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Abstract

Workload analysis plays important role in understanding the problems in the design

and development of server systems. This will help the architect to make predictions

of the system behavior of the upcoming system or SoC. Today market is moving

towards the workloads related to healthcare image processing because healthcare is

on high priority sector and people expect highest level of care and services regard-

less of cost. This work primarily concentrates on the creation, characterization and

optimization of workload proxies like U-Net, Xception and DenseNet for healthcare

image processing on Intel Xeon Server Platform. In this thesis, for image segmen-

tation U-Net topology is used and for image classification Xception and DenseNet

topologies are used as source of the workload. With the help of few Intel internal

tools and silicon data from the present generation platform, study is made to under-

stand the behavior of the workload in present generation platform. We are able to

measure the performance of different platforms for different workloads, to identify

the bottlenecks in the performance of existing platforms or existing software, to find

the reason for this bottleneck and predict the possible solution. So that this anal-

ysis will be used to propose SoC architecture features and important optimizations

needed to support a new class of workloads efficiently in next generation platforms

or SoCs. Open Visual Inferencing and Neural Network Optimization (OpenVINO)

and Multi-instance implementation provided significant performance boost. Central

Processing Unit (CPU) and Graphics Processing Unit (GPU) performance com-

parison results are also discussed in the last section. These workload proxies and

performance numbers will be provided as proof of concept to core architects.

ix
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Chapter 1

Introduction

1.1 Motivation

Workload analysis plays critical role in understanding the problems in design and

development of server systems.This will help the architect to make predictions of

the system behavior of the upcoming system or SoCs.

Real workloads are not readily available. Need to create workload proxies which

represents the real workload in terms of compute, bandwidth and Input/Output

(I/O) operation becomes essential. It is important to predict future devices or SoCs

and their associated workloads in understanding the target market. Here Workload

Proxies plays a critical role. The workload proxies have been used in industry to

benchmark current and future generation CPU/GPU platforms.

1.2 Objective

The main objectives of the project are as follows:

• Create, characterize and optimize the deep learning workload proxies for health-

care on Intel Xeon Server Platform.

• Proxies involves U-Net with up-sampling, Xception, U-Net with transposed

1
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convolution, 3D U-Net with transposed convolution and DenseNet.

• Identify the performance bottlenecks in the existing platforms.

• Perform required software optimization.

• Provide as Proof of Concept (PoC) to core architects.

1.3 Requirements

The development and implementation of this project requires following:

• Knowledge of workload/topologies

• Understanding of processor performance metrics

• Knowledge of profiling tools

• Shell scriping

• Python scripting

1.4 Scope of Work

The main objective is to characterize and analyze the workload proxies and come

up with the optimized solution which acts as a PoC to core architects and help them

in defining new SoCs.

1.5 Gantt Charts

1.5.1 Project Work-Flow Phase-I
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Figure 1.1: Project Work-Flow Phase-I
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1.5.2 Project Work-Flow Phase-II

Figure 1.2: Project Work-Flow Phase-II
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1.6 Thesis Outline

• Chapter-1 contains the brief information about motivation and objective of

the project along with the Gantt chart indicating project development work

flow.

• Chapter-2 describes the literature survey by providing the overview of work-

load, workload characterization and optimization.

• Chapter-3 discusses about workload proxies.

• Chapter-4 discusses about tools used and performance results of workload

proxies.

• Chapter-5 concludes the project report and discusses the future scope.



Chapter 2

Background Theory and

Literature Survey

This chapter provides overview of workload characterization.

2.1 Background Theory and Literature Survey

Workload characterization becomes necessary before the silicon is ready, so that

if any hardware changes are required those changes can be captured before silicon

is manufactured. The study of workload characterization on the next generation

platform before the actual silicon is available is of great importance. This helps to

save cost and time.

These workloads are characterized in terms of CPU Utilization, CPU fre-

quency, Core Scaling, Memory Bandwidth, I/O Bandwidth etc. It is necessary

to understand CPU states in order to understand the behavior of any workload on

any platform. CPU might get fully utilized even at maximum CPU frequency due

to the high intensive workload. Similarly, a low profile workload utilizes minimum

CPU frequency for a less fraction of time. This will also vary energy efficiency of

the system and performance of the workload.

The workload should be repeatable in order to test multiple alternatives under

6
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identical conditions. Generally a real-user environment is not repeatable and there

is a need to study the real-user environments, observe and understand the key char-

acteristics and develop a workload model, so that this model can be used repeatedly.

