
Performance Analysis of AI workload on Intel
hardware platform

Major Project Report

Submitted in fulfillment of the requirements
for the degree of

Master of Technology
in

Electronics & Communication Engineering

(Embedded Systems)

By

Malhar Bhatt

(17MECE02)

Electronics & Communication
Engineering Department
Institute of Technology

Nirma University
Ahmedabad-382 481

May-2019

Performance Analysis of AI workload on
Intel hardware platform

Major Project Report

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology
in

Electronics & Communication Engineering
By

Malhar Bhatt
(17MECE02)

Under the guidance of

External Project Guide: Internal Project Guide:
Mrs. Juby Jose Dr. Nagendra Gajjar
Engineering Manager Professor & PG Coordinator , Embedded Systems,
Intel Technologies Pvt. Ltd., Institute of Technology,
Bengaluru Nirma University, Ahmedabad.

Electronics & Communication Engineering Department
Institute of Technology, Nirma University

Ahmedabad-382 481
May-2019

Declaration

This is to certify that

a. The thesis comprises my original work towards the degree of Master of Tech-
nology in Embedded Systems at Nirma University and has not been submitted
elsewhere for a degree.

b. Due acknowledgment has been made in the text to all other material used.

c. Complete document with its contents and its results has been verified and
reviewed from the Intel.

- Malhar Bhatt
17MECE02

Disclaimer

“The content of this thesis does not represent the technology, opinions,
beliefs, or positions of Intel Technology India Pvt. Ltd., its employees,
vendors, customers, or associates.”

Certificate

This is to certify that the Major Project entitled “Performance Analysis
of AI workload on Intel hardware platform” submitted by Malhar Bhatt
(17MECE02), towards the partial fulfillment of the requirements for the degree
of Master of Technology in Embedded Systems, Nirma University, Ahmedabad is
the record of work carried out by him under our supervision and guidance. In our
opinion, the submitted work has reached a level required for being accepted for
examination. The results embodied in this major project, to the best of our knowl-
edge, haven’t been submitted to any other university or institution for award of any
degree or diploma.

Date: Place: Ahmedabad

Dr. N. P. Gajjar Dr. N. P. Gajjar

Internal Guide Program Coordinator

Dr. D. K. Kothari Dr. Alka Mahajan

Head, EC Department Director, ITNU

Certificate

This is to certify that the Major Project entitled “Performance Analysis
of AI Workload on Intel hardware platform” submitted by Malhar Bhatt
(17MECE02), towards the submission of the project for the requirements for the
degree of Master of Technology in Embedded Systems, Nirma University, Ahmed-
abad is the record of work carried out by him under my supervision and guidance
at Intel Technology India Pvt. Ltd. In my opinion, the submitted work has
reached a level required for being accepted for examination.

External Guide
Mrs. Juby Jose
Engineering Manager
Intel Technology India Pvt. Ltd.
Bengaluru

Company Seal
Intel Technology India Pvt. Ltd. (Bangalore)

Date: Place: Bengaluru

Acknowledgements

I take this opportunity to my express my profound gratitude and regards to
my internship project guide Dr. Nagendra Gajjar for his exemplary guidance,
monitoring and constant encouragement.

I express my gratitude to the staff of Intel Technologies Pvt. Ltd., Ben-
galuru for providing most encouraging working environment along with providing
their valuable time and effort during implementation of this project.

I would like to express sincere gratitude to manager Mrs. Juby Jose, Engi-
neering Manager, Intel India Pvt. Ltd., for giving me an opportunity to work for
Intel. I would also like to thank mentor Mr. Pravin Chandra, Software Engineer,
Intel India Pvt. Ltd. for his encouragement and guidance. I would also like to cor-
dially thank Mr. Raghavendra Bhat, Principal Engineer, Intel India Pvt. Ltd.
for his valuable advices and support throughout the project. I thank Mr. Ajith
Prakash and Mr. Avinash Chakravarty, Intel India Pvt. Ltd. for his great
support in setting up the setup and helping me whenever it required.

I thank my Parents, faculty members and colleagues for their constant support
and encouragement during this project work.

- Malhar Bhatt
17MECE02

Abstract

The increased popularity of Deep Neural Network (DNN) has led to a good amount
of research in getting the best hardware configuration to achieve the optimum
throughput from server processors running an end to end DNN topology. The pri-
mary focus here is to do the inference which is to know how efficiently the processor
can execute the already trained models for the Text To Speech (TTS) topology.
This thesis explores the benchmarking performed on Intel’s server platform with
DeepMind’s Tacotron-2 topology as a workload. Benchmarking consists of running
the topology using baseline and Intel optimized Tensorflow framework. The timeline
analysis and system performance analysis helps in understanding the behavior of the
topology on the server platform. The processor’s system performance is measured
using Intel’s VTune amplifier tool. In order to understand the impact of workload
on the server processor, this thesis focuses on the key parameters like Processing
time, Memory bandwidth utilization and Memory latency, Hotspot analysis, and
effective Central Processing Unit (CPU) utilization. Along with the above param-
eters, timeline and baseline profiling on the workload is also done. As an outcome
of this benchmarking, several observations and recommendations are proposed for
further research and improvements that can be done in the area of Silicon architec-
ture, Software frameworks, and Kernels. The results highlight the key observations
and the performance graphs and comparison using baseline and Intel Optimized
framework for the tacotron module.

