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Abstract

VLSI technology is advancing day by day, transistors have been scaled down a lot

incorporating more complex design in single System on Chip (SoC). Now a days the

complexity of chip is rapidly increasing, verification plays a dominant role concerned

with time and price in the enhancement of a Soc. Increased design complexity

mandates the need for functional verification. The bug that is found at early level

of abstraction will reduce the total cost incurred on a single chip so 70 percent of

the time is devoted in verifying the design.

Even though SOC requires multi-instances of IP integration and verification

collateral, the IP development methodology is built for a single instance and this

introduces unique challenges at SOC. Numerous challenges arise when the IP en-

vironment is stamped multiple times with regards to RTL, Test bench, test Island

collateral integration and IP validation, resulting in long integration and debug cy-

cles. This report addresses the SoC problem of integration of IPs by providing a

mini SoC framework, which delivers scalable integration (collage and testisland)

collateral capability, flexible reconfiguration of the verification environment. This

report also presents key learnings and challenges encountered during development

of the Multi-Instance (MI) SoC-Subsystem. This proof-of-concept subsystem was

successfully deployed for PCIE Multiple Virtual Channel (MVC) IP and reused for

PCIE Single Virtual channel (SVC).

vii
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Chapter 1

Introduction

This chapter discusses about verification goals and also about motivation, objective

and problem statement.

1.1 Organization Profile

Intel is one of world’s leading semiconductor company and the developed x86 series

of processors, processors which were found in the computers. Intel was founded

in 1968 to develop semiconductor based memory products. Intel has developed

the worlds first processor in the year 1971. Today, Intel provides industries with

processors and software blocks that are the main parts of computers and networking

and servers and communications products.

Intel began its operations in India in the year 1988. Initially it was sales and

marketing office was started in India, Intel India was expanded in faster rate due to

the India’s I.T and engineering talent pool. At present work done at Intel India is

hardware and software engineering.

1
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1.2 Verification

The hardware design verification goal is to check design implementation matching

with high level specification. Hardware design should perform a particular task for

which it has implemented some IPs such as PCIE, I2C and USB etc. based on the

specifications of the design. The task of validation engineer is to make sure that

design should function correctly and complete that desired task i.e. the design is

an exact replica of the design. The verification process runs in parallels with the

RTL design process. Designers reads the hardware specification and understand

the human language description and creates the register transfer level (RTL) de-

scription in machine readable format generally called as RTL code. To write RTL

description one needs to get control on overall architecture of the design and input

format, transform function and the desired output. Verification process checks the

design for agreement with the specifications and reports any discrepancies / bugs.

Further prepares a verification plan along with the test list is created. The vali-

dation plan is close to the design and has explanation of what features need to be

added and what techniques can be used. The digital model is exercised in an OVM

based verification environment using automatically generated constrained random

test sequences. The progress of verification is tracked using the code and functional

coverage data. The coverage reports are analyzed and to address the gaps to reach

100 percent verification closure, the test set is supplemented by adding direct tests

which exercises the functionality to be tested.

One of the significant components in the verification environment is the Bus

Functional Model (BFM). BFM is nothing but an agent in the test environment

consisting of driver, monitor and sequencer. BFM model initiates bus transactions

as if the transactions were available from other external systems and evaluates the

output produced by the DUT. It converts from high level transactions into pin activ-

ities at the DUT interface. Verification engineer also need to study the architecture,

build the validation plan, then implement design to create tests so as to exercise RTL
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code. There are different ways to test the design. While performing verification it is

easier to find error at block level of modules designed by verification engineer. Bugs

at block level can be easily found as they are within the single block by writing the

directed tests. After the completion of block level verification, the further plan is to

search for the errors at corners of the different blocks. Mismatch in design will be

encountered when more than two designers follow the same design specification but

have different ideology. The Engineers job is to finds the more error prone areas of

design and this may even help to reconcile the two views of the designer. When the

DUT is complex, then the directed test will become a tedious job. So it demands a

specific preplanned verification plan for the testing all the scenarios in the DUT.[1]

1.3 Motivation

Scalability is newly growing term in industries to automate the entire design verifi-

cation environment according to design configurations. Since we are getting project

configurations and according to that we are creating our verification environment

and its different components. It is difficult for verification engineer to re-create an

environment based on new configurations with required time constrained. Many

times we copy previous environment and try to build environment and its compo-

nents based on specs. This method leads to many manual error and it becomes

cumbersome when debugging them.

