
Migration of MEM ACS to automated
simlist generation flow

Major Project Report

Submitted in fulfillment of the requirements

for the degree of

Master of Technology
in

Electronics & Communication Engineering

(Embedded Systems)

By

Amit Jangir

(17MECE07)

Electronics & Communication Engineering Department
Institute of Technology

Nirma University
Ahmedabad-382 481

December-2018

Migration of MEM ACS to automated
simlist generation flow

Major Project Report

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology

in

Electronics & Communication Engineering

By

Amit Jangir

(17MECE07)

Under the guidance of

External Project Guide: Internal Project Guide:

Vivek Agrawal Dr. Nagendra Gajjar

Principal Engineer Prof. & PG Coordinator(Embedded Systems),

ARM Embedded Technologies Pvt. Ltd., Institute of Technology,

Bengaluru. Nirma University, Ahmedabad.

Electronics & Communication Engineering Department

Institute of Technology, Nirma University

Ahmedabad-382 481

December-2018

iii

Declaration

This is to certify that

a. The thesis comprises my original work towards the degree of Master of Tech-

nology in Embedded Systems at Nirma University and has not been submitted

elsewhere for a degree.

b. Due acknowledgment has been made in the text to all other material used.

- Amit Jangir

17MECE07

iv

Disclaimer

“The content of this thesis does not represent the technology,opinions,beliefs,

or positions of ARM Embedded Technologies Pvt. Ltd., its employ-

ees,vendors, customers, or associates.”

v

Certificate

This is to certify that the Major Project entitled “Migration of MEM ACS to

automated simlist generation flow” submitted by Amit Jangir (17MECE07),

towards the partial fulfillment of the requirements for the degree of Master of Tech-

nology in Embedded Systems, Nirma University, Ahmedabad is the record of work

carried out by him under our supervision and guidance. In our opinion, the sub-

mitted work has reached a level required for being accepted for examination. The

results embodied in this major project, to the best of our knowledge, haven’t been

submitted to any other university or institution for award of any degree or diploma.

Date: Place: Ahmedabad

Dr. N. P. Gajjar Dr. N. P. Gajjar

Internal Guide Program Coordinator

Dr. D. K. Kothari Dr. Alka Mahajan

Head, EC Department Director, ITNU

vi

Certificate

This is to certify that the Major Project entitled “Migration of MEM ACS to

automated simlist generation flow” submitted by Amit Jangir (17MECE07),

towards the partial fulfillment of the requirements for the degree of Master of Tech-

nology in Embedded Systems, Nirma University, Ahmedabad is the record of work

carried out by him under my supervision and guidance at ARM Embedded Tech-

nologies Pvt. Ltd. In my opinion, the submitted work has reached a level required

for being accepted for examination.

Vivek Agrawal

Principal Engineer

ARM Embedded Technologies Pvt. Ltd.

Bengaluru.

Date: Place: Bengaluru

vii

Acknowledgements

I would like to express my gratitude and sincere thanks to Dr. Nagendra

Gajjar, PG Coordinator of M.Tech Embedded Systems for guidelines during the

review process.

I take this opportunity to express my profound gratitude and deep regards to

Dr. Nagendra Gajjar , guide of my internship project for his exemplary guid-

ance, monitoring and constant encouragement.

I would like to thank Vivek Agrawal, external guide of my internship project

from ARM Embedded Technologies Pvt. Ltd., for guidance, monitoring and

encouragement regarding the project.I would also like to thank mentor Pratik

Bhattacherjee, Staff Engineer for his encouragement and guidance.

I thank my Parents, faculty members and colleagues for their constant support

and encouragement during this project work.

- Amit Jangir

17MECE07

Abstract

Verification and design analysis are major components of microprocessor design cy-

cle time, any effort that improves verification effectiveness and design quality is

crucial for meeting customer deadlines and requirements.It is well known to all IP

creators and customers that function verification is a very big problem in semicon-

ductor industry. As complexity of design increases, need of verification effort is

more compare to design effort. For ARM CPU cores IP’s which is a complex IP, it

is difficult to detect desing errors and provide more validation coverage. Functional

validation is one of the mostly known bottlenecks in System-on-Chip (SoC) design

cycle. A mojority of engineering effort is spent on validating the SoC. According

to Wilson Research Group, 57 percent time is spent of validation of a SoC project.