Keywords: Tensorflow, DNN, TTS, Benchmarking, CPU utilization

Abbreviation Notation and Nomenclature

AI Artificial Intelligence

API Application Programming Interface

BIN Binary

CNN Convolutional Neural Network

CPU Central Processing Unit

CSV Comma Separated Values

DLDT Deep Learning Deployment Toolkit

DNN Deep Neural Network

FPGA Field-Programmable Gate Array

FPU Floating Point Units

GUI Graphical User Interface

GPU Graphics Processing Unit

HPC High Performance Computing

I/O Input/Output

JSON JavaScript Object Notation

MOS Mean Opinion Score

MPI Message Passing Interface

NUMA Non-uniform memory access

OpenVino Open Visual Inferencing and Neural Network Optimization

PCIe Peripheral Component Interconnect Express

PCM Performance Counter Monitor

PMU Performance Monitoring Units

QPI QuickPath Interconnect

SPEC Standard Performance Evaluation Corporation

SMT Simultanous Multithreading

Performance Analysis of AI workload on Intel hardware platform

SOC System On Chip

TF Tensorflow

TTS Text To Speech

XML Extensible Markup Language

x

List of Figures

1.1 Project Work-Flow Phase-1 . 3

3.1 A detailed look at Tacotron 2’s model architecture 7

4.1 Chrome Tracing Example code . 13
4.2 Chrome Tracing time profiling for above example 14
4.3 The Hotspots analysis with Intel VTune Amplifier provides two sampling-

based collection modes [10] . 16
4.4 The high-level performance metrics in the Micro-architecture Explo-

ration viewpoint . 17
4.5 Summary Tab in General Exploration 18
4.6 Bottom-up Tab in General Exploration 19
4.7 Image showing back-end issues using function / call stack 19
4.8 An overview of a modern multi-processor, multi-core system [14] . . . 20
4.9 Example for PCM.exe command . 22
4.10 Example for pcm-core.exe command 23
4.11 Example for pcm-memory.exe command 24
4.12 Example for pcm-numa.exe command 25
4.13 Example for pcm-pcie.exe command 26
4.14 Block Diagram for OpenVINO integration process 28

5.1 Tensorboard Topology Diagram for TTS Tacotron2 31
5.2 Hotspot in tacotron . 32
5.3 Wavenet visualization in tacotron . 33
5.4 Comparison between lower case and upper case text 34
5.5 Random data vs Corpus data for Baseline Tensorflow (TF) 35
5.6 Random data vs Corpus data for Intel optimized TF 35
5.7 Time comparison between Intel optimized and Baseline tensorflow for

batch . 36
5.8 Baseline Bandwidth Utilization Histogram 36
5.9 Optimized Bandwidth Utilization Histogram 37
5.10 Optimized Effective Physical Core Utilization 37
5.11 Baseline Effective Physical Core Utilization 37
5.12 Hotspot analysis for Baseline tensorflow 37

xi

Performance Analysis of AI workload on Intel hardware platform

5.13 Hotspot analysis for Optimized tensorflow 38
5.14 Micro Architecture analysis comparison 38

xii

Contents

Declaration iii

Disclaimer iv

Certificate v

Acknowledgements vii

Abstract viii

Abbreviation Notation and Nomenclature ix

List of Figures xi

1 Introduction 1
1.1 Purpose . 1
1.2 Motivation . 1
1.3 Objective . 2
1.4 Requirements . 2
1.5 Scope of Work . 2
1.6 Gantt Charts . 3

1.6.1 Project Work-Flow Phase-1 3
1.7 Thesis Outline . 3

2 Literature Survey 4

3 Speech Workload Performance Characterization 6
3.1 Tacotron 2 . 6

3.1.1 About the Topology . 6
3.2 System Configuration . 8

3.2.1 Hardware Configuration . 8
3.2.2 Software Configuration . 9
3.2.3 Dataset / Corpus . 9
3.2.4 Implementation used . 9

xiii

Performance Analysis of AI workload on Intel hardware platform

3.3 Benchmarking methodology for AI topology 10

4 Tools used 12
4.1 Chrome Tracing . 12

4.1.1 Introduction . 12
4.1.2 How to get it ? . 12
4.1.3 Usage . 12
4.1.4 Demo . 13

4.2 Intel VTune Amplifier . 14
4.2.1 Introduction . 14
4.2.2 How to get it ? . 15
4.2.3 Usage . 15
4.2.4 Demo . 15

4.3 Intel Performance Counter Monitor 20
4.3.1 Introduction . 20
4.3.2 Usage . 20
4.3.3 Demo . 21

4.4 OPENVINO Toolkit . 27
4.4.1 Introduction . 27
4.4.2 OpenVINO as Inference . 28
4.4.3 Steps to Create a custom plugin 29

5 Results, Conclusion and Future Work 30
5.1 Results . 30
5.2 Conclusion . 39
5.3 Future Work . 41

References 42

xiv

Chapter 1

Introduction

1.1 Purpose

One of the methods used to analyze performance of the processor is benchmarking.
In the data center scenario, the workloads are not similar to the workloads seen in
the desktop processors. The benchmarking done on the existing systems helps us in
pointing out the limitations and allow us to make suggestions for future accelerated
or general purpose inference hardware. The workloads should provide a sufficient and
accurate description of the programs of interest, for the resulting instruction streams.
It is challenging in nature to prove that the selected workload is representative as
the amount of information which is known to us is limited. For such scenarios where
the information or the resources are limited we can start with a narrowing down the
range of application of interest and start with small benchmarking program.

In this thesis, two stages of benchmarking is carried out : Time-line profiling
of the workload and System level performance analysis for the workload. Timeline
profiling provides the information on the time taken by the process to run as an
inference on the server and the system level performance provides the information
of the core and memory computational analysis.

1.2 Motivation

Artificial Intelligence (AI) Workload analysis plays critical role in understanding
the problems in design and development of server systems. This helps the architects
to predict the system behaviour of the upcoming systems or System On Chip (SOC)s.

It is important to understand the target market, predict the future devices (SOCs
, Field-Programmable Gate Array (FPGA) accelerators) and the associated work-
load, which the market is expecting.

1

Performance Analysis of AI workload on Intel hardware platform

1.3 Objective

The main objectives of the project are as follows:

• To benchmark an implementation of AI workload on end to end speech synthe-
sis directly from text (through its inference) on Intel hardware and compare it
against other competitive hardware platforms such as those based on Graphics
Processing Unit (GPU)s.

• After performance analysis and finding hot-spots, provide recommendations
in Intel software and hardware domains.

1.4 Requirements

The development and implementation of this project requires following:

• Knowledge of workload/ topology

• Understanding of processor performance metrics

• Knowledge of profiling tools

• Shell scripting

• Python scripting

1.5 Scope of Work

The main objective is to characterize and analyze the speech AI workload proxies,
benchmark it and come up with the recommendations for core architects and help
them in defining new SOCs.

