
Design and implementation of AXI
UPSIZER DOWNSIZER for GPU based

subsystem

Major Project Report

Submitted in fulfillment of the requirements

for the degree of

Master of Technology
in

Electronics & Communication Engineering

(Embedded Systems)

By

Kush Rami

(17MECE15)

Electronics & Communication Engineering Department
Institute of Technology

Nirma University
Ahmedabad-382 481

May, 2019

Design and implementation of AXI
UPSIZER DOWNSIZER for GPU based

subsystem
Major Project Report

Submitted in fulfillment of the requirements

for the degree of

Master of Technology

in

Electronics & Communication Engineering

By

Kush Rami

(17MECE15)

Under the guidance of

External Project Guide: Internal Project Guide:

Mr. Prodip Kumar Kundu Dr. Tanish Zaveri

Staff Engineer, Professor

ARM embeddded technology PVT. LTD., E&C Engineering Department,

Banglore. School of Technology, Nirma University

Electronics & Communication Engineering Department

School of Technology-Nirma University

Ahmedabad-382 481

May 2019

iii

Declaration

This is to certify that

a. The thesis comprises my original work towards the degree of Master of Tech-

nology in Embedded Systems at Nirma University and has not been submitted

elsewhere for a degree.

b. Due acknowledgment has been made in the text to all other material used.

- Kush Rami

17MECE15

iv

Certificate

This is to certify that the Major Project entitled “Design and implemen-

tation of AXI UPSIZER DOWNSIZER for GPU based subsystem” sub-

mitted by Kush Rami (17MECE15), towards the partial fulfillment of the re-

quirements for the degree of Master of Technology in Embedded Systems, Nirma

University, Ahmedabad is the record of work carried out by him under our supervi-

sion and guidance. In our opinion, the submitted work has reached a level required

for being accepted for examination.The results embodied in this major project, to

the best of our knowledge, haven’t been submitted to any other university or insti-

tution for award of any degree or diploma.

Dr Tanish Zaveri Dr N. P. Gajjar

Internal Guide PG Coordinator (Embedded System)

Dr D. K. Kothari Dr Alka Mahajan

Head, EC Dept. Director, IT - NU

Date : Place : Ahmedabad

v

Statement of Originality

I, Kush Rami, Roll. No. 17MECE15, give undertaking that the Project Re-

port on ”Design and implementation of AXI UPSIZER DOWNSIZER for

GPU based subsystem” submitted by me, towards the partial fulfillment of the

requirements for the degree of Master of Technology in Electronics and com-

munication (Embedded System) of Institute of Technology, Nirma University,

Ahmedabad, contains no material that has been awarded for any degree or diploma

in any university or school in any territory to the best of my knowledge. It is the

original work carried out by me as part of on-going research work in ARM embedded

technology Pvt. Ltd. and I give assurance that no attempt of plagiarism has been

made. It contains no material that is previously published or written, except where

reference has been made. I understand that in the event of any similarity found

subsequently with any published work or any dissertation work elsewhere; it will

result in severe disciplinary action.

———————–

Date:

Place:

Endorsed by

Dr. Tanish Zaveri

vi

Acknowledgement

Let me take the opportunity to express my deep regards to Mr. Prodip Kumar

Kundu (Project Manager) for assigning me such project and providing his guidance

and constant encouragement during the project. I would also like to thank Rakshita

Agarwal (Mentor) for her guidance, help and inspiring me to put my best efforts.

I would like to express my gratitude & sincere thanks for generous assistance to my

guide Dr. N. P. Gajjar, Professor,PG Coordinator, Embedded System, Institute of

Technology, Nirma University, Ahmedabad for his guidance and constant encourage-

ment during my course of project. Special thanks to Dr. Tanish Zaveri (Professor,

ITNU) who has always been an inspiration and guided us with his experience.

I would also like to thank all faculty members of Nirma University for providing

encouragement and exchanging knowledge during my post-graduate program.

I would like to express my gratitude towards my parents and my sister for constant

support and encouragement in life. I also wish to express my heartfelt appreciation

to my friends and colleagues at ARM who have rendered their support throughout

my project, both explicitly and implicitly.