Therefore optimization of validation flow is crucial for complex IPs such as ARM

CPU Architecture.In this report a part of entire validation flow of ARM V8A ar-

chitecture is optimized to reduce simulation time and complexity of system.In this

work MEM suite of ACK kit is taken in to consideration for optimization, different

MEM suites are migrated to a new validation flow that will directly link the simlist

generation to the target configuration parameters.

viii

Abbreviation Notation and Nomenclature

ARM Advanced RISC Machines

IP Intellectual Property

CPU Central Processing Unit

ACK Architecture Compliance Kit

ACS Architecture Compliance Suite

SOC System On Chip

MMU Memory Management Unit

RISC Reduced Instruction Set Computer

CISC Complex Instruction Set Computer

ISA Instruction Set Architecture

MEM Memory

SIMD Single Instruction Multiple Data

EL Exception Level

ix

List of Figures

1.1 Project Work-Flow . 3

2.1 Project time spent in verification [3] 5

2.2 IP Blocks in a Typical System [3] . 5

2.3 Validation Stages [3] . 7

3.1 Development of ARM Architecture [5] 11

3.2 Exception Levels [5] . 12

3.3 Compliance sign-off process . 14

4.1 Types of Source list . 17

4.2 Testdbv1 -TestlistGeneration Flow 17

4.3 Structure of a Suite . 19

4.4 Structure of a target . 19

4.5 Structure of Source Config Map . 20

4.6 Testdbv2 - TestlistGeneration Flow 21

5.1 Testdb V1-V2 Comparison Tool . 25

5.2 CSV Report . 26

5.3 SimDiff Report . 26

5.4 V1-V2 Mapping . 27

5.5 Expanded Command Comparison tool 28

6.1 CPU time comparison of V2-V1 . 30

x

Contents

Declaration iii

Disclaimer iv

Certificate v

Acknowledgements vii

Abstract viii

Abbreviation Notation and Nomenclature ix

List of Figures x

1 Introduction 1

1.1 Motivation . 1

1.2 Objective . 1

1.3 Requirements . 2

1.4 Scope of Work . 2

1.5 Gantt Charts . 2

1.5.1 Project Work-Flow . 2

1.6 Thesis Outline . 3

2 Background Theory and Literature Survey 4

2.1 Background Theory and Literature Survey 4

xi

CONTENTS xii

2.2 Verification at ARM: . 6

3 V8A Architecture and ACK 8

3.1 ARM V8A . 8

3.1.1 Introduction . 8

3.1.2 ARM ISA overview . 9

3.1.3 ISAs in V8A . 10

3.1.4 Exception levels . 11

3.2 Architecture compliance Kit . 12

3.2.1 Introduction . 12

3.2.2 Compliance sign-off process 13

4 Automated Simlist Generation Flow(testdbV2) 16

4.1 TestdbV1 . 16

4.1.1 Types of source list . 16

4.1.2 Testdbv1 -TestlistGeneration Flow 17

4.1.3 Disadvantages of testdbV1 . 18

4.2 Directory Structure . 18

4.2.1 Structure of a Suite . 18

4.2.2 Structure of a target/Implementation 18

4.2.3 Structure of Source Config Map 18

4.3 TestdbV2 . 20

4.3.1 Testdbv2 - TestlistGeneration Flow 20

5 Tools for testdbv2 migration process 23

5.1 Introduction . 23

5.2 Tools . 24

5.2.1 Testdb V1-V2 Comparison tool 24

5.2.2 Expanded Command Comparison tool 27

CONTENTS xiii

6 Results and Conclusion 29

6.0.1 Results . 29

6.0.2 Conclusion . 30

References 32

Chapter 1

Introduction

1.1 Motivation

Verification and design analysis are major components of microprocessor design

cycle time, any effort that improves verification effectiveness and design quality is

crucial for meeting customer deadlines and requirements.It is well known to all IP

creators and customers that function verification is a very big problem in semicon-

ductor industry. As complexity of design increases, need of verification effort is

more compare to design effort. For ARM CPU cores IP’s which is a complex IP,

it is difficult to detect design errors and provide more validation coverage.In this

report a part of entire validation flow of ARM V8A architecture is optimized to

reduce simulation time and complexity of system.