This technique is called workload characterization. Once a workload characteriza-

tion is done, the effect of changes in the workload and system can be studied in a

controlled manner by simply changing the parameters. Workload characterization

can be performed using several techniques like Averaging, Histogram etc[1].

The data measured from workload consist of the resource demands made on

the system by user or number of users. The entity that makes the service requests

at the System Under Test (SUT) is termed as user. The user may or may not be a

human being. For example, if the processor is a SUT, then the users may be various

batch jobs or programs. In workload characterization literature, the term workload

unit or workload component is used instead of the user.

The workload characterization involves characterizing a typical workload unit

or workload component or a user. The resource demands, service requests or mea-

sured quantity which is used to characterize the workload are called as workload

features or workload parameters. Examples of workload parameters are CPU uti-

lization, CPU frequency, memory bandwidth, I/O bandwidth, IPC, latency etc.

Machine Learning (ML) and Artificial Intelligence (AI) have progressed rapidly

in recent years. Techniques of ML and AI have played important role in medical

field like medical image processing, computer-aided diagnosis, image interpretation,

image fusion, image registration, image segmentation, image-guided therapy, im-

age retrieval and analysis Techniques of ML extract information from the images

and represents information effectively and efficiently. The ML and AI facilitate and

assist doctors that they can diagnose and predict accurate and faster the risk of

diseases and prevent them in time. These techniques composed of deep learning al-

gorithms like Support Vector Machine (SVM), Neural Network (NN), Convolutional

Neural Network (CNN), Recurrent neural Network (RNN), Long Short term Mem-

ory (LSTM), Extreme Learning Model (ELM), Generative Adversarial Networks
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(GANs) etc[2]. Models analyzed in this thesis are made up of CNN layers.

For optimizing the workload proxies, there are ways to optimize it at hardware

level as well as software level. In this work, Intel Advanced Vector Extensions

(AVX), Intel Math Kernel Library for Deep Neural Networks (MKL-DNN) and

Model Optimizer are used for optimization.

Intel AVX is a set of instructions for doing Single Instruction Multiple Data

(SIMD) operations on Intel architecture CPUs. Intel AVX is designed to support

512 or 1024 bits in future. Three-operand, nondestructive operations have been

added in AVX. Memory alignment requirements for operands are relaxed. A few in-

structions take four-register operands, allowing smaller and faster code by removing

unnecessary instructions[3].

The Intel MKL-DNN is a performance library for Deep Learning (DL) ap-

plications which is open source. It is intended for acceleration of DL frameworks

on Intel architecture. It includes highly vectorized and threaded building blocks

for implementation of Convolutional Neural Network (CNN)s and reccurent neural

networks (RNNs) with C and C++ interfaces. The library provides optimized im-

plementations for the most common computational functions (also called primitives)

used in deep neural networks covering a wide range of applications, including image

recognition, object detection, semantic segmentation, neural machine translation,

and speech recognition[4].

Model optimization is explained in the section Model Optimizer. So by using

AVX and MKL-DNN, it is possible to optimize the workload at hardware level as

well as software level.



Chapter 3

Workload Proxies

3.1 U-Net

3.1.1 Introduction

In past few years, in several visual recognition tasks, the deep convolutional net-

works have outperformed the state of the art. The quintessential use of convolutional

networks is on classification tasks, where the output to an image is a single class

label. Though, in many visual tasks, chiefly in bio-medical image processing, the

desired output should include localization, i.e., a class label is supposed to be as-

signed to each pixel. Furthermore, thousands of training images are usually beyond

reach in bio-medical tasks.

The more elegant architecture is used here, which is the so-called/fully con-

volutional network. This architecture yields more precise segmentations with only

using few training images. The main idea is to augment a usual contracting network

by successive layers, where up-sampling operators are used. Therefore, the output

resolution is increased by layers. Thus, the resolution of the output is increased

by layers. So to localize, from the contracting path high resolution features are

connected with the up-sampled output. After that a successive convolution layer

can learn to bring together a more definite output based on this information. In

9
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the up-sampling half we’ve an oversized range of feature channels, which permit the

network to propagate context data to higher resolution layers. As a consequence,

the expansive path is a lot of or less parallel to the contracting path, and yields a

U-shaped architecture. The network doesn’t have any fully connected layers and

solely uses the valid a part of every convolution.To predict the pixels within the

border region of the image, the missing context is figured by mirroring the input

image. This covering strategy is vital to use the network to large pictures, since

otherwise the resolution would be restricted by the system memory[5].