Earlier projects took 4 to 8 weeks at SoC level to integrate subsystems. With

scalable platform performing complete Integration, time reduces to 1 to 2 weeks to

integrate subsystems.

Less than 2 weeks to integrate and run L0 content

Over 75% reuse reuse of validation content

Ensure changes to IP (in the boot path), reconfiguration of the chassis and

integration of the Chassis and IPs do not break the Boot flow

Reduce TTM for new SoCs
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The majority of bugs are solved which helps SoC team and reduces time to

market for SoC .

Maximum coverage of validation

Parallel and faster runs against subsystems enables quick debug.

1.4 Problem statement

Previous SoC projects took 6 to 8 weeks for SoC team, to integrate an IP delievered

by IP team and complete the validation. Moreover, verification collateral provided

by IP team was also not of right quality. This delayed the SoC projects, increasing

the time to market.For multi instance environment, the problem was more significant

to bring the validation collateral up in given deadlines.

A novel approach was invented consisting of mini SoC environment having es-

sential components to bring up the right quality of verification collateral. Scalable

environment for multiple instances is developed. Complete integration of IP’s pro-

vided by IP Team is performed at mini SoC level, providing this integrated IPs to

SoC team. Solving the majority of bugs at the mini SoC level, helps the SoC team

to complete the project in 1 week and this reduces the time to market for SoCs.

1.5 Objective

Major objectives of thesis are:

• Understand functionality of IP and its verification environment if already ex-

ist or create verification environment according to test plan and functional

requirement of IP.

• Learn System Verilog and OVM which are the fundamentals required for cre-

ating a complex reusable, constrained random stimulus and coverage driven

verification environment.
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• Analyze different OVM component and find the scope of scalability.

1.6 Flow Of Report

This thesis is divided into six chapters as follows:

• Chapter 1 This chapter presents basic theory on Verification, Motivation,

Problem Statement and Objective for the Thesis.

• Chapter 2 This chapter describes Literature Survey on System Verliog,VLSI

process flow and Verification.

• Chapter 3 This chapter describes an overview on Pre-Verification Process,

Functionality of Test Bench and Types of Testing.

• Chapter 4 This chapter presents discussion on Scalable Integration Plat-

form,Implementation details and challenges faced during Multi Instance SS

Verification Enablement

• Chapter 5 This chapter presents results of the project.

• Chapter 6 This chapter closes the thesis with concluding remarks

1.7 Summary

As discussed in this chapter, the major objective is to reduce the time to

market for SoCs by mini SoC environment having essential components to

bring up the right quality of verification collateral.



Chapter 2

Literature Survey

In the previous chapter, the motivation, objective and problem statement were dis-

cussed. This chapter explains VLSI process flow, types of verification and features

of System Verilog.

2.1 System Verilog

System Verilog combines the features of Hardware Description Languages like

Verilog and VHDL and with Hardware Verification languages like System C along

with features from C and C++.System Verilog was made an IEEE standard in 2005

(IEEE1800) and was updated in 2009 and later in 2012.It’s wide variety of options

and flexibility makes it as choice of industry standard. System Verilog applications

includes RTL design, Assertion Based verification, and coverage driven verifica-

tion environment using constraint random techniques.In a verification perspective,

System Verilog uses object oriented techniques consisting of classes and is closely

related to Java. Most of the EDA software vendors support System Verilog in their

products.

6
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Figure 2.1: VLSI Flow

2.2 VLSI Flow Process

Below are the steps in VLSI flow:

2.2.1 Design Specifications

• Goals and design constraints.

• Functionality.

• Speed and power performance metrics.

• Technology constraints (Fabrication technology and design techniques).
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2.2.2 Structural and Functional Description

Kind of architecture (structure) to be used for design, example ALU, pipelining,

RISC/CISC, etc. A complex system design problem can be normally divided into

smaller sub design. The functionality of this sub block should work according to the

specifications.

2.2.3 Logic Design/Register Transfer Level (RTL)

Once defined, the top level system and subsystems need to be implemented. They

are implemented using schematics, combinatorial and sequential logic, logic expres-

sion, finite state machines, etc. RTL should match the functional description of

the subsystems. RTL is usually described with Hardware Description Languages

as Verilog or VHDL. At this stage, Functional/Logical Verification is performed to

ensure the RTL designed achieves the required functionality.

