-

erated.

Soft Programmable Controller: An extension of the Hard Programmable controller. Such

a controller supports both hard-coded and soft-coded algorithms.

3.2 Memory Interface (Collar)

There is usually a wrapper around memory, known as memory collar that is used to select be-

tween functional inputs and test inputs based upon MBIST/functional mode selection bit. It

interfaces the memory with on-chip logic and MBIST controller. The MBIST controller indi-

cates the start of MBIST with a select input. The memory, then, starts the BIST algorithms and

provides the test output to the controller. The controller compares this output with the reference

output and indicates if the MBIST has passed or failed. There can be one controller for several

memories. Also, memories can share the collar depending upon the test time requirement and

type of memories. The memory collar RTL is an IP (blackbox) generated by the MG tool.

13

Figure 3.2.1: Memory Interface

3.3 BIST Wrapper

The BIST wrapper is the module where the MBIST logic is inserted by the Mentor MBIST tool.

Its role is to keep the MBIST logic completely separate from the functional RTL. By segregating

the MBIST logic, the bist wrapper enables a modular DFX strategy, allowing development of

functional RTL to continue without any dependency on the MBIST RTL. It also facilitates the

reuse of the MBIST logic for a particular IP block across multiple product derivatives.

BIST wrapper which is supported by the MBIST flow is just a verilog module with the MBIST

logic (WTAP, controllers, and interfaces). The memories being tested reside outside of the bist

wrapper within the functional RTL.

14

Figure 3.3.1: BIST Wrapper

Figure illustrates WTAP to RF (or ROMs/SRAM) connectivity through the bist wrapper. In or-

der to facilitate MBIST insertion into this wrapper, which does not have memories instantiated,

array collars are inserted into the wrapper to model the behavior of memories, as shown by the

purple blocks in the diagram. After insertion, the array collars are removed and all that remains

is the MBIST logic and the bist in and bist out buses from the MBIST logic to the boundary

of the bist wrapper. The bist wrapper should then by integrated into the functional design and

the bist in/bist out signals connected to the memories. This type of bist wrapper, as well as the

array collars, are generated by the MBIST flow so these items do not need to be provided as

input to the flow.

15

3.4 WTAP

WTAP is assigned one per array wrapper and generated by tool itself. The WTAP circuit is

similar to the MBIST TAP except that it has no Finite State Machine (FSM). WTAP includes a

Instruction register (includes status register) and BIST Setup Logic. Each WTAP is connected

as a separate Data Register of the MBIST TAP. The MBIST TAP has seven global control sig-

nals (tdi, testLogicResetInv, updateDREnable, shiftDR 2EDGE, captureDR 2EDGE, tck, se-

tupMode0) that is common to all WTAPs and fan-out from MBIST TAP to WTAP. Each WTAP

is connected to a unique bistEn (Input to WTAP) and fromBist (Output to WTAP) from MBIST

TAP The WTAP controller connected directly to the MBIST TAP (star topology) instead of

connecting them in a daisy-chain configuration (ring topology). This allows connecting a unit

with WTAP to the BIST TAP as soon as one is ready, and its verification with the testbench

generation can be completed without waiting for the other units to be ready.

16

Figure 3.4.1: WTAP

3.5 MBIST-TAP (LVTAP)

The MBIST-TAPs reside in partitions cdus. Each unit has its owns WTAP(s) that communicate

with the MBIST-TAP. The WTAPs communicate to the MBIST Controllers which in turn con-

trol MBIST Collar/MBIST Interface to each RF/ROM. The MBIST Controller and Collar reside

in the Bist Wrapper. The final MBIST patterns are generated by Mentor Graphics tool with a

post script to fit it into the testbench structure which inserts the preamble for reset sequence as

well.

MBIST TAP is IEEE 1149.1 compliant. The interface to/from the BIST TAP are TDI, TRST,

TMS, TCK and TDO. The TAP controller contains a finite state machine (FSM) that manages

17

access to all the instruction and data registers within the TAP and within the chip.

This is nothing but an interface b/w WTAP and MasterTap (CLTAP). This block provides the

connections to n number of WTAPs based on the design requirements. i.e. with single MBIST-

TAP multiple array wrappers or bist wrappers can be accessed. Also this is the reference point

for all the patterns (algorithms), because this is where the selection of array wrapper takes place.

Separate interface to all the WTAPs. Number of MBIST TAPs depend on the area of SoC as

well as the number of MBIST Controller it is fed to. To minimize the routing and to ease the

timing, output from this module are routed through WTAP.