2

Performance Analysis of AI workload on Intel hardware platform

1.6 Gantt Charts

1.6.1 Project Work-Flow Phase-1

Figure 1.1: Project Work-Flow Phase-1

1.7 Thesis Outline

• Chapter-1 contains the brief information about motivation and objective of
the project along with the Gantt charts indicating project development work
flow.

• Chapter-2 describes the literature survey by providing the overview of work-
load characterization.

• Chapter-3 discusses about the speech workload topology used for benchmark-
ing and the methodology used for benchmarking

• Chapter-4 discusses the tools used for TTS Tacotron2 topology benchmark-
ing

• Chapter-5 project results and concludes the project report and discusses the
possible future work.

3

Chapter 2

Literature Survey

The deep learning techniques for machine learning is related to three main
complementary trends namely the progress in new algorithms, the availability of big
amounts of labeled data and the increasing computational power. As now the data
for machine learning is increasing, improving one of these areas usually demands im-
provements in the others. There is a huge computational demand for existing DNN
platforms. Efforts have been increased significantly in the fields of computing and
storage according to the needs of DNN models with improvements in performance
compared to conventional computing systems.

In 2005, Standard Performance Evaluation Corporation (SPEC) issued set of
benchmarks evaluating CPU, main memory, disk subsystems, network cards includ-
ing web servers and operating systems[29]. But this could not fulfill the require-
ment of benchmarking AI workload at inference. In the year 2017, people from
google and stanford university came up with the first DNN benchmarks which fo-
cussed on end-to-end performance called DAWNBench [30]. It provided an objective
of normalizing across differences in the areas of computer hardware, computation
frameworks, algorithms and its optimizations, different hyperparameter settings,
and other real-world performance affecting factors. In 2018, UC Berkeley together
with Baidu, Google, Harvard University, and Stanford University came up with new
benchmarking suite for machine learning called MLPerf. MLPerf aims to provide
complete system level measures for both training and inference. MLPerf provides
the benchmarking suite[31] for the areas such as Image classification, Object detec-
tion, Speech to text, Machine Translation, Sentiment Analysis and Reinforcement
Learning. Along with MLPerf facebook too came up with its own deep learning
inference benchmarks [32] for its own data centers.

The TTS Tacotron2 workload is characterized in terms of Processing time
for single and batch streams of data, Memory bandwidth utilization and Memory
latency, Hotspot analysis, and an effective CPU Utilization, Core Scaling, Memory
Bandwidth. It is necessary to understand CPU states in order to understand the
behavior of any workload on any platform. CPU might get fully utilized even at
maximum frequency due to the high intensive workload. Similarly, a low profile

4

Performance Analysis of AI workload on Intel hardware platform

workload utilizes lower CPU frequency for a less fraction of time. This will also
vary energy efficiency of the system and performance of the workload.

Here the workload is repeatedly tested multiple alternatives under same con-
ditions.

5

Chapter 3

Speech Workload Performance
Characterization

3.1 Tacotron 2

3.1.1 About the Topology

In this section, we will cover the detailed architecture of the Google’s tacotron2
TTS workload and explicitly show how the model works for speech synthesis [1] (as
inference).

The TTS Tacotron 2 network is a combination of wavenet [2] and Google’s
previous speech project Tacotron.

It consists of sequence-to-sequence [3] model with attention layer. Encoder,
Decoder and Attention mechanism are customized compared to a basic sequence-
to-sequence architecture composed using only recurrent layers.

WaveNet provides a generative model of time domain waveform. It produces
natural sounding audio fidelity. However, the inputs to WaveNet need a significant
domain expertise to produce a human like voice as they require elaborate text-
analysis systems and a detailed pronunciation guide.

6

Performance Analysis of AI workload on Intel hardware platform

Figure 3.1: A detailed look at Tacotron 2’s model architecture

A recurrent sequence-to-sequence [3] architecture is used for producing magni-
tude spectrograms from a sequence of characters i.e. it synthesizes speech directly
from words. A single neural network trained from data alone for production of the
linguistic and acoustic features. Tacotron uses the Griffin-Lim algorithm for phase
estimation.

In comparison to Tacotron, Tacotron 2 uses simpler building blocks i.e. vanilla
LSTM and convolutional layers in the encoder and decoder. Each decoder step uses
a single spectrogram frame.

Summarizing the architecture, Tacotron 2 uses a sequence-to-sequence model
optimized for TTS in order to map a sequence of letters to a sequence of features
that encode the audio.

These sequence of features include an 80-dimensional audio spectrogram with
frames computed every 12.5 milliseconds. They are used for capturing word pro-
nunciations, and various other qualities of human speech such as volume, speed
and pitch. Finally, these features are converted to a waveform of 24 kHz using a
WaveNet-like architecture. Tacotron 2 system can be trained directly from data
without relying on complex feature engineering. It achieves state-of-the-art sound
quality close to that of natural human speech. Their model achieves a Mean Opinion
Score (MOS) of 4.53 [4] comparable to a MOS of 4.58 [4] for professionally recorded
speech. Google has also provided Tacotron 2 audio samples that demonstrate the
results of their TTS system.

7

Performance Analysis of AI workload on Intel hardware platform

3.2 System Configuration

3.2.1 Hardware Configuration

Table 3.1: Hardware Configuration for Test

Sr. No Title Configuration
1 Architecture x8664
2 CPU op-mode(s) 32-bit
3 Byte Order Little Endian
4 CPU(s) 96
5 On-line CPU 0-95
6 Thread(s) per core 2
7 Core(s) per socket 2
8 Socket(s) 2
9 NUMA node(s) 2
10 Vendor ID GenuineIntel
11 CPU family Skylake 6
12 Model name Intel(R) Xeon(R) Platinum 8160 CPU @ 2.10GHz
13 CPU max MHz 3700
14 CPU min MHz 1000
15 BogoMIPS 4191.54
16 Virtualization VT-x
17 L1d cache 32K
18 L1i cache 32K
19 L2 cache 1024K
20 L3 cache 33792K

8

Performance Analysis of AI workload on Intel hardware platform

3.2.2 Software Configuration

• Ubuntu 16.04.4 LTS

• Kernel: 4.4.0-97-generic

• Python 3.5

• Intel Optimized Tensorflow v1.9

• Source: https://storage.googleapis.com/intel-optimized-tensorflow/tensorflow-
1.9.0-cp35-cp35m-linux x86 64.whl

• Numpy v1.15.0

3.2.3 Dataset / Corpus

• LJ Speech : It is a publicly available (open-source) speech dataset consisting
of 13100 [5] short audio clips of single speaker. These audio clips are the
recordings for the speaker reading non-friction books. Each clip varies in the
length of 1 to 10 seconds. A total length of 24 hours audio is recorded in this
dataset.