2.2.4 Gate Level Net list

On completing the functional Verification an optimized Gate Level Net list is

generated from RTL through Logic/RTL synthesis. Synthesis Tools like as Design

Compiler (Synopsys), RTL Compiler (Cadence), Magma (Blast Create), etc are used

at this step. A design RTL description and standard cell library are inputs to the

synthesis tool and at the output it produces a gate-level net list. Constraints such

as area, timing, testability, power, etc. are considered. Synthesis tools calculate the

costs of different possible implementations to meet these constraints

2.2.5 Physical Implementation

Physical implementation of the Gate Level Net list is the next step in the ASIC

flow. The Gate level Net list (GLN) is converted into geometric structure which

represents the layout of design. The layout is done according to the design rules
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specified in technology library. The design rules represent limitations of the fabri-

cation process. Sub-steps in Physical Implementation:

Floor planning, Placement Routing. Physical Implementation produces a GDSII

file to be used by the foundry for fabrication of chip. Several tools such as Blast

Fusion (Magma), IC Compiler (Synopsys), and Encounter (Cadence) etc. are used

at this step. Physical Verification verifies to ensure that the layout meets the fabri-

cation rules.[2]

2.3 Verification

The hardware design verification goal is to check implementation matching with

high level specification. Hardware design should perform a particular task for which

it has implemented such as DVD (digital video disc) player, router network and

signal processor in radar, based on a design specification. The task of validation

engineer is to make sure that device should function correctly and accomplish that

desired task successfully that is, the design is a correct representation of the de-

sign specification. The verification process runs in parallels with the RTL design

process. Designers reads the hardware specification and understand the human

language description and creates the register transfer level (RTL) description in

machine readable format generally called as RTL code. To write RTL description

he/she needs to understand the overall architecture of the design and the input for-

mat, transform function and the desired output. Verification engineer also need to

read the architecture specification, build the verification plan, and then implement

it to create tests so as to exercise RTL code. There are different ways to test the

design. While performing verification it is easier to detect error at the block level,

in the modules designed by a verification engineer. The Verification Engineers job is

to find the more error prone areas of logic and maybe even helps to reconcile these

two different views of the designer. When the DUT is complex, then the directed

test will become a tedious job. So it demands a specific pre-planned verification
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plan for the testing all the scenarios in the DUT. [3]

2.3.1 Types of Verification

• Block Level/Standalone Verification

In this type of Verification, a standalone System Verilog based test bench is

created for each block. The directed tests are created to check the required func-

tionality.

• IP Level Verification

Here in this type of verification, all the blocks are integrated and verification en-

vironment is created through standard methodology OVM and respective sequences

are driven to check the each block response and also the IP Level output response.

2.3.2 Simulation based verification

Figure 2.2: Traditional Simulation Based Verification

Coverage Based Verification

Coverage is metric used by verification methodology for reference for selection

of test.
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• Code coverage:

Code coverage is calculated by tool itself. This feature is there in all the

HDL it gives the number for how many lines of RTL code are executed, how

many times corresponding expressions is covered, branches executed.

• Functional coverage:

Functional coverage gives idea about how much functionality is covered by the

applied tests. Functional coverage observes the execution of a test plan. Functional

coverage is feature of system Verilog which helps to determine how testing of the

design has done. If the functional coverage is 100 % then it indicates that all

features of design has been tested. Combination of 100 % functional coverage and

code coverage indicates that testing is done.

2.3.3 Assertion based verification

Figure 2.3: Typical block diagram of the verification environment

Assertions are the conditional statement that is used to check the specific

behavior of the design and it will display a message on occurrence of it. Assertion

helps us to improve observability and catches error earlier in the design phase.
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Mostly, we will add assertions during verification process to observe the conditions

that are hard to check by using simulation process. And most of time, they are

used to simplify the debugging process of the complex system design. Assertion

monitors wait for a particular condition to occur and then it alert the designer when

it occurs. Assertion monitors can be treated as internal test point. Assertion is used

to improve the observe ability of the complex design. If assertions are not used then

applied test vector has to be long enough to ensure the bug triggering and will get

propagated to the observable outputs, otherwise we will not able to detect the bug.

Assertion allows us to check bad behavior within the design and help us to remove

the bugs in the design.

2.3.4 Formal Property verification (FPV)

Figure 2.4: Formal Verification

FPV (Formal Property Verification) is a static verification technique which is

capable to reduce the verification time and hunts the bug which dynamic verification

is not capable to find. Formal Property Verification technique analyzes the VLSI

design mathematically and proves against the set off properties which are meant to
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be true for all test cases. Formal Property Verification ensures us 100 % coverage.

Many design teams have reported finding important bugs using FPV techniques.