Figure 3.5.1: LVTAP

18

Chapter 4

MBIST Implementation

MBIST implementation must be performed in the RTL phase. This includes all Mentor con-

troller blocks such as TAP, WTAP, MBIST controller, MBIST interfaces, etc. It is possible to

insert MBIST into a gate-level netlist. All memories should be partitioned to a bist wrapper

that is instantiated in the top level of the design. If the number of memories in the bist wrapper

is controllable through parameters, the parameters must be set within the bist wrapper during

BIST insertion and not outside of it. All clocks must be controllable and accessible from a top

level port. The clocks used for MBIST should be the same clocks connected to the memories.

If a memory has more than one clock port, one of the clocks will be chosen by the MBIST tool

for MBIST. Usually the clock with the highest frequency is chosen.

4.1 MBIST Insertion Flow

4.1.1 General Steps Involved in the Flow

• MBIST compatibility rule checking and clock identification

• Generation of MBIST insertion/validation environment

• Generation and insertion of MBIST control hardware into design

• Test bench generation

19

• MBIST validation

• MBIST RTL and SDC post processing

4.1.2 Dependencies

• RTL should have completed some functional validation prior to MBIST.

• Validated mentor memory (lvlib) views and verilog files available for all memory types

used in the design.

4.1.3 Inputs

• RTL that meets quality and memory partitioning requirements

• ROM contents file if ROMs are being MBISTed

4.1.4 Outputs

• MBIST inserted RTL files

• MBIST constraints for downstream tools

• SDC constraints for synthesis

• LVDB (Mentor Database) for downstream pattern generation

• Verilog tests for validation of MBIST hardware

4.1.5 Flow Script Descriptions(Tessent Tool)

• run etchecker clocks

Script which runs ETChecker tool to perform clock identification and design information ex-

traction for the input netlist. Extracted clock information will be fed forward to downstream

20

MBIST tools to create clock control logic and clocking constraints. Extracted design informa-

tion will be used to populate downstream tool configuration files and reduce the amount of input

required by the user.

• run etchecker rules

Script re-runs ETChecker tool on input netlist and performs MBIST compatibility checks.

• run etplan gen

Script that generates a starting configuration file for the ETPlanner tool. The ETPlanner uses a

configuration file and the design information extracted by ETChecker to build an environment

where MBIST insertion can be performed. This environment is populated with pre-filled con-

figuration files and Makefile automation scripts to make MBIST insertion easier and repeatable.

• run fixETPlan

Script which modifies the auto-generated ETPlan configuration file to fill in design and SEG

design kit information which is already known. This script is designed to simplify and reduce

the amount of steps a user must perform.

• make checkPlan

This make target will run the ETPlanner tool to create a summary of the MBIST architecture

which will be created by the MBIST insertion environment. If the user is not satisfied with the

MBIST architecture they can adjust the options in the ETPlanner configuration file and rerun

the make checkPlan target until the MBIST summary meets their expectations.

• make genLVWS

This make target will create an environment which automates the MBIST insertion process.

• make embedded test

21

This Makefile target generates and inserts RTL for MBIST control logic. This step will also

generate constraint files for downstream flow steps such as SDC files, PV constraints, FEV

constraints, etc.

• make designe

Runs a Mentor analysis tool which checks the connections to/from the MBIST control logic

created by the make embedded test step of the flow. This is done to ensure the correctness of

the MBIST connections and create a port mapping file which is used by downstream validation

tools to create MBIST patterns and testbenches.

• run tb

Generate testbenches for each algorithm.

• run sim

Automates the simulation of each algorithm using the VCS simulator. Simple pass/fail result is

reported at the end of each simulation.

• Final post processing

Post processing of the MBIST inserted RTL (if needed). Post processing of the SDC file to

insert the correct hierarchy for the WTAP and MBIST controllers

22

Chapter 5

MBIST-TAP (LVTAP) Insertion

The goal of this part of the flow is to create the TAP controller RTL based on fullchip require-

ments and to generate testbenches/patterns that can be used for pre and post silicon validation.

Normally, it is needed to have MBIST inserted into all of lower level IP blocks, those IP blocks

integrated into fullchip, and a top level verilog file of available for TAP insertion. Since many

of these items arent ready in the early stages of design, the flow works independent of the real

fullchip design.

This flow generates a model of fullchip, which is basically just a top level verilog file that

instantiates a dfx module and all of the lower level bist wrappers specified as input, and inserts

the TAP controller into the dfx module.

TAP controller, and the dfx module created can be taken and it can be integrated into real design.

In addition, the model which is created can be used to generate any of the MBIST testbenches

and patterns needed in order to run validation.

The steps below cover creation of the input files, generation of the fake top level model, creation

of the TAP controller, and pattern generation.

