
“Preparation of CAD software for design and
analysis of base frames of standard

industrial gearboxes ”

A Major Project Report

Submitted in Partial Fulfillment of the Requirements
for the Degree of

MASTER OF TECHNOLOGY

IN

MECHANICAL ENGINEERING
(CAD / CAM)

By

Narahari Sreenadh
(Roll No.03MME008)

Department of Mechanical Engineering

INSTITUTE OF TECHNOLOGY
NIRMA UNIVERSITY OF SCIENCE & TECHNOLOGY,

AHMEDABAD 382 481

MAY 2005

 1

 2

Certificate

This is to certify that the Major Project Report entitled “ Preparation of CAD

software for design and analysis of base frames of standard industrial gearboxes
” submitted by Mr./Ms. Narahari Sreenadh (Roll No.03MME008), towards the partial

fulfillment of the requirements for the award of Degree of Master of Technology in

Mechanical Engineering (CAD/CAM) of Nirma University of Science and Technology

is the record of work carried out by him/her under my/our supervision and guidance.

The work submitted has in my/our opinion reached a level required for being accepted

for examination. The results embodied in this major project work to the best of my/our

knowledge have not been submitted to any other University or Institution for award of

any degree or diploma.

Project Guide/Guides i.Mr.V.B.Kalyankar, GM, Design, Gear, ELECON

 ii. Mr.S.S.Das, Assistant Prof., NIT

(Prof. A.B. Patel) (Dr. H.V. Trivedi)
Head of Dept. Director
Mechanical Engg. Dept. Institute of Technology
 Nirma University

Examiners : i.

ii.

iii.

iv.

(Name and Signature)

 3

 Acknowledgement

First and for most I would like to mention my sincere thanks to Mr.V.B.Kalyankar, GM, design,

gear division, ELECON for giving me this opportunity to do this project and his guidance in

difficult times.

I would also like to use this opportunity to thank my guide Mr.K.K.Das, Mechanical, NIT for his

guidance through out this project.

I would like to thank Mr.A.B.Patel, HOD, Mechanical, NIT for his continuous encouragement

and guidance for completing this project.

I would also like to thank Mr.P.B.Popat, course coordinator, M.Tech (CAD/CAM) for giving me

his advice.

I am also thankful to Mr. Sandeep Mitra, Sr.Manager, ELECON for his support and guidance

I would also like mentioning my sincere thanks to the staff of ELECON like Mr.N.G.Pandya,

Mr. Vaju sanjalia, Mr. Samir.J.

I would also like to thank all the faculty of mechanical department for their support and

guidance.

 Narahari Sreenadh

 4

 Abstract

The objective of this project is to develop CAD software to automatically design and

analyze the base frames for standard type of industrial gearboxes. This project can be divided

into two main parts. In the first part, the objective is to develop CAD software for drawing base

frames of standard industrial gearboxes using Auto CAD 2000. Second part of the project deals

with the stress analysis of the base frame using ANSYS program.

For development of CAD software Auto LISP language was used. Design of these base

frames depends on the gearbox dimensions, which are taken from the Elecon catalogues. This

software is developed keeping in mind the user friendliness and flexibility in designing. Here in

this project the method employed for software development was explained. The algorithm used

for development was also mentioned. This software can be run using Auto CAD 2000. While

execution of this software it will give option to select gearbox type and size. By selecting

gearbox type and size we can generate drawings of base frame using this software. This software

was also provided with a facility to draw new designs. For this we need to supply the parameters

of the gearbox first time and these can be utilized again and again to draw base frames of new

gearboxes as well.

Stress analysis of the base frame can be performed using a macro that is developed in

APDL (Ansys parametric design language). This macro is used to develop the model of the base

frame for the stress analysis. This macro takes the parameters of base frame as input. Using this

input it generates the model. Force analysis is taken up to find the forces that are coming on the

base frame from gearbox to use in analysis. ANSYS workbench software is used for stress

analysis. From the analysis equivalent stress, maximum shear stress, maximum deflection, safety

factor and critical stress zones were found out. Modal analysis of the base frame was also done.

From the modal analysis natural frequencies for different modes are found.

 5

List of figures

Fig no. Description

Fig2.1 : Three bar truss

Fig 2.2 : Simple bar element

Fig 2.3 : space frame

Fig 2.4 : Knematically unstable simple structures

Fig 3.1: Parameters used in data collection for S’type and K’type of design

Fig 3.2: Channel of size=100, angle=90, side view.

Fig 3.3: Channel of size=100, angle=90, front view.

Fig 3.4: Channel of size=100, angle=90, top view.

Fig3.5 : Dialog box for gearbox selection

Fig 3.6 : Dialog box for new design

Fig 3.7 Drawing of base frame for SCN-800

Fig 3.8 Model from macro of base frame of SCN-800

Fig B.1 DCL file structure

Fig B.2 Dialog box tree structure

Fig B.3 Hierarchy of DCL files

Fig C.1 Indian standard MC type channel

 6

List of tables

Table No. Description

3.1 Data collected from old drawings of base frames

C.1 Nominal dimensions of the channel

C.2 Nomenclature of standard channel

 7

Nomenclature

L1 length of base frame in front view

TL total length of base frame in front view

W1 width of base frame in top view

TW total width of base frame in top view

TH total height of the base frame in side view

P pitch of the stiffeners

ST stiffener thickness

PTB bottom plate thickness

PLB bottom plate length

PWB bottom plate width

PTT top plate thickness

PLT top plate length

PWT top plate width

HFB height of the foundation bolt

SFB size of the foundation bolt

Combined length total length of base frame for motor and gearbox

 8

CONTENTS

 Page No.

Certificate (i)

Acknowledgement (ii)

Abstract (iii)

List of Figures (iv)

List of Tables (v)

Nomenclature (vi)

Chapter 1: Introduction 1

1.1 Company profile

1.2 About the project

Chapter 2: Literature Review 6

 2.1 Design of structures

 2.2 Finite element analysis

 2.3 The stiffness method

 2.4 Structural Mechanics

Chapter 3: Software developing/Modeling 23

 3.1 Introduction

 3.2 Standardization of design using CAD

 3.2.1 Introduction

 3.2.2 Main programs of base frames

 3.2.2.1 Program of channel

 3.2.2.2 Program of dialog boxes

 3.2.2.3 Programs for main base frame design

 3.3 Macro for modeling of base frame

 3.3.1 Macro for channel

 3.3.2 Macro for base frame

Chapter 4: Results and Discussion 86

 4.1 Force analysis

 4.2 Boundary conditions

 9

 4.3 Material properties

 4.4 Meshing

 4.5 Results from stress analysis

 4.6 Results from model analysis

Chapter 5: Scope for further work 90

Chapter 6: Conclusions 92

References 94

Appendix 95

 10

 Chapter 1

 Introduction

 11

1.1 Company profile

This project is an in plant live project. This project is done at ELECON ENGG. CO. LTD.,

vallabh vidhyanagar. This company manufactures industrial reduction gearboxes. It supplies

reduction gearboxes to various industries like cement, paper mills, steel plants, sugar mills,

mines, rolling mills, and etc. this company is stared at vidhyanagar in 1961. In the beg-inning it

is making mining equipment as well as material handling equipment for industries. In 1971 it

stared manufacturing of industrial reduction gearboxes.

The product range for the gear division of the company include [1.1]

Helical gearboxes

Bevel helical gearboxes

Planetary gearboxes

Worm gears

Couplings and etc.

The infrastructure of the company is one of the best for gear making in India. It includes latest

CNC machines like

CNC machines used in elecon

Sinumeric (siemens) machining centre

Fanuc india series

Features

Two tables A,B

Both horizantal and vertical machining jobs

automatic tool changer (total 5 tool magzines)

Mazak power centreH-20

Automatic work table changer

At atime we can have 5 works in Q

For medium and low size jobs

 12

Automatic tool changer

Juaristi

Sr no 9-150-2

Type MDR 165

Spindle dia 165mm

Table size 1700X2000mm

Spindle axial travel 950mm

Weight on table 8000kgs

Vertical/cross travel 3000mm

Long travel 2600mm

Installation 1982

Pfuater p1200nc

Hobing machine

Spur, helical gear cutting

Magnetic chip conveyor

6-axis machine

Mazak integrex 50 and 30

Turning centre

Automatic chip conveyor

Klingelnberg kcn60

8 axis spirel,bevel gear cutting machine

For rough and hard cut two different tools

For different modules different cutters are used

Cutter head radius depends on o.d of job

 13

In addition to above mention manufacturing equipment this company is having very well

equipped design department with drafting software like Auto CAD, modeling software like Pro-

E. In design department they are designing all types of gearboxes and couplings using above-

mentioned software. Mostly they are using Auto CAD for drafting of designs.

1.2 About the project

The objective of this project is to develop CAD software to automatically design and

analyze the base frames for standard type of industrial gearboxes. This project can be divided

into two main parts. In the first part, the objective is to develop CAD software for drawing base

frames of standard industrial gearboxes using Auto CAD 2000. Second part of the project deals

with the stress analysis of the base frame using ANSYS program.

For development of CAD software Auto LISP language was used. Design of these base

frames depends on the gearbox dimensions, which are taken from the Elecon catalogues. This

software is developed keeping in mind the user friendliness and flexibility in designing. Here in

this project the method employed for software development was explained. The algorithm used

for development was also mentioned. This software can be run using Auto CAD 2000. While

execution of this software it will give option to select gearbox type and size. By selecting

gearbox type and size we can generate drawings of base frame using this software. This software

was also provided with a facility to draw new designs. For this we need to supply the parameters

of the gearbox first time and these can be utilized again and again to draw base frames of new

gearboxes as well.

Stress analysis of the base frame can be performed using a macro that is developed in

APDL (Ansys parametric design language). This macro is used to develop the model of the base

frame for the stress analysis. This macro takes the parameters of base frame as input. Using this

input it generates the model. Force analysis is taken up to find the forces that are coming on the

base frame from gearbox to use in analysis. ANSYS workbench software is used for stress

analysis. From the analysis equivalent stress, maximum shear stress, maximum deflection, safety

 14

factor and critical stress zones were found out. Modal analysis of the base frame was also done.

From the modal analysis natural frequencies for different modes are found.

First chapter of this project gives an introduction to company profile as well as about the

project. Second chapter consist of the articles of literature review that are carried out during this

project. Third chapter of the project is consisting of data collection during the project, programs

that are used in the software, process of using the software for base frame generation, macros

developed in APDL for modeling, stress analysis of base frame using ANSYS workbench.

Fourth chapter is results and discussion. In this chapter results obtained from ANSYS

were given. Fifth chapter suggest some future developments for this project. Sixth chapter

consists of summery of project.

At the end of there are references used in this project work as well as appendixes.

 15

 Chapter 2

 Literature review

2.1 Design of structures

 16

A great number of members in a typical steel structure are beam columns. Beam columns are

defined as members subject to combined bending and compression. They are therefore elements,

which comprise the special cases of beams and columns. In principle all members in frame

structures are beam columns with the particular cases of beams (where N=0) and columns (where

M=0). To treat a frame several possibilities may be used. The development of large capacity

computers for a reasonable prize has made it possible to investigate the structures as a whole.

This is very easy if theory of elasticity is used. But it is much more complicated if the theory of

plasticity is used and especially the spread of plastic zones should be taken into account,

simplified rules are still needed [2.1.1].

In general the concept of non-linear analysis is applied to stability design of frames with columns

subjected to flexural buckling. Code specifications require in this case that the structure is stable

and maximum stresses are less than ultimate allowable stresses under the action of design loads.

For structures, not subjected to fatigue loading, load carrying capacity is increased by limit states

design based on ultimate cross section capacity. While structure is in stable equilibrium one or

more plastic hinges are allowed to form. The condition of stable equilibrium is proved by a

geometrically nonlinear analysis taking into account equilibrium in deformed configuration.

Assuming that displacements are small, this leads to theory second order analysis [2.1.2].

Local buckling, lateral tensional buckling and member buckling including local stability failure

however is extensively analyzed by considering single beams and columns, mentally cut out of

the entire structure. Applied forces and internal forces at both ends load those members. Though

common to all design codes this approach neglects the real interaction between different

elements in a structural system. Limit states design in this case is based on interaction equations

in which maximum internal forces are compared with reduced cross section capabilities.

Capacity reduction forces depend both on strength of materials and slenderness, derived from

buckling loads or critical buckling length. While numerous design aids are available to calculate

slenderness parameters for lateral tensional buckling and local plate buckling, only few designs

oriented publications offer explicit support for solving the combined problem. An extensive

review of lateral-distortional buckling with respect to steel I-sections in given in [2.1.3].

Load carrying capacity of thin-walled steel box columns is influenced by overall buckling of

column or by local buckling of component plates or by the interaction between overall column

buckling and local buckling. Researchers have proposed a number of empirical or semi-empirical

 17

methods using average stress-strain curves or effective width concept at different stages. The

purpose of this paper [2.1.4] is to present brief review of some of these methods.

Generalized functions are indispensable to solve the problems when there is singularity,

discontinuity or change in expression. The use of generalized functions in solving different types

of problems in structural engineering was presented in [2.1.5]. This included the solution of

problems to determine critical loads for columns with one singularity either in flexural rigidity or

in the axial load. Generalized functions made it possible to solve all such problems for the

columns with four standard conditions.

A typical column may have step variations of flexural rigidity at a number of sections. Such

problems have been solved by numerical methods or by some approximate methods. The

accuracy of these solutions is not known. Besides such solutions are useful for the numerical data

employed and not for a class of similar problems. In this paper [2.1.6] generalized functions are

used to solve such problems. Eigenvalue conditions are represented in the form, which is

convenient to notice the trend of the terms for more singularities in the flexural rigidity.

2.2 Finite element analysis

A Brief History

R. Courant, who utilized the Ritz method of numerical analysis and minimization of variational

calculus to obtain approximate solutions to vibration systems, first developed finite Element

Analysis (FEA) in 1943. Shortly thereafter, a paper published in 1956 by M. J. Turner, R. W.

Clough, H. C. Martin, and L. J. Topp established a broader definition of numerical analysis. The

paper centered on the "stiffness and deflection of complex structures".

By the early 70's, FEA was limited to expensive mainframe computers generally owned by the

aeronautics, automotive, defense, and nuclear industries. Since the rapid decline in the cost of

computers and the phenomenal increase in computing power, FEA has been developed to an

incredible precision. Present day supercomputers are now able to produce accurate results for all

kinds of parameters [2.2.1].

Finite Element Analysis

 18

FEA consists of a computer model of a material or design that is stressed and analyzed for

specific results. It is used in new product design, and existing product refinement. A company is

able to verify a proposed design will be able to perform to the client's specifications prior to

manufacturing or construction. Modifying an existing product or structure is utilized to qualify

the product or structure for a new service condition. In case of structural failure, FEA may be

used to help determine the design modifications to meet the new condition.

There are generally two types of analysis that are used in industry: 2-D modeling, and 3-D

modeling. While 2-D modeling conserves simplicity and allows the analysis to be run on a

relatively normal computer, it tends to yield less accurate results. 3-D modeling, however,

produces more accurate results while sacrificing the ability to run on all but the fastest computers

effectively. Within each of these modeling schemes, the programmer can insert numerous

algorithms (functions) which may make the system behave linearly or non-linearly. Linear

systems are far less complex and generally do not take into account plastic deformation. Non-

linear systems do account for plastic deformation, and many also are capable of testing a material

all the way to fracture.

FEA uses a complex system of points called nodes, which make a grid called a mesh. This mesh

is programmed to contain the material and structural properties, which define how the structure

will react to certain loading conditions. Nodes are assigned at a certain density throughout the

material depending on the anticipated stress levels of a particular area. Regions that will receive

large amounts of stress usually have a higher node density than those, which experience little or

no stress. Points of interest may consist of: fracture point of previously tested material, fillets,

corners, complex detail, and high stress areas. The mesh acts like a spider web in that from each

node, there extends a mesh element to each of the adjacent nodes. This web of vectors is what

carries the material properties to the object, creating many elements.

Wide ranges of objective functions (variables within the system) are available for minimization

or maximization:

• Mass, volume, temperature

• Strain energy, stress strain

• Force, displacement, velocity, acceleration

 19

• Synthetic (User defined)

There are multiple loading conditions, which may be applied to a system. Some examples are

shown:

• Point, pressure, thermal, gravity, and centrifugal static loads

• Thermal loads from solution of heat transfer analysis

• Enforced displacements

• Heat flux and convection

• Point, pressure and gravity dynamic loads

Each FEA program may come with an element library, or one is constructed over time. Some

sample elements are:

• Rod elements

• Beam elements

• Plate/Shell/Composite elements

• Shear panel

• Solid elements

• Spring elements

• Mass elements

• Rigid elements

• Viscous damping elements

Types of Engineering Analysis

Structural analysis consists of linear and non-linear models. Linear models use simple

parameters and assume that the material is not plastically deformed. Non-linear models consist of

 20

stressing the material past its elastic capabilities. The stresses in the material then vary with the

amount of deformation.

Vibrational analysis is used to test a material against random vibrations, shock, and impact. Each

of these incidences may act on the natural vibrational frequency of the material, which, in turn,

may cause resonance and subsequent failure.

Heat Transfer analysis models the conductivity or thermal fluid dynamics of the material or

structure. This may consist of a steady state or transient transfer. Steady-state transfer refers to

constant thermoproperties in the material that yield linear heat diffusion.

2.3 The stiffness method

Matrix procedures used in the analysis of framed structures and other finite element structures

are described. The plane truss is used as the principle vehicle for the discussion.