The major input to FPV is a design description with a set of properties, in our

case Verilog RTL models with embedded OVL properties. (It is also possible to

run FPV on more abstract model with externally specified properties.) Some of

the properties must be designated by the user as assertions, targets that need to be

proven. The rest will be assumptions, or constraints, properties that the tool should

take as a given. Usually the assumptions are properties on inputs, or properties

whose proof would depend on logic external to the model. The level of hierarchy

where FPV is run has to be chosen carefully the tools can quickly run out of memory

on complex models, and we had to run numerous designs at unit level instead of

cluster level. Often it will take a few attempts (in which the tool crashes due to

excessive memory consumption) in order to identify a reasonable level to run. Once

the proper hierarchy is selected, the user can effectively run the FPV tool and

analyze the result. The formal verification activity was carried out on the DUT at

the block level first and then IP level. [4]

2.4 Summary

This chapter describes Literature Survey on System Verliog,VLSI process flow and

Verification.



Chapter 3

Pre -Verification Process

In the previous chapter, VLSI process flow, types of verification and features of Sys-

tem Verilog were discussed. This chapter explains Pre-Verification Process, Func-

tionality of Test Bench and Types of Testing.

3.1 The Verification Process

Detecting bugs is not the entire goal of verification. The main intention of design

in hardware is to develop a device that can perform the specific task, for example

a mobile phone, a TV, or a laptop, based on the specification. The main job of

a verification engineer is to ensure that the device/hardware can successfully ac-

complish the dedicated task, that is, the design is a proper representation of the

given specification. The bugs are just a result of discrepancies in the design. The

verification process starts in parallel with the design development process. Both

the designer and verification engineer read the given hardware specification. The

designer creates a corresponding logic for the hardware specification in a machine

readable format, which is usually referred to as RTL code, whereas the verification

engineer creates a verification or test plan, which is followed to build tests to check

the RTL code behavior with respect to the hardware specification. There are several

ways that a design can be tested. The easiest among all is to verify the designs at

14
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the block level, that is, modules designed by one person. It is simple and easy to

plan and develop directed tests to detect the bugs in such designs, as the design

is within a single block and the designer has complete understanding of the design

as only one person has designed it. Next to block level, another aspect to check

is at the boundaries between the blocks. Critical problems come up when multiple

designers go through the same description and interpret it differently. First design

may build transmitter with his view on the specification while the second designer

may build a receiver with his own view on the specification, with a slight different

view. The verification engineers role is to detect the disputed sites of the logic and

may even help reconcile the different interpretations. When the DUT is a complex

design then the directed tests will become a difficult job. So it demands for a prop-

erly pre-planned verification or test plan for completely testing all the scenarios in

the DUT.[5]

3.1.1 Test bench Basic Functionality

The main purpose of a test bench is to ensure the correctness of the given Design

Under Test (DUT). This can be accomplished by:

• Generating the stimulus

• Applying the stimulus to the DUT

• Capturing the response

• Checking for the correctness
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3.2 Directed Testing and Constrained-Random

Testing

3.2.1 Directed Testing

Traditionally, the process of verification a design uses directed testing. With this

approach, a verification engineer goes through the given hardware specification and

develops a verification or test plan containing a list of tests, with each test focused

on a set of features in the design. Under this plan, verification engineer applies a

stimuli that can exercise a particular set of features in the DUT. Then he/she will

simulate the DUT with the stimuli and reviews the results in log files generated and

in waveforms to ensure that the design is doing whatever is expected. If the design

works correctly for the given stimuli, the verification engineer checks that particular

test off in the test plan and moves on to the next one and applies other stimuli.

Figure 3.1 shows how the direct tests cover the features in the DUT with the test

plan. Each test in the test plan is targeted for a specific set of features in the design.

If the verification engineer has enough time, he/she writes all the tests to get 100

% coverage of the entire test plan.

Figure 3.1: Functional Coverage:CR-CDV v/s Directed Testing
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If the verification engineer doesnt have enough time nor resources to go with

directed testing method or if the design complexity increases, then it takes more

time to finish testing or it needs more resources /people to finish the testing. None

of the above situations is feasible. So it demands for a methodology, which can

detect bugs faster and can reach the 100 percent coverage goal. Here comes the role

of the role of constrained random way of testing.