3.2.4 Implementation used

To do the benchmarking on TTS Tacotron 2, we have used DeepMind’s Tacotron-
2 Tensorflow implementation done by Rayhane-mamah available on the GitHub.
More details about the implementation -

• URL: https://github.com/Rayhane-mamah/Tacotron-2

• Author: Rayhane-mamah

• Number of Commits: 149

• Contributors: 14

9

https://github.com/Rayhane-mamah/Tacotron-2

Performance Analysis of AI workload on Intel hardware platform

3.3 Benchmarking methodology for AI topology

For benchmarking TTS topology we will be following the below mentioned steps:

a. Performance : The first benchmark we carry out is to do the time-line
profiling. The time-line profiling gives us the amount of time the application
is taking to run on the targeted hardware. Different single and batch data is
provided and a matrix is created to understand the time consumption of the
application.

Here we use system time and the python’s timing Application Programming
Interface (API).

b. Topology : After the timeline profiling, the next part is understanding the
portion in the topology consuming more time. This analysis helps us in moving
forward into benchmarking the most core and memory compute area’s of the
topology.

With the help of Google’s chrome tracing and tensor flow’s tensorboard visu-
alizer we do topology benchmarking.

c. System : After analyzing time taken and the topology of the workload, system
benchmarking is done.

In this section, various analysis on topology is done.

System benchmarking can again be subdivided into 3 parts namely -

(1) Finding Hotspots : This is done for analyzing the implemented al-
gorithm’s call paths. Analyzing call paths to find where the code is
spending the most time and discover opportunities for tuning the algo-
rithms. Advanced Hotspots helps us for analyzing an application or the
entire system and getting the kernel information with higher resolution
and shorter sampling intervals.

(2) Parallelism : Parallelism helps us to understand whether algorithm
wants to access the compute efficiency of the multi-threaded application.
Different checks like Concurrency, Locks and waits and High Performance
Computing (HPC) Characterization.

Concurrency is finding areas with high or low concurrency, and identi-
fying serial bottlenecks in the code.

Locks and waits is best for locating causes of low concurrency, such as
heavily used locks and large critical sections.

HPC Performance characterization is best for understanding how
the compute-intensive OPENMP or Message Passing Interface (MPI)
app is using the CPU, memory and Floating Point Units (FPU) resources.

10

Performance Analysis of AI workload on Intel hardware platform

(3) Micro-architecture: Here we look into the micro-architecture of the
hardware for identifying the CPU pipeline stage (front-end and back-end)
and hardware units responsible for the hardware bottlenecks.

Along with that we check for the memory bounds to determine which level
of memory hierarchy is impacting the performance by reviewing the CPU
cache and main memory usage, including possible Non-uniform memory
access (NUMA) issues.

d. Platform Analysis: In this analysis we check -

• Disk Input and Output: Best for monitoring usage of the disk sub-
system, CPU, and processor buses.

• System Overview : Best for understanding how interrupts (IRQ), fre-
quency, threads, and sleep states impact system performance.

11

Chapter 4

Tools used

This chapter describes various tools used during this project and some information
on its usage.

4.1 Chrome Tracing

4.1.1 Introduction

When diagnosing performance problems it can be valuable to see which processes
or functions are consuming more time to compute. Google chrome timeline feature
API helps us in getting the complete time-line for the given application.

The activities are recorded in chrome’s processes, it records C++, JavaScript
and Python [5] method signatures. Chrome tracing tool helps user to identify per-
formance bottlenecks, events and slow operations.

4.1.2 How to get it ?

No special tool is required to download, user just have to include few lines of code
in the existing python script file. Details are shown in the usage topic [topic 4.1.4]

4.1.3 Usage

Its very simple to use, user needs to use chrome tracing view is -

• Produce a JSON [5] file with the format expected by Chrome.

• Navigate to chrome://tracing in Chrome browser

• Click Load button and open your file explorer, or alternatively drag the file
into Chrome.

12

Performance Analysis of AI workload on Intel hardware platform

4.1.4 Demo

The below snapshot shows a sample example of how to insert the required libraries
in the tensorflow code.
NOTE: This sample code is taken as a reference to explain the chrome tracing
usage from Illarion [7], Git Repository.

Figure 4.1: Chrome Tracing Example code

13

Performance Analysis of AI workload on Intel hardware platform

Figure 4.2: Chrome Tracing time profiling for above example

4.2 Intel VTune Amplifier

4.2.1 Introduction

Intel’s VTune Amplifier [10] is source-code profiling software. It is popular in the
HPC community for its highly versatile accurate sampling capacity along with its
low collection overhead. It includes features such as Software stack sampling, thread
profiling, and low-level hardware event sampling. Intel VTune comes with command
line interface, and a mature and convenient graphical user interface. It is easy to
use for a user, who can just mouse-around and effectively get into the code and map
bottlenecks to specific lines in the user’s source code.

Intel VTune Amplifier is used to locate or determine the following:

• The most time-consuming (hot) functions in your application.

• Identify sections of code that do not effectively utilize available processor.

• Sections of code to optimize for sequential performance and for threaded per-
formance

• Time consumption on input/output operations

• The performance impact of different synchronization methods, different num-
bers of threads, or different algorithms

14

Performance Analysis of AI workload on Intel hardware platform

• Thread activities and transitions

• Hardware-related issues in your code such as data sharing, cache misses, branch
miss-prediction, and others

4.2.2 How to get it ?

Intel’s VTune Amplifier is available in different software suits through software.

intel.com. It is now integrated with the following tools from Intel, Intel Parallel
Studio XE [8], Intel System Studio[9], and Intel Media Server Studio[10].