Figure 3.1: U-Net architecture[5]
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3.1.2 Network Architecture

The network architecture is illustrated in this case with 2D in figure 3.1. It consists

of a contracting path (left side) and an expansive path (right side). The contracting

path follows the typical architecture of a convolutional network. It consists of the

repeated application of two 3x3 convolutions (unpadded convolutions), each followed

by a rectified linear unit (ReLU)[6] and a 2x2 max pooling operation with stride 2

for down-sampling. At each down-sampling step we double the number of feature

channels.Every step in the expansive path consists of an up-sampling of the feature

map followed by a 2x2 convolution that halves the number of feature channels, a

concatenation with the correspondingly cropped feature map from the contracting

path, and two 3x3 convolutions, each followed by a ReLU. The cropping is necessary

due to the loss of border pixels in every convolution. At the final layer a 1x1

convolution is used to map each 64- component feature vector to the desired number

of classes. In total the network has 23 convolutional layers.

3.1.3 Data Augmentation

When available number of training images are less, it is required to teach the

network the robustness and invariance properties. It is called as data augmentation.

For microscopical images we mainly need rotation and shift invariance along with

robustness to deformations and gray value variations. If a segmentation network

has very few annotated images in that case to train the network random elastic

deformations of the training samples appear to be the best approach.

The U-Net architecture achieves very good performance on very different biomedical

segmentation applications.
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3.2 Xception

3.2.1 Introduction

Xception stands for Extreme version of Inception. With a modified depthwise sep-

arable convolution, it is even better than Inception-v3 for both ImageNet ILSVRC

and JFT datasets.

Figure 3.2: Depthwise Separable Convolution[7]

Depthwise convolution is the channel-wise n x n spatial convolution. Suppose

in the figure above, we have 3 channels, then we will have 3 n x n spatial convolu-

tion. Pointwise convolution actually is the 1x1 convolution to change the dimension.

Compared with conventional convolution, we do not need to perform convolution

across all channels. That means the number of connections are fewer and the model

is lighter[7].
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3.2.2 Modified Depthwise Separable Convolution in Xcep-

tion

Figure 3.3: Modified Depthwise Separable Convolution in Xception[7]

The modified depthwise separable convolution is the pointwise convolution fol-

lowed by a depthwise convolution. This modification is motivated by the inception

module in Inception-v3 that 1x1 convolution is done first before any nxn spatial con-

volutions. Thus, it is a bit different from the original one. The original depthwise

separable convolutions as usually implemented perform first channel-wise spatial

convolution. After that it perform 1x1 convolution whereas the modified depth-

wise separable convolution perform 1x1 convolution first then channel-wise spatial

convolution.
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Figure 3.4: The Xception architecture[7]

As in the figure above, SeparableConv is the modified depthwise separable

convolution. SeparableConvs are treated as Inception Modules and placed through-

out the whole deep learning architecture. The architecture illustrated in figure 3.4

and discussed in thesis is 2D.

3.3 DenseNet

Improvement in computer hardware and network structure are made in last 20

years, which have enabled the training of truly deep CNNs only recently. The

problems arise with CNNs when they go deeper. This is because the path for

information from the input layer until the output layer becomes so big, that they

can get vanished before reaching the other side. DenseNets simplify the connectivity

pattern between layers introduced in other architectures. Another problem with
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very deep networks was the problems to train. DenseNets solve this issue since

each layer has direct access to the gradients from the loss function and the original

input image. DenseNets do not sum the output feature maps of the layer with the

incoming feature maps but concatenate them[8].

Figure 3.5: A 5-layer dense block with a growth rate of k = 4. Each layer takes all
preceding feature-maps as input.[8]

Figure 3.6: A deep DenseNet with three dense blocks.[8]
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Figure 3.7: DenseNet architectures for ImageNet. The growth rate for all the net-
works is k = 32. Note that each conv layer shown in the table corresponds the
sequence BN-ReLU-Conv.

Dense Convolutional Network (DenseNet) discussed in this thesis is 2D, which con-

nects each layer to every other layer in a feed-forward fashion. On the other

hand,traditional convolutional networks with L layers have L connectionsone be-

tween each layer and its subsequent layerour network has L*(L+1)/ 2 direct con-

nections.Biggest advantage of DenseNets is their improved flow of information and

gradients throughout the network, which makes them easy to train alongside with

better parameter efficiency. This helps in training of deeper network architectures.