1.2 Objective

The main objectives of the project are as follows:

• To directly link the simlist with target configuration parameters

• To improve the performance of testlist/simlist generation

• To make a centralized place to define all the configs of a suite

1

CHAPTER 1. INTRODUCTION 2

• To improve the readability and reduce the complexity of testlist generation

• To achieve automated simlist generation flow

1.3 Requirements

The development and implementation of this project requires following:

• Good understanding of Linux environment.

• Knowledge of ACK flow.

• Understanding of ARM V8A architecture.

• Knowledge of Validation Tools.

• Shell scripting

• Knowledge of ARM Internal tools.

1.4 Scope of Work

This work mainly aims at migrating current MEM ACS of ARM V8A to a newly

centralized place to get the automated simlist generation flow for finer level of con-

trol.

1.5 Gantt Charts

1.5.1 Project Work-Flow

CHAPTER 1. INTRODUCTION 3

Figure 1.1: Project Work-Flow

1.6 Thesis Outline

• Chapter-1 This chapter gives the brief information about motivation and

objective of the project with the Gantt chart(time line) of project development

work flow.

• Chapter-2 This Chapter shows the literature survey and the overview of

Functional Validation, Validation at ARM.

• Chapter-3 discusses about ARMV8A Architecutre and ACK.

• Chapter-4 discusses the Testdbv1-testdbv2 Simlist generation flows.

• Chapter-5 describes the tools developed and used in migration process.

• Chapter-6 results and conclusion.

Chapter 2

Background Theory and

Literature Survey

2.1 Background Theory and Literature Survey

The main obstructions in the system-on-chip (SoC) is the functional verification.

An important part of the engineering time spent in certifying SoC goes in to verifi-

cation. As per Wilson Research Group, validation spent more than 57 percent of a

specific SoC development in 2015.

Despite this efforts, functional disasters are still Major risks for a first-time

design from the beginning of Multiprocessor chips with odd design, The design

complexity of SoCs has increased significantly. As can be seen in the diagram given

below, the no of IPs The component in SoC is moving at solid rate.

SoCs have evolved into complex entities that integrate Many diverse units of

intellectual property (IP) a Modern SoC may include many parts such as CPU,

GPU, interconnect, memory controller, system MMU, interrupt controller etc. are

IP Complex units of design that are personally verified. However, despite IP-level

verification, it is not It is possible to detect all the errors - especially those who are

Only activates when the IP interacts within a system.

4

CHAPTER 2. BACKGROUND THEORY AND LITERATURE SURVEY 5

Figure 2.1: Project time spent in verification [3]

Figure 2.2: IP Blocks in a Typical System [3]

CHAPTER 2. BACKGROUND THEORY AND LITERATURE SURVEY 6

2.2 Verification at ARM:

Verification flow at ARM is comparatively Experienced in engineering. Verifica-

tion of designs begins Initial and on the nuances of elements, which syndicate Create

a stand-alone IP During full verification This process occurs at the unit level when

engineers are the highest The amount of comprehension in the design. Separate

signals Otherwise it may be deep inside the design Set to help investigate or verify

the desired values. Once Unit level verification has touched the degree of maturity,

Components are combined to create a full IP. Only IP-level verification of IP can be

verified Start This is the first time the CPU is for the first time Testing of assembly

program level may start. mostly Till this point the test is done separately. Wires

/ Signs Is written in tests at the IP level Assembly language. The processor raises

the instructions From memory, decodes them etc. Once the IP-level verification fills

some irritants Many IPs are combined in a system and system Verification attempt

starts. During ARM’s IP, many signals pass through Their design-verification

cycle which they reproduce Functional fullness and accuracy Of these, Alpha and

beta signals are internal quality Signal Limited access represents Milestone after

which major partners get access to the IP. After that there is EAC, which indicates

that point after which the IP is ready to be Designed to get engineering samples

and tests The success of the release has gone through IP testing and is ready for

mass production. In ARM, system verification of IP starts when they are Generally

between alpha and beta quality. By this step Design cycle is still under IPs Signif-

icant quantities of test and lowest level errors Have already met. Excitement has

to be done wisely Therefore it has been built that the internal state of the microar-

chitecture Each IP is stressful at extreme. Promotion is given either by assembly

code or by Specially designed verification integrates using IP system. ARM uses a

combination of both methods.