- Kush Rami

17MECE15

Contents

Declaration iii

Certificate iv

Statement of Originality v

Acknowledgements vi

Abstract xiii

Abbreviation Notation and Nomenclature xiv

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 1

1.3 Approach . 2

1.4 Scope of Work . 2

1.5 Outline of Thesis . 3

2 Literature Survey 4

2.1 Overview . 4

2.2 Overview of AXI Protocol . 5

2.3 AXI UPSIZER DOWNSIZER design overview 6

2.4 AXI Signal Description . 7

vii

CONTENTS viii

3 Design of AXI UPSIZER DOWNSIZER Module 11

3.1 Block Diagram . 11

3.2 Introduction to AXI UPSIZER DOWNSIZER module 12

3.3 Schematic Design . 13

3.4 AXI UPSIZER DOWNSIZER -TOP Block Diagram 14

3.4.1 Request Controller . 14

3.4.2 Read Buffer Controller . 16

3.4.3 Writer Buffer Controller . 17

3.4.4 Response Controller . 18

4 Implementation of RTL design 20

4.1 Implementation logic . 20

4.1.1 Request controller . 20

4.1.2 Response controller . 21

4.1.3 Write/read Buffer Controller 21

4.2 Results . 23

4.2.1 Compilation results . 23

4.2.2 Write transaction result . 24

4.2.3 read transaction result . 24

5 Verification and Results 27

5.1 Verification Plan . 27

5.1.1 UVM Top level Testbench . 27

5.1.2 Performance Counters . 28

5.1.3 Scoreboard Implementation 30

5.1.4 UVM Testbench parameters 32

5.2 Results . 35

6 Conclusion 39

6.1 Conclusion . 39

CONTENTS ix

6.2 Future work . 40

References 41

List of Tables

2.1 Write Address channel signals[1] . 8

2.2 read Address channel signals [1] . 9

2.3 write data channel signals[1] . 9

2.4 read data channel signals [1] . 10

2.5 write response channel signals[1] . 10

x

List of Figures

3.1 Block Diagram . 11

3.2 Module Block Diagram . 12

3.3 Behavioral Block Diagram . 14

3.4 AXI-TOP Block Diagram . 15

4.1 Logic diagram of Request controller 20

4.2 Logic diagram of Response controller 21

4.3 Logic diagram of Write/read Buffer controller 22

4.4 Result of compile log . 23

4.5 DUT instantiating in simulator . 24

4.6 Signals and data of write transaction 25

4.7 Timing Waveform of write transaction 25

4.8 Signals and data of write transaction 26

4.9 Timing Waveform of write transaction 26

5.1 Block diagram of testbench . 28

5.2 Scoreboard design . 31

5.3 Master Configuration parameters . 32

5.4 Slave 1 Configuration parameters . 33

5.5 Slave 2 Configuration parameters . 34

5.6 Result of Master transaction . 35

5.7 Result of Slave 1 transaction . 36

xi

LIST OF FIGURES xii

5.8 Result of Slave 2 transaction . 37

5.9 Result of Basic test . 38

Abstract

To increase the performance of ARM System on chip(SoC) subsystem, need to

increase the data flow from system components to memory. This report focuses on

how advanced micro controller bus architecture(AMBA) protocol can be expanded

from 128bit to 256bit data width on the bus. To make this possible, one internal

module is developed which takes care of all protocol specification and rules. The

generated module is verified by number of tests which includes read and write trans-

actions. The UVM test bench is developed for this particular unit level verification,

for which protocol checkers are implemented and performance counter will measure

successful number of transaction. After that performance parameters of the system

will be evaluated and the module will be integrated in the subsystem to increase the

data flow. This project can be extended to for protocol like ACE and CHI.

xiii

Abbreviation Notation and Nomenclature

AMBA . Advanced Micro controller Bus Interface

AXI . Advanced Extensible Interface

ACE .AXI coherency entension

GPU . Graphics Processing Unit

CCI . Cache coherent interconnect

DMC . Dynamic memory controller

APB . Advanced Peripheral Bus

DMA . Direct Memory Access

xiv

Chapter 1

Introduction

1.1 Motivation

The existing subsystem does the data transaction of 128bit data width from

Graphics processing Unit(GPU) to memory. The internal structure of this path con-

tains GPU, Cache coherent interconnect(CCI), dynamic memory controller(DMC),

and memory. At a time GPU can only initiate the transaction of 128bit for read,

write or snoop transactions. From GPU to CCI, data transaction happens based on

Advanced Microcontroller Bus Architecture(AMBA) Protocol. The protocol spec-

ification supports the data transaction from 64bits to 1024bits [1]. So we want

to expand the data transaction width from 128bits to 256bits so that GPU can

run more payload in existing subsystem. This enhancement has may challenges to

in terms of configuration support, hardware support, performance parameters etc.

which we want to overcome by developing this project.

1.2 Problem Statement

In The subsystem GPU has AXI cohenrancy extension (ACE) Master and CCI

has slave pair for transaction. The master will initiate the 256bits transaction as

it can be configured from 128 bit to 256 bits. In CCI the ACE slave can not be

1

CHAPTER 1. INTRODUCTION 2

configured form 128bit to 256 bits. But CCI has availability of two slaves[4]. So,

we need to add a verilog module that makes that happen such a way that 256bit

transaction which was initiated by master, gets completed in as 128 bits transaction

for CCI slaves. There are ways of approaching this problem which is discussed in

next section.