Chapter 4

Tools/Frameworks and Results

This chapter describes various tools used during this project and results of the

project.

4.1 Tools/Frameworks Used

• Python 2.7 and Python 3

• OpenVINO Toolkit

• OPCM

• Intel VTune Amplifier

• Intel Internal Tools

• Keras 2.2.2

• Tensorflow 1.12.0

4.1.1 Python 2.7 and Python 3

Python 2.7 is used to pre-process dataset, build the model and infer them. Python

3 is used to optimize and infer the model using OpenVINO Toolkit.

17
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4.1.2 OpenVINO Toolkit

The Intel Distribution of OpenVINO toolkit is a comprehensive toolkit for quickly

developing applications and solutions that emulate human vision. Based on CNN,

the toolkit extends Computer Vision (CV) workloads across Intel hardware(including

accelerators) and maximizes performance[9].

The Intel Distribution of OpenVINO toolkit:

• Enables CNN based deep learning inference on the edge.

• Supports heterogeneous execution across Intel’s CV accelerators, using a com-

mon Application Programming Interface (API) for the CPU, Intel Integrated

Graphics, Intel Movidius Neural Compute Stick, Intel Neural Compute Stick

2, and Intel Field Programmable Gate Array (FPGA).

• Speeds time-to-market through an easy-to-use library of CV functions and

pre-optimized kernels.

• Includes optimized calls for CV standards, including OpenCV, OpenCL, and

OpenVX.

Figure 4.1: Deep Learning Inference Engine Workflow[9]

OpenVINO Model Optimizer is a cross-platform command-line tool that fa-

cilitates the transition between the training and deployment environment, performs
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static model analysis, and adjusts deep learning models for optimal execution on

end-point target devices[10].

Model Optimizer process assumes we have a network model trained using one

of the supported frameworks. The Figure 4.1 illustrates the typical workflow for

deploying a trained deep learning model:

A summary of the steps for optimizing and deploying a trained model:

• Configure the Model Optimizer for your framework.

• Convert a trained model to produce an optimized Intermediate Representation

(IR) of the model based on the trained network topology, weights, and bias

values.

• Test the model in the Intermediate Representation format using the Inference

Engine in the target environment via provided Inference Engine validation

application or sample applications.

• Integrate the Inference Engine into your application to deploy the model in

the target environment.

Model Optimizer loads a model into memory, reads it, builds the internal

representation of the model, optimizes it, and produces the Intermediate Represen-

tation. Intermediate Representation is the only format the Inference Engine accepts.

Model Optimizer does not infer models. Model Optimizer is an offline tool that runs

before the inference takes place. Model Optimizer produce a valid and an optimized

Intermediate Representation.

Pretrained models contain layers that are important for training, such as the

Dropout layer. These layers are useless during inference and might increase the

inference time. In many cases, these layers can be automatically removed from the

resulting Intermediate Representation. However, if a group of layers can be

represented as one mathematical operation, and thus as a single layer,

the Model Optimizer recognizes such patterns and replaces these layers
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with one. The result is an Intermediate Representation that has fewer layers than

the original model. This decreases the inference time.

4.1.3 OPCM

Open Performance Counter Monitor (PCM) is an API and a set of tools based

on the API to monitor performance and energy metrics of Intel Core, Xeon, Atom

and Xeon Phi processors. PCM works on Linux, Windows, Mac OS X, FreeBSD

and DragonFlyBSD operating systems[11].

CPU utilization metric is calculated from the operating system. Metric is ob-

tained from the OS based utility like UNIX top, UNIX htop, and Windows task

manager. Metric calculated using this utility gives a good prediction of CPU uti-

lization for architectures of 80s that had a much more uniform and predictable per-

formance when compared to modern architectures which involves multi core, multi

node, multithreading, pipelining and multi-level caches.

To overcome this problem Intel processors have already embedded the capa-

bility to monitor performance events with the processors. Intel processors consists

of performance monitoring units (PMU). Collecting dynamic data from this unit

helps in obtaining precise CPU resource utilization. Using this tool, data pertain-

ing to core as well as uncore can be collected.Part of the processor that contains

Intel Quick Path Interconnect (QPI) which connect to other processors, integrated

memory controller and I/O hub is called uncore. Core data include core frequency

including Intel turbo boost, elapsed core clock ticks, cache hits and misses, instruc-

tion retired and core residencies.