Certain matrix procedures of structural mechanics are described. These methods are also used in

finite element analysis of many other physical problems. These procedures include assembly of

elements to form a structure, imposition of boundary or support conditions, solution of

simultaneous equations to obtain nodal quantities, and processing of elements to obtain

quantities as stresses or flows.

A structure has n d.o.f. if n independent quantities are needed to uniquely define configuration of

the structure.

Structural stiffness equation

We begin by generating the structure stiffness matrix [K] of a plane truss by a direct attack on

the structure as a whole. Later we will show how [K] can be built by assembly of element

matrices, which is the process actually used in computer programs.

 y, v

 21

 3

 1 2

 P

 2 3 1 x, u

 Fig2.1 : Three bar truss

Consider, for example, the three bar truss of fig. Nodes and elements are numbered arbitrarily.

For element i, where i = 1, 2, 3 in this example. Let Ai = cross-sectional area, Ei = elastic

modulus, and Li = length. From the elementary mechanics of materials, axial force Fi and change

in length ei have the relation

EA
LF

ii

ii
i =e

Stiffness is defined as the ratio of force to displacement and is by custom given the symbol k.

Thus, the axial stiffness of any uniform bar of a truss is

L
EA

e
Fk

i

ii

i

i
i ==

In our standard abbreviation, the structure stiffness equations are

 [K] {D} = {R}

Where [K] is the structure stiffness matrix.

The physical meaning of [K], as well as procedure for formulating [K], are contained in the

fallowing statement. The jth column of [K] is the vector of loads that must be applied to nodal

d.o.f. in order to maintain the deformation state associated with unit value of d.o.f. j while all

other nodal d.o.f. are zero. For a frame, “loads” include moments as well as forces. By this

procedure-activating one d.o.f. at a time-we can generate the stiffness matrix of any truss of

frame, regardless of the number of bars or the degree of state indeterminacy. The stiffness matrix

is square; that is, there are as many equations as there are d.o.f. {D} is the displacement vector;

{R} is vector representing the forces at nodes.

Properties of [K]

In general, for any structure, no diagonal coefficient Kii is negative or zero unless the structure is

unstable.

[K] is symmetric. This is true of any structure that displays a linear relationship between applied

loads and the resulting displacements.

For an unsupported structure, (a) [K]{D} = {0} when {D} represents rigid body motion and (b)

each column of [K] represents a set of nodal forces and/or moments in static equilibrium.

Solution for unknowns

The stiffness matrix is singular. One must remove the singularity of [K] in order to solve for the

unknown d.o.f. in {D}. We now show a formal procedure by which this may be done. Let {Dc}

and {Rc} be known d.o.f. and known loads, and {Dx} and {Rx} be as yet unknown d.o.f. and

loads. By partitioning, accompanied by such rearrangement of matrix coefficients as may be

necessary, the structural equations [K]{D} = {R} can be written in the form

=

R
R

D
D

KK
KK

x

c

c

x

2221

1211

Or, in a more expanded form.

 []{ } []{ } { }
[]{ } []{ } {RD }KDK

RDKDK
xcx

ccx

=+

=+

2221

1211

[k11] is nonsingular if the prescribed d.o.f. {Dc} are sufficient in arrangement and number to

prevent rigid body motion. Therefore, the unknown d.o.f. {Dx} can be found from

 { } [] { } []{ }()DKRKD ccx 12

1

11 −=
−

Finally, unknown loads {Rx} can be found after substituting of d.o.f. {Dx}, which are now

known. In structural mechanics, {Rx} usually represents support reactions.

 22

Element stiffness equations

In practice, [K] is built by summation of coefficients from element stiffness matrices [k]. The

summation process easily computerized.

We will show the element stiffness equation of the element shown below

 23

 y, v j

 L

 i β

 x, u

Fig 2.2 : Simple bar element

=

−
−

−
−

−
−

−
−

q
p
q
p

v
u
v
u

ss
cc

ss
cc

j

j

i

i

j

j

i

i

cscs
cscs

cscs
cscs

L
AE

22

22

22

22

Where c = cos β and s = sin β

L=[(xj-xi)2 + (yj-yi)2]1/2

The square matrix, including the factor AE/L, is the element stiffness matrix. We abbriviate

 [k]{d} = {r}

Node numbering that exploits matrix sparsity

A finite element structure with many d.o.f. has a sparse coefiicient matrix [K]. That is, most of

the individual coefficients Kij are zero. Sparsity should be exploited in order to economize on

computr storage space and running time. Sparsity may be exploited by various schemes. In this

present section we emphasize bandness, which is among the simpler schemes.

The number of nonzero coefficients in [K], and thier numerical values, are independent of how

structure nodes are numbered. A change in structure node numbers change only the arrangement

of nonzero Kij. The semibandwidth (also callded the half bandwidth) is given the symbol b.

Matrix [K] is symetric and has a total bandwidth 2b-1. bandwidth 2b-1 indicates the horizantal

span of the zone in which all nonzero Kij reside.this zone lies along the principal diagonal of [K].

Some zeros may appeare within the band, but only zeros appeare outside of it. A small

semibandwidth is usually achieved by placing consecutive node numbers along the shorter

dimension of a structure. By this way we can reduce the space and run ile on the computer. For

example, if neq = 10b, then the time needed to solve for d.o.f. {D} is reduced by a factor of about

30.

Stress computation

After solving the global equations [K]{D} = {R} for {D}, all nodal d.o.f. of the structure are

known. To compute stress in a given element we extract nodal d.o.f. {d} of that element from

{D}, compute element strains from {d}, and finally compute stresses from strains .

Elongation e of a plane truss bar is computed from components of nodal d.o.f. parallel to the bar

 e = (uj-ui) cosβ + sinβ

Axial strain is ε = e/L. The bar is in uniaxial stress. Therfore, the axial stress caused by strain is

L
eEE == εσ .

Support reactions

A particular reaction Ri in the list {Rx} can be computed as

RdkRDK i
m j

jijij
j

ij or =

= ∑ ∑∑

2.4 Structural Mechanics

Introduction

 24

 25

From ancient times humans have been preoccupied with the planning, design, and construction

of structures.

Planning a structure involves the selection of the most suitable type of structure and the choice of

its general layout and overall dimensions on the basis of economic, aesthetic, functional, and

other criteria.

Designing a structure entails determining the disturbances (external forces, change of

temperature, etc.) to which it is expected to exposed during its lifetime and then choosing the

dimensions of its members as well as the details of their connections. The structure is then

analyzed, that is, the internal forces and moments in its members and the displacements of some

of its cross sections are computed. The components of stress acting at any point on a cross

section of a member of a structure are established from the internal forces and moments acting

on this cross section. The members of a structure must have sufficient strength and rigidity so

that when the structure is subjected to the disturbances to which it is expected to be exposed, the

components of the stress and displacement at any of its points do not exceed the maximum

allowable values given in the appropriate design codes. Moreover, the members of a structure

must be such that the structure, or any of its parts, does not reach a state of in stability (buckling)

when subjected to the disturbances, which are expected to act on it. If the results of the analysis

show that the members of a structure do not have sufficient strength and rigidity to satisfy the

aforementioned requirements, the structure is redesigned. That is, new dimensions of the cross

section are chosen for some of its members, and the resulting structure is reanalyzed. The

process is repeated until a structure is obtained which satisfies all the aforementioned

requirements. Moreover, when the analysis of a structure indicates that some of its members are

not stressed sufficiently, the structure is redesigned and reanalyzed.

On the basis of forgoing, it is apparent that structural analysis is an integral part of the design of

structures; consequently, every competent structural designer must be well versed in structural

analysis.

Idealizations in structural analysis

A structure made of line members joined together is referred to as a frame structure.

 26

We limit our attention to straight-line members, which either have constant cross section or cross

section s whose geometry changes so that the direction of their principle centroidal axes remains

constant throughout their length. Moreover, we limit our attention to curved members whose axis

lies in one plane, whereas one of the principle centroidal axes of their cross sections is normal to

this plane.

Framed structures may be classified as

Planer

Space

The joints of planar frame structure are usually idealized as rigid joints or pinned joints.

The supports of framed structure are idealized as:

Roller

Hinged

Fixed

Loads on structures

We refer to the disturbances, which cause internal forces and moments in the members of a

structure and/or displacements of its points as the loads on the structure. These disturbances may

be classified as

1. External actions

2. Displacements of the supports

3. Changes of environment conditions (usually change of temperature)

4. Initial stresses

The establishment of the loads acting on a structure is one of the most important steps in the

process of designing this structure because the accuracy of the results of its analysis depends on

the accuracy of the loads used.

The loads acting on the structure may be classified as

Static

Quasi-static

Dynamic

 27

Classification of framed structures

Framed structures may be classified on the basis of how their members resist the applied loads

as:

1.structures whose members are primarily subjected to an axial force, which induces mainly

uniformly, distributed axial tensile or compressive components of stress. These structures

include cables, cable structures, and trusses (planar or space).

2.strucures whose members are subjected to shearing forces, axial forces, bending moments, and

possibly torsional moments, including a nonuniform distribution of the axial component of stress

on their cross sections. These structures include beams, arches, planar frames, grids, and space

frames.

3.structures with some members subjected only to uniform distribution of axial stress and others

subjected to a nonuniform distribution of the axial stress.

Frames

Frames are most general type of framed structures. Their members are subjected to axial and

shear forces, bending moments, and, possibly, torsional moments. They can have both rigid and

nonrigid joints and can be loaded in any way. Usually, frames are space structures. Frequently,

however they can be broken down into parts, which can be considered as planar frame or grid.

The members of grid also lie in one plane. However, the external forces are normal to the plane

of the grid and the vector of the external moments lies in this plane.

 28

 p(1) 3 7

 p(2)

 6

4 2 8

 1 5

 Fig 2.3 : space frame

Free body diagrams

A free-body diagram is a sketch of a part of a structure showing all external actions and all

possible reactions acting on it, as well all internal actions acting on the cross sections where the

part under consideration is cut from the structure. Usually, in a free-body diagram either the

local or the global components of the internal actions are shown as assumed positive.

Restrictions in the analysis of framed structures

We only consider framed structures, which have the fallowing attributes:

1. They are in equilibrium under the influence of the external loads. This implies that if we

isolate any part of the structure and draw its free-body diagram, the sum of the forces acting

on the part, as well as the sum of the moments about any conveniently chosen point of the

actions acting on the part, must vanish.

2. The ratio of the thickness to the radius of curvature of curved line members is very small

compared to unity. In general, the distribution of the normal component of stress on the

cross section of curved members subjected to forces acting in their plane is hyperbolic.

However, this distribution can be approximated by a linear distribution when the ratio of the

thickness to the radius of curvature of the members is small compared to unity.

3. The structures or any group of their members cannot move without deforming, under the

influence of any loading.

4. The deformation of the members of the structures is within the range of validity of the

theory of small deformation. This theory is based on the assumption that the deformation of

a structure is such that

a. The change of length par unit length of any infinitesimal material line of the

structure (unit elongation) is negligible compared to unity

b. The change of angle between any two mutually perpendicular infinitesimal material

lines of the structure (unit shear) is negligible compared to unity

c. The angles of rotation of the partials of the structure are negligible compared to

unity and not of a higher order of magnitude than the unit elongations and the unit

shears

As a result of these assumptions, the fallowing approximations are valid for structures whose

deformation is within the range of validity of the theory of small deformations:

1. The deformation of a particle is completely specified by its six components of strain

which referred to the rectangular system of axes x1, x2, x3 are denoted by e11, e22, e33, e12

= e21, e13 = e31, and e23 = e32. The components of strain of a particle are related to its

components of displacement u1, u2, and u3 by the fallowing linear relations:

x
uex

uex
ue ∂

∂
∂
∂

∂
∂ ===

3

3
33

2

2
22

1

1
11

+==

+==

+==

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

x
u

x
uee

x
u

x
uee

x
u

x
uee

2

3

3

2
2332

3

1

1

3
1331

1

2

1

2
1221

2
1

2
1

2
1

 29

The components of strain eii (i = 1, 2, 3) of a particle is referred to as the normal

component of strain at the particle in the direction xi. It represents the change of length

per unit length of an infinitesimal line segment of length dxi at the particle. The

component of strain eij (i=1, 2, 3; i ≠ j) of a particle is referred to as the shearing

component of strain at the particle in the direction of the xi and xj axes. It represents half

 30

the change due to the deformation of the angle between two mutually perpendicular

infinitesimal line segments dxi and dxj at the particle.

2. The effect of the change due to the deformation of the dimensions of the cross sections of

the members of the structure is disregarded when computing the components of stress

from the internal actions.

3. The effect of the change of the geometry of the structure on the internal actions of its

members negligible.

4. The angle between the tangent line of the deformed axis of a member and its undeformed

axis is so small that its cosine is approximately equal to unity, while it sine is

approximately equal to the angle in radians.

5. When the members of a structure are made of linearly elastic materials, the relation

between the loading acting on the structure and the resulting internal actions in its

members and the relations between the loading acting on the structure and the

displacement of its cross section are linear.

Notice that we can distinguish two types of nonlinear behavior of structures:

1. Material nonlinearity. That is, the relations between the components of stress and strain

are nonlinear.

2. Geometric nonlinearity. That is, the deformation of the structure is not in the range of

validity of the theory of small deformation.

The theory of small deformations cannot be used in analyzing certain structures of interest to

the structural designer when they are subjected to certain types of loading. For example, the

theory of small deformation cannot be employed in the fallowing cases:

1. In analyzing beams subjected to transverse and axial forces when the effect of the axial

forces on their bending moment cannot be neglected.

2. In establishing the loading under which a structure or a group of its members reaches a

state of unstable equilibrium.

3. In analyzing kinematically unstable structures.

Kinematically unstable structures

The geometry of some of the structures can be such that for certain types of loading, a number of

their members can move instantaneously without deforming. These structures are termed

kinematically unstable. The internal actions acting on the members of kinematically unstable

structures cannot be computed if the change of their geometry due to their deformation is not

taken into account. That is the internal actions in the members if kinematically unstable structure

cannot be established using the theory of small deformation.

 31

 1 2 3

Fig 2.4 : kinematically unstable simple structures

The structural designer is not concerned with the analysis of kinematically unstable structures

but rather with the detection of kinematically unstable structures whose configuration approaches

a kinematically unstable configuration. Stiffness matrix of kinematically unstable structures is

singular. Simple trusses whose supports are equivalent to three nonparallel and nonconcurrent

links are kinematically stable.

Compound structures

Statically determinate structures may be classified as simple or compound. Compound trusses

are made of two or more simple trusses connected to each other or to the supporting body by

hinges or links. Compound beams, frames, and arches are built with internal release mechanisms,

such as hinges, links, rollers, etc.

 32

 Chapter 3

 Software developing/Modeling

 33

3.1 Introduction

Data collection stage consists of collecting data required to program the application software for

preparation of 2D drawings of base frames for gearbox. For different gearbox types the design of

base frames are different. The design of base frame depends on the size of gearbox. For a

particular gearbox all the dimensions of base frame are standardized. The selection of the

gearbox fixes the majority of dimensions of the base frame for that gearbox.

This stage considered above-mentioned points and gathered the data that is required. As

mentioned in earlier chapters there will be mainly two types of gearboxes

1. S’type (helical gearbox) [3.1]

2. K’type (bevel helical gearbox) [3.1]

Data for the two types of gearboxes are different depending on the layout of the base frame. For

collecting the data all the existing drawings of base frames are studied and certain parameters

that will decide the dimension of base frames are collected.

In the fallowing pages there are the typical drawings of two types one each, which will show the

parameters considered for data collection.

In the first stage of programming the following data, that is collected from the available drawings

s used in programming. Later on there is change in programming; the data available from the

catalogues of the ELECON is used. This data is also presented later on in this chapter.

Fig 3.1: parameters used in data collection for S’type and K’type of design [3.2]

In the fallowing tables the data collected from existing designs is displaye

 34

 35

gear box
type

section of
major

component
L1 TL W1 TW TH n LF

SAN
400/SO PLATE-10 910 1030 350 610 250 3 370

SAN-100 Channel-100 220 280 125 169 185 2 220

SAN-250 Channel-200 570 660 265 335 210 2 570

SAN-
315/SO Plate-10 715 825 380 480 200 3 285

SAN-355 Channel-200 770 920 325 395 210 3 330

SAN-400 Channel-300 910 1050 350 430 310 3 370

SBN-355 Plate-10 975 110 410 480 400 3 525

SBN-500 Channel-300 1385 1555 560 660 310 4 335

SBN-630 Plate-90 1755 2450 690 1060 90 4 450

SBN-630 Plate-20 1755 2410 690 1440 150 4 800

SBN-710 Channel-400 1870 2190 770 850 435 4 900

SBN-800 Channel-400 2340 2480 870 1020 435 4 660

SCN-160 Channel-125 495 565 210 270 145 3 285

SCN-200 200 615 735 250 320 210 3 360

SCN-450 Plate-10 940 1540 510 610 250 4 575

SCN-560 Channel-400 1735 1970 640 800 400 4 570

SCN-
630/SO Channel-400 1985 2160 690 820 435 4 665

SCN-710 Channel-400 2220 2420 770 920 435 4 730

SCN-800 Channel-400 2520 2760 870 1020 435 4 840

 36

gear box
type LS LTh P ST PTB PLB PWB PTT PLT PWT

SAN
400/SO 540 0 * * 10 1030 190 20 1030 135

SAN-100 0 0 100 10 50 280 * 25 55 60

SAN-250 0 0 250 10 * * * 10 660 100

SAN-
315/SO 420 0 315 10 * * * 25 825 120

SAN-355 440 0 355 10 * * * 10 910 125

SAN-400 540 0 400 * * * * 10 1030 140

SBN-355 450 0 * * 10 110 * 10 1080 *

SBN-500 405 645 * * * * * 10 1535 160

SBN-630 505 800 * * * * * * * *

SBN-630 505 450 * 20 * * * 20 1935 285

SBN-710 590 480 * * * * * 35 2170 210

SBN-800 580 1100 * * * * * 35 2460 220

SCN-160 210 0 * * * * * 20 495 65

SCN-200 255 0 * * * * 10 685 85

SCN-450 365 460 * * * * * 10 1540 150

SCN-560 450 715 * * * * * 20 1970 200

SCN-
630/SO 520 800 * * * * * 35 2160 170

SCN-710 590 900 * * 38 80 90 35 2420 210

SCN-800 580 1100 * * * * * 35 2710 200

Table 3.1 : Data collected from old drawings of base frames

 37

3.2 Standardization of design using CAD

3.2.1 Introduction

This chapter is about using of Auto LISP language to draw the designs of the base frames

for the gearbox and motor combinations. As there are var-ious designs of base frames available

using the data collected in the previous task is utilized for the programming of the base frames.