4.2.3 Usage

User can use this tool to analyze performance using following configurations -

• Hotspots analysis

• Micro-architecture analysis

• Platform analysis

User may choose to run any of the available analysis types either from the Graphical
User Interface (GUI) (amplxe-gui) or using command line interface (amplxe-cl).

4.2.4 Demo

In this project course, we have explored the two configurations namely Hotspots
and Micro-architecture analysis.

Hotspots Analysis

The Hotspots analysis configuration targets software tuning and helps user to under-
stand where the application spends time and analyze the efficiency of the algorithms.

Hotspots analysis is used to understand an application flow and identify sections
of code that get a lot of execution time (Hotspots). This is a starting point for your
algorithm analysis.

The Hardware event based sampling mode is based on the hardware event-based
sampling collection and analyzes all the processes running on your system at that
instance, providing CPU time data on whole system performance.

Below image shows the screen-shot for the Hotspots analysis module.

15

software.intel.com
software.intel.com

Performance Analysis of AI workload on Intel hardware platform

Figure 4.3: The Hotspots analysis with Intel VTune Amplifier provides two
sampling-based collection modes [10]

Micro-architecture Exploration View

When Micro-architecture exploration analysis (commonly known as General Ex-
ploration) is completed, the VTune amplifier opens the event-based metrics in a
hierarchical viewpoint depending on the hardware architecture. Below figure shows
the top-down characterization of the application. Each pipeline slot is classified into
exactly one of these four categories.

16

Performance Analysis of AI workload on Intel hardware platform

Figure 4.4: The high-level performance metrics in the Micro-architecture Explo-
ration viewpoint

The summary window of micro-architecture exploration tab provides the follow-
ing application level statistics -

• Micro-architecture metric diagram

• Analysis metrics

• CPU Utilization Histogram

• Collection and Platform Info

Below snapshots provides information on the performance data captured dur-
ing the hardware event-based sampling analysis [?, r10]y following the steps below:
NOTE: The data shown in the images are just for reference purpose, doesn’t indi-
cate the actual data of the workload.

a. Learn metrics and define a performance baseline. Summary tab dis-
plays the summary statistics on the overall application execution per hardware-
related metrics.

17

Performance Analysis of AI workload on Intel hardware platform

Figure 4.5: Summary Tab in General Exploration

b. Identify hardware issues. Here in this example each row represents a pro-
gram unit and percentage of time used by this unit. Program units that take
more than 5% of the CPU time are considered as hotspots. The VTune Am-
plifier sorts the data in the descending order by Clock-ticks by default and
provides the hotspots at the top of the list.

18

Performance Analysis of AI workload on Intel hardware platform

Figure 4.6: Bottom-up Tab in General Exploration

c. Analyze source. To check the a critical function (hotspot), by double-
clicking to open the Source/Assembly window, user can analyze the source
code. It basically redirects user to the source code and Source/Assembly win-
dow displays event data.

Figure 4.7: Image showing back-end issues using function / call stack

19

Performance Analysis of AI workload on Intel hardware platform

4.3 Intel Performance Counter Monitor

4.3.1 Introduction

Microsoft Windows OS provides a utilization meter which shows the percentage of
CPU being utilized, but it fails to provide more details on memory access stalls,
synchronization, CPU I/Os, Simultanous Multithreading (SMT) etc. Even UNIX’s
top utility [11] lists the portion of time slots that the scheduler in OS could assign
to execution of the running programs and the rest of time it sits idle.

Figure 4.8: An overview of a modern multi-processor, multi-core system [14]

To get that data, Intel processors already provide the capability to monitor
performance events inside processors named Performance Monitoring Units (PMU)
implemented in Intel’s processors. This feature set available in the following Intel
processors: Intel Xeon 5500, 5600, 7500, E5, E7 and Core i7 processor series [2-4][14].

The following metrics are supported by Performance Counter Monitor (PCM)

• Core: features like instructions retired, elapsed core clock ticks, core fre-
quency including Intel Turbo boost technology, L2 cache hits and misses, L3
cache misses and hits (including or excluding snoops) are included.

• Uncore: features like read bytes from memory controller(s), bytes writ-
ten to memory controller(s), data traffic transferred by the Intel’s QuickPath
Interconnect (QPI) links are included.

4.3.2 Usage

Two ways it can be used i.e. by calling its C++ API or by calling it from the
command line / UNIX shell. Different commands provides different functionality.
Below table shows the different commands with its functionality.

20

Performance Analysis of AI workload on Intel hardware platform

Table 4.1: PCM Commands and its Functionality

Sr. No Command Functionality
1 pcm.exe Provides CPU statistics for both sockets and cores
2 pcm-core.exe Provides detailed core level information
3 pcm-memory.exe Provides socket and channel level read/write throughput information
4 pcm-numa.exe Provides memory NUMA memory access information information
5 pcm-pcie.exe Provides PCIe usage information

The example or the demo[14] screen-shots and the screen-shots shall be discussed
in the topic 4.3.3.

4.3.3 Demo

Here is a demo of each of the executable in the directory and a sample output of
each. Note: user can export data to a Comma Separated Values (CSV) file for
easier analysis. The following are the abbreviations which are used in representing
the PCM data.

• EXEC : instructions per nominal CPU cycle

• IPC : instructions per CPU cycle

• FREQ :relation to nominal CPU frequency=’unhalted clock ticks’/’invariant
timer ticks’ (includes Intel Turbo Boost)

• AFREQ : relation to nominal CPU frequency while in active state (not in
power-saving C state)=’unhalted clock ticks’/’invariant timer ticks while in
C0-state’ (includes Intel Turbo Boost)

• L3MISS : L3 cache misses

• L2MISS :L2 cache misses (including other core’s L2 cache *hits*)

• L3HIT :L3 cache hit ratio (0.00-1.00)

• L2HIT :L2 cache hit ratio (0.00-1.00)

• L3MPI :number of L3 cache misses per instruction

• L2MPI :number of L2 cache misses per instruction

• READ : bytes read from memory controller (in GBytes)

• WRITE :bytes written to memory controller (in GBytes)

21

Performance Analysis of AI workload on Intel hardware platform

• TEMP : Temperature reading in 1 degree Celsius relative to the TjMax tem-
perature (thermal headroom): 0 corresponds to the max temperature energy:
Energy in Joules

Below are the screen-shots for PCM executable mentioned in table 4.1.