1.3 Approach

There are two approach to achieve this enhancement goal.

1. We can make a module between GPU and CCI where we can use one 256bits

ACE master and two 128bits CCI slaves to make 256 bits read/write transaction

happen. In this approach we need extra slave from CCI side.

2. We can make a module between GPU and CCI which takes 256bits transaction

from GPU master and forwards it to CCI slave with two serial 128bits transaction.

In this approach we need extra time to complete the transaction.

The first approach is the one being implemented in this report and the resulting

waveform. The second approach will be implemented in the future scope of work so

that we can compare the performance of implementing both the approaches.

1.4 Scope of Work

To design a verilog module that make this change happen in exsting subsystem[5].

The whole module will have number of sub modules which takes care of read and

write transaction separately. The design requirement of the module must match

with the existing system parameters. After designing the full top module we meed

to test it in questa simulator. This unit level testing will verify the design and

generate the waveform as per timing waveform requirement.

CHAPTER 1. INTRODUCTION 3

1.5 Outline of Thesis

The whole thesis focuses on the design, implementation and testing of the mod-

ule which needs to be implemented in the approach 1. First chapter talks about

the introduction of the whole project. Second chapter gives highlights on literature

survey and design requirement gatherings. The third chapter talks about the imple-

mentation of the module.The fourth chapter gives the resulting waveform of tested

design. The fifth chapter talks about future work and conclusions.

Chapter 2

Literature Survey

2.1 Overview

Designing a custom system-on-chip doesn’t have to be risky difficult or expen-

sive. Let’s walk through the five steps to get from concept to silicon the fastest

easiest lowest risk way with arm. The first step is defining the needs of the sys-

tem the functionality and the requirements then select the IP blocks that satisfy

your requirements arm off is industry-leading arm cortex-m0 and cortex m3 CPUs

through arm design start quickly easily and for no upfront fee then you need to

connect the IP and peripherals together arm system design kits include a preverified

subsystem to connect the CPU with the other system components for faster more

confident designs next ensure the solution you’ve built meets all functional require-

ments using arm verified IP means you only need to focus on verifying the additional

IP and connections finally you’re ready to perform the implementation and go to

production there is a wide choice of affordable silicon nodes available from a range

of manufacturers and arm offers free access to thousands of physical IP libraries to

help and if you don’t have the design experienced in-house arm proof design partners

can help develop all or part of your custom SOC.

The subsystem of ARM consist many things on a system on chip. the step 4

4

CHAPTER 2. LITERATURE SURVEY 5

of verification and testing of design is done by my team. For my project the main

focus is enhance the system performance by increasing data transaction width. For

that we need to make sure how our design will get modified in process and the

existing system will mot get affected because of the new change. There are two

version of Advanced micro controller bus architecture (AMBA). First version is

Advanced extensible interface (AXI) and the second is AXI coherency extension

(ACE) [2]. This two protocol used as we need any data transaction between the

two components like GPU and Interconnect. Next sections in this chapter gives the

overview of the AXI and ACE protocol signals. Then how the module design needs

to be implemented in our subsystem.

2.2 Overview of AXI Protocol

The AMBA AXI protocol supports high-performance, high-frequency system de-

signs for communication between master and slave components.

The AXI protocol:

• The axi protocol is made for high bandwidth and timing low-latency designs.

• It is also made for high-frequency operation which do not use complex bridges.

• For most of components the AXI protocol supports all the interfaces

• The axi protocol is suitable for memeory controllers.

• For interconnect architecture it provides good flexibility.

• For AHB APB interface it is backward compatible.

CHAPTER 2. LITERATURE SURVEY 6

The key features of the AXI protocol are:

• AXI protocol has different address, and data space.

• It supports unaligned transfers.

• When it uses only one start address and does the burst mode transfers.

• For DMA it supports different address and data channels.

• Different multiple transfers can be supported in axi protocol.

• Out of order transactions are supported.

2.3 AXI UPSIZER DOWNSIZER design overview

From the above channel description and definition we know that AXI protocol

supports the 256 data width transaction for both read and write.So in our sub-

system we have Graphics processing unit (GPU) and Cache coherent interconnect

(CCI) that does the transaction based on ACE protocol which is advance version of

AXI protocol. The GPU ACE master and CCI ACE slave combination make the

read and write transaction happen only taking 128 bits data at a time. Now GPU

master can be configured with the parameter of AXI data width. So by changing

that we can do the transaction of 256bits read and write transaction. But from

interconnect that AXI data width is not configurable. But we have two slaves avail-

able in interconnect of 128bits data width. So using both of them we can make

a 256bits transaction possible[4]. The AXI UPSIZER DOWNSIZER module will

handle the dividing upper bits of data to slave 1 and lower bits of data to slave 2.