The programming part will go in stages like,

1.preparation of program that will be useful in main program to draw the channel, which is the

main component of any base frame design

2.preparation of main program to draw three vies of the base frames for various gearbox and

motor combinations

 The main aim of the project is to make the software a user-friendly one. For this purpose

dialog boxes are utilized for user input. Dialog boxes are the best way of user in put types. User

will have various choices to choose form.

Here in this chapter there are programs for the required purpose and how to utilize them. The

code of the program is presented here, various functions used are described in the Appendix A:

About Auto LISP language of this report.

Before going into the main base frame program here is the program that will draw an IS channel,

which is the main part of the any base frame. The standard dimensions that are used for program

are taken from Indian Standards. These standards are shown in Appendix C: Indian Standard

channel.

3.2.2 Main programs of base frames

These programs can be made in to an application to draw three views of the base frames.

A complete application will be able to draw the three views of the base frame with dimensions

and notes. There are three programs in this application

1. Program of channel

2. Program of dialog boxes

 38

3. Main base frame program

 3.2.2.1 Program of channel

These programs are able to take the input from user about the size of the channel, placement

point of the channel in the drawing, orientation of the channel in terms of angle, length of the

channel and the view of the channel i.e. front, side and top views. By using this information

these programs can draw the required channel.

The code for this program is given below, it consists of one main program and two sub

programs. Main program was used to store the standard specifications of the IS-MC channel, and

to draw the different views of the channel according to the requirement in the main baseframe

program. The code is given below

(defun Degrees->Radians (numberOfDegrees)

 (* pi (/ numberOfDegrees 180.0))
) ;_ end of defun
(defun tan (a)
 (/ (sin a) (cos a))
)
(defun ch-mc (ps ang height l view / width height
 th_flange th_web r_root r_toe w p
 p1 p2 p3 p4 p5 p6 p7 p8 p9
 p10 p11 p12 p13 p14 p15 p16 p17 p18
 tf tw rr rt tf1 tf2 a x y
 ang
)

 (setq width (list (cons '75 40)
 (cons '100 50)
 (cons '125 65)
 (cons '150 75)
 (cons '175 75)
 (cons '200 75)
 (cons '225 80)
 (cons '250 80)
 (cons '300 90)
 (cons '350 100)
 (cons '400 100)
)
)
 (setq th_flange (list (cons '75 7.3)
 (cons '100 7.5)

 39

 (cons '125 8.1)
 (cons '150 9.0)
 (cons '175 10.2)
 (cons '200 11.4)
 (cons '225 12.4)
 (cons '250 14.1)
 (cons '300 13.6)
 (cons '350 13.5)
 (cons '400 15.3)
)
)

 (setq th_web (list (cons '75 4.4)
 (cons '100 4.7)
 (cons '125 5.0)
 (cons '150 5.4)
 (cons '175 5.7)
 (cons '200 6.1)
 (cons '225 6.4)
 (cons '250 7.1)
 (cons '300 7.6)
 (cons '350 8.1)
 (cons '400 8.6)
)
)
 (setq r_root (list (cons '75 8.5)
 (cons '100 9.0)
 (cons '125 9.5)
 (cons '150 10.0)
 (cons '175 10.5)
 (cons '200 11.0)
 (cons '225 12.0)
 (cons '250 12.0)
 (cons '300 13.0)
 (cons '350 14.0)
 (cons '400 15.0)
)
)
 (setq r_toe (list (cons '75 4.5)
 (cons '100 4.5)
 (cons '125 5.0)
 (cons '150 5.0)
 (cons '175 5.5)
 (cons '200 5.5)
 (cons '225 6.0)
 (cons '250 6.0)
 (cons '300 6.5)

 40

 (cons '350 7.0)
 (cons '400 7.5)
)
)
 (setq w (cdr (assoc height width)))
 (setq tf (cdr (assoc height th_flange)))
 (setq tw (cdr (assoc height th_web)))
 (setq rr (cdr (assoc height r_root)))
 (setq rt (cdr (assoc height r_toe)))

 (setq a (* (/ pi 180) 6))
 (setq tf1 (- tf (+ rt (* (tan a) (- (/ (- w tw) 2) rt)))))
 (setq y (* (cos a) (- w (+ tw rr rt))))
 (setq tf2 (+ tf (* (tan a) (/ (- w tw) 2))))
 (setq x (- height (* 2 (+ rr tf2))))
 (if (= view 0)
 (progn
 (command
 "line"
 (setq p1 ps)
 (setq p2 (polar p1 (degrees->radians (- 180 ang)) w))
 (setq p3 (polar p2 (degrees->radians (- 90 ang)) height))
 (setq p4 (polar p3 (degrees->radians (- 0 ang)) w))
 (setq p5 (polar p4 (degrees->radians (- 270 ang)) tf1))
 ""
)
 (command "arc"
 "ce"
 (setq p6 (polar p5 (degrees->radians (- 180 ang)) rt))
 p5
 "a"
 -90
)
 (command "line"
 (setq p7 (polar p6 (degrees->radians (- 270 ang)) rt))
 (setq p8 (polar p7 (degrees->radians (- 186 ang)) y))
 ""
)
 (command "arc"
 "ce"
 (setq p9 (polar p8 (degrees->radians (- 270 ang)) rr))
 p8
 "a"
 90
)
 (command "line"

 41

 (setq p10 (polar p9 (degrees->radians (- 180 ang)) rr))
 (setq p11 (polar p10
 (degrees->radians (- 270 ang))
 x
)
)
 ""
)
 (command "arc"
 "ce"
 (setq p12 (polar p11 (degrees->radians (- 0 ang)) rr))
 p11
 "a"
 90
)
 (command "line"
 (setq p13 (polar p12 (degrees->radians (- 270 ang)) rr))
 (setq p14 (polar p13 (degrees->radians (- -6 ang)) y))
 ""
)
 (command "arc"
 "ce"
 (setq p15 (polar p14 (degrees->radians (- 270 ang)) rt))
 p14
 "a"
 -90
)
 (command "line"
 (setq p16 (polar p15 (degrees->radians (- 0 ang)) rt))
 ps

 ""
)
)
)

 (if (= view 1)
 (progn
 (command
 "line"
 (setq p1 ps)
 (setq p2 (polar p1 (degrees->radians (- 90 ang)) l))
 (setq p3 (polar p2 (degrees->radians (- 0 ang)) height))
 (setq p4 (polar p3 (degrees->radians (- 270 ang)) l))
 (setq p5 (polar p4 (degrees->radians (- 180 ang)) height))

 (setq

 42

 p6 (polar p5 (degrees->radians (- 0 ang)) tf)
)
 (setq p7 (polar p6 (degrees->radians (- 90 ang)) l))
 (setq p8
 (polar p7 (degrees->radians (- 0 ang)) (- height (* 2 tf)))
)
 (setq p9 (polar p8 (degrees->radians (- 270 ang)) l))
 ""
)

)
)

 (if (= view 2)
 (progn
 (command
 "line"
 (setq p1 ps)
 (setq p2 (polar p1 (degrees->radians (- 90 ang)) w))
 (setq p3 (polar p2 (degrees->radians (- 0 ang)) l))
 (setq p4 (polar p3 (degrees->radians (- 270 ang)) w))
 (setq p5 (polar p4 (degrees->radians (- 180 ang)) l))
 (setq p6 (polar p5 (degrees->radians (- 90 ang)) (- w tw)))

 ""
)
 (command "linetype" "load" "dashed" "acad" "" "")
 (command "setvar" "celtype" "dashed")
 (command "setvar" "ltscale" 30)

 (command "line"
 p6
 (setq p7 (polar p6 (degrees->radians (- 0 ang)) l))
 ""
)
 (command "setvar" "celtype" "bylayer")

)
)

 (setq res (list (cons 1 w) (cons 2 tf) (cons 3 tw)))
 res

)

Using the above given codes it is possible to draw the required channel. Using this program we

can draw three views of the IS-MC channel as shown below.

Fig 3.2: channel of size=100, angle=90, side view

Fig 3.3: channel of size=100, angle=90, front view.

Fig 3.4: channel of size=100, angle=90, top view.

 43

 44

3.2.2.2 Program of dialog boxes

This program is able to take the input as type of the gearbox and output of the program is the

data needed to draw the base frame for that type of gearbox. The code for this program is given

below,

(defun getdialoginput (a b / dcl_id
 dialogloaded dialogshow userclick
 height ang result
)
 (setq dialogloaded
 T
 dialogshow
 T
)
 (setq newdialog nil)
 (if (= -1 (setq dcl_id (load_dialog "sam1.dcl")))
 (progn
 (princ "\nERROR: dialog box can't be loaded")
 (setq dialogloaded nil)
)
)
 (if (and dialogloaded
 (not (new_dialog "ch_dialog" dcl_id))
)
 (progn
 (princ "\nERROR: can't show the dialog box")
 (setq dialogshow nil)
)
)
 (start_list "gbtype" 2)
 (mapcar 'add_list a)
 (end_list)
 (start_list "gbsize" 2)
 (mapcar 'add_list b)
 (end_list)

 (if (and dialogloaded dialogshow)
 (progn
 (action_tile
 "cancel"
 (strcat
 "(progn (done_dialog)"
 "(setq userclick nil)
 (setq result nil))"

 45

)
)

 (action_tile
 "ok"
 (strcat
 "(progn (setq type1 (atof (get_tile \"gbtype\")))"
 "(setq size (atof (get_tile \"gbsize\")))"
 "(done_dialog) (setq userclick T))"

)
)
 (action_tile
 "new"
 (strcat
 "(progn(setq new (newdesign))
 (setq newdialog T))"

)
)

 (start_dialog)

 (unload_dialog dcl_id)
 (if newdialog
 (setq result (list (cons '1 new)
 (cons '4 newdialog)
)
)
 (if userclick
 (setq result
 (list

 (cons '1 type1)
 (cons '2 size)
 (cons '4 newdialog)
)
)
)
)
)

)
 result
)

 46

(defun dialogout (/ gb gbtype)
 (setq gb (addlist))
 (setq b (cdr (assoc 1 gb)))
 (setq nb (cdr (assoc 2 gb)))
 (setq gbdata (cdr (assoc 3 gb)))
 (setq newdialog (cdr (assoc 4 gbdata)))
 (if (= newdialog nil)
 (progn
 (setq gbtype (cdr (assoc 1 gbdata)))
 (setq gbsize (cdr (assoc 2 gbdata)))
 (setq ct 0)
 (if (/= gb nil)
 (progn
 (if (= gbtype 0)
 (progn
 (setq gbtype1 "SAN")
 (while (<= ct nb)
 (if (= gbsize ct)
 (setq gbsize1 (nth ct b))
)
 (setq ct (1+ ct))
)
)
)
 (setq ct 0)
 (if (= gbtype 1)
 (progn
 (setq gbtype1 "SBN")
 (while (<= ct nb)
 (if (= gbsize ct)
 (setq gbsize1 (nth ct b))
)
 (setq ct (1+ ct))
)
)
)
 (setq ct 0)
 (if (= gbtype 2)
 (progn
 (setq gbtype1 "SCN")
 (while (<= ct nb)
 (if (= gbsize ct)
 (setq gbsize1 (nth ct b))
)
 (setq ct (1+ ct))
)
)

 47

)
 (setq ct 0)
 (if (= gbtype 3)
 (progn
 (setq gbtype1 "SDN")
 (while (<= ct nb)
 (if (= gbsize ct)
 (setq gbsize1 (nth ct b))
)
 (setq ct (1+ ct))
)
)
)

)
)
 (setq gbtype (strcat gbtype1 "-" gbsize1))

)
 (progn
 (setq gbtype (cdr (assoc 1 gbdata)))

)
)
 (setq result (list (cons '1 newdialog)
 (cons '2 gbtype)
)
)
 result
)
(defun addlist (/)
 (setq f (open "E:/Program Files/ACAD2000/geartype.txt" "r"))
 (setq gt1 (read-line f)
 gt2 (read-line f)
 gt3 (read-line f)
 gt4 (read-line f)
)
 (close f)
 (setq a (list gt1 gt2 gt3 gt4))
 (setq f1 (open "E:/Program Files/ACAD2000/gearsize.txt" "r"))

 (setq b (list (read-line f1)))
 (while (setq gs (read-line f1))
 (setq temb (list gs))
 (setq b (append b temb))
)
 (close f1)

 48

 (setq nb (length b))

 (setq data (getdialoginput a b))
 (setq result (list (cons '1 b)
 (cons '2 nb)
 (cons '3 data)
)

)

 result
)

(defun newdesign (/)
 (setq dialogloaded
 T
 dialogshow
 T
)

 (if (= -1 (setq dcl_id (load_dialog "sam3.dcl")))
 (progn
 (princ "\nERROR: dialog box can't be loaded")
 (setq dialogloaded nil)
)
)
 (if (and dialogloaded
 (not (new_dialog "new_dialog" dcl_id))
)
 (progn
 (princ "\nERROR: can't show the dialog box")
 (setq dialogshow nil)
)
)
 (if (and dialogloaded dialogshow)
 (progn
 (action_tile
 "cancel"
 (strcat
 "(progn (done_dialog)"
 "(setq userclick nil)
 (setq result nil))"
)
)

 (action_tile
 "ok"

 49

 (strcat
 "(progn (setq size (get_tile \"size\"))"
 "(setq type1 (get_tile \"type\"))"
 "(setq channel (get_tile \"channel\"))"
 "(setq T1 (get_tile \"T\"))"
 "(setq B (get_tile \"B\"))"
 "(setq F (get_tile \"F\"))"
 "(setq E (get_tile \"E\"))"

 "(setq R (get_tile \"R\"))"
 "(setq K (get_tile \"K\"))"
 "(setq PTT (get_tile \"PTT\"))"
 "(setq O (get_tile \"O\"))"
 "(setq h (get_tile \"h\"))"
 "(setq A (get_tile \"A\"))"
 "(setq P (get_tile \"P\"))"
 "(setq G (get_tile \"G\"))"
 "(setq N (get_tile \"N\"))"
 "(done_dialog) (setq userclick T))"
)
)

 (start_dialog)

 (unload_dialog dcl_id)
 (if userclick
 (setq result (list type1 size channel T1 B F E R K PTT O h A P
 G N)
)
)
)

)
 result
)

(defun filehandling (/)
 (setq dialog (dialogout))
 (setq newdialog (cdr (assoc 1 dialog)))
 (if newdialog
 (progn
 (setq newdata (cdr (assoc 2 dialog)))
 (setq nn (length newdata))
 (setq type1 (nth 0 newdata))
 (setq size (nth 1 newdata))
 (setq ct 0)

 50

 (setq f (open (strcat "E:/Program Files/ACAD2000/basedata1/"
 type1
 "-"
 size
 ".txt"
)
 "w"
)
)
 (while (< ct nn)
 (write-line (nth ct newdata) f)
 (setq ct (1+ ct))
)
 (close f)
 (setq result (strcat type1 "-" size))
)
 (setq result (cdr (assoc 2 dialog)))
)
 result
)

The purpose of this program is to find the file that is containing the data for drawing the base

frame according to the type of the gearbox. Initial dialog box of this program looks as shown

below,

Fig3.5 : dialog box for gearbox selection

By selecting the required gearbox for which we need to design the base frame. This program will

give the name of the file, which contains the data for that base frame.

For example for the selection of SAN 100 type gearbox the file name is SAN-100.

This program also has the provision to make new designs of base frames. By selecting the new

design button, it will display another dialog box like shown below.

Fig 3.6 : dialog box for new design

 51

 52

This dialog box asks the data that is needed for the catalogues of ELECON to draw the base

frame. These parameters of gearbox are described in he chapter data collection.