23

Figure 5.0.1: Fullchip model for TAP insertion and pattern generation

5.1 Flow Prerequisites

• Completed MBIST workspace areas for all bist wrappers to be covered by the TAP being

inserted

1. Setup the MENTOR tool by sourcing the lv setup script in the design kit

source /p/hdk/rtl/proj tools/mbist/kit version/10nm/scripts/lv setup

2. Create a file named ”unitPaths” and edit it to include the following information for each

bist wrapper to be controlled by the TAP being inserted (one bist wrapper per line):

-unit unit name -module bist wrapper name -clk1 list of clocks separated by spaces in the fol-

lowing format: unit clock name:top level reference clock name:unit clock to reference clock

ratio -path path to the to the MBIST run for this unit, ”none” if the MBIST run isn’t complete

yet

24

Example:

-unit mcu top inst -module mcu top rf roms -clk1 ”mcu clk:VLV REF CLK 1:0.5 mcu ch0 clk:VLV REF CLK 1:0.5

mcu ch1 clk:VLV REF CLK 1:1” -path path to the MBIST run for this unit

A starter template for the unitPaths file is located at:

DFX KIT PATH/scripts/unitPaths template

3. Copy the mbist tap mapping.txt file from the design kit and edit the Map2UnitAbbr, Map2UnitTag,

and MapUnitOutPost sections to customize how signals to/from each of the bist wrappers are

named. Map2UnitAbbr maps each unit name to an abbreviated name to be added to each signal

related to that unit. Map2UnitTag adds an rf, sram, or rom suffix to each signal. MapUnitOut-

Post can be used to add an additional identifier to the signal, ie. firewall identifiers. For any of

these sections, if a signal identifier is not desired, it can be mapped to ””.

cp DFX KIT PATH/scripts/mbist tap mapping.txt .

4. Copy the mbist tap setup.txt file from the design kit and edit as needed for your design.

cp DFX KIT PATH/scripts/mbist tap setup.txt .

The following are the required edits to mbist tap setup.txt needed to enable this particular flow:

set MEM LVLIBS DIR ”full paths to all directories containing the memory .lvlib files used by

the unit bist wrappers, separated by spaces” set REF CLOCKS ”top level reference clock:frequency”

The following options are for generating asynchronized mode pattern at TAP level, which allow

pattern generation at true TAP to IP frequencies instead of fixed TckRatio 8 :

25

USE ASYNC CLOCKS: Async mode pattern generation is turned on by default. set this option

to 0 to turn off async mode pattern generation.

TCK PERIOD: set proper TCK clock period here, for example if one IP clock frequency is

133MHz (7.518797ns), set TCK period to 40ns (25MHz) will set TCKRatio at about 5.3

5. Copy the flow run template from the design kit and edit with your design specific information

cp DFX KIT PATH/scripts/run genMBIST TAP template

./run MBistTap

The options available in this script are:

-path: Path to your work area

-ws: Name of your work area (name of directory created in the Work Area Setup step)

-tap: Name of top level DFX unit where TAP will be inserted, ie. dfx

-unitInfo: unitPaths

-project: Name of top level name for chip, ie. pnw

Then the functioning of commands from ”run etchecker clocks” upto ”make designe” com-

mand which are explained in MBIST insertion flow will be similar.

26

5.2 Generating BIST TAP level testbenches and patterns

1. Execute the run mbist tap tb script to generate the initial etSignOff file and generate the

preLayout lvdb

./run mbist tap tb

2. Edit the modulepaths.file.RF file in the current directory. Comment out any modules that

don’t belong, ie. if this is an RF run, comment out the SRAM modules and vice versa.

3. Run the run Combine etSignOff step to merge the etSignOff files of all modules speci-

fied in the modulepaths file into one file that will be used for pattern generation.

./run Combine etSignOff

4. Edit run genMBISTPatterns file to select the patterns you want generated. By default all

non-ROM patterns are generated. Comment out the patterns you do not want generated.

5. For each pattern, edit the corresponding options.* file to configure how the pattern is gener-

ated.

6. After editing the options files, run the pattern generation script.

./run genMBISTPatterns

7. To generate patterns for SRAMs, ROMs, the steps above are repeated for the most part.

27

Chapter 6

Memory Repair

After the patterns are generated, its simulation is needed to verify if any memory/controller

is failing or not. If a memory is failing, then it is necessary to find at which location it is

failing. Suppose in a memory, one row is failing where failure is at 2 bits. But if we replace

one row,then whole memory will be replaced. Then we need to enable that. Enable will be

normal enable signal which will always be 1 if repair needs to be done. We need to know which

row to be enabled. Suppose 3rd row needs to be enabled, then program RedRowAddr to 3 then

only RedRowEn will work. If RedRowEn is 0 then repair won’t work. Here there are 4 row

redundancies that’s why 4 enables and 4 addresses are needed. This fuses will be given through

simv args, this simv args will map to svh file and in svh file, it will be mapped to sb fuse data

and it will be reflected in simulation.