CHAPTER 2. BACKGROUND THEORY AND LITERATURE SURVEY 7

Figure 2.3: Validation Stages [3]

Chapter 3

V8A Architecture and ACK

3.1 ARM V8A

3.1.1 Introduction

ARM architecture is a Reduced instruction set computer (RISC) architecture,

which originally stood for ”Acorn RISC Machine” but stands for ”Advanced RISC

Machine” now. In the past years, ARM processors, with the spread of smartphones

and tablets, are becoming very popular: mostly due to low cost, and more power

efficiency than other architectures in the form of CISC.

ARM is a 64/32-bit RISC processor architecture which is currently being de-

veloped by ARM Corporation. The business model behind ARM is based on ARM

architecture which wants to build ARM-based CPU or system-on-a-chip products.

There are two main types of license implementation licenses and architecture li-

censes. The implementation license provides the complete information needed to

design and manufacture an integrated circuit with the ARM processor core. ARM

gives two types of core licenses: soft core and hard core. A hard core is optimized

for a specific construction process, while a soft core can be used in any process,

but less adaptation is done. Architectural license enables the licensee to develop

with ARM ISA in line with its own processor. The ARM processor has a unique

8

CHAPTER 3. V8A ARCHITECTURE AND ACK 9

combination of features that makes ARM the most popular embedded architecture

today. First of all, the ARM core is much simpler than most other general-purpose

processors, which means that they can be produced using a relatively small number

of transistors, to which application-specific fi macro cells There is a lot of space left

on the chip. An ARM chip can have some quantity of on-chip memory with many

peripheral controllers, a digital signal processor and ARM core.

Second, both ARM ISA and Pipeline design aims to reduce energy consump-

tion - an important requirement in mobile embedded systems. Third, ARM archi-

tecture is highly modular: the only compulsory component of the ARM processor is

the integer pipeline; All other components, including Cash, MMU, Point Oting Point

and other co-processors, are optional, which allows a lot of build in the creation of

an application-speed ARM CARM-based processor.

3.1.2 ARM ISA overview

ARM is an RISC architecture. Like all RISC architectures, ARM ISA is a load-

store one, that is, instructions which process data only work on registers and are

different from the instructions that reach memory. All ARM instructions are 32-bit

long and most of them have regular three-pronged encoding. Finally, ARM architec-

ture has a large register with the 16general-purpose register. All the above features

facilitate pipelining of ARM architecture. Whatever the design decisions were made

to simplify the desire to keep the architecture and to make its implementation as sim-

ple as possible, it got distracted by the original RISC architecture. First of all, the

original Berkeley RISC design used Register Win-Dos for speed invocation. ARM

designers rejected this feat which would increase the processor size and complexity.

In retrospect, it appears to be an intelligent decision, because register Windows does

not prove a particularly useful feature and is not used in the majority of modern

RISC processors.

Second, the execution phase of any instruction is required to complete the clas-

CHAPTER 3. V8A ARCHITECTURE AND ACK 10

sical RISC approach in a cycle. It is necessary to bring an E3 cient3-phase-decode-

executed pipeline. While most ARM data processing instructions are completed

in a cycle, data transfer instructions are an important exception. To complete a

simple store or load instruction in one cycle, two memory access performance must

be restarted in the same cycle: one - to bring the next instruction from memory,

and second - to perform real data trans-show . Performing two memory access in

one cycle, in its turn, requires a Harvard architecture with different instructions

and data memories, which were considered very expensive by the designers of the

ARM rst ARM processor. However, to achieve better utilization of pipelines dur-

ing 2-cycle instruction execution, they started an auto-indexing addressing mode,

where the value of an index register is increased or decreased, while a load or store

is in progress. While all modern ARM implementations have different instructions

and data caches and can complete memory transfers in one cycle, they still support

auto-indexing mode which can improve the performance of ARM programs and code

size Proved to be.

Third, ARM supports multiple-register-transfer instructions, which allows to

load or store 16 registers at a time. In violation of a cycle of instruction theory, they

sign-up, speed up performance-critical tasks such as process operation and bulk

data transfers, and lead to more compact codes. In summary, ARM architecture

omits all bene-ts of O FI RISC approach, such as pipeline-friendlyness and simplicity,

deviating from it in some aspects, which makes it even more attractive for embedded

system developers.

3.1.3 ISAs in V8A

• AArch64 ARMv8-A 64-bit execution state, which uses 31 64-bit common-

purpose registers (R0-R30), and 64-bit program counter (PC), stack pointers

(SP) and Exception Link Register (ELR) . The SIMD vector and scalar pro-

vides 32 128-bit registers for floating-point support (V0-V31).