3.2.2.3 Program for main base frame design

This program is going to use above-mentioned two programs for the purpose of designing the

base frame. This program is going to call the dialog box program to get the name of the file

where the required data of the base frame can be found out. It calls the program to draw the

channel repeatedly when ever the need arise. The code for this program is given below ,

;foundation detail
(defun loop (n lf ls lth sfb p1 tw1 / test n p1 step p2 e1)
 (setq test 1)
 (setq points (list p1))
 (while (<= test n)
 (if (= test 1)
 (progn
 (setq step lf)
)
)
 (if (= test 2)
 (progn
 (setq step ls)
)
)
 (if (= test 3)
 (progn
 (setq step lth)
)
)

 (command "circle" p1 sfb)
 (setq e1 (entlast))
 (command "setvar" "CECOLOR" "red")
 (command "setvar" "celtype" "center")
 (setq p3 (polar p1 (Degrees->Radians 90) 50))
 (setq p4 (polar p3 (Degrees->Radians 270) 100))
 (setq p5 (polar p1 (Degrees->Radians 0) 150))
 (setq p6 (polar p5 (Degrees->Radians 180) 300))
 (command "line" p3 p4 "")
 (setq e2 (entlast))
 (command "line" p5 p6 "")
 (setq e3 (entlast))
 (setq p2 (polar p1 (Degrees->Radians 270) tw1))

 53

 (command "copy" e1 e2 e3 "" p1 p2)
 (command "setvar" "cecolor" 11)
 (command "setvar" "celtype" "bylayer")
 (setq p1 (polar p1 (Degrees->Radians 0) step))
 (setq temp (list p1))
 (setq points (append points temp))
 (setq test (1+ test))
)
 (setq result (list (cons '1 points)
 (cons '2 p2)
)
)
 result
)
;foundation detail
(defun loop1 (n lf ls lth sfb p3 tf ptt h / test n p1 step p2 e1)
 (setq test 1)
 (while (<= test n)
 (if (= test 1)
 (progn
 (setq step lf)
)
)
 (if (= test 2)
 (progn
 (setq step ls)
)
)
 (if (= test 3)
 (progn
 (setq step lth)
)
)
 (command "setvar" "celtype" "dashed")
 (setq p4 (polar p3 (Degrees->Radians 180) (/ sfb 2)))
 (command "line"
 p4
 (setq p5 (polar p4 (Degrees->Radians 270) (+ ptt tf)))
 ""
)
 (setq e1 (entlast))
 (setq p6 (polar p5 (Degrees->Radians 270) (- h tf)))
 (command "line"
 p6
 (setq p7 (polar p6 (Degrees->Radians 90) (* sfb 1.25)))
 ""
)

 54

 (setq e2 (entlast))
 (setq p8 (polar p3 (Degrees->Radians 0) (/ sfb 2)))
 (command "copy" e1 e2 "" p4 p8)
 (command "setvar" "CECOLOR" "red")
 (command "setvar" "celtype" "center")
 (setq p9 (polar p3 (Degrees->Radians 90) 50))
 (setq p10 (polar p9 (Degrees->Radians 270) 100))
 (command "line"
 p9
 p10
 ""
)
 (setq e3 (entlast))
 (setq p11 (polar p9 (Degrees->Radians 270) h))
 (command "copy" e3 "" p9 p11)
 (command "setvar" "cecolor" 11)
 (command "setvar" "celtype" "bylayer")
 (setq p3 (polar p3 (Degrees->Radians 0) step))
 (setq test (1+ test))
)
)

;channels
(defun loop2 (n tl scfact tw w h pf ls lf lth tw1 / p1 temp l test)
 (setq l (- tw (* w 2)))
 (if (= n 2)
 (setq temp n)
 (if (= n 3)
 (progn
 (setq p1 (list (- (- 0 (* scfact 20))
 (/ tl 2)
 (/ w 2)
)
 (- (- 0 (* scfact 20)) w)
 0
)
)

 (ch-mc p1 90 h l 2)
 (setq p2 (list
 (- (- 0 (* scfact 20))
 (/ tl 2)
 (/ w 2)
)
 h
 0

 55

)
)
 (command "setvar" "CECOLOR" "magenta")
 (setq pdim1
 (list (- (- 0 (* scfact 20)) w) (- 0 (* scfact 20)) 0)
)
 (setq pdim2 (polar p1 (Degrees->Radians 0) w))
 (command "dimlinear"
 pdim1
 pdim2
 "h"
 (strcat "@0," (rtos (- 0 (* scfact 4))))
)
 (command "setvar" "celtype" "dashed")
 (command "setvar" "CECOLOR" 11)
 (ch-mc p2 180 h l 0)
 (command "setvar" "CECOLOR" "green")
 (command "setvar" "celtype" "bylayer")

)
 (if (= n 4)
 (progn

 (setq ptemp (polar pf
 (Degrees->Radians 270)
 (- w
 (/ (- tw tw1) 2)
)
)
)
 (setq pf1 (polar ptemp
 (Degrees->Radians 0)
 (/ (+
 lf
 w
)
 2
)
)
)
 (setq pf2 (polar pf1
 (Degrees->Radians 270)
 l
)
)
 (ch-mc pf2 270 h l 2)
 (setq ps1 (polar pf2

 56

 (Degrees->Radians 0)
 (/ (+ lf ls) 2)
)
)
 (ch-mc ps1 270 h l 2)
 (setq pth1 (polar ps1 (Degrees->Radians 0) (/ (+ ls lth) 2)))
 (ch-mc pth1 270 h l 2)
 (command "setvar" "CECOLOR" "magenta")
 (setq pdim1
 (list (- (- 0 (* scfact 20)) w) (- 0 (* scfact 20)) 0)
)
 (setq pdim2 (polar pth1 (Degrees->Radians 180) w))
 (command "dimlinear"
 pdim1
 pdim2
 "h"
 (strcat "@0," (rtos (* scfact 4)))
)
 (command "dimlinear"
 pdim2
 (setq pdim3 (polar pdim2
 (Degrees->Radians 180)
 (/ (+ ls lth) 2)
)
)
 "h"
 (strcat "@0," (rtos (* scfact 4)))
)
 (command "dimlinear"
 pdim3
 (setq pdim4
 (polar pdim3 (Degrees->Radians 180) (/ (+ lf ls) 2))
)
 "h"
 (strcat "@0," (rtos (* scfact 4)))
)
 (command "setvar" "celtype" "dashed")
 (command "setvar" "CECOLOR" 11)
 (setq pth2 (polar pth1
 (Degrees->Radians 90)
 (+ l w (* scfact 20))
)
)
 (ch-mc pth2 0 h l 0)
 (setq
 ps2 (polar pth2 (Degrees->Radians 180) (/ (+ ls lth) 2))
)

 57

 (ch-mc ps2 0 h l 0)
 (setq pf3 (polar ps2 (Degrees->Radians 180) (/ (+ lf ls) 2)))
 (ch-mc pf3 0 h l 0)
 (command "setvar" "CECOLOR" "green")
 (command "setvar" "celtype" "bylayer")

)
)
)
)
)
;stiffners
(defun loop3 (n l1 scfact tw w h pf ls lf lth stfthk sfb tweb tw1 tf /)
 (setq x (/ (- tw tw1) 2))
 (setq p1 (polar pf (Degrees->Radians 0) (* sfb 2.5)))
 (setq p2 (polar p1 (Degrees->Radians 90) x))
 (command "setvar" "celtype" "dashed")
 (command "setvar" "CECOLOR" 11)
 (command "line"
 p2
 (setq p3 (polar p2 (Degrees->Radians 270) (- w tweb))
)
 ""
)
 (setq e1 (entlast))
 (setq p4 (polar p3 (Degrees->Radians 0) stfthk))
 (command "line"
 p4
 (setq p5 (polar p4
 (Degrees->Radians 90)
 (- w tweb)
)
)
 ""
)
 (setq e2 (entlast))

 (if (= n 2)
 (progn
 (command
 "copy"
 e1
 e2
 ""
 "M"
 p2
 (setq p6 (polar p2 (Degrees->Radians 270) (- (+ tw tweb) w)))

 58

 (setq p7 (polar p6
 (Degrees->Radians 0)
 (- l1 (* (* sfb 2.5) 2) stfthk)
)
)
 (setq p8 (polar p7 (Degrees->Radians 90) (- (+ tw tweb) w)))
 ""
)
)
 (if (= n 3)
 (progn
 (command
 "copy"
 e1
 e2
 ""
 "M"
 p2
 (setq p6 (polar p2 (Degrees->Radians 270) (- (+ tw tweb) w)))
 (setq p7 (polar p6 (Degrees->Radians 0) lf))
 (setq p8 (polar p7 (Degrees->Radians 90) (- (+ tw tweb) w)))
 (setq p9 (polar p8
 (Degrees->Radians 0)
 (- ls (* (* sfb 2.5) 2) stfthk)
)
)
 (setq p10 (polar p9 (Degrees->Radians 270) (- (+ tw tweb) w)))
 ""
)
)

 (if (= n 4)
 (progn
 (command
 "copy"
 e1
 e2
 ""
 "M"
 p2
 (setq
 p6 (polar p2 (Degrees->Radians 270) (- (+ tw tweb) w))
)
 (setq p7 (polar p6 (Degrees->Radians 0) lf))
 (setq p8 (polar p7 (Degrees->Radians 90) (- (+ tw tweb) w)))
 (setq p9 (polar p8 (Degrees->Radians 0) ls))
 (setq

 59

 p10 (polar p9 (Degrees->Radians 270) (- (+ tw tweb) w))
)
 (setq p11 (polar p10
 (Degrees->Radians 0)
 (- lth (* (* sfb 2.5) 2) stfthk)
)
)
 (setq
 p12 (polar p11 (Degrees->Radians 90) (- (+ tw tweb) w))
)

 ""
)
)
)
)
)
 (command "setvar" "CECOLOR" "green")
 (command "setvar" "celtype" "bylayer")
 (setq pf1 (polar p2 (Degrees->Radians 90) (+ (* scfact 20) tf)))
 (command "line"
 pf1
 (setq pf2 (polar pf1 (Degrees->Radians 90) (- h (* tf 2))))
 ""
)
 (setq e3 (entlast))
 (setq pf3 (polar pf2 (Degrees->Radians 0) stfthk))
 (command "line"
 pf3
 (setq pf4 (polar pf3 (Degrees->Radians 270) (- h (* tf 2))))
 ""
)
 (setq e4 (entlast))
 (command "setvar" "CECOLOR" "magenta")
 (command "dimlinear"
 pf1
 pf3
 "h"
 (strcat "@0," (rtos (- 0 (* scfact 2)))))
 (command "setvar" "CECOLOR" "green")
 (if (= n 2)
 (progn
 (command "copy"
 e3
 e4
 ""
 pf1

 60

 (setq pf5
 (polar pf1 (Degrees->Radians 0) (- lf (* (* sfb 2.5) 2)))
)
)
 (command "setvar" "CECOLOR" "magenta")
 (command "dimlinear"
 (setq pdim1 (list (- (- 0 (* scfact 20)) tl) 0 0)
)
 pf1
 "h"
 (strcat "@0," (rtos (- 0 (* scfact 2))))
)
 (command "dimlinear"
 pf4
 pf5
 "h"
 (strcat "@0," (rtos (- 0 (* scfact 2))))
)
 (command "dimlinear"
 (setq pdim2 (polar pf5 (Degrees->Radians 0) stfthk))
 (setq pdim3 (list (- 0 (* scfact 20)) 0 0))
 "h"
 (strcat "@0," (rtos (+ (- 0 (* scfact 2)) tf)))
)
)
 (if (= n 3)
 (progn
 (command "copy"
 e3
 e4
 ""
 "M"
 pf1
 (setq pf5 (polar pf1
 (Degrees->Radians 0)
 lf
)
)
 (setq pf6 (polar pf5
 (Degrees->Radians 0)
 (- ls (* (* sfb 2.5) 2) stfthk)
)
)
 ""
)
 (command "setvar" "CECOLOR" "magenta")
 (command "dimlinear"

 61

 (setq pdim1 (list (- (- 0 (* scfact 20)) tl) 0 0)
)
 pf1
 "h"
 (strcat "@0," (rtos (- 0 (* scfact 2))))
)
 (command "dimlinear"
 pf4
 pf5
 "h"
 (strcat "@0," (rtos (- 0 (* scfact 2))))
)
 (command "dimlinear"
 (setq pdim2 (polar pf5 (Degrees->Radians 0) stfthk))
 pf6
 "h"
 (strcat "@0," (rtos (- 0 (* scfact 2))))
)

 (command "dimlinear"
 (setq pdim2 (polar pf6 (Degrees->Radians 0) stfthk))
 (setq pdim3 (list (- 0 (* scfact 20)) 0 0))
 "h"
 (strcat "@0," (rtos (+ (- 0 (* scfact 2)) tf)))
)

)
 (if (= n 4)
 (progn
 (command "copy"
 e3
 e4
 ""
 "M"
 pf1
 (setq pf5 (polar pf1
 (Degrees->Radians 0)
 lf
)
)
 (setq pf6 (polar pf5
 (Degrees->Radians 0)
 ls
)
)
 (setq pf7 (polar pf6
 (Degrees->Radians 0)

 62

 (- lth (* (* sfb 2.5) 2) stfthk)
)
)
 ""
)
 (command "setvar" "CECOLOR" "magenta")
 (command "dimlinear"
 (setq pdim1 (list (- (- 0 (* scfact 20)) tl) 0 0)
)
 pf1
 "h"
 (strcat "@0," (rtos (- 0 (* scfact 2))))
)
 (command "dimlinear"
 pf4
 pf5
 "h"
 (strcat "@0," (rtos (- 0 (* scfact 2))))
)
 (command "dimlinear"
 (setq pdim2 (polar pf5 (Degrees->Radians 0) stfthk))
 pf6
 "h"
 (strcat "@0," (rtos (- 0 (* scfact 2))))
)
 (command "dimlinear"
 (setq pdim2 (polar pf6 (Degrees->Radians 0) stfthk))
 pf7
 "h"
 (strcat "@0," (rtos (- 0 (* scfact 2))))
)

 (command "dimlinear"
 (setq pdim2 (polar pf7 (Degrees->Radians 0) stfthk))
 (setq pdim3 (list (- 0 (* scfact 20)) 0 0))
 "h"
 (strcat "@0," (rtos (+ (- 0 (* scfact 2)) tf)))
)

)
)
)
)
)
;side view of bottom plate
(defun loop4 (sfb tw w tweb / pb1 pb2 pb3 e1 pbt)
 (setq pbt (* sfb 1.25))

 63

 (setq pb1 (list 0 pbt 0))
 (setq pb2 (list (- w tweb) pbt 0))
 (command "line" (list 0 0 0) pb1 "")
 (setq e1 (entlast))
 (command "line" pb1 pb2 "")
 (setq e2 (entlast))
 (setq pb3 (list tw 0 0))
 (command "copy" e1 "" (list 0 0 0) pb3)
 (command "copy" e2 "" pb2 (list tw pbt 0))
)
; bottom plate
(defun loop5 (pf lf ls lth sfb w tweb tw tw1 n /)
 (setq x (/ (- tw tw1) 2))
 (setq pbt (* sfb 1.25))
 (setq p1 (polar pf (Degrees->Radians 90) x))
 (setq p2 (polar p1 (Degrees->Radians 180) (* sfb 1.25)))
 (setq p3 (polar p2 (Degrees->Radians 270) (- w tweb)))
 (setq p4 (polar p3 (Degrees->Radians 0) (* sfb 2.5)))
 (command "setvar" "celtype" "dashed")
 (command "setvar" "CECOLOR" 11)
 (command "rectangle" p2 p4)
 (setq e1 (entlast))
 (if (= n 2)
 (progn
 (command
 "copy"
 e1
 ""
 "M"
 p2
 (setq p5 (polar p2 (Degrees->Radians 270) (- (+ tw tweb) w)))

 (setq p6 (polar p5 (Degrees->Radians 0) lf))
 (setq p7 (polar p6 (Degrees->Radians 90) (- (+ tw tweb) w)))
 ""
)
)
 (if (= n 3)
 (progn
 (command
 "copy"
 e1
 ""
 "M"
 p2
 (setq p5 (polar p2 (Degrees->Radians 270) (- (+ tw tweb) w)))
 (setq p6 (polar p5 (Degrees->Radians 0) lf))

 64

 (setq p7 (polar p6 (Degrees->Radians 90) (- (+ tw tweb) w)))
 (setq p8 (polar p7 (Degrees->Radians 0) ls))
 (setq p9 (polar p8 (Degrees->Radians 270) (- (+ tw tweb) w)))
 ""
)
)
 (if (= n 4)
 (progn
 (command
 "copy"
 e1
 ""
 "M"
 p2
 (setq
 p5 (polar p2 (Degrees->Radians 270) (- (+ tw tweb) w))
)
 (setq p6 (polar p5 (Degrees->Radians 0) lf))
 (setq p7 (polar p6 (Degrees->Radians 90) (- (+ tw tweb) w)))
 (setq p8 (polar p7 (Degrees->Radians 0) ls))
 (setq
 p9 (polar p8 (Degrees->Radians 270) (- (+ tw tweb) w))
)
 (setq p10 (polar p9 (Degrees->Radians 0) lth))
 (setq
 p11 (polar p10 (Degrees->Radians 90) (- (+ tw tweb) w))
)
 ""
)
)
)
)
)
 (command "setvar" "CECOLOR" "green")
 (command "setvar" "celtype" "bylayer")
 (setq pf1 (polar p2 (Degrees->Radians 90) (* scfact 20)))
 (setq pf2 (polar pf1 (Degrees->Radians 0) (* sfb 2.5)))
 (setq pf3 (polar pf2 (Degrees->Radians 90) pbt))
 (command "rectangle" pf1 pf3)
 (setq e1 (entlast))
 (command "setvar" "CECOLOR" "magenta")
 (command "dimlinear"
 pf3
 pf1
 "h"
 (strcat "@0," (rtos (* scfact 3))))
 (command "dimlinear"