Below is the snippet of svh file where sb fuse data mapping will be given:

Figure 6.0.1: Bit Mapping

When the svh file is available, error injecting needs to be done in sv file by manually adding

forces. Below is the snippet:

29

Figure 6.0.2: Forces Applied

After the forces are added, simv args needs to be added where enable signals needs to be 1 so

that it will reflect the row addresses and repair will be done. Below is the snippet

Figure 6.0.3: Fuse Added

Below are the snippets of the waveforms where memory repair will be done and simulation will

pass:

Figure 6.0.4: Simulation Waveform

30

Figure 6.0.5: Simulation Waveform

Figure 6.0.6: Simulation Waveform

Figure 6.0.7: Simulation Waveform

31

Chapter 7

Post MBIST Simulation Debug

By default, VCS command scripts are written out during simulation to the path/ws/ETPlan/block LVWS/ETAssemble/simcmds

directory. These scripts make it easier to pull up the Verdi debugger for viewing the simulation

waveforms in the event there are simulation FAILS. One script is written per algorithm simu-

lated. When the script is executed, all of the required verilog files, testbenches, and collateral

are loaded automatically and the viewer is launched.

7.1 Common Issues Encountered During Simulation

Unit level simulation using verilog testbench Flow option 1

• Miscompares on GO ID REG - LV WSO is X

– This usually indicates the memory or memories being tested were never written to

in the first place. Ensure all signals required to be asserted to 0 or 1 to enable writing

to the memory are either tied off in the RTL or asserted through the testbench by

using the LV ASSERT options in the mbist setup.tcl file.

– Another possibility is that the memory .lvlib file is incorrect and therefore the MBIST

controller is trying to access addresses that dont exist. Verify the address mapping

section in the .lvlib file is consistent with the memory RTL model.

33

• Miscompares on a GO ID REG LV WSO is 0, expected to be 1

– This indicates the test failed at some point during the running of the algorithm. This

is usually more difficult to debug because it means the memory was written to but the

data read back was not the data expected. At the point of failure, the MBISTPG GO

signal dropped low (see diagram below). This could be caused by any number of

issues. Contact DA to get support for this type of failure.

• Miscompare on MBISTPG DONE DONE is 0, expected to be 1

– This indicates the pattern completed but the algorithm wasnt finished running. Try

increasing the TEST TIME MULT setting in the mbist setup.tcl file to 2.0 and re-

generate your testbenches to see if that resolves the issue.

Unit level simulation using verilog testbench - Flow option 2

Figure 7.1.1: Unit Level Simulation

34

All of the above apply, but here are some other issues to watch out for:

• If GO ID REG is X, try to trace all signals from the bist wrapper to the memories and

from the memories back to the bist wrapper to make sure everything is connected cor-

rectly.

• Make sure all required clocks are running at the memory and at the MBIST controllers

and are not being blocked by clock gates upstream.

• Ensure the clock phase at the memories matches the clock phase at the controller (both

the memory and the controller should be driven by the same clock).

35

Chapter 8

Conclusion

This thesis aims at understanding of why MBIST insertion is preferred over functional/atspeed

testing. It will allow for robust testing of memories. It does simultaneous testing of multi-

ple memories within the design. With this process all the memories can be tested in parallel.

Running the Raster algorithm will help to find the faulty location by which memories can be

repaired and at later stage they can be reused.

This thesis aims at inserting MBIST in the design so that all the defects present in the memories

arrays caused during manufacturing process can be validated and the memories can be further

repaired and reused also. This whole process of MBIST implementation is done by Tessent

Mentor Graphics Tool which will reduce the test-time due to in-built test circuit.

37

References

[1] SoC DFT Handbook, Intel

[2] MBIST FLow and Debug Handbook, Intel

[3] Tessent Memory BIST User’s and Reference Manual, Mentor Graphics

39

	Declaration
	Internship Certificate
	Certificate
	Acknowledgement
	Abstract

	Introduction
	Motivation
	Organization of Thesis

	Literature Survey
	Why Memory Testing?
	Memory Faults

	How to test Memories?
	Why Memory BIST?

	Memory BIST Architecture
	MBIST Controller
	Memory Interface (Collar)
	BIST Wrapper
	WTAP
	MBIST-TAP (LVTAP)

	MBIST Implementation
	MBIST Insertion Flow
	General Steps Involved in the Flow
	Dependencies
	Inputs
	Outputs
	Flow Script Descriptions(Tessent Tool)

	MBIST-TAP (LVTAP) Insertion
	Flow Prerequisites
	Generating BIST TAP level testbenches and patterns

	Memory Repair
	Post MBIST Simulation Debug
	Common Issues Encountered During Simulation

	Conclusion
	References