The more implementation detailes are discussed in chapter 3.

CHAPTER 2. LITERATURE SURVEY 7

2.4 AXI Signal Description

Global signals

Signal: ACLK

Source: Clock source

Description: Global clock signal

Signal: ARESETn

Source: Reset source

Description: Global reset signal, active Low

a. Write address channel

b. Read address channel

c. Write data channel

d. Read data channel

e. Write response channel

CHAPTER 2. LITERATURE SURVEY 8

Signal Source Description
AWID Master The identification tag for the write address group of signals.

AWADDR Master
The write address gives the address of the first transfer in a
write burst transaction.

AWLEN Master
The burst length gives the exact number of transfers in a burst.
This information determines the number of data transfers associated
with the address.

AWSIZE Master Indicates the size of each transfer in the burst.

AWBURST Master
The burst type and the size information, determine how the address
for each transfer within the burst is calculated.

AWLOCK Master
Provides additional information about the atomic characteristics of
the transfer.

AWCACHE Master Indicates how transactions are required to progress through a system.

AWPROT Master
Indicates the privilege and security level of the transaction, and
whether the transaction is a data access or an instruction access.

AWQOS Master QoS identifier sent for each write transaction.

AWREGION Master
Permits a single physical interface on a slave to be used for
multiple logical interfaces.

AWUSER Master Optional User-defined signal in the write address channel.

AWVALID Master
Indicates that the channel is signaling valid write address and
control information.

AWREADY Slave
Indicates that the slave is ready to accept an address and associated
control signals.

Table 2.1: Write Address channel signals[1]

CHAPTER 2. LITERATURE SURVEY 9

Signal Source Description
ARID Master The identification tag for the read address group of signals.

ARADDR Master
The write address gives the address of the first transfer in a
read burst transaction.

ARLEN Master
The burst length gives the exact number of transfers in a burst.
This information determines the number of data transfers associated
with the address.

ARSIZE Master Indicates the size of each transfer in the burst.

ARBURST Master
The burst type and the size information, determine how the address
for each transfer within the burst is calculated.

ARLOCK Master
Provides additional information about the atomic characteristics of
the transfer.

ARCACHE Master Indicates how transactions are required to progress through a system.

ARPROT Master
Indicates the privilege and security level of the transaction, and
whether the transaction is a data access or an instruction access.

ARQOS Master QoS identifier sent for each read transaction.

ARREGION Master
Permits a single physical interface on a slave to be used for
multiple logical interfaces.

ARUSER Master Optional User-defined signal in the read address channel.

ARVALID Master
Indicates that the channel is signaling valid read address and
control information.

ARREADY Slave
Indicates that the slave is ready to accept an address and associated
control signals.

Table 2.2: read Address channel signals [1]

Signal Source Description
WID Master The ID tag of the write data transfer.
WDATA Master Write data

WSTRB Master
Indicates that the byte lanes that hold valid data.
There is one write strobe bit for each 8 bits of the write data bus.

WLAST Master Indicates the last transfer in a write burst.
WUSER Master Optional User-defined signal in the write data channel.
WVALID Master This signal indicates that valid write data and strobes are available.
WREADY Slave This signal indicates that the slave can accept the write data.

Table 2.3: write data channel signals[1]

CHAPTER 2. LITERATURE SURVEY 10

Signal Source Description
RID Slave The ID tag of the read data transfer.
RDATA Slave read data
RRESP Slave Indicates the status of the read transfer.
RLAST Slave Indicates the last transfer in a read burst
RUSER Slave Optional User-defined signal in the read data channel.
RVALID Slave The channel is signaling the required read data.

RREADY Master
Indicates that the master can accept the read data and
response information.

Table 2.4: read data channel signals [1]

Signal Source Description
BID Slave The ID tag of the write response.
BRESP Slave Indicates the status of the write transaction.
BUSER Slave Optional User-defined signal in the write response channel.
BVALID Slave Indicates that the channel is signaling a valid write response..
BREADY Master Indicates that the master can accept a write response.

Table 2.5: write response channel signals[1]

Chapter 3

Design of AXI UPSIZER

DOWNSIZER Module

3.1 Block Diagram

The block diagram of Subsystem:

Figure 3.1: Block Diagram

11

CHAPTER 3. DESIGN OF AXI UPSIZER DOWNSIZER MODULE 12

On the first phase we are implementing Module for AXI protocol. So implemen-

tation of module is known as AXI UPSIZER DOWNSIZER.