3.2.2 Constrained-Random Testing

Every design may not be able to be tested with complete random values. It may be

needed to randomize among a setoff values (for example, address is 16-bits;op-code

is MUL,DIV,or SAVE; length<16 bytes), then we need constrained randomization

to randomize only in a set of constraints. System Verilog provides the constrained

randomization feature. The constrained randomized values are driven to the design

and then to a top-level model that can estimate the output. The actual output of the

design for the given randomized values is then compared with the estimated output

to ensure the proper functionality of the design. Figure shows the paths to reach the

maximum coverage. Starting with the simple constrained-random tests. Proceed to

run the tests with multiple seeds with different seed values. Find the holes in the

coverage from the coverage report. Now make a minimal tests for only the those

few features that are so unlikely to be reached through random tests changes in the

test code, using new constraints if required, or by error injection, or by introducing

delays in the DUT. Spend more time in the outside loop by developing directed test

case.[6]

3.3 Verification Metrics: Coverage

Coverage metrics are an indicator of the progress of verification. Coverage indicates

how well the design has been verified and what lies unexplored in the code. Code

and functional coverage are the two types of coverage metrics. Code coverage shows
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Figure 3.2: Constrained Random Testing vs. Directed Testing

how thoroughly the RTL code has been exercised by the verification environment,

using the tests used in regression. This is a basic coverage type which is collected

automatically by the tool running the simulations. The various classes of code

coverage are;

• Block coverage

• Branch/Decision coverage

• Toggle coverage

• FSM coverage

• Statement coverage

• Conditional/Expression coverage

Statement coverage

Statement coverage indicates how many lines of the RTL code are covered in

the simulation. All executable constructs like assignment statements, decision mak-

ing statements are covered, while excluding non-functional constructs like module,

timescale etc. For verification closure this should be 100 %.

Block coverage
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A block is a group of statements with a defined scope. Examples of a block

include statements within begin -end constructs of if-else, case, wait, while for loop.

Block coverage gives the indication whether these blocks gets hit during a simulation

run. Though it may look similar to line /statement coverage, Block coverage inspects

blocks while line coverage, the statements.

Conditional/Expression Coverage

Conditional coverage is the ratio of number of cases hit to the total number of

possible cases upon which a logical expression evaluates to true.

Branch/Decision Coverage

In Branch coverage checks if the constructs like ternary operator (?: ) if else etc

are evaluated for both true and false cases.

Toggle Coverage

Toggle coverage measures toggle activity on signals and ports during a simulation

run. It uncovers unused signals or signals that undergo less or not much activity.

State/FSM Coverage

This checks if all the states of the state machine model led by the given RTL

code are reached in the simulation run, and if all possible arcs for state change are

traced. This coverage type tracks the behavior of the HDL design and hence is

complex.

Functional Coverage

Functional Coverage is the metric of how much design functionality has been

exercised/covered by the test bench or verification environment which is explicitly

defined by the verification engineer in the form of a functional coverage model.In its

simplistic form,it is user defined mapping of each functional feature to be tested to

a so called cover point these coverage point also have certain conditions (ranges,

defined transitions or cross etc.) to fulfill before it is s announced as 100 % covered

during simulation. All these conditions for a cover point are defined in form of

bins. During simulation, as and when a certain condition of a cover point hits, those

bins (conditions) are getting covered and it gives us the measurement of verification
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progress. After executing a number of test cases,a graphical report may be generated

to analyze the functional coverage report and plan can be made to cover up the holes.

Number of cover points can be captured under one cover group collection of number

of cover groups is usually called a functional coverage model.

Both code and functional coverage are equally important in verification process.

Even with 100 % code coverage, verification is still incomplete, if functional coverage

is not 100 %, alternatively, if functional coverage is 100 %, without 100 % code

coverage, it indicates dummy code. Verification completeness can be achieved with

100 % code functional coverage along with targeting proper functional coverage

goals.[7]

3.4 Summary

The constant growth in the complexity of the designs demands for automated,

systematic, and flexible methods to create the test benches. The cost of a bug

fix grows exponentially as project transits from each step to the other step, like

hardware specification to RTL development, synthesis, layout, fabrication, and de-

livery to the customer. Directed test approach can only check for a particular set

of features at a given time and cant make complex stimuli that the device could

be subjected to in the real world. To produce more robust and efficient designs,

it becomes necessary to use the constrained randomized stimuli with the coverage

collection to make the broader range of stimuli.



Chapter 4

Scalable Integration Platform

In the previous chapter, Pre-Verification Process, Functionality of Test Bench and

Types of Testing were discussed. This chapter explains Scalable Integration Plat-

form,Implementation details and challenges faced during Multi Instance SS Verifi-

cation Enablement.