 65

 pf3
 pf1
 "v"
 (strcat "@" (rtos (- 0 (* scfact 1))) ",0"))
 (command "setvar" "CECOLOR" "green")
 (if (= n 2)
 (progn
 (command "copy"
 e1
 ""
 pf1
 (setq pf4 (polar pf1 (Degrees->Radians 0) lf))
)
)
 (if (= n 3)
 (progn
 (command "copy"
 e1
 ""
 "M"
 pf1
 (setq pf4 (polar pf1 (Degrees->Radians 0) lf))
 (setq pf5 (polar pf4 (Degrees->Radians 0) ls))
 ""
)
)
 (if (= n 4)
 (progn
 (command "copy"
 e1
 ""
 "M"
 pf1
 (setq pf4 (polar pf1 (Degrees->Radians 0) lf))
 (setq pf5 (polar pf4 (Degrees->Radians 0) ls))
 (setq pf6 (polar pf5 (Degrees->Radians 0) lth))
 ""
)
)
)
)
)
)

(defun liftdetail (scfact dialift w h /)
 (setq p1 (list (* scfact 15) (- 0 (* scfact 20)) 0))

 66

 (command "circle" p1 "d" dialift)
 (setq p2 (polar p1 (Degrees->Radians 180) dialift))
 (command "arc" "ce" p1 p2 "a" -90)
 (setq p3 (polar p1 (Degrees->Radians 90) dialift))
 (command "line"
 p3
 (setq p4 (polar p3
 (Degrees->Radians 354)
 (/ (+ w dialift) (cos (Degrees->Radians 6)))
)
)
 ""
)
 (setq e1 (entlast))
 (setq p5 (polar p3
 (Degrees->Radians 354)
 (/ dialift (cos (Degrees->Radians 6)))
)
)
 (setq p6 (polar p5 (Degrees->Radians 270) (- h (* tf 2))))
 (command "line"
 p6
 (setq p7 (polar p6
 (Degrees->Radians 6)
 (/ w (cos (Degrees->Radians 6)))
)
)
 ""
)
 (setq e2 (entlast))
 (command "line" p2 p6 "")
 (command "line" p7 p4 "")
 (setq e3 (entlast))
 (command "chamfer" "d" 10 10)
 (command "chamfer" e1 e3)
 (command "chamfer" e2 e3)
 (command "setvar" "CECOLOR" "magenta")
 (command "dimasz" (/ scfact 1.2))
 (command "dimtxt" (/ scfact 2))

 (setq p8 (polar p2 (Degrees->Radians 0) (/ dialift 2)))
 (command "qleader"
 p8
 (setq p9 (polar p8 (Degrees->Radians 135) (* scfact 5)))
 ""
 ""
 (strcat "%%c" (rtos dialift 2 0))

 67

 ""
)
 (setq p10 (polar p1 (Degrees->Radians 120) dialift))
 (command "qleader"
 p10
 (setq p11 (polar p10 (Degrees->Radians 135) (* scfact 5)))
 ""
 ""
 (strcat "%%c"
 (rtos (* dialift 2)
 2
 0
)
)
 ""
)
 (command "dimlinear"
 p2
 p7
 "h"
 (strcat "@0," (rtos (* scfact -6)))
)
 (command "dimlinear"
 p1
 p2
 "h"
 (strcat "@" (rtos (* scfact -4)) "," (rtos (* scfact -10)))
)
 (command "dimlinear"
 p6
 p7
 "h"
 (strcat "@0," (rtos (* scfact -4)))
)
 (command "dimlinear"
 p6
 p3
 "v"
 (strcat "@" (rtos (* scfact 3)) ",0")
)
 (command "line"
 p3
 (setq p10 (polar p3 (Degrees->Radians 0) scfact))
 ""
)
 (setq e5 (entlast))
 (setq ptemp (polar p4

 68

 (Degrees->Radians 174)
 (/ (/ (+ w dialift) (cos (Degrees->Radians 6)))
 2
)
)
)
 (command "dimangular"
 ""
 p3
 p10
 ptemp
 (strcat "@" (rtos (* scfact 4)) ",0")
)
 (setq ptemp1 (polar p7 (Degrees->Radians 90) 10))
 (command "dimlinear"
 (setq p11 (polar p7 (Degrees->Radians 180) 10))
 ptemp1
 "h"
 "t"
 "10x45%%d"
 (strcat "@0," (rtos (- 0 (* scfact 2))))
)
 (command "dimlinear"
 p1
 p3
 "v"
 (strcat "@" (rtos scfact) ",0")
)
 (command "dimasz" scfact)
 (command "dimtxt" scfact)

)
;top plates
(defun topplate (pf lf ls lth sfb w tweb tw tw1 n x ptw tw2 scact ptt /)
 (command "setvar" "CECOLOR" "cyan")
 (setq p1 (polar pf (Degrees->Radians 180) (* sfb 3)))
 (setq p2 (polar p1 (Degrees->Radians 90) (+ x (/ (- tw2 tw) 2))))
 (setq p3 (polar p2 (Degrees->Radians 0) (* sfb 6)))
 (setq p4 (polar p3 (Degrees->Radians 270) ptw))
 (command "rectangle"
 p2
 p4)
 (setq e1 (entlast))
 (if (= n 2)
 (progn
 (command "copy"
 e1

 69

 ""
 "M"
 p2
 (setq p5 (polar p2 (Degrees->Radians 270) (- tw2 ptw)))
 (setq p6 (polar p5 (Degrees->Radians 0) lf))
 (setq p7 (polar p6 (Degrees->Radians 90) (- tw2 ptw)))
 "")
 (setq p8 (list (- (- 0 (* scfact 20)) (/ (+ tl l1) 2)) h 0))
 (setq p9 (polar p8 (Degrees->Radians 180) (* sfb 3)))
 (setq p10 (polar p9 (Degrees->Radians 90) ptt))
 (setq p11 (polar p10 (Degrees->Radians 0) (* sfb 6)))
 (setq p12 (polar p11 (Degrees->Radians 270) ptt))
 (command "rectangle"
 p10
 p12)
 (setq e2 (entlast))
 (command "copy"
 e2
 ""
 p8
 (setq p13 (polar p8 (Degrees->Radians 0) lf))
)
 (command "setvar" "CECOLOR" "magenta")
 (command "dimlinear"
 (setq p15 (list (- (- 0 (* scfact 20)) tl) h 0))
 p10
 "h"
 (strcat "@0," (rtos (* scfact 1))))
 (command "dimlinear"
 p10
 p12
 "h"
 (strcat "@0," (rtos (* scfact 2)))
)
 (command "dimlinear"
 p12
 (setq p14 (polar p13 (Degrees->Radians 180) (* sfb 3)))
 "h"
 (strcat "@0," (rtos (* scfact 2))))
 (command "dimlinear"
 p14
 (setq p16 (polar p13 (Degrees->Radians 0) (* sfb 3))
)
 "h"
 (strcat "@0," (rtos (* scfact 2))))

 (command "dimlinear"

 70

 p16
 (setq p17 (list (- 0 (* scfact 20)) h 0))
 "h"
 (strcat "@0," (rtos (* scfact 2)))
)
)
 (if (= n 3)
 (progn
 (command "copy"
 e1
 ""
 "M"
 p2
 (setq p5 (polar p2 (Degrees->Radians 270) (- tw2 ptw)))
 (setq p6 (polar p5 (Degrees->Radians 0) lf))
 (setq p7 (polar p6 (Degrees->Radians 90) (- tw2 ptw)))
 (setq p8 (polar p7 (Degrees->Radians 0) ls))
 (setq p9 (polar p8 (Degrees->Radians 270) (- tw2 ptw)))
 "")
 (setq p10 (list (- (- 0 (* scfact 20)) (/ (+ tl l1) 2)) h 0))
 (setq p11 (polar p10 (Degrees->Radians 180) (* sfb 3)))
 (setq p12 (polar p11 (Degrees->Radians 90) ptt))
 (setq p13 (polar p12 (Degrees->Radians 0) (* sfb 6)))
 (setq p14 (polar p13 (Degrees->Radians 270) ptt))
 (command "rectangle"
 p12
 p14)
 (setq e2 (entlast))
 (command "copy"
 e2
 ""
 "M"
 p10
 (setq p15 (polar p10 (Degrees->Radians 0) lf))
 (setq p16 (polar p15 (Degrees->Radians 0) ls))
 ""
)
 (command "setvar" "CECOLOR" "magenta")
 (command "dimlinear"
 p12
 (setq p17 (list (- (- 0 (* scfact 20)) tl) h 0))
 "h"
 (strcat "@" (rtos (- 0 (* scfact 2)))"," (rtos (* scfact 2))))
 (command "dimlinear"
 p12
 p14
 "h"

 71

 (strcat "@0," (rtos (* scfact 2)))
)
 (command "dimlinear"
 p14
 (setq p18 (polar p15 (Degrees->Radians 180) (* sfb 3)))
 "h"
 (strcat "@0," (rtos (* scfact 2))))
 (command "dimlinear"
 p18
 (setq p19 (polar p15 (Degrees->Radians 0) (* sfb 3))
)
 "h"
 (strcat "@0," (rtos (* scfact 2))))

 (command "dimlinear"
 p19
 (setq p20 (polar p16 (Degrees->Radians 180) (* sfb 3)))
 "h"
 (strcat "@0," (rtos (* scfact 2)))
)
 (command "dimlinear"
 p20
 (setq p21 (polar p16 (Degrees->Radians 0) (* sfb 3)))
 "h"
 (strcat "@0," (rtos (* scfact 2)))
)
 (command "dimlinear"
 p21
 (setq p22 (list (- 0 (* scfact 20)) h 0))
 "h"
 (strcat "@0," (rtos (* scfact 2))))
)

 (if (= n 4)
 (progn
 (command "copy"
 e1
 ""
 "M"
 p2
 (setq p5 (polar p2 (Degrees->Radians 270) (- tw2 ptw)))
 (setq p6 (polar p5 (Degrees->Radians 0) lf))
 (setq p7 (polar p6 (Degrees->Radians 90) (- tw2 ptw)))
 (setq p8 (polar p7 (Degrees->Radians 0) ls))
 (setq p9 (polar p8 (Degrees->Radians 270) (- tw2 ptw)))
 (setq p10 (polar p9 (Degrees->Radians 0) lth))
 (setq p11 (polar p10 (Degrees->Radians 90) (- tw2 ptw)))

 72

 "")
 (setq p12 (list (- (- 0 (* scfact 20)) (/ (+ tl l1) 2)) h 0))
 (setq p13 (polar p12 (Degrees->Radians 180) (* sfb 3)))
 (setq p14 (polar p13 (Degrees->Radians 90) ptt))
 (setq p15 (polar p14 (Degrees->Radians 0) (* sfb 6)))
 (setq p16 (polar p15 (Degrees->Radians 270) ptt))
 (command "rectangle"
 p14
 p16)
 (setq e2 (entlast))
 (command "copy"
 e2
 ""
 "M"
 p12
 (setq p17 (polar p12 (Degrees->Radians 0) lf))
 (setq p18 (polar p17 (Degrees->Radians 0) ls))
 (setq p19 (polar p18 (Degrees->Radians 0) lth))

 ""
)
 (command "setvar" "CECOLOR" "magenta")
 (command "dimlinear"
 p14
 (setq p20 (list (- (- 0 (* scfact 20)) tl) h 0))
 "h"
 (strcat "@" (rtos (- 0 (* scfact 2)))"," (rtos (* scfact 2))))
 (command "dimlinear"
 p14
 p16
 "h"
 (strcat "@0," (rtos (* scfact 2)))
)
 (command "dimlinear"
 p16
 (setq p21 (polar p17 (Degrees->Radians 180) (* sfb 3)))
 "h"
 (strcat "@0," (rtos (* scfact 2))))
 (command "dimlinear"
 p21
 (setq p22 (polar p17 (Degrees->Radians 0) (* sfb 3))
)
 "h"
 (strcat "@0," (rtos (* scfact 2))))

 (command "dimlinear"
 p22

 73

 (setq p23 (polar p18 (Degrees->Radians 180) (* sfb 3)))
 "h"
 (strcat "@0," (rtos (* scfact 2)))
)
 (command "dimlinear"
 p23
 (setq p24 (polar p18 (Degrees->Radians 0) (* sfb 3)))
 "h"
 (strcat "@0," (rtos (* scfact 2)))
)
 (command "dimlinear"
 p24
 (setq p25 (polar p19 (Degrees->Radians 180) (* sfb 3)))
 "h"
 (strcat "@0," (rtos (* scfact 2)))
)
 (command "dimlinear"
 p25
 (setq p26 (polar p19 (Degrees->Radians 0) (* sfb 3)))
 "h"
 (strcat "@0," (rtos (* scfact 2)))
)
 (command "dimlinear"
 p26
 (setq p27 (list (- 0 (* scfact 20)) h 0))
 "h"
 (strcat "@0," (rtos (* scfact 2))))
)
)
)
)
 (command "setvar" "CECOLOR" "green"))
(defun c:baseframe (/ tw h p p1 p2 p3 p4 p5 p6
 p7 p8 p9 p10 p11 p12 x y tw1 tw2
 ptt ptw gbdata pp
)
 (setq gbtype (filehandling))
 (setq f
 (open (strcat "E:/Program Files/ACAD2000/basedata1/"
 gbtype
 ".txt"
)
 "r"
)
)
 (setq ct 0)
 (setq gbdata (list ""))

 74

 (while (< ct 17)
 (setq gbd (list (read-line f)))
 (setq gbdata (append gbdata gbd)
)
 (setq ct (1+ ct))
)
 (close f)

 (princ (nth 1 gbdata))
 (setq type1 (nth 1 gbdata))
 (setq size (atof (nth 2 gbdata)))
 (setq h (atof (nth 3 gbdata)))
 (setq T1 (atof (nth 4 gbdata)))
 (setq B (atof (nth 5 gbdata)))
 (setq F (atof (nth 6 gbdata)))
 (setq E (atof (nth 7 gbdata)))
 (setq R (atof (nth 8 gbdata)))
 (setq K (atof (nth 9 gbdata)))
 (setq PTT (atof (nth 10 gbdata)))
 (setq O (atof (nth 11 gbdata)))
 (setq h1 (atof (nth 12 gbdata)))
 (setq A (atof (nth 13 gbdata)))
 (setq P (atof (nth 14 gbdata)))
 (setq G (atof (nth 15 gbdata)))
 (setq N (atof (nth 16 gbdata)))
 (if (<= size 250)
 (progn
 (setq div 10)
 (setq stfthk 6)
 (setq wf1 30)
 (setq wf2 20)
 (setq tempfact 4.7)
)
 (if (<= size 630)
 (progn
 (setq div 15)
 (setq stfthk 8)
 (setq wf1 70)
 (setq wf2 40)
 (setq tempfact 4.5)
)
 (progn
 (setq div 18)
 (setq stfthk 10)
 (setq wf1 75)
 (setq wf2 40)
 (setq tempfact 4.2)

 75

)
)
)
 (setq scfact (/ size div))
 (setq tw (+ F (* wf2 2)))
 (setq tw1 F)
 (if (= type1 "SAN")
 (progn
 (setq l1 K)
 (if (= R 0)
 (progn
 (setq lf K)
 (setq ls 0)
 (setq lth 0)
 (setq n 2)
)
 (progn
 (setq lf (- K R))
 (setq ls R)
 (setq lth 0)
 (setq n 3)
)
)
)
 (progn
 (setq l1 T1)
 (if (= K 0)
 (progn
 (setq lf (- T1 R)
)
 (setq ls R)
 (setq lth 0)
 (setq n 3)
)
 (progn
 (setq lf (- T1 K))
 (setq ls (- K R))
 (setq lth R)
 (setq n 4)
)

)
)
)
(setq tl (+ l1 (* O 6) 20))
 (setq ptt PTT)
 (setq plt (- tl 20))

 76

 (setq ptw (+ G 20))
 (setq sfb O)
 (setq tw2 (+ F (* wf1 2)))
 (princ n)

 (setq x (/ (- tw tw1) 2))
 (setq y (/ (- tw2 tw1) 2))
 (setq pc (list 0 h 0))
 (setq p1 (list tw 0 0))
 (setq lift (/ (* sfb 4) 3))
 (if (<= lift 20)
 (progn (setq dialift 20) (setq pthlift 20))
 (if (<= lift 25)
 (progn (setq dialift 25) (setq pthlift 25))
 (if (<= lift 30)
 (progn (setq dialift 30) (setq pthlift 32))
 (if (<= lift 35)
 (progn (setq dialift 35) (setq pthlift 36))
 (if (<= lift 40)
 (progn (setq dialift 40) (setq pthlift 40))
 (if (<= lift 45)
 (progn (setq dialift 45) (setq pthlift 50))
 (if (<= lift 50)
 (progn (setq dialift 50) (setq pthlift 50))
 (if (<= lift 55)
 (progn (setq dialift 55) (setq pthlift 56))
 (if (<= lift 60)
 (progn (setq dialift 60) (setq pthlift 63))
)
)
)
)
)
)
)
)
)

 (command "setvar" "CECOLOR" "green")
 (ch-mc pc 180 h 100 0)
 (setq res (ch-mc p1 0 h 100 0))
 (setq w (cdr (assoc 1 res)))
 (setq tf (cdr (assoc 2 res)))
 (setq tweb (cdr (assoc 3 res)))
 (setq l (- tw (* w 2)))