The block diagram of AXI UPSIZER DOWNSIZER:

Figure 3.2: Module Block Diagram

3.2 Introduction to AXI UPSIZER DOWNSIZER

module

Existing Subsystem has bus width of 128 bit from GPU to CCI to DMC. We want

to make that 256bit. From GPU Master, the data width is configurable from 128bits

to 256bits. But CCI Slaves data width is not configurable. So, we can have two

128bit slaves of CCI connected to one 256bits master of GPU, in between one AXI

CHAPTER 3. DESIGN OF AXI UPSIZER DOWNSIZER MODULE 13

UPSIZER DOWNSIZER module present.The main functionality of AXI UPSIZER

DOWNSIZER block is to handle a particular data transaction from a master into

two slaves and combine the responses from these two slaves and send it to the master

as a single response.

• AXI UPSIZER DOWNSIZER block has one master interface and two slave

interfaces. Master has 256bit data width and slaves are 128bit data width

which supports AXI.

• Master sends the same AXI request to two slaves.

• For a particular transaction master will provide 256bit data and it will be

distributed into two 128bit slave data and combine the response of two slaves

and give it back to master.

• The block takes care of all axi interfaces requests and response signals.

3.3 Schematic Design

Figure below shows the high-level block diagram of AXI UPSIZER DOWNSIZER.

The block mainly consists of

• Request Controller

• Read Buffer/memory Controller

• Write Buffer/memory Controller

• Response Controller

• Snoop Signals controller

CHAPTER 3. DESIGN OF AXI UPSIZER DOWNSIZER MODULE 14

Figure 3.3: Behavioral Block Diagram

3.4 AXI UPSIZER DOWNSIZER -TOP Block Di-

agram

3.4.1 Request Controller

This block will provide the control logic for request channels Read Address Channel,

Write Address Channel, Write Data Channel, Snoop address channel and snoop data

channel.

a. Read address channel

b. Write address channel

c. Snoop Address channel

d. Write data channel

CHAPTER 3. DESIGN OF AXI UPSIZER DOWNSIZER MODULE 15

Figure 3.4: AXI-TOP Block Diagram

e. Snoop data channel

Process flow:

• The requests from all five channels are broadcasted to both the slaves.

• The main functionality of this block is to generate slave ready to master only

when both the slaves have responded for a particular transaction.

• For each master request, Controller will be generating two internal valid signals

one each to two slaves. By this way valid signal of fastest slave will be pulled

low after it gives the ready avoiding the duplication of same requests.

CHAPTER 3. DESIGN OF AXI UPSIZER DOWNSIZER MODULE 16

• The request controller makes the ADDRESS field such that it will give first

slave half ADDRESS of the memory and second slave second half ADDRESS

of memory to read or write or snoop transaction.

3.4.2 Read Buffer Controller

Read buffer controller implements one memory buffer for 256 bits data. Loading

data coming from slave1 128 lower bits and 128 upper bits from slave2. Combining

them to 256 bits and give it back to GPU master.

Read response memory:

The depth of the memory array is 64 and width is 2122.Read buffer controller takes

input from response controller to update the send field which indicates how many

resolved beats are send to master. Also it flushes the array and rearrange the prior-

ity scheme once it gets the flag from response controller stating that all the response

for a particular array is send.

Slave 1 read response:

• Once RVALID from Slave1 comes, the controller decodes the corresponding

memory array with RID ARID matching. After decoding, update the rlast

and increment the beat field.

• Beat field initially will be 0. Based on the occurrence of each RVALID, beat

will be incremented.

• Once we update the array w.r.t RVALID, check the corresponding data field

in the memory array. If these two fields match, then update the resolved bit

of the array. Otherwise continue checking until the next RVALID comes.

CHAPTER 3. DESIGN OF AXI UPSIZER DOWNSIZER MODULE 17

Slave 2 read response:

• Once RVALID from Slave2 comes, the controller decodes the corresponding

memory array with RID ARID matching. After decoding, update the rlast

and increment the beat field.

• Beat field initially will be 0. Based on the occurrence of each RVALID, beat

will be incremented.

• Once we update the array w.r.t RVALID, check the corresponding data field

in the memory array. If these two fields match, then update the resolved bit

of the array. Otherwise continue checking until the next RVALID comes.

3.4.3 Writer Buffer Controller

Write buffer controller implements one memory buffer for 256 bits data and dis-

tribute that in 128 lower bits to slave1 and 128 upper bits to slave2.

Write response memory:

The depth of the memory array is 64 and width is 21.Write buffer controller takes

input from response controller to update the send field which indicates how many

resolved beats are send to master. Also it flushes the array and rearrange the prior-

ity scheme once it gets the flag from response controller stating that all the response

for a particular array is send.