4.1 Scalable Integration Flow

Figure 4.1: SoC Integration Flow

21
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At Intel, most of the IPs that get consumed at SoC are never verified for multi-

instance scenarios at the IP level verification environment, even though that is

the SoC ask. This causes SoC teams to instantiate the multi-instance or multi-

configuration scenarios at SoC directly. Due to this direct stamping of the IPs at

SoC, the SoC teams experience various issues which are not encountered and en-

visioned by the IP teams. This results in multiple unique debug iterations at SoC

to address these issues and each iteration consumes a lot of simulation, debug time

thereby impacting the overall SoC schedule. This is the motivation to develop scal-

able integration and validation flow at Subsystem using mini SoC methodology. In

todays SoC world multiple instance requirement per IP is a very common scenario

and these integration/validation problems are seen whether SoC uses mini SoC ap-

proach or not. Focus is on providing a template base solution for integration and

verification that leverages mini SoC frame work under the hood. Subsystems are

required to verify IP integration and create integration verification collateral that

can be reused by SoC.

The intent of a subsystem is to:

• Maximize IP test sequence reuse, improve overall porting/debug time at SOC,

reduce validation cycle at SoC.

• Be able to have flexibility to run traffic concurrently and reduce complete

reliance on Emulation/FPGA to find basic issues.

• Find and fix verification Environment and collateral issues before SoC.

• Build configurable and scalable Subsystems to easily and quickly deliver Sub-

systems to derivatives and multiple SoCs.

IP integration platform supports many different solutions to the same Chassis

feature in a compatible manner.

A platform that includes-
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• Infrastructure capabilities to integrate the Chassis components and build the

integration methodology

• IP Integration Platform to integrate and test non-chassis IPs with the Chassis

• Suite of configurable integration tests that would test the chassis and any IPs

integrated to the chassis.

4.2 Configurable Multi-Instance Subsystem

Figure 4.2: Configurable Multi-instance Subsystem

At subsystem (SS) level the IPs to be verified are integrated using mini SoC

methodology and an integration wrapper is created across the SS to validate any IP.

To build a Multi-instance subsystem a Configuration.tcl template is created which is
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used as input to collage flow along with parameterized collage connectivity files. By

tweaking the variables/parameters defined in the configuration template multiple

instances of an IP RTL and corresponding SoC components can be instantiated in a

subsystem. To integrate IP verification collateral (test Island, interfaces, knobs, test

sequences) similar technique is adopted thereby making sure that the entire verifica-

tion environment is configurable and scalable using global parameters, present in a

single location. Due to this approach entire design and validation environment col-

lateral can be reused at SoC and being configurable in nature can be easily re-spun

and delivered to a derivative SoC as well.

4.3 Configurable Integration Flow for Complex

IP

Figure 4.3: Representation of a scalable Multi-Instance Subsystem
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Today most SoC create multi-instance integration environment by manually

replicating standard interface connections, collage connectivity collateral, IP adhoc

connectivity per instance. This results in hand editing multiple collage files, intro-

duction of unintentional manual errors and debugging of integration issues that are

not related to actual RTL collateral. To minimize the errors introduced because

of manual intervention, the subsystem team decided to create a Configuration.tcl

template which will be used as the base for scalability (to avoid manual stamp-

ing) and create collage connectivity templates. Figure 4.3 below shows example of

multi-instance subsystem with mini SoC components.

4.4 Implementation Details

Figure 4.4: Multi-Instance Configuration Script
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The Configuration tcl template can be thought as a parameterized input script to

collage which consists of all the information that is required for configurability and

scalability for a certain subsystem. This information bundle can change depending

on the IP, figure 4.4 below shows an example of PCIE configuration script.

Figure 4.5: Process Flow of the User Defined Configuration Script

The Configuration template contains structure declarations with element value

pairs. Elements declaration and the value pairs in the structure is called out once

in other collage connectivity files for implementing the scalable and configurable

connectivity. The flow using this user defined configuration script is depicted in

Figure 4.5.

The code snippet from the template in Figure 4.6 below shows the structure map

of controller instances for PCIE. This structure for controllers instance is used in the

collage connectivity file as shown in figure 4.7. Just by manipulating the number

of elements in this controller structure we can achieve scalability of creating RTL

connections between N number of controllers and the PHY.

Another example of configurability is achieving multi-instance PCIE Controller
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Figure 4.6: Configuration template snippet

and FIA lanes mapping based on the structure defined in the template file as shown

in Figure 4.8. Based on SoC requirements the controller to FIA lane mappings can

change, number of controllers can change from one project to another but at the

subsystem level only the template file needs to be modified with the desired map-

ping and the entire connectivity can be re-generated without touching the collage

connectivity as shown in Figure 4.9.