 77

 (setq p2 (list (- x y) (+ h ptt) 0))
 (setq p3 (list (+ x (- ptw y)) h 0))
 (setq p4 (list (+ x y tw1) h 0))
 (setq p5 (list (- (+ x y tw1) ptw) (+ h ptt) 0))
 (setq z (/ (- tw2 tw) 2))
 (setq m (/ (- tl plt) 2))
 (setq p12 (list (- (- 0 (* scfact 20)) m) h 0))
 (setq p13 (list (- (- (- 0 (* scfact 20)) m) plt) (+ h ptt) 0))
 (setq
 p14 (list (- (- 0 (* scfact 20)) m) (+ (- 0 (* scfact 20)) z) 0)
)
 (setq p15 (list (- (- (- 0 (* scfact 20)) m) plt)
 (- (+ (- 0 (* scfact 20)) z) ptw)
 0
)
)
 (command "linetype" "load" "center" "acad" "" "")
 (command "setvar" "CECOLOR" "cyan")
 (command "rectangle" p2 p3)
 (command "rectangle" p4 p5)
 (command "setvar" "CECOLOR" "magenta")
 (command "dimtvp" 1.0)
 (command "dimtad" 0)
 (command "dimdec" 0)
 (command "dimasz" (/ scfact 1.2))
 (command "dimtxt" (/ scfact 2))
 (setq pv (list tw (+ h ptt) 0))
 (command "dimlinear"
 p13
 (polar p13 (Degrees->Radians 0) plt)
 "h"
 (strcat "@0," (rtos (* 8 scfact)))
)
 (command "dimlinear"
 p13
 (polar p13 (Degrees->Radians 90) h1)
 "v"
 (strcat "@-" (rtos (* 5 scfact)) ",0")
)

 (command "dimlinear"
 (list 0 0)
 (list tw 0)
 "h"
 (strcat "@0,-" (rtos (* 6 scfact)))
)

 78

 (command "dimlinear"
 (setq ptemp (list (- 0 (* scfact 20)) 0))
 (polar ptemp (Degrees->Radians 180) tl)
 "h"
 (strcat "@0,-" (rtos (* 8 scfact)))
)
 (command "dimlinear"
 (list x 0)
 (list (+ x tw1) 0)
 "h"
 (strcat "@0,-" (rtos (* 4 scfact)))
)
 (command "dimlinear"
 p1
 pv
 "v"
 (strcat "@" (rtos (* 4 scfact)) ",0")
)

 (command "dimlinear"
 p2
 (polar p2 (Degrees->Radians 270) ptt)
 "v"
 (strcat "@-" (rtos (* 2 scfact)) ",0")
)
 (command "dimlinear"
 p2
 p3
 "h"
 (strcat "@0," (rtos (* 6 scfact)))
)
 (command "dimlinear"
 p2
 p4
 "h"
 (strcat "@0," (rtos (* 10 scfact)))
)

 (command "setvar" "CECOLOR" "red")
 (command "setvar" "celtype" "center")
 (command "ltscale" "10" "")
 (command "line" (list x (- 0 (* scfact 2))) (list x (* scfact 2)) "")
 (command "line" (list x (- h (* scfact 3))) (setq pdim1 (list x (+ h (* scfact 3)))) "")
 (command "line" (list (+ x tw1) (- 0 (* scfact 2))) (list (+ x tw1) (* scfact 2)) "")
 (command "line"
 (list (+ x tw1) (- h (* scfact 3)))

 79

 (setq pdim2 (list (+ x tw1) (+ h (* scfact 3))))
 ""
)
 (command "setvar" "CECOLOR" "magenta")
 (command "setvar" "celtype" "bylayer")
 (command "dimlinear"
 pdim1
 pdim2
 "h"
 "@0,0")
 (command "setvar" "dimdec" 1)
 (command "dimlinear"
 pdim2
 (setq pdim3 (polar pdim2 (Degrees->Radians 180) (/ tw1 2)))
 "h"
 (strcat "@0," (rtos (* scfact 2))))
 (command "setvar" "dimdec" 0)
 (command "linetype" "load" "dashed" "acad" "" "")
 (command "setvar" "celtype" "dashed")
 (command "setvar" "CECOLOR" 11)
 (setq p6 (list (- 0 (* scfact 20)) 0 0))
 (ch-mc p6 0 h l 0)
 (setq p7 (list (- (- 0 (* scfact 20)) tl) h 0))
 (ch-mc p7 180 h l 0)
 (command "setvar" "CECOLOR" "green")
 (command "setvar" "celtype" "bylayer")
 (setq pp (list w h 0))
 (ch-mc pp 90 h l 1)
 (ch-mc p7 90 h tl 1)
 (setq p8 (list (- 0 (* scfact 20)) (- 0 (* scfact 20)) 0))
 (ch-mc p8 180 h tl 2)
 (setq p9 (list (- (- 0 (* scfact 20)) tl)
 (- (- 0 (* scfact 20)) tw)
 0
)
)
 (ch-mc p9 0 h tl 2)
 (setq p10 (list (- 0 (* scfact 20))
 (- (- 0 (* scfact 20)) (- tw w))
 0
)
)
 (ch-mc p10 270 h l 2)
 (setq p11 (list (- (- 0 (* scfact 20)) tl)
 (- (- 0 (* scfact 20)) w)
 0
)

 80

)
 (ch-mc p11 90 h l 2)
 (command "setvar" "CECOLOR" 11)
 (command "line"
 (list (- x (/ sfb 2)) (* sfb 1.25) 0)
 (list (- x (/ sfb 2)) 0 0)
 ""
)
 (setq e1 (entlast))
 (command "line"
 (list (+ x (/ sfb 2)) (* sfb 1.25) 0)
 (list (+ x (/ sfb 2)) 0 0)
 ""
)
 (setq e2 (entlast))
 (setq pc (list tw1 0 0))
 (command "copy" e1 e2 "" '(0 0 0) pc)
 (command "line"
 (setq p15 (list (- x (/ sfb 2)) (- h tf) 0))
 (polar p15 (Degrees->Radians 90) (+ tf ptt))
 ""
)
 (setq e1 (entlast))
 (command "line"
 (setq p16 (list (+ x (/ sfb 2)) (- h tf) 0))
 (polar p16 (Degrees->Radians 90) (+ tf ptt))
 ""
)
 (setq e2 (entlast))
 (command "copy" e1 e2 "" '(0 0 0) pc)
 (setq p1 (list (- (- 0 (* scfact 20)) (/ (+ tl l1) 2))
 (- (- 0 (* scfact 20)) (/ (- tw tw1) 2))
 0
)
)
 (setq result (loop n lf ls lth (/ sfb 2) p1 tw1))
 (setq p1 (list 0 0 0))
 (setq p2 (polar p1 (Degrees->Radians 90) (+ h ptt)))
 (setq p3 (polar p2
 (Degrees->Radians 0)
 (- (- 0 (* scfact 20)) (/ (+ tl l1) 2))
)
)
 (loop1 n lf ls lth sfb p3 tf ptt h)
 (setq points (cdr (assoc 1 result)))
 (setq pr (cdr (assoc 2 result)))
 (setq test 0)

 81

 (while (< test n)
 (if (= test 0)
 (setq pf (nth test points))
)
 (if (= test 1)
 (setq ps (nth test points))

)
 (if (= test 2)
 (setq pth (nth test points))

)
 (if (= test 3)
 (setq pft (nth test points))

)
 (setq test (1+ test))
)
 (if (= n 2)
 (setq ptemp ps)
)
 (if (= n 3)
 (setq ptemp pth)
)
 (if (= n 4)
 (setq ptemp pft)
)
 (command "setvar" "CECOLOR" "red")
 (command "setvar" "celtype" "center")
 (setq ph1 (list 0 (+ h ptt h1) 0))
 (setq ph2 (list (- (- 0 (* scfact 20)) tl) (+ h ptt h1) 0))
 (command "line" ph1 ph2 "")
 (setq pth1 (list (/ (- (- 0 (* scfact 20)) tl) 3) (+ h ptt h1) 0))
 (command "text" "j" "bc" pth1 scfact "" "C.L. of Gear Box" "")
 (setq ptemp1 (polar ptemp (Degrees->Radians 180) P))
 (setq pocl1 (polar ptemp1
 (Degrees->Radians 90)
 (+ h
 ptt
 h1
 (* scfact 30)
)
)
)
 (setq pocl2 (polar pocl1
 (Degrees->Radians 270)
 (+ h ptt h1 (* scfact 30) tw2 50)

 82

)
)
 (setq picl1 (polar pocl2 (Degrees->Radians 180) A))
 (setq
 picl2 (polar picl1
 (Degrees->Radians 90)
 (+ h ptt h1 (* scfact 30) tw2 50)
)
)
 (setq pistp (polar picl2 (Degrees->Radians 270) (* scfact 10))
)
 (setq postp (polar pocl1 (Degrees->Radians 270) (* scfact 10)))
 (command "line" pocl1 pocl2 "")
 (command "line" picl1 picl2 "")
 (command "text" "j" "bc" pistp scfact 90 "C.L. of Input" "")
 (command "text" "j" "bc" postp scfact 90 "C.L. of Output" "")
 (command "setvar" "celtype" "bylayer")
 (setq pgbdim1 (polar ptemp
 (Degrees->Radians 90)
 (+ h ptt (* scfact 20) 50)
)
)
 (setq pgbdim2 (polar pgbdim1 (Degrees->Radians 180) P))
 (setq pgbdim3 (polar pgbdim2 (Degrees->Radians 180) A))
 (command "setvar" "CECOLOR" "magenta")
 (command "dimtvp" 1.0)
 (command "dimtad" 0)
 (command "dimdec" 0)
 (command "dimasz" (/ scfact 1.2))
 (command "dimtxt" (/ scfact 2))
 (command "dimaligned"
 pgbdim1
 pgbdim2
 (strcat "@0," (rtos (* 3 scfact)))
)

 (command "dimaligned"
 pgbdim2
 pgbdim3
 (strcat "@0," (rtos (* 3 scfact)))
)

 (setq test 1)
 (while (< test n)
 (if (= test 1)
 (command "dimaligned"
 pf

 83

 ps
 (strcat "@0," (rtos (* 4 scfact)))
)
)
 (if (= test 2)
 (command "dimaligned"
 ps
 pth
 (strcat "@0," (rtos (* 4 scfact)))
)
)
 (if (= test 3)
 (command "dimaligned"
 pth
 pft
 (strcat "@0," (rtos (* 4 scfact)))
)
)
 (setq test (1+ test))
)

 (command "setvar" "CECOLOR" "bylayer")
 (command "insert"
 "E:/Program Files/ACAD2000/Template/GA2"
 (list (- 0 (+ (* scfact 20) tl (* scfact 20)))
 (- 0 (+ (* scfact 20) tw (* scfact 15)))
)
 (/ scfact tempfact)
 (/ scfact tempfact)
 ""
 "Base frame for gear box"
 gbtype
)
 (command "setvar" "CECOLOR" "green")
 (loop2 n tl scfact tw w h pf ls lf lth tw1)
 (loop3 n l1 scfact tw w h pf ls lf lth stfthk sfb tweb tw1 tf)
 (setq pstfsv1 (list 0 h 0))
 (setq pstfsv2 (list tw h 0))
 (setq pstfsv3 (list tw 0 0))
 (command "line" (list 0 0 0) pstfsv1 "")
 (command "line" pstfsv2 pstfsv3 "")
 (loop4 sfb tw w tweb)
 (loop5 pf lf ls lth sfb w tweb tw tw1 n)
 (topplate pf lf ls lth sfb w tweb tw tw1 n x ptw tw2 scfact ptt)
 (command "zoom" "extents")
 (command "ucsicon" "off")
 (setq plift1 (list (- 0 (* scfact 20)) (- h tf) 0))

 84

 (command "line"
 plift1
 (setq plift2 (polar plift1
 (Degrees->Radians 6)
 (/ dialift (cos (Degrees->Radians 6)))
)
)
 ""
)
 (command "arc"
 "ce"
 (setq plift3 (polar plift2 (Degrees->Radians 270) dialift))
 (setq plift4 (polar plift3 (Degrees->Radians 90) dialift))
 "a"
 -90
)
 (setq plift5 (polar plift3 (Degrees->Radians 0) dialift))
 (command "line"
 plift5
 (setq plift6 (list (- 0 (* scfact 20)) tf 0))
 ""
)
 (command "circle" plift3 "d" dialift)
 (command "setvar" "CECOLOR" "red")
 (command "setvar" "celtype" "center")
 (command "line"
 (setq pliftcl1 (polar plift3 (Degrees->Radians 0) (+ dialift (* scfact 2))))
 (setq pliftcl2 (polar plift3 (Degrees->Radians 180) (+ dialift (* scfact 2))))
 "")
 (setq ecl1 (entlast))
 (command "line"
 (setq pliftcl3 (polar plift3 (Degrees->Radians 90) (+ dialift (* scfact 2))))
 (setq pliftcl4 (polar plift3 (Degrees->Radians 270) (+ dialift (* scfact 2))))
 "")
 (setq ecl2 (entlast))
 (command "setvar" "CECOLOR" "green")
 (command "setvar" "celtype" "bylayer")
 (setq plift7 (list (- (- 0 (* scfact 20)) tl) (- h tf) 0))
 (command "line"
 plift7
 (setq plift8 (polar plift7
 (Degrees->Radians 174)
 (/ dialift (cos (Degrees->Radians 6)))
)
)
 ""
)

 85

 (command "arc"
 "ce"
 (setq plift9 (polar plift8 (Degrees->Radians 270) dialift))
 (setq plift10 (polar plift9 (Degrees->Radians 90) dialift))
 "a"
 90
)
 (setq plift11 (polar plift9 (Degrees->Radians 180) dialift))
 (command "line"
 plift11
 (setq plift12 (list (- (- 0 (* scfact 20)) tl) tf 0))
 ""
)
 (command "circle" plift9 "d" dialift)
 (command "copy"
 ecl1
 ecl2
 ""
 plift3
 plift9
)
 (setq pliftcl5 (polar plift3 (Degrees->Radians 0) (+ (/ tw 2)(- (* scfact 20) dialift))))
 (command "copy"
 ecl1
 ""
 plift3
 pliftcl5)
(command "setvar" "CECOLOR" "magenta")
 (command "dimlinear"
 (setq pdim4 (polar pliftcl5 (Degrees->Radians 180) (/ pthlift 2)))
 (setq pdim5 (polar pdim4 (Degrees->Radians 0) pthlift))
 "h"
 (strcat "@0," (rtos (- 0 (* scfact 2)))))
 (command "setvar" "CECOLOR" "green")
 (setq plifts1 (list (/ tw 2) tf 0))
 (setq plifts2 (polar plifts1 (Degrees->Radians 180) (/ pthlift 2)))
 (command "line"
 plifts2
 (setq plifts3 (polar plifts2 (Degrees->Radians 90) (- h (* tf 2))))
 ""
)
 (setq plifts4 (polar plifts3 (Degrees->Radians 0) pthlift))
 (command "line"
 plifts4
 (setq plifts5 (polar plifts4
 (Degrees->Radians 270)
 (- h (* tf 2))

 86

)
)
 ""
)

 (setq pliftt1 (list (- 0 (* scfact 20)) (- 0 (* scfact 20)) 0))
 (setq pliftt2 (polar pliftt1 (Degrees->Radians 270) (/ tw 2)))
 (setq pliftt3 (polar pliftt2 (Degrees->Radians 90) (/ pthlift 2)))
 (command "line"
 pliftt3
 (setq pliftt4 (polar pliftt3 (Degrees->Radians 0) (* dialift 2)))
 (setq pliftt5 (polar pliftt4 (Degrees->Radians 270) pthlift))
 (setq pliftt6 (polar pliftt5 (Degrees->Radians 180) (* dialift 2)))
 ""
)
 (setq pliftt7 (list (- (- 0 (* scfact 20)) tl) (- 0 (* scfact 20)) 0))
 (setq pliftt8 (polar pliftt7 (Degrees->Radians 270) (/ tw 2)))
 (setq pliftt9 (polar pliftt8 (Degrees->Radians 90) (/ pthlift 2)))
 (command
 "line"
 pliftt9
 (setq pliftt10 (polar pliftt9 (Degrees->Radians 180) (* dialift 2)))
 (setq pliftt11 (polar pliftt10 (Degrees->Radians 270) pthlift))
 (setq pliftt12 (polar pliftt11 (Degrees->Radians 0) (* dialift 2)))
 ""
)
 (setq pliftcl6 (polar pliftt8 (Degrees->Radians 180) dialift))
 (setq pliftcl7 (polar pliftt2 (Degrees->Radians 0) dialift))
 (command "copy"
 ecl2
 ""
 plift3
 pliftcl6)
 (command "copy"
 ecl2
 ""
 plift3
 pliftcl7)

 (command "setvar" "CECOLOR" "red")
 (command "setvar" "celtype" "center")
 (setq pliftt13 (polar pliftt8 (Degrees->Radians 180) (* scfact 6)))
 (setq pliftt14 (polar pliftt2 (Degrees->Radians 0) (* scfact 6)))
 (command "line"
 pliftt13
 pliftt14
 ""

 87

)
 (setq plifts6 (polar plifts1 (Degrees->Radians 270) (* scfact 6)))
 (setq
 plifts7 (polar plifts1 (Degrees->Radians 90) (+ (* scfact 6) h))
)
 (command "line"
 plifts6
 plifts7
 ""
)
 (command "setvar" "CECOLOR" "green")
 (command "setvar" "celtype" "bylayer")
 (liftdetail scfact dialift w h)
 (command "setvar" "CECOLOR" "yellow")
 (setq pleader1 (list (- 10 (* scfact 20)) (/ h 2) 0))
 (command
 "qleader"
 pleader1
 (setq peader2 (polar pleader1 (Degrees->Radians 315) (* scfact 10)))
 ""
 ""
 "4"
 ""
)
 (command "text"
 (setq ptext1 (list (* scfact 17)
 (- 0 (+ (* scfact 20) (* scfact 15)))
 0
)
)
 ""
 0
 "Item No 4"
)
 (setq plead1 (list (- (- 0 (* scfact 20)) (/ (+ l1 tl) 2)) (- (- 0 (* scfact 20)) (/ (+ tw tw1) 2)) 0))
 (setq plead2 (polar plead1 (Degrees->Radians 225) (/ sfb 2)))
 (command "qleader"
 plead2
 (setq plead3 (polar plead2 (Degrees->Radians 225) (* scfact 10)))
 (setq plead4 (polar plead3 (Degrees->Radians 0) (* scfact 5)))
 ""
 (strcat (rtos (* n 2)) "-%%c" (rtos sfb) "Holes")
 "")
 (setq plead5 (list 5 5 0))
 (command "qleader"
 plead5
 (setq plead6 (polar plead5 (Degrees->Radians 225) (* scfact 12)))

 88

 (setq plead7 (polar plead6 (Degrees->Radians 0) (* scfact 5)))
 ""
 (strcat "Channel")
 (strcat "IS MC" (rtos h))
 "")

)

For the selected gearbox type this program will draw the drawing of the base frame

automatically. For example for the selection of gearbox SCN-800 the drawing of the base frame

will be as shown below,

 89

3.3 Macro for modeling of base frame

 For modeling base frame APDL language is used. APDL is Ansys parametric design

language used for preparing macros to speed up the process of modeling as well as solution of

mechanical components in Ansys. Macros are basically Ansys commands run through a Mac

file.