Figure 4.9: Example for PCM.exe command

22

Performance Analysis of AI workload on Intel hardware platform

Figure 4.10: Example for pcm-core.exe command

23

Performance Analysis of AI workload on Intel hardware platform

Figure 4.11: Example for pcm-memory.exe command

24

Performance Analysis of AI workload on Intel hardware platform

Figure 4.12: Example for pcm-numa.exe command

25

Performance Analysis of AI workload on Intel hardware platform

Figure 4.13: Example for pcm-pcie.exe command

26

Performance Analysis of AI workload on Intel hardware platform

4.4 OPENVINO Toolkit

4.4.1 Introduction

Intel launched its new toolkit named OpenVINO i.e. Open Visual Inference Neural
Network Optimization in 2018 as free to use and open source. This toolkit provides
key functionality to develop applications which emulates human vision, making it
fast and optimized across all Intel platforms (GPGPU [16], CPU, Intel Movidius
NCS [17], and ARRIA FPGA cards [18]) and making them easier to work on the
heterogeneous computing by offering a common API.

This toolkit helps in quickly deploying applications. Through its optimization
for the computer vision workloads across Intel hardware, providing an amplified
performance. OpenVINO includes Deep Learning Deployment Toolkit (DLDT) [19]
as its base.

Following are the features of the new released OpenVINO toolkit - Following are
the features of the new released OpenVINO toolkit -

• It Enables Convolutional Neural Network (CNN) - based deep learning infer-
ence on the edge.

• Supports heterogeneous execution across CPU, Integrated Graphics (GPGPU),Movidius
Neural Compute Sticks, and Movidius VPUs.

• It helps in speeding up time-to-market via an easy-to-use library of computer
vision functions and pre-optimized kernels.

• It also includes optimized calls for computer vision standards including OpenCV
[20], OpenCL [21], and OpenVX [22]

There are major two components for using OpenVINO,

• Model Optimizer - Model Optimizer tool is a cross-platform command line
tool facilitating the transition between the training and deployment environ-
ment. It performs model analysis and optimizes the model execution for end-
point devices.

Model Optimizer supports multiple deep learning frameworks and formats.

As the outcome of the model optimizer, we get intermediate representation
file i.e. an Extensible Markup Language (XML) and a Binary (BIN) file.

• Inference Engine - Once the intermediate representative - IR is generated,
we need to use the Inference Engine to infer input data. The Inference Engine
library comes with a set of C++ classes to infer input data (images) and get a
appropriate results. This library provides an API to read the output of model
optimizer, set the input and output formats, and execute the model on the
required device. The main focus in this thesis is on Inference Engine.

27

Performance Analysis of AI workload on Intel hardware platform

4.4.2 OpenVINO as Inference

Workflow and API overview

The common workflow contains the following steps:

a. First step is to read an IR file into a InferenceEngine::CNNNetwork class of
inference engine API. This class represents the network in host memory.

b. Now Prepare inputs and outputs format, specific input and output precision,
and the layout on the network is required. CNNNetwork::getInputInfo() and
CNNNetwork::getOutputInfo() API are used here.

c. Select the plugin (CPU, GPU, MYRAID, DLA etc.) on which to load your
network. The InferenceEngine::PluginDispatcher load helper class is used here.

d. Time to Compile and Load - to do so use the plugin interface wrapper class
InferenceEngine::InferencePlugin and call the LoadNetwork() API to compile
and load.

e. Time to Set input data - With the network loaded using LoadNetwork(), an
ExecutableNetwork object is used. Using this object to create an InferRequest,
further it can be used for input and output.

f. Execute - With the input and output memory now defined, choose your execu-
tion mode: Synchronously - Infer() is a method which blocks until inference
is finished. Asynchronously - StartAsync() is a method to check status with
the wait() method (0 timeout).

g. Finally we need the Get the output after the inference gets completed. Assign
the output memory or read the memory which is provided earlier. IInferRe-
quest::GetBlob() API is used to do this.

The following block diagram shows the integration process [23].

Figure 4.14: Block Diagram for OpenVINO integration process

28

Performance Analysis of AI workload on Intel hardware platform

4.4.3 Steps to Create a custom plugin

To create the custom plugin for the device running for inference using openvino, the
following things should be taken care -

a. Plugin Registration - device should be registered in IE i.e. Inference Engine,
which is main inference API for openvino. Custom plugin can do a public
inheritance from its inference engine plugin API wrapper.

b. Graph Creation - can be done by using the minimum API which is used in
ExecutableNetwork base.

c. Infer - Infer is main call in the architecture, the executable network or graph
network which is created in the above, is executed using infer. To implement
this, API is to be implemented by plugin, which is used in InferRequest base
of the openvino framework.

29

Chapter 5

Results, Conclusion and Future
Work

5.1 Results

This section will highlight some graphs and snapshots observed during the bench-
marking or performance analysis for TTS Tacotron 2 algorithm.

a. Topology Analysis - Below are the screenshots of the topology used for
benchmarking. The visualization of the topology is done using tensorboard
provided by tensorflow.

30

Performance Analysis of AI workload on Intel hardware platform

Figure 5.1: Tensorboard Topology Diagram for TTS Tacotron2

5.1 shows the pictorial view of the tacotron topology. It is generated using ten-
sorboard. The portions in Red color suggests the amount of time taken in that
section is more. In the above figure, decoder, reshape and postnet projection
are the sections consuming most time.

31

Performance Analysis of AI workload on Intel hardware platform

Figure 5.2: Hotspot in tacotron

On further investigations inside decoder section, the most time consuming
element found are lstm’s, prenet, attention mechanism, linear transformations
and stop projection as seen in 5.2. These elements internally uses RNN’s and
LSTM’s.

32

Performance Analysis of AI workload on Intel hardware platform

Figure 5.3: Wavenet visualization in tacotron

As seen in the above fig 5.3 the hotspot seen in the wavenet implementation
is dilated convolutions [27] which takes 90% of the overall end-to-end speech
synthesis time. Wavenet is responsible to generate audio from the given mel-
spectrum files.