CHAPTER 3. V8A ARCHITECTURE AND ACK 11

Figure 3.1: Development of ARM Architecture [5]

• The A64 instructions have a fixed length of 32 bits and are always small-endian.

AArch32 ARMv8-A is a 32-bit execution state, which uses 13 32-bit general

purpose registers (R0-R12), 32-bit program counters (PCs), stack pointer (SP),

and link register (LR) . Advanced SIMD vector and scalar provides 32 64-bit

registers for floating-point support.

• The AArch32 execution state offers two instruction sets, A32 (ARM) and T32

(Thumb2) option. Operation in AArch32 state is compatible with ARMv7-A

operation. T32: 16-bit instructions transparently disintegrate transparently to

meet 32-bit ARM instructions in real time without performance loss. Thumb-2

technique set the thumb to a mixed (32- and 16-bit) length.

3.1.4 Exception levels

There are four exception levels, which replace 8 different processor modes, they

work as a ring in Intel architecture, they are a form of privilege hierarchy:

• EL0 is the least privileged level, in fact it is called an unplugged executive.

The apps are run here.

CHAPTER 3. V8A ARCHITECTURE AND ACK 12

Figure 3.2: Exception Levels [5]

• EL1: OS kernel can be run here

• EL2: Provides support for virtualization of non-secure operations. Hypervisor

can run here.

• The EL3 provides support for switch between two security states, secure state

and non-secure state. A safe monitor can be run here.

When executing in AArch64 state, execution can occur only between exception

levels, only with an exception or returning from exception. There are 3 private

banked registers in each of the 4 privilege levels: Exception Link Register, Stack

Pointer and Saved PSR.

3.2 Architecture compliance Kit

3.2.1 Introduction

ARMv8 ACK ARMv8 architecture enables licensees to verify that their implemen-

tation is Corresponding to architecture defined by ARM. All this can be achieved

by running the application Tests which are provided in the ACK and report that all

these tests have passed.

CHAPTER 3. V8A ARCHITECTURE AND ACK 13

V8A AVK includes tests for the following ARM architecture definitions:

• Instruction set including instructions set and system level architecture (PE)

• External debug

• Generic timer, external memory mapped components of ARMv8 architecture

Interface to the Performance Monitors and External System Control Registers

• Generic Interrupt Controller Architecture

• Embedded Trace Macrocell Architecture

• RAS Architecture Extension.

• Statistical Profiling Extension.

While running the tests, implementation should include all the components

applicable to them. Architecture allows implementation options, including non-

inclusion of some of these Organ The kit can be configured to test the features and

configurations implemented. The verification kit is standalone. Tests from AVS may

be out-of-box at AEM supplied. The test equipment running on the VL library and

AEM are included in the kit.

3.2.2 Compliance sign-off process

ARMv8 avk enables licensees to check for compliance with ARMv8 architecture

Passing AVS. This verification should be done before release for each ARMv8 ar-

chitectural device Production That is, licenses can run tests at any stage of de-

velopment, but can not continue Production equipment in which AVS results are

not cleaned or pardoned. Licensees should confirm that all Test runs in ARMv8

AVS with a clean pass. The following figure shows an overview of AVK compliance

sign-off process.

CHAPTER 3. V8A ARCHITECTURE AND ACK 14

Figure 3.3: Compliance sign-off process

CHAPTER 3. V8A ARCHITECTURE AND ACK 15

Any test that has been dropped has completely or partially failed, or should be

replaced with the release version By ARM If tests are failing due to test issue, but

ARMv8 architecture is not due to non-compliance After device, ARM can provide

rebates or supply updated tests.

Chapter 4

Automated Simlist Generation

Flow(testdbV2)

This chapter describes the complete flow of simlist generation ,its components and

directory structure of ACK kit.

4.1 TestdbV1

ACK contains various validations suites for ARM architecture and its extensions.

Each suite is a collection of many test cases. A test can be run with multiple

configurations which is called as a Sim or simulation. Test will generate multiple

sims and that is decided by all the source list present in that suite.source list contains

the list of test cases which will be going to run for that configs. All possible ways

(with various configs) a test runs is called a sim or simulation. So basically simlist

generation in testdbv1 depends on source list and config crosses defined in testdb

file.