 Base frames are mainly constructed out of channels so a macro was developed for

making the model of IS-MC channel. This is used in main macro to construct the base frame

using different length of cannels.

3.3.1 Macro for channel

 This macro takes size of the channel, length of the channel as the input. The code for this

macro is given below.

/prep7
parres,change,arg1,,
numstr,kp,arg3
k,,0,0,0
k,,b,0,0
k,,b,h,0
k,,0,h,0
k,,r2,h-r2,0
*afun,deg
x=((b-tw)/2-r1)*tan(6)
y1=h-(tf+x)
k,,b-(tw+r1),y1,0
y2=y1-r1
k,,b-tw,y2,0
y3=h-y2
k,,b-tw,y3,0
y4=y3-r1
x4=b-(tw+r1)
k,,x4,y4,0
k,,r2,r2,0
ar=arg3-1
numstr,line,arg3
l,ar+1,ar+2
l,ar+2,ar+3
l,ar+3,ar+4
larc,ar+4,ar+5,ar+3,r2,

 90

l,ar+5,ar+6
larc,ar+6,ar+7,ar+1,r1
l,ar+7,ar+8
larc,ar+8,ar+9,ar+5,r1
l,ar+9,ar+10
larc,ar+10,ar+1,ar+2,r2
k,,0,0,arg2
l,ar+1,ar+11
numstr,area,arg3
a,ar+1,ar+2,ar+3,ar+4,ar+5,ar+6,ar+7,ar+8,ar+9,ar+10
vdrag,ar+1,,,,,,ar+11,,,,,,

This macro uses an input file, which consists of parameters of particular channel. For example

for a channel of size 400, Input file will be

/NOPR
*SET,B , 100.0000000000
*SET,H , 400.0000000000
*SET,R1 , 15.00000000000
*SET,R2 , 7.500000000000
*SET,TF , 15.30000000000
*SET,TW , 8.100000000000
*SET,_BUTTON , 0.000000000000
*SET,_RETURN , 0.000000000000
*SET,_STATUS , 1.000000000000
*SET,_UIQR , 155.0000000000
/GO

3.3.2 Macro for base frame

 As mentioned earlier this macro repeatedly calls channel macro to develop base frame for

particular gearbox. The code for this macro is,

/prep7
parres,change,arg2,,
channel,arg1,tl,50
local,11,0,twtb,h,0,180,0,0,,
wpcsys,,11
csys,11
channel,arg1,tl,150
local,12,0,b,h,0,0,180,90,,
wpcsys,,12
csys,12
channel,arg1,twtb-(2*b),250
local,13,0,twtb-b,h,tl,180,0,90,,

 91

wpcsys,,13
csys,13
channel,arg1,twtb-(2*b),350
csys,0
wpcsys,,
vplot
xb1=(twtt-twtb)/2
zb1=(tl-plt)/2
zb2=
block,0-xb1,pwt-xb1,h,ptt+h,zb1,(sfb*6)+zb1
*do,n,1,3,1
*if,n,eq,1,then
lg=lf
*elseif,n,eq,2,
lg=ls
*else
lg=lth
*endif
vgen,2,4+n,,,,,lg,100,1,0
*enddo
vsel,,,,5,8,,0
cm,vol2,volu
vgen,2,vol2,,,twtt-pwt,,,500,1,0
zb2=(tl-l1)/2
wb1=sfb*2.5
block,0,b-tw,0,(sfb*1.25),zb2-(wb1/2),zb2+(wb1/2)
*do,n,1,3,1
*if,n,eq,1,then
lg=lf
*elseif,n,eq,2,
lg=ls
*else
lg=lth
*endif
vgen,2,12+n,,,,,lg,1000,1,0
*enddo
vsel,,,,13,16,,0
cm,vol3,volu
vgen,2,vol3,,,twtb+tw-b,,,1500,1,0
allsel,all
vplot
local,14,0,0,0,0,0,90,0,,
wpcsys,,14
csys,14
xc1=(twtb-w1)/2
yc1=zb2
cyl4,xc1,yc1,(sfb/2),,,,(0-h-ptt)

 92

csys,0
wpcsys,,
vplot
*do,n,1,3,1
*if,n,eq,1,then
lg=lf
*elseif,n,eq,2,
lg=ls
*else
lg=lth
*endif
vgen,2,20+n,,,,,lg,100,1,0
*enddo
vsel,,,,21,24,,0
cm,vol4,volu
vgen,2,vol4,,,w1,,,1000,1,0
allsel,all
vplot
vsel,s,,,1,20,,0
cm,vol5,volu
vsel,s,,,21,28,,0
cm,vol6,volu
allsel,all
vplot
numstr,volu,100
vsbv,vol5,vol6,,,,
zbstf1=yc1+2.5*sfb
block,0,b,0,h,zbstf1,zbstf1+10
vgen,2,118,,,,,lf,,,,,
vgen,2,119,,,,,ls,,,,,
vgen,2,120,,,,,lth-(5*sfb),,,,,
vsel,s,,,118,121,,,
cm,vol7,volu
allsel,all
vplot
vgen,2,vol7,,,twtb-b,,,,,,,
wpcsys,,13
wpx1=zb2+(lth/2)-(b/2)
wpoffs,wpx1,,
csys,4
channel,arg1,twtb-(2*b),3000
wpx2=(lth+ls)/2
wpoffs,wpx2,,
channel,arg1,twtb-(2*b),4000
wpx3=(lf+ls)/2
wpoffs,wpx3,,
channel,arg1,twtb-(2*b),5000

 93

csys,0
wpcsys,,
local,15,0,(twtb/2)-(pthk/2),0,b,0,0,90,,
wpcsys,,15
csys,15
numstr,kp,10000
numstr,line,10000
numstr,area,10000
numstr,volu,150
k,,0,0,0
k,,b,0,0
k,,(b-r2),r2,0
ytemp1=(((b-(r2+tw))*tan(6))+r2)
k,,tw,ytemp1,0
ytemp2=(h-ytemp1)
k,,tw,ytemp2,0
ytemp3=ytemp2+((b+lifdia)-tw)*tan(6)
k,,(b+lifdia),ytemp3,0
k,,(b+(lifdia*2)),(ytemp3-lifdia),0
k,,(b+lifdia),(ytemp3-lifdia),0
l,10002,10003
l,10003,10004
l,10004,10005
l,10006,10002
larc,10005,10006,10007,lifdia
k,,0,0,pthk
l,10000,10008
a,10002,10003,10004,10005,10006
vdrag,10000,,,,,,10005,,,,,,
local,16,0,(twtb/2)+(pthk/2),0,(tl-b),0,0,-90,,
wpcsys,,16
csys,16
numstr,kp,20000
numstr,line,20000
numstr,area,20000
numstr,volu,250
k,,0,0,0
k,,b,0,0
k,,(b-r2),r2,0
ytemp1=(((b-(r2+tw))*tan(6))+r2)
k,,tw,ytemp1,0
ytemp2=(h-ytemp1)
k,,tw,ytemp2,0
ytemp3=ytemp2+((b+lifdia)-tw)*tan(6)
k,,(b+lifdia),ytemp3,0
k,,(b+(lifdia*2)),(ytemp3-lifdia),0
k,,(b+lifdia),(ytemp3-lifdia),0

 94

l,20002,20003
l,20003,20004
l,20004,20005
l,20006,20002
larc,20005,20006,20007,lifdia
k,,0,0,pthk
l,20000,20008
a,20002,20003,20004,20005,20006
vdrag,20000,,,,,,20005,,,,,,

Parameters needed by this macro can be supplied using an input file as,

/NOPR
*SET,L1 , 2520.0000000000
*SET,LF , 840.0000000000
SET,LS , 580.0000000000
*SET,LTH , 1100.000000000
*SET,PLT , 2790.000000000
*SET,PTT , 35.00000000000
*SET,PWT , 200.0000000000
*SET,SFB , 45.00000000000
*SET,TL , 2810.000000000
*SET,TWTB , 950.0000000000
*SET,TWTT , 1000.0000000000
*SET,W1 , 870.0000000000
*SET,pthk , 63.0000000000
*SET,lifdia , 60.0000000000
*SET,_BUTTON , 0.000000000000
*SET,_RETURN , 0.000000000000
*SET,_STATUS , 1.000000000000
*SET,_UIQR , 0.000000000000
/GO

For this input i.e. for SCN-800 gear box the model for base frame looks as shown below.

 95

 96

 Chapter 4

 Results and discussion

 97

4.1 Force analysis

The object of force analysis is to find the forces that are coming on base frame from gearbox due

to out put torque. In this project we had chosen a gearbox with fallowing specifications

Type of gearbox: SCN

Size of gearbox: 800

Speed ratio iN: 50

Input speed n1: 1000 rpm

For these specifications we first find out the power rating PN form catalogues

 Power rating PN: 1480 KW

From this we calculate output torque using the equation

 Output torque: PN/N

Where N = (2*Pi*n1)/(IN*60)

 = 2.094 rad/sec

Form this output torque is 706.36 N-mm

From this we fallow to calculate the load at each bolt in the foundation of the gearbox.

In this gearbox there are four foundation bolts at each side, we call them B1, B2, B3, B4.

L1=length of B1 form tilting edge= 90

L2=length of B2 from tilting edge= 930

L3=length of B3 from tilting edge= 1510

L4=length of B4 from tilting edge= 2610

Let w=load in a bolt per unit length, then

Total momentum on all the bolts is

2(L1*L1+L2*L2+L3*L3+L4*L4)*w

Which is equal to the out put torque

Form this we can find w = 35.4415 N/mm

After finding we calculate load at each bolt hat is going to act on base frame as

Load at B1 = w*L1 = 3189.7 N

Load at B2 = w*L2 = 32960.6 N

Load at B3 = w*L3 = 53516.68 N

Load at B4 = w*L4 = 92502.34 N

 98

4.2 Boundary conditions

All the bottom holes of the base frame are fixed

All the forces on top holes of base frame are applied vertically upwards

When all the boundary conditions are applied the base frame model looks as shown below

4.3 Material properties

Material properties of structural steel used in this analysis are

Young’s Modules = 2.0e11 Pa

Poison’s ratio = 0.3

4.4 Meshing

Meshing of the model used in this analysis is adaptive meshing that is generated automatically b

the Ansys program.

 99

4.5 Results from stress analysis

This stress analysis shown results given below

Equivalent (von-mises) stress = 0.979 Pa (min)

 1.732X105 Pa (max)

Maximum shear stress = 0.5548 Pa (min)

 9.243X104 Pa (max)

Total deformation = 0 m (min)

 0.114X10-4 m (max)

4.6 Results from model analysis

The analysis was done for six modes.

The frequency for each mode is given below.

1st Frequency 7.7595 Hz

2nd Frequency 10.726 Hz

3rd Frequency 11.022 Hz

4th Frequency 12.113 Hz

5th Frequency 12.357 Hz

6th Frequency 12.434 Hz

 100

 101

 102

 103

 104

 105

 106

Chapter 5

 Scope for future work

 107

 This project is taken in to consideration only standard type of gearboxes. In the same way

software can be developed to draw base frames for special type of gearboxes with out much

difficulty. For doing that we need to do lot of data collection as well as lot of programming.

 108

 Chapter 6

 Conclusions

 109

 The software developed for generating the base frames for standard type of industrial

gearboxes is working satisfactorily. The software can also be used for any new designs

conveniently with out much difficulty.

 The results obtained from stress analysis and model analyses of base frame for SCN-800

gearbox are all safe. The stresses developed are with in the limits. The total deformation the base

frame is also with in the permitted range.

 110

References

1.1 Design department, catalogue, ELECON Engg. Co. Ltd.

2.1.1 Dr.ING.J.LINDER, design of steel beams and beam columns, Technical University Berlin,

Germany, ICSS 95,PSG college of technology, Coimbatore, INDIA, 103-117.

2.1.2 PETER OSTERRIEDER and FRANCK WERNER1 , interaction of local and global

buckling in thin-walled beams, BTU Cottbus Germany, 1 HAB Weimar Germany, ICSS 95, 247-

261.

2.1.3 BRADFORD M.A., lateral-distorsional buckling of steel I-section members, journal of

construction steel research, 23 (1-3), 97-116.

2.1.4 N.E.SHANMUGAM, strength of thin walled steel box beam columns, department of civil

engineering, National University of Singapore, ICSS 95, 291-311.

2.1.5 INAMDAR.V.M., solution of structural engineering problems by theory of distributions,

Ph.D thesis, 1987, south Gujarat University, Surat, Gujarat, 395007, INDIA.

2.1.6 INAMDAR.V.M and BALMUKHUND P. PARIKH, use of generalized functions for

buckling columns with variable moment of inertia, ICSS 95, 311-321.

2.2.1 PETER WIDAS, Introduction to Finite Element Analysis, Virginia Tech Material Science

and Engineering.

3.1 DESIGN DEPARTMENT, ELECON Engg. Co. Ltd.

3.2 REFERENCE DRAWINGS, ELECON Engg. Co. Ltd.

 111

 Appendix

 Auto LISP language

Introduction

AutoLISP, an implementation of the LISP programming language, is an integral part of the

AutoCAD package. With AutoLISP, you can write macro programs and functions in a powerful,

high-level language suited to graphics applications. AutoLISP is easy to use and very flexible

The AutoLISP evaluator processes expressions according to the order and data type of the code

within the parentheses. Before you can fully utilize AutoLISP, you must understand the

differences between the data types and how to use them.

AutoLISP Expressions

(fun1 (fun2 arguments)(fun3 arguments)) [A.1]

The first function, fun1, has two arguments, and the other functions, fun2 and fun3, have one

argument each. The functions fun2 and fun3 are surrounded by function fun1, so their return

values are passed to fun1 as arguments. Function fun1 evaluates those two arguments and returns

the value to the command line.

Example:

_$ (* 2 (+ 5 10))

30

AutoLISP Function Syntax

AutoLISP Data Types

 112

 113

1. Integers

2. Real

3. Strings

4. Lists

5. Selection Sets

6. Entity Names

7. VLA-objects

8. File Descriptors

9. Symbols and Variables

Functions used in Programs

Defun:

Defines a function

(defun sym ([arguments] [/ variables...]) expr...)

Arguments

sym

A symbol naming the function.

arguments

The names of arguments expected by the function.

/ variables

The names of one or more local variables for the function.

The slash preceding the variable names must be separated from the first local name and from the

last argument, if any, by at least one space.

 114

expr

Any number of AutoLISP expressions to be evaluated when the function executes.

If you do not declare any arguments or local symbols, you must supply an empty set of

parentheses after the function name.

If duplicate argument or symbol names are specified, AutoLISP uses the first occurrence of each

name and ignores the following occurrences.

Return Values

The result of the last expression evaluated.

WARNING! Never use the name of a built-in function or symbol for the sym argument to defun.

This overwrites the original definition and makes the built-in function or symbol inaccessible. To

get a list of built-in and previously defined functions, use the atoms-family function.

Examples

(defun myfunc (x y) ...) Function takes two arguments

(defun myfunc (/ a b) ...) Function has two local variables

(defun myfunc (x / temp) ...) One argument, one local variable

(defun myfunc () ...) No arguments or local variables

setq:

Sets the value of a symbol or symbols to associated expressions

(setq sym expr [sym expr]...)

This is the basic assignment function in AutoLISP. The setq function can assign multiple

symbols in one call to the function.

 115

Arguments

sym

A symbol. This argument is not evaluated.

expr

An expression.

Return Values

The result of the last expr evaluated.

Examples

The following function call set variable a to 5.0:

Command: (setq a 5.0)

5.0

List:

Takes any number of expressions, and combines them into one list

(list [expr...])

This function is frequently used to define a 2D or 3D point variable (a list of two or three reals).