Initial observations for Tacotron2 suggests that the wavenet [2] is the major
hotspot in the topology. Also the repository what we are using for benchmark-
ing has implemented the Wavnet in pytorch [24] which is entirely different

33

Performance Analysis of AI workload on Intel hardware platform

framework implementation.

The following benchmarks are done on the Tacotron part from Tacotron2
topology.

b. Baseline analysis - List of libraries and versions of libraries used in this
analysis are -

• falcon = 1.2.0

• inflect = 0.2.5

• librosa = 0.5.1

• matplotlib = 2.0.2

• numpy = 1.16.3

• scipy = 1.2.1

• tqdm = 4.31.1

• Unidecode = 0.4.20

• tensorflow = 1.9 (baseline and Intel optimized)

c. Timeline analysis - Timeline analysis is taken by running the tacotron mod-
ule of TTS Tacotron2 in single and batch modes. Different time profiling
graphs are shown below with the suitable test scenario.

(1) Time analysis for single sentence with lower and upper case.

Figure 5.4: Comparison between lower case and upper case text

(2) Time taken by the topology to infer with the random data vs English
language corpus.

34

Performance Analysis of AI workload on Intel hardware platform

Figure 5.5: Random data vs Corpus data for Baseline TF

Figure 5.6: Random data vs Corpus data for Intel optimized TF

(3) Time analysis graph for Batch streams showing comparison for baseline
and Intel optimized tensorflow.

35

Performance Analysis of AI workload on Intel hardware platform

Figure 5.7: Time comparison between Intel optimized and Baseline tensorflow for
batch

Figure 5.4 state that if the text used in the inference corpus is written
in the upper case, the time taken to process is more. Adviced corpus
representation should be in camelcase. Figure 5.5 and 5.6 shows the
improvement using Intel’s optimzed TF. These analysis helps in further
evaluation and start system level performance.

d. System analysis - VTune Amplifier

System analysis gives the signature of the algorithm or the behavior of the
algorithm on the server system. There are three major parameters checked
inside the system analysis namely

• High Performance Characterization analysis -

Figure 5.8: Baseline Bandwidth Utilization Histogram

36

Performance Analysis of AI workload on Intel hardware platform

Figure 5.9: Optimized Bandwidth Utilization Histogram

The graphs plot indicates the bandwidth utilization or the memory ob-
jects with maximum contribution to the high bandwidth utilization. It is
observed that Baseline tensorflow framework utilizes very less bandwidth.

Figure 5.10: Optimized Effective Physical Core Utilization

Figure 5.11: Baseline Effective Physical Core Utilization

The above graphs suggests the CPU is utilized more when Intel optimized
framework is used compared to baseline tensorflow framework.

• Hotspots by CPU Utilization-

Figure 5.12: Hotspot analysis for Baseline tensorflow

37

Performance Analysis of AI workload on Intel hardware platform

Figure 5.13: Hotspot analysis for Optimized tensorflow

Figures 5.10 and 5.11 indicates the major hotspot for the topology. It is
observed that the optimized tensorflow framework uses MKL i.e. Math
Kernel Library optimized for Intel hardware. Baseline framework uses
the eigen operations.

• Micro Architecture Exploration -

Figure 5.14: Micro Architecture analysis comparison

Figure 5.14 shows the comparison of base line vs intel optimized tensor-
flow effect on the hardware. Observations from above graph is stated
below.

– Bad Speculation - represents a pipeline slot fraction wasted due
to incorrect speculation. Here in our topology it is observed quite
less. So less branch miss-prediction is observed.

– Front End Bound - responsible for fetching operations that are
execuated later on by Back end part. Stalls due to instruction cache
misses would be categorized as Front end bound. Intel optimized TF
shows improvement compared to baseline.

– Back End Bound - is divided into two main categories.

38

Performance Analysis of AI workload on Intel hardware platform

∗ Memory Bound - measures a fraction of slots where pipeline
could be stalled due to demand load or store instructions. It
further consists of L1, L2 and L3 cache bounds. Ideal response
of cache and cache latency indicates the fast availability of data
to the processing core. Less the value is beneficial.
Intel optimized TF shows better result on this.

∗ Core Bound - suggests Core Non-memory issues of a bot-
tleneck. It also represents the shortage of hardware compute
resources or indicates the machine ranout of an Out of order
resources. Intel Optimized TF shows better performance.

– DRAM Bound - indicates how often CPU was stalled on the main
memory i.e. DRAM. Caching improves the latency and increases the
performance.

– Memory Bandwidth and Memory Latency - Memory band-
width represents the bandwidth limits of the main memory. Memory
latency can be improved by optimizing data layout or using software
prefetches.

– CPU Utilization - indicates how efficiently the application utilizes
the physical CPU cores. An utilization of 100% shows that all the
physical cores are utilized.
In this usecase, Intel optimized TF shows better results.

5.2 Conclusion

In this part of work, the performance analysis of TTS Tacotron2 AI topology on
Intel platforms by characterizing workload proxies related to speech was carried out.
Using Intel’s tool VTune Amplifier tools we can get a performance statistics of how
the topology is behaving on Intel’s hardware. Using the results generated by the
tools on the compute and memory usage of the topology, further recommendation’s
are to be proposed in the hardware(in terms of architecture i.e. instruction set
architecture) and software(python, tensorflow etc.) optimization’s teams internally
in Intel. The following are the major observations and possible recommendations
for the analysis done.

• Observed a 4.6x times better performance on CPU utilization for tacotron
module in TTS Tacotron2 topology by simply using Intel’s optimized TF
framework.

• As we go on increasing the batch size and number of characters, the workload
gets backend bound with memory as a bottleneck. This may be taken to
further deeper analysis with focus on memory transactions or data partitioning
techniques.

39

Performance Analysis of AI workload on Intel hardware platform

• As seen from the topology analysis, major hotspot for tacotron is its decoder.
Decoder is mainly made up using LSTM’s. Possible recommendations could
be running these LSTM’s on the other devices using openvino toolkit or op-
timization’s in tensorflow to avoid the memory bounds. Even optimization’s
can be done in GEMM -General Matrix Multiplication.

40

Performance Analysis of AI workload on Intel hardware platform

5.3 Future Work

• Setting up tacotron on FPGA for benchmarking.