4.1.4 Intel VTune Amplifier

Intel VTune Amplifier is a performance analysis tool. It is for users developing

serial and multithreaded applications. VTune Amplifier helps to analyze the algo-

rithm choices. It also helps to identify where and how application can benefit from
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available hardware resources[12].

Use the VTune Amplifier to locate or determine the following:

• The most time-consuming (hot) functions in your application and/or on the

whole system

• Sections of code that do not effectively utilize available processor time

• The best sections of code to optimize for sequential performance and for

threaded performance

• Synchronization objects that affect the application performance

• Whether, where, and why your application spends time on input/output op-

erations

• The performance impact of different synchronization methods, different num-

bers of threads, or different algorithms

• Thread activity and transitions

• Hardware-related issues in your code such as data sharing, cache misses, branch

misprediction, and others

4.1.5 Intel Internal Tools

By using Intel Internal Tools, Top-down Microarchitecture Analysis Method[13]

metric is calculated.
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4.2 Results

4.2.1 U-Net using Up Sampling(U-Net-US) Results

The comparison of U-Net-US baseline and optimized Studies Per Seconds (SPS)

for N th Generation of Intel Server is represented in figure 4.2. It is concluded that

optimized prediction numbers are 5x better than baseline because of loop collapsing.

Figure 4.2: U-Net-US Baseline SPS

Figure 4.3: U-Net-US Bandwidth
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Figure 4.4: U-Net-US CPU Utilization

Figure 4.5: U-Net-US Throughput

U-Net-US bandwidth, CPU utilization and throughput data is represented in figure

4.3, 4.4 and 4.5 respectively. If there is no memory constrain then we can go for

number of instances which yields peak performance, if not go with the number of

instance which yields significant performance with optimal bandwidth. Also we

can go for number of instances till acceptable latency. In this case at 6 number of

instance per machine gives good CPU throughput at acceptable latency and optimal

bandwidth. 1

1Y-Axis in throughput chart is enlarged so that peak can easily be identified.
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4.2.2 U-Net using Transposed Convolution(U-Net-TC)

Results

The comparison of U-Net-TC baseline and optimized prediction numbers for N th

Generation of Intel Server is represented in figure 4.6. It is concluded that optimized

prediction numbers are 4.5x better than baseline and 1.3x better than U-Net-US

optimized numbers because of better hardware optimization using transposed con-

volution.

Figure 4.6: U-Net-TC Baseline SPS

Figure 4.7: U-Net-TC Bandwidth
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Figure 4.8: U-Net-TC CPU Utilization

Figure 4.9: U-Net-TC Throughput

U-Net-TC bandwidth, CPU utilization and throughput data is represented in figure

4.7, 4.8 and 4.9 respectively. If there is no memory constrain then we can go for

number of instances which yields peak performance, if not go with the number of

instance which yields significant performance with optimal bandwidth. Also we

can go for number of instances till acceptable latency. In this case at 6 number of

instance per machine gives good CPU throughput at acceptable latency and optimal

bandwidth. 2

2Y-Axis in throughput chart is enlarged so that peak can easily be identified.
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4.2.3 3D U-Net Results

The comparison of 3D U-Net baseline and optimized prediction time for N th Gen-

eration of Intel Server is represented in figure 4.10. It is concluded that optimized

prediction numbers are 4.5x better than baseline.

Figure 4.10: 3D U-Net Baseline Prediction Time for N th Generation Intel Xeon
Server

Figure 4.11: 3D U-Net Bandwidth
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Figure 4.12: 3D U-Net CPU Utilization

Figure 4.13: 3D U-Net Throughput

3D U-Net bandwidth, CPU utilization and throughput data is represented in figure

4.11, 4.12 and 4.13 respectively. If there is no memory constrain then we can go for

number of instances which yields peak performance, if not go with the number of

instance which yields significant performance with optimal bandwidth. Also we can

go for number of instances till acceptable latency. In this case peak performance is

only 3% increase compared to single instance performance. So it is better to go with

single instance for 3D U-Net because core scaling is not giving good performance

improvement. 3

3Y-Axis in throughput chart is enlarged so that peak can easily be identified.
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4.2.4 Xception Results

The comparison of Xception baseline and optimized SPS for N th Generation of

Intel Server is represented in figure 4.14. It is concluded that optimized prediction

numbers are 6x better than baseline.