Similar to the examples shown above PSF, SBR, BDF maps are created in the

configuration template to achieve scalability.

4.5 Configurable Verification Flow

To create scalability similar to integration flow, parameterized templates for test-

island wrappers, test island interfaces, test bench environment and verification test

sequences are created. Modifying these parametrized values in the verification files

results in scaling of the IP verification environment from 1-N instances as per the

project requirements. Some System Verilog limitations currently prevent from com-

pletely parameterizing of the test-island template. Verification test templates were
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Figure 4.7: Parameterized collage connectivity file

Figure 4.8: Controller and FIA lane template map

created with hooks and parameters that provide configurability control of the IP test

sequences to run for 1 to N IP instances based on the values set at subsystem as well

as SoC. In order to achieve high test content reuse from the IP-SS-SoC, Subsystem

team worked closely with the IP team to create modular and scalable sequences at

IP level itself.
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Figure 4.9: Collage connectivity parameterization for Controller and FIA

4.6 Challenges during Multi-instance SS Verifica-

tion Enablement

• IP Environment Incompatibility

The way IP environment is structured and designed, it does not lend itself to be re-

used across different IP instances at subsystems or SoC. For multi-instance scenario

the testbench and interface files were not scalable to subsystem. This resulted in

making tweaks and hacks the IP environment directly while validating the flow at

Subsystem and unique debug scenarios that couldnt be replicated at IP level. Some

of the issues can be found early-on in the IP environment itself if they support

multi-instance or at minimum create test bench collateral with scalability in mind

and run some basic sequences at IP level to flush out basic issues such as static

variables, hardcoded environment variables/parameters.

• IP non-portable sequence

Due to the nature of IP level validation, the test sequences were not directly

reusable from IP environment. While porting the IP sequences to SS, issues related

to hardcoded parameters, missing constraint hooks, static environment variable etc.

were found, which required creating test sequences at subsystem or tweaking IP

level sequences. Because of this issue, some of the earlier SoCs created test sequences

directly at the SoC. This resulted in maintaining and debugging a separate set of the

test sequences at SoC with no debug leverage from the IP verification environment.

To avoid facing these kind of issues in future, IP teams should provide a minimal set
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of test sequences to SS/SoC as part of the integration test suite that can be re-used

and are more directed to cover main feature validation. SS/SoC teams can build on

these sequences if more coverage is required.

• Concurrent Traffic validation

Due to limitation of the IP verification environment that prevents running of test

collateral on more than one instance at a time on Subsystem, concurrent traffic

validation scenarios couldnt be natively verified in the SS model. This causes high

reliance on emulation at SoC model to get coverage. Recommendation was provided

to the IP team to provide hooks in the IP tb env as well as flexibility in the IP

sequences so that they can be easily scaled for multiple instances.

4.7 PCIE IP

Peripheral Component Interconnect Express (PCIe or PCI-E) is a serial expansion

bus standard for connecting a computer to one or more peripheral devices.A com-

puter expansion card standard. A standard type of connection for internal devices in

a computer. PCI Express interface allows high bandwidth communication between

the device and the motherboard, as well as other hardware.

PCI has some shortcomings. As processors,video cards, sound cards and net-

works have gotten faster and more powerful, PCI has stayed the same. It has a

fixed width of 32 bits and can handle only 5 devices at a time. The newer, 64-bit

PCI-X bus provides more bandwidth,PCI Express(PCIe) eliminates a lot of these

shortcomings, provides more bandwidth and is compatible with existing operating

systems

PCIe provides lower latency and higher data transfer rates than parallel buses.

Every device that’s connected to a motherboard with a PCIe link has its own ded-

icated point-to-point connection. This means that devices are not competing for

bandwidth because they are not sharing the same bus. Peripheral devices that use
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PCIe for data transfer include graphics adapter cards,network interface cards(NICs),

storage accelerator devices and other high-performance peripherals.

Data is sent via paired point-to-point serial links, called lanes, allowing data

movement in both directions simultaneously and allowing more than one pair of de-

vices to communicate simultaneously. Serial buses transmit data faster than parallel

buses due to the latters limitation requiring data to arrive simultaneously at their

destination (This has to do with the frequency and wavelength of a single bit). With

serial buses there is no requirement for signals to arrive simultaneously.