• Implementation of AI topology on FPGA using Open Visual Inferencing and
Neural Network Optimization (OpenVino) toolkit.

41

References

[1] speech synthesis defination, https://whatis.techtarget.com/definition/speech-
synthesis

[2] WaveNet: A Generative Model for Raw Audio
https://deepmind.com/blog/wavenet-generative-model-raw-audio/

[3] Ilya Sutskever, Oriol Vinyals, Quoc V. Le, “Sequence to Sequence
Learning with Neural Networks, ”, Proc. NIPS, Montreal, CA, 2014
https://ai.google/research/pubs/pub43155

[4] Jonathan Shen1, Ruoming Pang1. “NATURAL TTS SYNTHESIS BY CON-
DITIONING WAVENET ON MEL SPECTROGRAM PREDICTIONS, ”,
Google, Inc. Feb 2018 https://arxiv.org/pdf/1712.05884.pdf

[5] The LJ Speech Dataset, recorded by Linda Johnson and annotation by Keith
lto. https://keithito.com/LJ-Speech-Dataset/

[6] The Trace Event Profiling Tool (about:tracing)
https://www.chromium.org/developers/how-tos/trace-event-profiling-tool

[7] Illarion Khlestov, Machine Learning Researcher
https://towardsdatascience.com/howto-profile-tensorflow-1a49fb18073d

[8] Intel System Studio from Intel’s Developer Zone, retrieved from
https://software.intel.com/en-us/system-studio

[9] Intel Parallel Studio XE from Intel’s Developer Zone, retrieved from
https://software.intel.com/en-us/system-studio

[10] Intel Media Server Studio from Intel’s Developer Zone, retrieved from
https://software.intel.com/en-us/intel-media-server-studio

[11] Intel VTune Amplifier, Intel Software Developer Zone
https://software.intel.com/en-us/vtune

[12] Top - Table of process , Unix Task manager
https://en.wikipedia.org/wiki/Top (software)

42

Performance Analysis of AI workload on Intel hardware platform

[13] Interpreting General Exploration Data, Retrieved from
https://scc.ustc.edu.cn/zlsc/tc4600/intel/2017.0.098/vtune amplifier xe/help/GUID-
8FCE6EF8-301B-4D62-B09E-EF79FE7CC33D.html

[14] Intel Performance Counter Monitor , Retrieved from
https://unhandled.wordpress.com/2017/05/17/hardware-
performancemonitoring-deep-dive-using-intel-performance-counter-monitor/

[15] Intel Performance Counter Monitor , Retrieved from
https://software.intel.com/en-us/articles/intel-performance-
countermonitorintro

[16] Intel Graphics Technology , Retrieved from
https://www.intel.in/content/www/in/en/architecture-and-technology/visual-
technology/graphics-overview.html

[17] Intel Movidius , Retrieved from https://www.movidius.com/

[18] Intel ARRIA 10 , Retrieved from https://www.intel.in/content/www/in/en/products/programmable/fpga/arria-
10.html

[19] Intel Deep Learning Deployment Toolkit, Retrieved from
https://software.intel.com/en-us/openvino-toolkit/deep-learning-cv

[20] OpenCV, Retrieved from https://opencv.org/

[21] OpenCL, Retrieved from https://www.khronos.org/opencl/

[22] OpenVX, Retrieved from https://www.khronos.org/openvx/

[23] OpenVINO integrate with custom application, Retrieved from
https://docs.openvinotoolkit.org/latest/ docs IE DG Integrate with customer application new API.html

[24] Pytorch, Retrieved from https://pytorch.org/

[25] MKL-DNN, Retrieved from https://github.com/intel/mkl-dnn

[26] Fused RNN Operators for CPU , Retrieved from
https://cwiki.apache.org/confluence/display/MXNET/Fused+RNN+Operators+for+CPU

[27] Long, J., Shelhamer, E., Darrell, T. (2014). Fully Convolutional Networks for
Semantic Segmentation. Retrieved from http://arxiv.org/abs/1411.4038v1

[28] GEMM - General Matrix Multiply , Retrieved from
https://software.intel.com/en-us/articles/gemm

[29] SPEC - Standard Performance Evaluation Corporation, Retrieved from
https://www.spec.org/web2005/

43

Performance Analysis of AI workload on Intel hardware platform

[30] DAWNBench Retrieved from https://dawn.cs.stanford.edu/2017/11/29/dawnbench-
intro/

[31] MLPerf Retrieved from https://mlperf.org/

[32] Facebook research author Park, Jongsoo and Naumov, Maxim and Basu, Pro-
tonu and Deng, Summer and Kalaiah, Aravind and Khudia, Daya and Law,
James and Malani, Parth and Malevich, Andrey and Nadathur, Satish and
Miguel Pino, Juan and Schatz, Martin and Sidorov, Alexander and Sivakumar,
Viswanath and Tulloch, Andrew and Wang, Xiaodong and Wu, Yiming and
Yuen, Hector and Diril, Utku and Smelyanskiy, Mikhail, year = 2018, month
= 11, pages = , title = Deep Learning Inference in Facebook Data Centers:
Characterization, Performance Optimizations and Hardware Implications

44

	Declaration
	Disclaimer
	Certificate
	Acknowledgements
	Abstract
	Abbreviation Notation and Nomenclature
	List of Figures
	Introduction
	Purpose
	Motivation
	Objective
	Requirements
	Scope of Work
	Gantt Charts
	Project Work-Flow Phase-1

	Thesis Outline

	Literature Survey
	Speech Workload Performance Characterization
	Tacotron 2
	About the Topology

	System Configuration
	Hardware Configuration
	Software Configuration
	Dataset / Corpus
	Implementation used

	Benchmarking methodology for AI topology

	Tools used
	Chrome Tracing
	Introduction
	How to get it ?
	Usage
	Demo

	Intel VTune Amplifier
	Introduction
	How to get it ?
	Usage
	Demo

	Intel Performance Counter Monitor
	Introduction
	Usage
	Demo

	OPENVINO Toolkit
	Introduction
	OpenVINO as Inference
	Steps to Create a custom plugin

	Results, Conclusion and Future Work
	Results
	Conclusion
	Future Work

	References