Figure 4.14: Xception Baseline SPS

Figure 4.15: Xception Bandwidth
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Figure 4.16: Xception CPU Utilization

Figure 4.17: Xception Throughput

Xception bandwidth, CPU utilization and throughput data is represented in figure

4.15, 4.16 and 4.17 respectively. If there is no memory constrain then we can go

for number of instances which yields peak performance, if not go with the number

of instance which yields significant performance with optimal bandwidth. Also we

can go for number of instances till acceptable latency. In this case at 3 number of

instance per machine gives good CPU throughput at acceptable latency and optimal

bandwidth. 4

4Y-Axis in throughput chart is enlarged so that peak can easily be identified.



CHAPTER 4. TOOLS/FRAMEWORKS AND RESULTS 30

4.2.5 DenseNet

The comparison of DenseNet baseline and optimized studies per seconds for N th

Generation of Intel Server is represented in figure 4.18. It is concluded that optimized

prediction numbers are 11x better than baseline because of loop collapsing.

Figure 4.18: DenseNet Baseline Prediction Time for N th Generation Intel Xeon
Server

Figure 4.19: DenseNet Bandwidth
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Figure 4.20: DenseNet CPU Utilization

Figure 4.21: DenseNet Throughput

DenseNet bandwidth, CPU utilization and throughput data is represented in figure

4.19, 4.20 and 4.21 respectively. If there is no memory constrain then we can go

for number of instances which yields peak performance, if not go with the number

of instance which yields significant performance with optimal bandwidth. Also we

can go for number of instances till acceptable latency. In this case at 6 number of

instance per machine gives good CPU throughput at acceptable latency and optimal

bandwidth. 5

5Y-Axis in throughput chart is enlarged so that peak can easily be identified.
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4.2.6 CPU vs GPU Performance

Figure 4.22: U-Net with Up-Sampling CPU, CPU Optimized and GPU Performance

Figure 4.23: U-Net with Transposed Convolution CPU, CPU Optimized and GPU
Performance
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Figure 4.24: 3D U-Net with Transposed Convolution CPU, CPU Optimized and
GPU Performance

Figure 4.25: Xception CPU, CPU Optimized and GPU Performance
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Figure 4.26: DenseNet CPU, CPU Optimized and GPU Performance

CPU, CPU optimized and GPU performance results are compared and shown in

the above figures for all the topologies. Here, CPU and GPU performance numbers

are with comparable peak performance TFLOPS (FP32) parts/devices. From the

comparison, CPU optimized performance numbers showed improvement than CPU

baseline and GPU SOTA performance numbers for given topologies.



Chapter 5

Conclusion and Future Scope

In this work, all workload proxies are successfully implemented and optimized using

OpenVINO model optimizer.

5.1 Conclusion

In this thesis, performance analysis of Intel platforms by characterizing and opti-

mizing workload proxies related to healthcare is carried out.

The experimental analysis related to U-Net-US, U-Net-TC, 3D U-Net, Xcep-

tion and DenseNet showed improvement in performance numbers from baseline to

optimized as below:

• U-Net-US - 5x

• U-Net-TC - 6.5x

• 3D U-Net - 4.5x

• Xception - 6x

• DenseNet - 11x

35
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Performance analysis of CPU and GPU showed that CPU optimized perfor-

mance is better than GPU SOTA for the given topologies.

By including the experimental results in the analysis, scalability study is car-

ried out for next generation platform. The analysis also gave prediction on the

maximum number of frames per second supported by the existing platform. These

workload proxies are being used by many other teams inside the Intel.

5.2 Future Scope

In recent past years, deep learning has obtained a central position toward the

automation of our daily life and provided considerable improvements as compared

to traditional machine learning algorithms. Based on the enormous performance,

most researchers believe that within next 15 years, deep learning based applications

will take over human and most of the daily routine activities will be performed by

autonomous machineries. Majority of deep learning methods focus on supervised

deep learning. Although annotations of medical data especially image data is not

always possible i.e. in case when rare disease or unavailability of qualified expert. To

overcome, the issue of big data unavailability, the supervised deep learning field is

required to shift to unsupervised or semi supervised. Acceptance of deep learning in

health sector need clinical validation by medical expert. So far deep learning based

application provided positive feedback. Because of the sensitivity of healthcare data

and challenges, we should look more sophisticated deep learning methods that can

deal complex healthcare data efficiently. Lastly we conclude that there are unlimited

opportunities to improve healthcare system via Deep Learning methods.
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