4.1.1 Types of source list

There are two ways to define the source list .

16

CHAPTER 4. AUTOMATED SIMLIST GENERATION FLOW(TESTDBV2) 17

Figure 4.1: Types of Source list

Figure 4.2: Testdbv1 -TestlistGeneration Flow

• Include list (C1.C2.C3): Example: Tests present in C1 list, will run with config

C1.

• Exclude list (C1.C2.C3): Example: Tests present in C1 list, they will not run

with config C1 rest all will run.

4.1.2 Testdbv1 -TestlistGeneration Flow

Testlist generation in testdbv1 dependent on testdb.cfg config crosses and source

config map . The block diagram of flow is shown in fig 4.2.

CHAPTER 4. AUTOMATED SIMLIST GENERATION FLOW(TESTDBV2) 18

4.1.3 Disadvantages of testdbV1

There are many disadvantages of testdbv1 listed below.

• The current version of MEM ACS simlist is not directly linked with target

configuration parameters

• It is required to define different configs for a specific target.

• For each target a separate testdb file is to be maintained.

• There are multiple config files for a suite, so it is difficult to keep track of each

config.

4.2 Directory Structure

4.2.1 Structure of a Suite

A suite contains various files including test cases , config files, source lists. the

structure is shown in fig 4.3.

4.2.2 Structure of a target/Implementation

Each target contains many file like testdb, targetconfig etc. The structure of

Target is shown in fig 4.4.

4.2.3 Structure of Source Config Map

Source config map is a new file which is present in the testdbv2 format of simlist

generation flow. This file contains the all test cases of a suite, corresponding Boolean

equation and 2nd level filter. The structure of this file is shown in fig 4.5.

CHAPTER 4. AUTOMATED SIMLIST GENERATION FLOW(TESTDBV2) 19

Figure 4.3: Structure of a Suite

Figure 4.4: Structure of a target

CHAPTER 4. AUTOMATED SIMLIST GENERATION FLOW(TESTDBV2) 20

Figure 4.5: Structure of Source Config Map

4.3 TestdbV2

TestdbV2 is the enhance version of testdbv1 format and which overcomes all the

limitation which testdbv1 had. key points of testdbv2 is list below

• To directly link the simlist with target configuration parameters

• To improve the performance of testlist/simlist generation

• To make a centralized place to define all the configs of a suite

• To improve the readability and reduce the complexity of testlist generation

• To achieve automated simlist generation flow

4.3.1 Testdbv2 - TestlistGeneration Flow

In testdbv2 the automated simlist is generated based on source config map, suite

config rule file , global config rules and feature config rules . The source config

map file contains the list of test cases with their corresponding boolean equation to

generate the sims. The suite config rule file contains the list of intermediate configs

which are define in this file and used in SCM file. There are two global file which

very importent in automated sim generation. Global config rules and feature config

rules . both the files are common for all the suite. The configs are defined in these

CHAPTER 4. AUTOMATED SIMLIST GENERATION FLOW(TESTDBV2) 21

Figure 4.6: Testdbv2 - TestlistGeneration Flow

file with the boolean eqaution . if a config’s value become true for particular target

then that suite will run with that config for that target.

The block diagram for testdbV2 simlist genration flow is given fig 4.6.

TestdbV2 includes some new feature over the testdbv1 which are shown below.

• Fully automatic testlistgeneration without need for manually specified testdb

cfg crosses

• Evaluation of suite, test and config validity as per target features

• Bottom-up simlist computation: valid config crosses computation for tests

from source config map without suite level crosses

• In-memory computation no intermediate file generation

CHAPTER 4. AUTOMATED SIMLIST GENERATION FLOW(TESTDBV2) 22

• C-style syntax for ease of editing/formatting with multi-line expression sup-

port

• Functional style and operator style syntax for ease of reading (with syntax

highlighting)

Chapter 5

Tools for testdbv2 migration

process

This chapter describes about the tools developed and used in entire migration pro-

cess. Their working, inputs and outputs.

5.1 Introduction

Migration of a suite is a multi-step process which includes generating SCM and

SCR files, Modifying SCM according to the requirement, generating simlist for single

target with V2 flow and comparing it with simlist of V1. After that a comparison

is required between V1 and V2.

An single suite can have hundreds of test cases and thousand’s simulations.

Manual comparison of thousand’s simulations between V1 and V2 is not feasible.