Arguments

expr

An AutoLISP expression.

 116

Return Values

A list, unless no expressions are supplied, in which case list returns nil.

Examples

Command: (list 'a 'b 'c)

(A B C)

Command: (list 'a '(b c) 'd)

(A (B C) D)

Cons:

Adds an element to the beginning of a list, or constructs a dotted list

(cons new-first-element list-or-atom)

Arguments

new-first-element

Element to be added to the beginning of a list. This element can be an atom or a list.

list-or-atom

A list or an atom.

Return Values

 117

The value returned depends on the data type of list-or-atom. If list-or-atom is a list, cons returns

that list with new-first-element added as the first item in the list. If list-or-atom is an atom, cons

returns a dotted pair consisting of new-first-element and list-or-atom.

Examples

Command: (cons 'a '(b c d))

(A B C D)

Command: (cons '(a) '(b c d))

((A) B C D)

Princ:

Prints an expression to the command line, or writes an expression to an open file

(princ [expr [file-desc]])

This function is the same as prin1, except control characters in expr are printed without

expansion. In general, prin1 is designed to print expressions in a way that is compatible with

load, while princ prints them in a way that is readable by functions such as read-line.

Arguments

expr

A string or AutoLISP expression. Only the specified expr is printed; no newline or space is

included.

 118

file-desc

A file descriptor for a file opened for writing.

Return Values

The value of the evaluated expr. If called with no arguments, princ returns a null symbol.

If:

Conditionally evaluates expressions

(if testexpr thenexpr [elseexpr])

Arguments

testexpr

Expression to be tested.

thenexpr

Expression evaluated if testexpr is not nil.

elseexpr

Expression evaluated if testexpr is nil.

Return Values

The if function returns the value of the selected expression. If elseexpr is missing and testexpr is

nil, then if returns nil.

 119

Examples

Command: (if (= 1 3) "YES!!" "no.")

"no."

Command: (if (= 2 (+ 1 1)) "YES!!")

"YES!!"

Load_dialog:

Loads a DCL file

(load_dialog dclfile)

The load_dialog function searches for files according to the AutoCAD library search path.

This function is the complement of unload_dialog. An application can load multiple DCL files

with multiple load_dialog calls.

Arguments

dclfile

A string that specifies the DCL file to load. If the dclfile argument does not specify a file

extension, .dcl is assumed.

Return Values

A positive integer value (dcl_id) if successful, or a negative integer if load_dialog can't open the

file. The dcl_id is used as a handle in subsequent new_dialog and unload_dialog calls.

 120

New_dialog:

Begins a new dialog box and displays it, and can also specify a default action

(new_dialog dlgname dcl_id [action [screen-pt]])

Arguments

dlgname

A string that specifies the dialog box.

dcl_id

The DCL file identifier obtained by load_dialog.

action

A string that contains an AutoLISP expression to use as the default action. If you don't want to

define a default action, specify an empty string (""). The action argument is required if you

specify screen-pt.

The default action is evaluated when the user picks an active tile that doesn't have an action or

callback explicitly assigned to it by action_tile or in DCL.

screen-pt

A 2D point list that specifies the X,Y location of the dialog box on the screen. The point

specifies the upper-left corner of the dialog box. If you pass the point as'(-1 -1), the dialog box is

 121

opened in the default position (the center of the AutoCAD graphics screen).

Return Values

T, if successful, otherwise nil.

Action_tile:

Assigns an action to evaluate when the user selects the specified tile in a dialog box

(action_tile key action-expression)

The action assigned by action_tile supersedes the dialog box's default action (assigned by

new_dialog) or the tile's action attribute, if these are specified. The expression can refer to the

tile's current value as $value, its name as $key, its application-specific data (as set by

client_data_tile) as $data, its callback reason as $reason, and its image coordinates (if the tile is

an image button) as $x and $y.

Arguments

key

A string that names the tile that triggers the action (specified as its key attribute). This argument

is case-sensitive.

action-expression

A string naming the expression evaluated when the tile is selected.

NOTE You cannot call the AutoLISP command function from the action_tile function.

 122

Return Values

T

Strcat:

Returns a string that is the concatenation of multiple strings

(strcat [string [string]...])

Arguments

string

A string.

Return Values

A string. If no arguments are supplied, strcat returns a zero-length string.

Examples

Command: (strcat "a" "bout")

"about"

Command: (strcat "a" "b" "c")

"abc"

Prong:

 123

Evaluates each expression sequentially and returns the value of the last expression

(progn [expr]...)

You can use progn to evaluate several expressions where only one expression is expected.

Arguments

expr

One or more AutoLISP expressions.

Return Values

The result of the last evaluated expression.

Examples

The if function normally evaluates one then expression if the test expression evaluates to

anything but nil. The following example uses progn to evaluate two expressions following if:

(if (= a b)

 (progn

 (princ "\nA = B ")

 (setq a (+ a 10) b (- b 10))

)

)

Done_dialog:

 124

Terminates a dialog box

(done_dialog [status])

Arguments

status

A positive integer that start_dialog will return instead of returning 1 for OK or 0 for Cancel. The

meaning of any status value greater than 1 is determined by your application.

You must call done_dialog from within an action expression or callback function (see

"action_tile").

Return Values

A two-dimensional point list that is the (X,Y) location of the dialog box when the user exited it.

Start_dialog:

Displays a dialog box and begins accepting user input

(start_dialog)

You must first initialize the dialog box by a previous new_dialog call. The dialog box remains

active until an action expression or callback function calls done_dialog. Usually done_dialog is

associated with the tile whose key is "accept" (typically the OK button) and the tile whose key is

"cancel" (typically the Cancel button).

The start_dialog function has no arguments.

 125

Return Values

The start_dialog function returns the optional status passed to done_dialog. The default value is 1

if the user presses OK, 0 if the user presses Cancel, or -1 if all dialog boxes are terminated with

term_dialog. If done_dialog is passed an integer status greater than 1, start_dialog returns this

value, whose meaning is determined by the application.

Unload_dialog:

Unloads a DCL file

(unload_dialog dcl_id)

Unloads the DCL file associated with dcl_id (obtained from a previous new_dialog call) from

memory.

It is generally not necessary to unload a DCL definition from memory, unless you are running

low on memory or need to update the DCL dialog definition from a new file.

Arguments

dcl_id

A DCL file identifier obtained from a previous load_dialog call.

Return Values

The unload_dialog function always returns nil.

Cdr:

Returns a list containing all but the first element of the specified list

 126

(cdr list)

Arguments

list

A list.

Return Values

A list containing all the elements of list, except the first element (but see Note below). If the list

is empty, cdr returns nil.

NOTE When the list argument is a dotted pair, cdr returns the second element without enclosing

it in a list.

Examples

Command: (cdr '(a b c))

(B C)

Command: (cdr '((a b) c))

(C)

Assoc:

Searches an association list for an element and returns that association list entry

(assoc element alist)

 127

Arguments

element

Key of an element in an association list.

alist

An association list to be searched.

Return Values

The alist entry, if successful. If assoc does not find element as a key in alist, it returns nil.

Examples

Command: (setq al '((name box) (width 3) (size 4.7263) (depth 5)))

((NAME BOX) (WIDTH 3) (SIZE 4.7263) (DEPTH 5))

Command: (assoc 'size al)

(SIZE 4.7263)

Command:

Executes an AutoCAD command

(command [arguments] ...)

 128

Arguments

arguments

 AutoCAD commands and their options.

The arguments to the command function can be strings, reals, integers, or points, as expected by

the prompt sequence of the executed command. A null string ("") is equivalent to pressing

ENTER on the keyboard. Invoking command with no argument is equivalent to pressing ESC

and cancels most AutoCAD commands.

The command function evaluates each argument and sends it to AutoCAD in response to

successive prompts. It submits command names and options as strings, 2D points as lists of two

reals, and 3D points as lists of three reals. AutoCAD recognizes command names only when it

issues a Command prompt.

Note that if you issue command from Visual LISP, focus does not change to the AutoCAD

window. If the command requires user input, you'll see the return value (nil) in the Console

window, but AutoCAD will be waiting for input. You must manually activate the AutoCAD

window and respond to the prompts. Until you do so, any subsequent commands will fail.

Return Values

nil

Examples

The following example sets two variables pt1 and pt2 equal to two point values 1,1 and 1,5. It

then uses the command function to issue the LINE command and pass the two point values.

Command: (setq pt1 '(1 1) pt2 '(1 5))

(1 5)

 129

Command: (command "line" pt1 pt2 "")

line From point:

To point:

To point:

Command: nil

Polar:

Returns the UCS 3D point at a specified angle and distance from a point

(polar pt ang dist)

Arguments

pt

A 2D or 3D point.

ang

An angle expressed in radians relative to the X axis, with respect to the current construction

plane. Angles increase in the counterclockwise direction.

dist

Distance from the specified pt.

 130

Return Values

A 2D or 3D point, depending on the type of point specified by pt.

Examples

Supplying a 3D point to polar:

Command: (polar '(1 1 3.5) 0.785398 1.414214)

(2.0 2.0 3.5)

Supplying a 2D point to polar:

Command: (polar '(1 1) 0.785398 1.414214)

(2.0 2.0)

B. Dialog Control Language (DCL)

Dialog boxes are defined by ASCII files written in dialog control language (DCL). The elements

in a dialog box, such as buttons and edit boxes, are known as tiles. The size and functionality of

each tile is controlled by the tile's attributes. The size of the dialog box and the layout of its parts

are set automatically with a minimum of positioning information. VLISP provides a tool for

viewing dialog boxes, and provides functions for controlling dialog boxes from application

programs.

A dialog box consists of the box and the tiles within it. The basic tile types are predefined by the

programmable dialog box (PDB) facility [B.1].

You can create complex tiles, called subassemblies, by grouping tiles into rows and columns,

with or without an enclosing box or border. A row or column of tiles is referred to as a cluster.

Subassemblies define groups of tiles or clusters that can be used in many dialog boxes. For

example, the OK, Cancel, and Help buttons are grouped into a subassembly, defined as a row

(cluster) of three button tiles and some spacing separating the buttons.

Subassemblies are treated as single tiles. The tiles within a subassembly are called children. DCL

files are organized in a tree structure. At the top of the tree is a (dialog) tile that defines the

dialog box itself. The following diagram shows a DCL file structure:

Fig B.1: DCL file structure.

 131

Fig B.2: dialog box tree structure.

The layout, appearance, and behavior of a tile or subassembly are specified in DCL by the tile's

attributes. For example, the dialog itself, and most predefined tile types, has a label attribute that

specifies the text associated with the tile. The label of a dialog box defines the caption at the top

of the dialog box, the label of a button specifies the text inside the button, and so on.

DCL also enables you to define new tiles, called prototypes, that are not necessarily associated

with a specific dialog box. This is useful when you want to use the same component in several

dialog boxes. You can reference prototype tiles from other DCL files and change their attributes

the same way you change predefined tiles.

Before you program a dialog box, plan both the dialog box and the application in detail before

you code and debug. The sequence in which the data is entered will vary with each user. The

need to anticipate a variety of user actions imposes a program structure that is less linear than

conventional programming, but is more reflective of the way users work.

A single DCL file can contain the description of one or more dialog boxes, or it can contain only

prototype tiles and subassemblies for use by other DCL files. A DCL file consists of the

following three parts, which can appear in any order. Depending on your application, only one or

more of these parts is required.

a. References to other DCL files

b. Prototype tile and subassembly definitions

 132

c. These are tile definitions you can refer to in subsequent tile definitions (including dialog

box definitions).

d. Dialog box definitions

e. These define the attributes of tiles or override the attributes defined in prototype tiles and

subassemblies.

When you create dialog boxes, you must create a new, application-specific DCL file. All DCL

files can use the tiles defined in the base.dcl file. A DCL file can also use tiles defined in another

DCL file by naming the other file in what is called an include directive. You can create your own

hierarchy of DCL files, as shown in the following figure:

Fig B.3: hierarchy of DCL files

In this figure, the user1.dcl and user2.dcl files are independent of each other, but user3.dcl uses

tiles defined in user1.dcl. The include directive has the form:

@include filename

Where filename is a quoted string containing the full name of the other DCL file. For example,

the following directive includes a file named usercore.dcl:

@include "usercore.dcl"

 133

 134

New tiles are created by tile definitions. If a tile definition appears outside a dialog box

definition, it is a prototype or a subassembly. Prototypes and subassemblies can be used in dialog

box definitions by tile references. Each reference to a definition inherits the attributes of the

original tile. When referring to prototypes, you can change the values of the inherited attributes

or add new attributes. When referring to subassemblies, you cannot change or add attributes.

If you need multiple instances of a tile with some attributes in common, it is easiest to define and

name a prototype that contains only the common attributes. Then, in each reference to the

prototype, you can change attributes or add new ones, but you do not have to list all the common

attributes each time you reference the tile. Because attributes are inherited, you will more often

need to create tile references especially references to the predefined tiles—than to define new

tiles.

Tile definitions have the following form:

name : item1 [: item2 : item3 ...] {

 attribute = value;

 ...

}

Tile references have one of the following forms:

name;

or

: name {

 attribute = value;

 . . .

}

 135

where name is the name of a previously defined tile. Tile names are case sensitive. In the first

instance, all the attributes defined in name are incorporated into the reference. In the second

instance, the attribute definitions within the curly braces either supplement or replace the

definitions inherited from name. Because this is a tile reference, as opposed to a definition, the

attribute changes apply only to this instance of the tile.

Within the curly braces of a tile definition or reference, you specify attributes and assign them

values using the following form:

attribute = value ;

where attribute is a valid keyword and value is the value assigned to the attribute. An equal sign

(=) separates the attribute from the value, and a semicolon (;) ends the assignment statement.

hello : dialog {

 label = "Sample Dialog Box";

 : text {

 label = "Hello, world";

 }

 : button {

 key = "accept";

 label = "OK";

 is_default = true;

 }

}

 136

 C. INDIAN STANDARD CHANNEL

This appendix is containing the standard type of channels used in the chapter 10.2. There are

basically two types of channels, MC and MCP [].

Designation - Medium weight channel shall be designated MC if the flanges are sloping. If the

flanges are parallel the channel shall be designated MCP.

Here there is only the nominal dimensions of the channels, which are used in the programming.

There are no details here on weight and etc.

The fallowing fig shows the typical channel cross section with symbols used as a standard to

describe the channel.

 Fig C.1: Indian Standard MC type channel

h 75 100 125 150 175 200 225 250 300 350 400

b 40 50 65 75 75 75 80 80 90 100 100

tf 7.3 7.5 8.1 9.0 10.2 11.4 12.4 14.1 13.6 13.5 15.3

tw 4.4 4.7 5.0 5.4 5.7 6.1 6.4 7.1 7.6 8.1 8.6

r1 8.5 9.0 9.5 10.0 10.5 11.0 12.0 12.0 13.0 14.0 15.0

r2 4.5 4.5 5.0 5.0 5.5 5.5 6.0 6.0 6.5 7.0 7.5

Table C.1: Nominal dimensions of the channel

Above table is taken from IS: 808 (part-III) – 1979.

 137

 138

The fallowing table display the nomenclature used in this standard.

h Height of the channel

b Width of the channel

tf Flange thickness

tw Web thickness

r1 Radius of root

r2 Radius of toe

Table C.2: Nomenclature of the standard channel.

	“Preparation of CAD software for design and analy
	A Major Project Report
	Submitted in Partial Fulfillment of the Requirements
	for the Degree of
	In
	Mechanical Engineering
	By
	Department of Mechanical Engineering
	Institute Of Technology
	NIRMA UNIVERSITY OF SCIENCE & TECHNOLOGY,
	Ahmedabad 382 481
	MAY 2005
	
	
	This is to certify that the Major Project Report

	Abstract
	List of figures
	Fig no.Description
	List of tables
	Table No.Description

	Nomenclature

	Combined lengthtotal length of base frame for motor and gearbox
	
	
	
	
	
	
	Chapter 2: Literature Review 6
	Chapter 4: Results and Discussion 86
	References94

	Chapter 1
	Introduction
	1.1 Company profile

	CNC machines used in elecon
	1.2 About the project

	2.3 The stiffness method
	Structural stiffness equation
	Properties of [K]
	Solution for unknowns
	Element stiffness equations

	2.4 Structural Mechanics
	Introduction
	Idealizations in structural analysis
	Loads on structures
	Classification of framed structures
	Frames
	Free body diagrams
	Restrictions in the analysis of framed structures

	Kinematically unstable structures
	Compound structures
	Chapter 3
	Software developing/Modeling
	3.1 Introduction
	3.2 Standardization of design using CAD
	3.2.1 Introduction
	3.2.2 Main programs of base frames

	3.2.2.1 Program of channel
	�
	�
	�
	�
	�
	�
	�
	Chapter 5
	Scope for future work
	
	
	
	Appendix

	Introduction
	AutoLISP Expressions
	AutoLISP Function Syntax
	Functions used in Programs

	Return Values
	Examples
	Return Values
	Examples
	Arguments
	Return Values
	Examples
	Arguments
	Return Values
	Examples
	Arguments
	Return Values
	Arguments
	Return Values
	Examples
	Arguments
	Return Values
	Arguments
	Return Values
	Arguments
	Return Values
	Return Values
	Examples
	Arguments
	Return Values
	Examples
	Arguments
	Return Values
	Return Values
	Arguments
	Return Values
	Arguments
	Return Values
	Examples
	
	Arguments

	Return Values
	Examples
	Arguments
	Return Values
	Examples
	Return Values
	Examples
	b