4.8 Demux wrapper for IP

Automated Perl Script to generate Demux wrapper for IP was developed to reduce

manual work.

Figure 4.10: Block Diagram for Demux Wrapper

4.9 Summary

This chapter explains in brief about Scalable Integration Platform,Implementation

details and challenges faced during Multi Instance SS Verification Enablement due to

IP Environment Incompatibility, IP non-portable sequence and Concurrent Traffic

validation.
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Results

The main aim of Scalable Integration Platform is to provide the right quality

of Validation Collateral to SoC team for integration of subsystems that indirectly

reduces TTM for SoCs.

Figure 5.1: Integration timelines at SoC with SS usage

PCIE PXP configurable subsystem was successfully integrated and validated at

SoC. The combined improvements from integration time at SoC, verification content

32
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reuse, productivity (SoC debug cycles) and quality of collateral (bugs found) were

significant.

Ease of integration at SOC: By reusing SS integration collateral at SoC the overall

integration time and effort was significantly reduced per SoC milestone. Figure 5.1

shows with SS usage takes less then two work week to integrate.

5.1 PCIE Multi Virtual Channel

Regression results before and after Verification are shown in Figure 5.2 and Figure

5.3. After Verification 85 test cases were passing for PCIE Multi Virtual Channel

Subsystem.

Figure 5.2: Central Regression Result (Before Verification)

Figure 5.3: Central Regression Result (After Verification)

Figure 5.4 shows that Toggle coverage before verification was 40.12%. Figure 5.5

shows that Toggle coverage after verification toggle coverage was 95.71% for PCIE

Multi Virtual Channel Subsystem.
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Figure 5.4: Toggle Coverage Result (Before Verification)

5.2 PCIE Single Virtual Channel

Regression results before and after Verification are shown in Figure 5.6 and Figure

5.7. After Verification 120 test cases were passing for PCIE Single Virtual Channel

Subsystem.

Figure 5.8 shows that Toggle coverage before verification was 63.22%. Figure 5.9

shows that Toggle coverage after verification toggle coverage was 99.34% for PCIE

Multi Virtual Channel Subsystem.

5.3 Passing and Failing Scenarios for Test Case

Figure 5.14 and Figure 5.15 shows the failing logs and waveforms for L1 LOW Test

Case.

After debugging the issue,L1 LOW Test Case was passing.Figure 5.16 and Figure

5.17 shows the passing logs and waveforms for L1 LOW Test Case.
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Figure 5.5: Toggle Coverage Result (After Verification)

Figure 5.6: Central Regression Result (Before Verification)

Figure 5.7: Central Regression Result (After Verification)
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Figure 5.8: Toggle Coverage Result (Before Verification)

Figure 5.9: Toggle Coverage Result (After Verification)

Figure 5.10: Central Regression Result (Before Verification)
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Figure 5.11: Central Regression Result (After Verification)

Figure 5.12: Toggle Coverage Result (Before Verification)

Figure 5.13: Toggle Coverage Result (After Verification)
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Figure 5.14: PCIE REG l1low mseq test:Failing Postsim Log

Figure 5.15: PCIE REG l1low mseq test:Failing Wave Results

Figure 5.16: PCIE REG l1low mseq test:Passing Postsim Log

Figure 5.17: PCIE REG l1low mseq test:Passing Wave Results



Chapter 6

Conclusion

This chapter gives a brief about what has been learnt through out the project and

results obtained in the previous project.

6.1 Conclusion

Various verification strategies will help the verification engineer to verify the com-

plex design in a short period of time and will reduce the time to market for SoCs.

Various verification and debugging approaches will help in reducing the effort put

by the verification engineer in solving the debugging issues. Some of the debug-

ging issues mentioned above can be overcome by having the mentioned debugging

infrastructure and tools in the Scalable verification environment.

Also, a significant amount of time spent on verification can be saved by having

these various metrics with proper architecture and flexible test benches.

With the scalable integration platform,it takes less than 1 week to integrate and

run L0 content and over 75 % reuse of validation content. The majority of bugs are

solved which helps SoC team and reduces time to market for SoC .It also provides

maximum coverage of validation.Parallel and faster runs against subsystems enables

quick debug

39
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6.2 Future Scope

The platform can be modified in future for more scalability in order to reduce the

number of bugs filed by SoC teams.

Power Management validaion features can be added to the platform which are

now not present.

6.3 Summary

This chapter shows that the purpose of undertaking this project is fulfilled. It also

gives an idea of how the Scalable integration platform is developed and improved in

future.
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