Slave 1 write response:

• Once BVALID from Slave1 comes, the controller decodes the corresponding

memory array with BID AWID matching. After decoding, update the wlast

and increment the beat field.

CHAPTER 3. DESIGN OF AXI UPSIZER DOWNSIZER MODULE 18

• Beat field initially will be 0. Based on the occurrence of each BVALID, beat

will be incremented.

• Once we update the array w.r.t BVALID, check the corresponding data field

in the memory array. If these two fields match, then update the resolved bit

of the array. Otherwise continue checking until the next BVALID comes.

Slave 2 write response:

• Once BVALID from Slave2 comes, the controller decodes the corresponding

memory array with BID AWID matching. After decoding, update the wlast

and increment the beat field.

• Beat field initially will be 0. Based on the occurrence of each BVALID, beat

will be incremented.

• Once we update the array w.r.t BVALID, check the corresponding data field

in the memory array. If these two fields match, then update the resolved bit

of the array. Otherwise continue checking until the next BVALID comes.

3.4.4 Response Controller

This block will have the control logic for channels Read Response (rdata) Channel,

Write Response Channel and snoop response channel.

• The basic functionality of this logic is to sent the final response back to master

based on the resolved response field and send(only in read case) field in memory

array.

CHAPTER 3. DESIGN OF AXI UPSIZER DOWNSIZER MODULE 19

• Logic starts checking from the first array and based on resolved state, controller

send the response to master w.r.t master ready. Controller makes sure that

response will be send every cycle if any resolved beat is available.

• Once all the responses in an array is send to master, then this information

will be send to buffer controllers to flush the array and rearrange the priority

setting.

Chapter 4

Implementation of RTL design

4.1 Implementation logic

4.1.1 Request controller

Figure 4.1: Logic diagram of Request controller

Request Controller block provides logic for the following things

• Generation of Slave 1 and Slave 2 request signals for Read Address channel,

Write Address channel and Write Data Channel based on slave ready signals.

20

CHAPTER 4. IMPLEMENTATION OF RTL DESIGN 21

• Generation of Ready signals to Master for the requests coming Read Address

channel, Write Address channel and Write Data Channel.

• Request Controller also takes input from read/write buffer controllers or the

generation of Master Ready for Read/Write address channels.

4.1.2 Response controller

Figure 4.2: Logic diagram of Response controller

Response Controller block provides logic for the following things

• Send the Read/Write response to master based on the resolved bit information

from Read/Write Buffer Controllers.

• Generation of memory array rearranging input to read/write controller based

on the response send to master.

4.1.3 Write/read Buffer Controller

Read/Write Buffer Controller block provides logic for the following things

• Response memory for storing the response from Slave 1 and slave 2 for read

transactions.

CHAPTER 4. IMPLEMENTATION OF RTL DESIGN 22

Figure 4.3: Logic diagram of Write/read Buffer controller

• Response memory for storing the response from Slave 1 and slave 2 for write

response fields in write transactions.

• ARID/AWID tagging control to Response Memory.

• Two separate buffer update logic control for Response Memory based on re-

sponse from Slave 1 and Slave 2 Interface.

• Slave 1 response control for updating Slave 1 fields in Response memory.

• Slave 2 response control for updating Slave 2 fields in Response memory.

• Control for the resolved bit updating of Response memory.

• Memory array flushing and re prioritizing control - taking input from Re-

sponse Controller once all the information of a particular transaction is send

to Master.

CHAPTER 4. IMPLEMENTATION OF RTL DESIGN 23

• Control for sending the Resolved response to Response controller.

• Control for updating the send field (in case of read) based on the resolved

beats which are already send to master.

4.2 Results

4.2.1 Compilation results

Below Figure 4.4 and 4.5 shows that there are no syntax and no compilation error

of generated RTL module.

Figure 4.4: Result of compile log

CHAPTER 4. IMPLEMENTATION OF RTL DESIGN 24

Figure 4.5: DUT instantiating in simulator

4.2.2 Write transaction result

Below Figures 4.6 and 4.7 shows that the write transaction happens for GPU as a

256 bits data send to the slaves. Module Divides that data into two parts of upper

and lower bits to two different slaves.

4.2.3 read transaction result

Below Figures 4.8 and 4.9 shows that read data for the GPU master has come

successfully as 256bits wider. where slave 1 and slave 2 has responded out of order

in time.