There is a strong requirement of a tool which can compare all simulations automat-

ically and show any difference as an output.

For example lets assume that a suite generates 5000 simulations when it runs

on a single target, So in this case we need to do 5000 comparison between V1 and

V2. Now lets assume that the same suite is now running on 70 targets, So in this

case we need to do 5000 * 70 = 3,50,000 , this amount of manual comparison is not

23

CHAPTER 5. TOOLS FOR TESTDBV2 MIGRATION PROCESS 24

feasible to do hence there is a requirement of tools to be developed for the same

purpose.

5.2 Tools

For this migration work two major tools are developed for the comparison purpose.

• Testdb V1-V2 Comparison tool

• Expanded Command Comparison tool

5.2.1 Testdb V1-V2 Comparison tool

This tool is mainly used for sim name comparison and to get the information

about extra/missing sims. This will take the simlist of V1 and V2 as an input and

in output it provides the different reports which will further gives the information

about sim name diff or extra/missing sims.

Sometimes after migrating a suite we might have reordered configs due to this

we may get diffence in sim name, this difference in intentionally done by the suite

owner to maintain the readability of SCM. This kind of difference is automatically

handled by this tool, tool will automatically ignores this difference.

Before running the tool we have to generate the simlist in V1 and V2 format

on each and every target. After that generated simlists will go as an input to the

tool and then it will various reports. A working block diagram of this tool is given

in fig 5.1.

Steps to use the tool is given below.

• Run the qual.pl with Testdbv1 on all targets

• Run the qual.pl with Testdbv2 on all targets

• Generate Simlist on each target in V1 and V2

CHAPTER 5. TOOLS FOR TESTDBV2 MIGRATION PROCESS 25

Figure 5.1: Testdb V1-V2 Comparison Tool

• give the path of v1/v2 working directory where all the targets are present and

in each target corresponding sim list is present

• call testdb V1-V2 comparison engine

• analyze all the reports .csv , simdiff, V1-V2 mapping

.CSV Report

CSV report is one of the output of this tool. This is a excel sheet file which

contain the total number of simulation of each target in both the cases V1 and V2.

By analyzing this report one can figure-out that which targets are clean or have no

difference. Example version of CSV report is shown in fig 5.2.

SimDiff Report

SimDiff is one of the output of this tool. This is .txt file which contains the

extra/missing sim name for each target. In CSV report only sim count is given not

the exact sim name which are differing in V1 and V2. This information can be get

by this report.

Example version of SimDiff Report is shown in fig 5.3.

CHAPTER 5. TOOLS FOR TESTDBV2 MIGRATION PROCESS 26

Figure 5.2: CSV Report

Figure 5.3: SimDiff Report

CHAPTER 5. TOOLS FOR TESTDBV2 MIGRATION PROCESS 27

Figure 5.4: V1-V2 Mapping

V1-V2 Mapping

V1-V2 Mapping is one of the output of this tool. This is a .txt file which contains

the sim name mapping of V1 and V2 if there is any reordering is done. This report

helps to determine the sim name changes between V1 and V2.

Example version of V1-V2 Mapping is shown in fig 5.4.

5.2.2 Expanded Command Comparison tool

In process of porting a suite to testdbv2 flow, one have to deal with many con-

fig/sconfig files or direct defines. Some config files requires modification to make

them suitable for testdbv2, some defines needs to be pass directly in SCM file. Due

to all the above requirements we have to verify that Expanded command for each

test must be matching with Expanded command in testdbv1.

Expanded Command Comparison tool will do the comparison for each simu-

lation and any mismatching will be dumped to the output report file.

A working block diagram of this tool is given in fig 5.5.

Steps to use this tool is given below.

• Run all the tests of a suite on all targets in testdbv1

• Run all the tests of a suite on all targets in testdbv2

• Generate .log files of test simulation for both V1 and V2 format

• .log file will contain Expanded commands

CHAPTER 5. TOOLS FOR TESTDBV2 MIGRATION PROCESS 28

Figure 5.5: Expanded Command Comparison tool

• run the Expanded Command comparison tool

• Analyze the Expanded Command report for any differences

Chapter 6

Results and Conclusion

This chapter provides the details about obtained results and conclusion of this

thesis.

6.0.1 Results

As mentioned earlier the main objective of this project is to directly link simlist

to target configuration parameter and to improve the performance of testlist/simlist

generation flow. After porting the suites to testdbv2, faster simlist generation is

achieved.