CHAPTER 4. IMPLEMENTATION OF RTL DESIGN 25

Figure 4.6: Signals and data of write transaction

Figure 4.7: Timing Waveform of write transaction

CHAPTER 4. IMPLEMENTATION OF RTL DESIGN 26

Figure 4.8: Signals and data of write transaction

Figure 4.9: Timing Waveform of write transaction

Chapter 5

Verification and Results

5.1 Verification Plan

5.1.1 UVM Top level Testbench

This chapter describes the verification methodology for AXI UPSIZER DOWN-

SIZER. It lists the verification requirements and strategy to achieve those. It also

explains the components/VIP used i.e. Scoreboard checking mechanism.

The main functionality of AXI UPSIZER DOWNSIZER block is to split a

particular transaction from a master in to two slaves and combine the responses

from these two slaves and send it to the master as a single response.

• AXI UPSIZER DOWNSIZER block has one master interface and two slave

interfaces. Both master and slave are 128bit AXI4 interfaces.

• Master sends the same AXI request to two slaves.

• One slave gives the higher data width response and the other gives the lower

data width response for a given transaction.

• The block takes care of broadcasting the AXI requests to both the slaves and

from the response path, it properly buffers all the responses and sends it back

27

CHAPTER 5. VERIFICATION AND RESULTS 28

to master only when both SlaveData response and SlaveTiming response is

available for a particular transaction.

• In addition to this, performance counters have been implemented into the

design, accessible by an APB interface.

Figure 5.1: Block diagram of testbench

5.1.2 Performance Counters

AXI UPSIZER DOWNSIZER implements performance counters which can be

accessed via APB interface. There are totally eight 64 bits registers which constitutes

to sixteen 32-bit APB registers.

• Read Request Stall Counter Lower : Shows the number of cycles where Slave

1 accepted the read request but Slave 2 didnt. Lower 32 bits of the counter

CHAPTER 5. VERIFICATION AND RESULTS 29

• Read Request Stall Counter Upper : Shows the number of cycles where Slave

1 accepted the read request but Slave 2 didnt. Upper 32 bits of the counter.

• Write Request Stall Counter Lower : Shows the number of cycles where Slave

1 accepted the write request but Slave 2 didnt. Lower 32 bits of the counter.

• Write Request Stall Counter Upper : Shows the number of cycles where Slave

1 accepted the write request but Slave 2 didnt. Upper 32 bits of the counter.

• Read Response Stall Counter Lower : Shows the number of cycles for which

we have RLAST on Slave 1 but not for Slave 2 for every transaction. Lower

32 bits of the counter.

• Read Response Stall Counter Upper : Shows the number of cycles for which

we have RLAST on Slave 1 but not for Slave 2 for every transaction. Upper

32 bits of the counter.

• Write Response Stall Counter Lower : Shows the number of cycles for which

we have BRESP on Slave 1 but not for Slave 2 for every transaction. Lower

32 bits of the counter.

• Write Response Stall Counter Upper : Shows the number of cycles for which

we have BRESP on Slave 1 but not for Slave 2 for every transaction. Upper

32 bits of the counter.

• Read Request Number Counter Lower : shows the total number of Read Re-

quests passed via AXI-UPSIZER DOWNSIZER. Lower 32 bits of the counter.

• Read Request Number Counter Upper : Shows the total number of Read Re-

quests passed via AXI-UPSIZER DOWNSIZER. Upper 32 bits of the counter.

• Write Request Number Counter Lower : Shows the total number of Write Re-

quests passed via AXI-UPSIZER DOWNSIZER. Lower 32 bits of the counter.

CHAPTER 5. VERIFICATION AND RESULTS 30

• Write Request Number Counter Upper : Shows the total number of Write Re-

quests passed via AXI-UPSIZER DOWNSIZER. Upper 32 bits of the counter.

• Read Beat Number Counter Lower : Shows the total number of Read beats

passed via AXI-UPSIZER DOWNSIZER. Lower 32 bits of the counter.

• Read Beat Number Counter Upper : Shows the total number of Read beats

passed via AXI-UPSIZER DOWNSIZER. Upper 32 bits of the counter.

• Write Beat Number Counter Lower : Shows the total number of Write data

beats passed via AXI-UPSIZER DOWNSIZER. Lower 32 bits of the counter.

• Write Beat Number Counter Lower : Shows the total number of Write data

beats passed via UPSIZER DOWNSIZER. Upper 32 bits of the counter.

5.1.3 Scoreboard Implementation

The testbench utilizes a UVM scoreboard to predict the DUT functionality and

match with the DUT behavior.