To improve the performance of testlist generation, one must remove the re-

dundancy or unwanted simulation. While porting suites to testdbV2, it is found

that many unwanted tests were picking, due to this CPU taking longer time run all

tests.

As we have linked the target parameter directly to simlist, these unwanted

simulations were ignored and total CPU run time was significantly reduced.

For example one of the suite was taking 5.85 hours CPU time on a specific

target when testdbv1 flow was used. Here total 775 simulations were running and

428 simultions were skipping out total 775. These 428 simulations were increasing

the total RTL Run time. When the same suite is ported to Testdbv2, only 347

29

CHAPTER 6. RESULTS AND CONCLUSION 30

Figure 6.1: CPU time comparison of V2-V1

simulations were picking and all redundant/unwanted simulations were removed by

testdbv2.

In the figure it can be seen that total CPU time is reduced by approx. 2.5

hours when testdbv2 flow is used.

In some targets such as ARM internal targets sim count in testdbv2 is increase

as compared to testdbv1. This increment is positive increment as it increases the

coverage.

6.0.2 Conclusion

In this project, Migration of 18 MEM suites successfully done and efficient auto-

mated simlist generation is achieved . In this thesis, Migration of MES ACS to

automated similist generation was carried out.

The experimental analysis of testdbv2 gives the improvemt in simlist genera-

tion time and memory uses.

In this report a part of entire validation flow of ARM V8A architecture is

optimized to reduce simulation time and complexity of system.In this work MEM

suite of ACK kit is taken in to consideration for optimization, different MEM suites

are migrated to a new validation flow that will directly link the simlist generation

CHAPTER 6. RESULTS AND CONCLUSION 31

to the target configuration parameters.

References

[1] Ho, Richard C., et al. “Architecture validation for processors.”ACM SIGARCH
Computer Architecture News 23.2 (1995): 404-413

[2] Fournier, Laurent, Anatoly Koyfman, and Moshe Levinger, “Developing
an architecture validation suite: application to the PowerPC architec-
ture”Proceedings of the 36th annual ACM/IEEE Design Automation Confer-
ence. ACM, 1999.

[3] System Validation https://www.arm.com/files/pdf/System_Validation_

at_ARM_Enabling_our_partners_to_build_better_systems.pdf

[4] ARM Architecture Reference Manual https://static.docs.arm.com/

ddi0487/da/DDI0487D_a_armv8_arm.pdf

[5] ARM V8 Architecture https://www.arm.com/files/downloads/ARMv8_

Architecture.pdf

32

https://www.arm.com/files/pdf/System_Validation_at_ARM_Enabling_our_partners_to_build_better_systems.pdf
https://www.arm.com/files/pdf/System_Validation_at_ARM_Enabling_our_partners_to_build_better_systems.pdf
https://static.docs.arm.com/ddi0487/da/DDI0487D_a_armv8_arm.pdf
https://static.docs.arm.com/ddi0487/da/DDI0487D_a_armv8_arm.pdf
https://www.arm.com/files/downloads/ARMv8_Architecture.pdf
https://www.arm.com/files/downloads/ARMv8_Architecture.pdf

	Declaration
	Disclaimer
	Certificate
	Acknowledgements
	Abstract
	Abbreviation Notation and Nomenclature
	List of Figures
	Introduction
	Motivation
	Objective
	Requirements
	Scope of Work
	Gantt Charts
	Project Work-Flow

	Thesis Outline

	Background Theory and Literature Survey
	Background Theory and Literature Survey
	Verification at ARM:

	V8A Architecture and ACK
	ARM V8A
	Introduction
	ARM ISA overview
	ISAs in V8A
	Exception levels

	Architecture compliance Kit
	Introduction
	Compliance sign-off process

	Automated Simlist Generation Flow(testdbV2)
	TestdbV1
	Types of source list
	Testdbv1 -TestlistGeneration Flow
	Disadvantages of testdbV1

	Directory Structure
	Structure of a Suite
	Structure of a target/Implementation
	Structure of Source Config Map

	TestdbV2
	Testdbv2 - TestlistGeneration Flow

	Tools for testdbv2 migration process
	Introduction
	Tools
	Testdb V1-V2 Comparison tool
	Expanded Command Comparison tool

	Results and Conclusion
	Results
	Conclusion

	References