Before fifo read This fifo captures each beat of a read transactions at the

master interface side as an entry. Whenever the master agent receives a beat it

pushes the packet to the fifo i.e. request along with the beat response. Before fifo

write This fifo captures a complete write transaction at thte master interface side

as an entry. Whenever the master agent receives a complete write transaction i.e.

request along with the response, it creates a packet with all of the signal values in

it and pushes to the fifo. After fifo read slave 0 - Same as Before fifo read, but used

to capture the packet on the Slave data interface. After fifo write slave 0 - Same as

Before fifo write, but used to capture the packet on the Slave data interface. After

fifo read slave 1 - Same as Before fifo read, but used to capture the packet on the

Slave Timing interface. After fifo write slave 1 - Same as Before fifo write, but used

to capture the packet on the Slave Timing interface.

CHAPTER 5. VERIFICATION AND RESULTS 31

Figure 5.2: Scoreboard design

• Scoreboard checking We take the latest packet in the before read/write fifoi.e

after txn and compare it with the before txn which comes after the predictor

logic. Here predictor does nothing but the forwarding of transaction/beat

packet of slave 0 fifo. So for example, if slave 0 have responded, it will have

a transaction/beat packet in the slave0 fifo. Now, if the splitter forwards this

reponse to master port without looking for slave1 response, checking will fail

with an error stating slave 1 fifo doesnt have the response yet and therefore

master shouldnt have forwarded the response.

CHAPTER 5. VERIFICATION AND RESULTS 32

• AXI4 protocol checking AXI4 protocol checkers have been instantiated at the

all three AXI interfaces of DUT.

5.1.4 UVM Testbench parameters

Figure 5.3: Master Configuration parameters

CHAPTER 5. VERIFICATION AND RESULTS 33

Figure 5.4: Slave 1 Configuration parameters

CHAPTER 5. VERIFICATION AND RESULTS 34

Figure 5.5: Slave 2 Configuration parameters

CHAPTER 5. VERIFICATION AND RESULTS 35

5.2 Results

Figure 5.6 shows the read transaction received of master. Figure 5.7 and 5.8 shows

generated the read transaction of slave 1 and slave 2 respectively. Figure 5.9 is the

final result of basic test.

Figure 5.6: Result of Master transaction

CHAPTER 5. VERIFICATION AND RESULTS 36

Figure 5.7: Result of Slave 1 transaction

CHAPTER 5. VERIFICATION AND RESULTS 37

Figure 5.8: Result of Slave 2 transaction

CHAPTER 5. VERIFICATION AND RESULTS 38

Figure 5.9: Result of Basic test

Chapter 6

Conclusion

6.1 Conclusion

The goal was to expand data width of interconnect from 128bit to 256bit in

the subsystem.For acheiving this, AXI UPSIZER DOWNSIZER were implemented

using verilog and UVM. This design is tested using arm test bench environment.

The test results shows the read and write transaction for 256bits data. The protocol

checker verified all the successful read and write transactions. The AXI UPSIZER

DOWNSIZER module can be integrated in the subsystem which has AXI protocol

for communication between the components.

39

CHAPTER 6. CONCLUSION 40

6.2 Future work

In future we will continue to implement this module for snoop transaction as

per AXI coherency extension (ACE) protocol. Once we test that module on unit

level environment, we can integrate it in our subsystem. Once it gets integrated,

the subsystem will run some payload with more data on the data bus and see the

performance parameters has improved or not. The whole project will get enhanced

based on the performance improvement.

References

[1] “AMBA AXI Protocol Specification”, ARM Limited,2017

[2] “AMBA ACE Protocol Specification”, ARM Limited,2017

[3] “Computer Architecture: A Quantitative Approach”, by John L. Hennessy and
David A. Patterson (5th edition)

[4] ARM internal documents

[5] “Verilog HDL A guide to Digital Design and Synthesis”, by Samir Palnitkar
(1st edition)

41

	Declaration
	Certificate
	Statement of Originality
	Acknowledgements
	Abstract
	Abbreviation Notation and Nomenclature
	Introduction
	Motivation
	Problem Statement
	Approach
	Scope of Work
	Outline of Thesis

	Literature Survey
	Overview
	Overview of AXI Protocol
	AXI UPSIZER DOWNSIZER design overview
	AXI Signal Description

	Design of AXI UPSIZER DOWNSIZER Module
	Block Diagram
	Introduction to AXI UPSIZER DOWNSIZER module
	Schematic Design
	AXI UPSIZER DOWNSIZER -TOP Block Diagram
	Request Controller
	Read Buffer Controller
	Writer Buffer Controller
	Response Controller

	Implementation of RTL design
	Implementation logic
	Request controller
	Response controller
	Write/read Buffer Controller

	Results
	Compilation results
	Write transaction result
	read transaction result

	Verification and Results
	Verification Plan
	UVM Top level Testbench
	Performance Counters
	Scoreboard Implementation
	UVM Testbench parameters

	Results

	Conclusion
	Conclusion
	Future work

	References

